1
|
Holzwarth D, Calaminus G, Friese J, Sejersen T, Büning H, John-Neek P, Bastone AL, Rothe M, Mansfield K, Libertini S, Dubost V, Kuzmiski B, Alecu I, Labik I, Kirschner J. Pilocytic astrocytoma in a child with spinal muscular atrophy treated with onasemnogene abeparvovec. Mol Ther 2025:S1525-0016(25)00115-7. [PMID: 39955617 DOI: 10.1016/j.ymthe.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disease, leading to progressive muscle weakness and potentially early mortality if untreated. Onasemnogene abeparvovec is a recombinant adeno-associated virus serotype 9 (rAAV9)-based gene therapy that has demonstrated improvements in survival and motor function for SMA patients. Here, we present a case of a patient diagnosed with a grade 1 pilocytic astrocytoma at the age of 2 years, approximately 8 months after onasemnogene abeparvovec treatment. Although vector genomes delivered by rAAVs persist primarily as episomes, rare integration events have been linked to tumor formation in neonate murine models. Therefore, we investigated the presence and possible integration of onasemnogene abeparvovec in formalin-fixed paraffin embedded (FFPE) and frozen tumor samples. In situ hybridization demonstrated variable transduction levels in individual tumor cells, while droplet digital PCR measured an average vector copy number ranging from 0.7 to 4.9 vector genomes/diploid genome. Integration site analysis identified a low number of integration sites that were not conserved between technical replicates, nor between FFPE and frozen samples, indicating that cells hosting integrating vector genomes represented a minority in the overall cell population. Thus, molecular analysis of the tumor tissue suggests that tumorigenesis was causally independent of the administration of onasemnogene abeparvovec.
Collapse
Affiliation(s)
| | | | | | - Thomas Sejersen
- Pediatric Neurology, Karolinska University Hospital, 171 77 Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | - Iulian Alecu
- Novartis Pharmaceuticals, 4056 Basel, Switzerland
| | - Ivan Labik
- ProtaGene CGT GmbH, 69120 Heidelberg, Germany
| | - Janbernd Kirschner
- Department for Neuropediatrics and Muscle Disease, Medical Center - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
| |
Collapse
|
2
|
Oliveira BC, Bari S, Melenhorst JJ. Leveraging Vector-Based Gene Disruptions to Enhance CAR T-Cell Effectiveness. Cancers (Basel) 2025; 17:383. [PMID: 39941752 PMCID: PMC11815729 DOI: 10.3390/cancers17030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy represents a breakthrough in the treatment of relapsed and refractory B-cell malignancies, such as chronic lymphocytic leukemia (CLL), inducing long-term, sometimes curative, responses. However, fewer than 30% of CLL patients achieve such outcomes. It has been shown that a smaller subset of T cells capable of expansion and persistence is crucial for treatment effectiveness. Notably, a pre-existing mutation in the epigenetic regulator TET2, combined with CAR vector-induced disruption of the other intact allele, significantly enhanced the potency of the CAR-engineered T-cell clone in one CLL patient. This finding aligns with independent research, suggesting that the CAR gene's genomic insertion site influences tumor-targeting capability. Thus, it is plausible that vector-induced gene disruptions affect CAR T-cell function. This review synthesizes existing knowledge on vector integration into the host genome and its impact on clinical outcomes in CAR T-cell therapy patients. Our aim is to inform the development of improved therapies and enhance their overall efficacy.
Collapse
Affiliation(s)
| | | | - J. Joseph Melenhorst
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44016, USA; (B.C.O.); (S.B.)
| |
Collapse
|
3
|
Moiseenko A, Sinadinos A, Sergijenko A, Pineault K, Saleh A, Nekola K, Strang N, Eleftheraki A, Boyd AC, Davies JC, Gill DR, Hyde SC, McLachlan G, Rath T, Rothe M, Schambach A, Hobbie S, Schuler M, Maier U, Thomas MJ, Mennerich D, Schmidt M, Griesenbach U, Alton EWFW, Kreuz S. Pharmacological and pre-clinical safety profile of rSIV.F/HN, a hybrid lentiviral vector for cystic fibrosis gene therapy. Eur Respir J 2025; 65:2301683. [PMID: 39174284 PMCID: PMC11780724 DOI: 10.1183/13993003.01683-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 08/02/2024] [Indexed: 08/24/2024]
Abstract
RATIONALE AND OBJECTIVE Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. CFTR modulators offer significant improvements, but ∼10% of patients remain nonresponsive or are intolerant. This study provides an analysis of rSIV.F/HN, a lentiviral vector optimised for lung delivery, including CFTR protein expression, functional correction of CFTR defects and genomic integration site analysis in preparation for a first-in-human clinical trial. METHODS Air-liquid interface cultures of primary human bronchial epithelial cells (HBECs) from CF patients (F508del/F508del), as well as a CFTR-deficient immortalised human lung epithelial cell line mimicking class I (CFTR-null) homozygous mutations, were used to assess transduction efficiency. Quantification methods included a novel proximity ligation assay for CFTR protein expression. For assessment of CFTR channel activity, Ussing chamber studies were conducted. The safety profile was assessed using integration site analysis and in vitro insertional mutagenesis studies. RESULTS rSIV.F/HN expressed CFTR and restored CFTR-mediated chloride currents to physiological levels in primary F508del/F508del HBECs as well as in a class I cells. In contrast, the latter could not be achieved by small-molecule CFTR modulators, underscoring the potential of gene therapy for this mutation class. Combination of rSIV.F/HN-CFTR with the potentiator ivacaftor showed a greater than additive effect. The genomic integration pattern showed no site predominance (frequency of occurrence ≤10%), and a low risk of insertional mutagenesis was observed in an in vitro immortalisation assay. CONCLUSIONS The results underscore rSIV.F/HN as a promising gene therapy vector for CF, providing a mutation-agnostic treatment option.
Collapse
Affiliation(s)
- Alena Moiseenko
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Anthony Sinadinos
- UK Respiratory Gene Therapy Consortium, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ana Sergijenko
- UK Respiratory Gene Therapy Consortium, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kyriel Pineault
- UK Respiratory Gene Therapy Consortium, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Aarash Saleh
- UK Respiratory Gene Therapy Consortium, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Konradin Nekola
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Nathalie Strang
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | | | - A Christopher Boyd
- UK Respiratory Gene Therapy Consortium, London, UK
- Centre of Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jane C Davies
- UK Respiratory Gene Therapy Consortium, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Depts of Respiratory Medicine and Paediatric Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' Trust, London, UK
| | - Deborah R Gill
- UK Respiratory Gene Therapy Consortium, London, UK
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen C Hyde
- UK Respiratory Gene Therapy Consortium, London, UK
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Gerry McLachlan
- UK Respiratory Gene Therapy Consortium, London, UK
- The Roslin Institute & R(D)SVS, University of Edinburgh, Edinburgh, UK
| | - Tim Rath
- ProtaGene CGT (former GeneWerk GmbH), Heidelberg, Germany
| | | | - Axel Schambach
- Medizinische Hochschule Hannover, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Silke Hobbie
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Michael Schuler
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Udo Maier
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | | | | | - Manfred Schmidt
- ProtaGene CGT (former GeneWerk GmbH), Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Deceased
| | - Uta Griesenbach
- UK Respiratory Gene Therapy Consortium, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- U. Griesenbach, E.W.F.W. Alton and S. Kreuz are joint senior authors
| | - Eric W F W Alton
- UK Respiratory Gene Therapy Consortium, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Depts of Respiratory Medicine and Paediatric Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' Trust, London, UK
- U. Griesenbach, E.W.F.W. Alton and S. Kreuz are joint senior authors
| | - Sebastian Kreuz
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
- U. Griesenbach, E.W.F.W. Alton and S. Kreuz are joint senior authors
| |
Collapse
|
4
|
Ismail AM, Witt E, Bouwman T, Clark W, Yates B, Franco M, Fong S. The longitudinal kinetics of AAV5 vector integration profiles and evaluation of clonal expansion in mice. Mol Ther Methods Clin Dev 2024; 32:101294. [PMID: 39104575 PMCID: PMC11298592 DOI: 10.1016/j.omtm.2024.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
Adeno-associated virus (AAV)-based vectors are used clinically for gene transfer and persist as extrachromosomal episomes. A small fraction of vector genomes integrate into the host genome, but the theoretical risk of tumorigenesis depends on vector regulatory features. A mouse model was used to investigate integration profiles of an AAV serotype 5 (AAV5) vector produced using Sf and HEK293 cells that mimic key features of valoctocogene roxaparvovec (AAV5-hFVIII-SQ), a gene therapy for severe hemophilia A. The majority (95%) of vector genome reads were derived from episomes, and mean (± standard deviation) integration frequency was 2.70 ± 1.26 and 1.79 ± 0.86 integrations per 1,000 cells for Sf- and HEK293-produced vector. Longitudinal integration analysis suggested integrations occur primarily within 1 week, at low frequency, and their abundance was stable over time. Integration profiles were polyclonal and randomly distributed. No major differences in integration profiles were observed for either vector production platform, and no integrations were associated with clonal expansion. Integrations were enriched near transcription start sites of genes highly expressed in the liver (p = 1 × 10-4) and less enriched for genes of lower expression. We found no evidence of tumorigenesis or fibrosis caused by the vector integrations.
Collapse
Affiliation(s)
| | - Evan Witt
- BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | | | - Wyatt Clark
- BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | | | - Matteo Franco
- ProtaGene CGT GmbH, Heidelberg 69120, Germany
- ProtaGene Inc., Burlington, MA 01803, USA
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| |
Collapse
|
5
|
Mattar CN, Chew WL, Lai PS. Embryo and fetal gene editing: Technical challenges and progress toward clinical applications. Mol Ther Methods Clin Dev 2024; 32:101229. [PMID: 38533521 PMCID: PMC10963250 DOI: 10.1016/j.omtm.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. In vivo strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.
Collapse
Affiliation(s)
- Citra N.Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, 60 Biopolis St, Singapore, Singapore 138672
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| |
Collapse
|
6
|
Borges B, Varthaliti A, Schwab M, Clarke MT, Pivetti C, Gupta N, Cadwell CR, Guibinga G, Phillips S, Del Rio T, Ozsolak F, Imai-Leonard D, Kong L, Laird DJ, Herzeg A, Sumner CJ, MacKenzie TC. Prenatal AAV9-GFP administration in fetal lambs results in transduction of female germ cells and maternal exposure to virus. Mol Ther Methods Clin Dev 2024; 32:101263. [PMID: 38827250 PMCID: PMC11141462 DOI: 10.1016/j.omtm.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
Prenatal somatic cell gene therapy (PSCGT) could potentially treat severe, early-onset genetic disorders such as spinal muscular atrophy (SMA) or muscular dystrophy. Given the approval of adeno-associated virus serotype 9 (AAV9) vectors in infants with SMA by the U.S. Food and Drug Administration, we tested the safety and biodistribution of AAV9-GFP (clinical-grade and dose) in fetal lambs to understand safety and efficacy after umbilical vein or intracranial injection on embryonic day 75 (E75) . Umbilical vein injection led to widespread biodistribution of vector genomes in all examined lamb tissues and in maternal uteruses at harvest (E96 or E140; term = E150). There was robust GFP expression in brain, spinal cord, dorsal root ganglia (DRGs), without DRG toxicity and excellent transduction of diaphragm and quadriceps muscles. However, we found evidence of systemic toxicity (fetal growth restriction) and maternal exposure to the viral vector (transient elevation of total bilirubin and a trend toward elevation in anti-AAV9 antibodies). There were no antibodies against GFP in ewes or lambs. Analysis of fetal gonads demonstrated GFP expression in female (but not male) germ cells, with low levels of integration-specific reads, without integration in select proto-oncogenes. These results suggest potential therapeutic benefit of AAV9 PSCGT for neuromuscular disorders, but warrant caution for exposure of female germ cells.
Collapse
Affiliation(s)
- Beltran Borges
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Antonia Varthaliti
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marisa Schwab
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maria T Clarke
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher Pivetti
- Department of Surgery, University of California, Davis, Davis, CA 95817, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Weill Neurohub, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ghiabe Guibinga
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Shirley Phillips
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Tony Del Rio
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Fatih Ozsolak
- Novartis Institutes for BioMedical Research Biologics Center, San Diego, CA 92121, USA
| | - Denise Imai-Leonard
- Comparative Pathology Laboratory, University of California, Davis, Davis, CA 95616, USA
| | - Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Diana J Laird
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Akos Herzeg
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UCSF Center for Maternal-Fetal Precision Medicine, San Francisco, CA 94158, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics and Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Batty P, Fong S, Franco M, Sihn CR, Swystun LL, Afzal S, Harpell L, Hurlbut D, Pender A, Su C, Thomsen H, Wilson C, Youssar L, Winterborn A, Gil-Farina I, Lillicrap D. Vector integration and fate in the hemophilia dog liver multiple years after AAV-FVIII gene transfer. Blood 2024; 143:2373-2385. [PMID: 38452208 DOI: 10.1182/blood.2023022589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Gene therapy using adeno-associated virus (AAV) vectors is a promising approach for the treatment of monogenic disorders. Long-term multiyear transgene expression has been demonstrated in animal models and clinical studies. Nevertheless, uncertainties remain concerning the nature of AAV vector persistence and whether there is a potential for genotoxicity. Here, we describe the mechanisms of AAV vector persistence in the liver of a severe hemophilia A dog model (male = 4, hemizygous; and female = 4, homozygous), more than a decade after portal vein delivery. The predominant vector form was nonintegrated episomal structures with levels correlating with long-term transgene expression. Random integration was seen in all samples (median frequency, 9.3e-4 sites per cell), with small numbers of nonrandom common integration sites associated with open chromatin. No full-length integrated vectors were found, supporting predominant episomal vector-mediated long-term transgene expression. Despite integration, this was not associated with oncogene upregulation or histopathological evidence of tumorigenesis. These findings support the long-term safety of this therapeutic modality.
Collapse
Affiliation(s)
- Paul Batty
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom
| | - Sylvia Fong
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
- Research, BioMarin Pharmaceutical, Novato, CA
| | | | | | - Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | | | - Lorianne Harpell
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - David Hurlbut
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Abbey Pender
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Cheng Su
- Data Science, BioMarin Pharmaceutical, Novato, CA
| | - Hauke Thomsen
- ProtaGene CGT GmbH, Heidelberg, Germany
- MSB Medical School Berlin, Berlin, Germany
| | | | | | - Andrew Winterborn
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | | | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
8
|
Lemmens M, Dorsheimer L, Zeller A, Dietz-Baum Y. Non-clinical safety assessment of novel drug modalities: Genome safety perspectives on viral-, nuclease- and nucleotide-based gene therapies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 896:503767. [PMID: 38821669 DOI: 10.1016/j.mrgentox.2024.503767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Gene therapies have emerged as promising treatments for various conditions including inherited diseases as well as cancer. Ensuring their safe clinical application requires the development of appropriate safety testing strategies. Several guidelines have been provided by health authorities to address these concerns. These guidelines state that non-clinical testing should be carried out on a case-by-case basis depending on the modality. This review focuses on the genome safety assessment of frequently used gene therapy modalities, namely Adeno Associated Viruses (AAVs), Lentiviruses, designer nucleases and mRNAs. Important safety considerations for these modalities, amongst others, are vector integrations into the patient genome (insertional mutagenesis) and off-target editing. Taking into account the constraints of in vivo studies, health authorities endorse the development of novel approach methodologies (NAMs), which are innovative in vitro strategies for genotoxicity testing. This review provides an overview of NAMs applied to viral and CRISPR/Cas9 safety, including next generation sequencing-based methods for integration site analysis and off-target editing. Additionally, NAMs to evaluate the oncogenicity risk arising from unwanted genomic modifications are discussed. Thus, a range of promising techniques are available to support the safe development of gene therapies. Thorough validation, comparisons and correlations with clinical outcomes are essential to identify the most reliable safety testing strategies. By providing a comprehensive overview of these NAMs, this review aims to contribute to a better understanding of the genome safety perspectives of gene therapies.
Collapse
Affiliation(s)
| | - Lena Dorsheimer
- Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main 65926, Germany.
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Yasmin Dietz-Baum
- Research and Development, Preclinical Safety, Sanofi, Industriepark Hoechst, Frankfurt am Main 65926, Germany
| |
Collapse
|
9
|
Castiello MC, Di Verniere M, Draghici E, Fontana E, Penna S, Sereni L, Zecchillo A, Minuta D, Uva P, Zahn M, Gil-Farina I, Annoni A, Iaia S, Ott de Bruin LM, Notarangelo LD, Pike-Overzet K, Staal FJT, Villa A, Capo V. Partial correction of immunodeficiency by lentiviral vector gene therapy in mouse models carrying Rag1 hypomorphic mutations. Front Immunol 2023; 14:1268620. [PMID: 38022635 PMCID: PMC10679457 DOI: 10.3389/fimmu.2023.1268620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Recombination activating genes (RAG) 1 and 2 defects are the most frequent form of severe combined immunodeficiency (SCID). Patients with residual RAG activity have a spectrum of clinical manifestations ranging from Omenn syndrome to delayed-onset combined immunodeficiency, often associated with granulomas and/or autoimmunity (CID-G/AI). Lentiviral vector (LV) gene therapy (GT) has been proposed as an alternative treatment to the standard hematopoietic stem cell transplant and a clinical trial for RAG1 SCID patients recently started. However, GT in patients with hypomorphic RAG mutations poses additional risks, because of the residual endogenous RAG1 expression and the general state of immune dysregulation and associated inflammation. Methods In this study, we assessed the efficacy of GT in 2 hypomorphic Rag1 murine models (Rag1F971L/F971L and Rag1R972Q/R972Q), exploiting the same LV used in the clinical trial encoding RAG1 under control of the MND promoter. Results and discussion Starting 6 weeks after transplant, GT-treated mice showed a decrease in proportion of myeloid cells and a concomitant increase of B, T and total white blood cells. However, counts remained lower than in mice transplanted with WT Lin- cells. At euthanasia, we observed a general redistribution of immune subsets in tissues, with the appearance of mature recirculating B cells in the bone marrow. In the thymus, we demonstrated correction of the block at double negative stage, with a modest improvement in the cortical/medullary ratio. Analysis of antigenspecific IgM and IgG serum levels after in vivo challenge showed an amelioration of antibody responses, suggesting that the partial immune correction could confer a clinical benefit. Notably, no overt signs of autoimmunity were detected, with B-cell activating factor decreasing to normal levels and autoantibodies remaining stable after GT. On the other hand, thymic enlargement was frequently observed, although not due to vector integration and insertional mutagenesis. In conclusion, our work shows that GT could partially alleviate the combined immunodeficiency of hypomorphic RAG1 patients and that extensive efficacy and safety studies with alternative models are required before commencing RAG gene therapy in thesehighly complex patients.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Martina Di Verniere
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Elena Draghici
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Fontana
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Sara Penna
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Sereni
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Zecchillo
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Denise Minuta
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Uva
- Clinical Bioinformatics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Andrea Annoni
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Iaia
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lisa M. Ott de Bruin
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Valentina Capo
- San Raffaele-Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
10
|
Harmening N, Johnen S, Izsvák Z, Ivics Z, Kropp M, Bascuas T, Walter P, Kreis A, Pajic B, Thumann G. Enhanced Biosafety of the Sleeping Beauty Transposon System by Using mRNA as Source of Transposase to Efficiently and Stably Transfect Retinal Pigment Epithelial Cells. Biomolecules 2023; 13:biom13040658. [PMID: 37189405 DOI: 10.3390/biom13040658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Neovascular age-related macular degeneration (nvAMD) is characterized by choroidal neovascularization (CNV), which leads to retinal pigment epithelial (RPE) cell and photoreceptor degeneration and blindness if untreated. Since blood vessel growth is mediated by endothelial cell growth factors, including vascular endothelial growth factor (VEGF), treatment consists of repeated, often monthly, intravitreal injections of anti-angiogenic biopharmaceuticals. Frequent injections are costly and present logistic difficulties; therefore, our laboratories are developing a cell-based gene therapy based on autologous RPE cells transfected ex vivo with the pigment epithelium derived factor (PEDF), which is the most potent natural antagonist of VEGF. Gene delivery and long-term expression of the transgene are enabled by the use of the non-viral Sleeping Beauty (SB100X) transposon system that is introduced into the cells by electroporation. The transposase may have a cytotoxic effect and a low risk of remobilization of the transposon if supplied in the form of DNA. Here, we investigated the use of the SB100X transposase delivered as mRNA and showed that ARPE-19 cells as well as primary human RPE cells were successfully transfected with the Venus or the PEDF gene, followed by stable transgene expression. In human RPE cells, secretion of recombinant PEDF could be detected in cell culture up to one year. Non-viral ex vivo transfection using SB100X-mRNA in combination with electroporation increases the biosafety of our gene therapeutic approach to treat nvAMD while ensuring high transfection efficiency and long-term transgene expression in RPE cells.
Collapse
Affiliation(s)
- Nina Harmening
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Zoltan Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Thais Bascuas
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Andreas Kreis
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Bojan Pajic
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Eye Clinic ORASIS, Swiss Eye Research Foundation, 5734 Reinach, Switzerland
- Faculty of Sciences, Department of Physics, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
11
|
Fischer A. Gene therapy for inborn errors of immunity: past, present and future. Nat Rev Immunol 2022:10.1038/s41577-022-00800-6. [DOI: 10.1038/s41577-022-00800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
|
12
|
Tipanee J, Samara-Kuko E, Gevaert T, Chuah MK, VandenDriessche T. Universal allogeneic CAR T cells engineered with Sleeping Beauty transposons and CRISPR-CAS9 for cancer immunotherapy. Mol Ther 2022; 30:3155-3175. [PMID: 35711141 PMCID: PMC9552804 DOI: 10.1016/j.ymthe.2022.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 12/25/2022] Open
Abstract
Allogeneic CD19-specific chimeric antigen receptor (CAR) T cells with inactivated donor T cell receptor (TCR) expression can be used as an "off-the-shelf" therapeutic modality for lymphoid malignancies, thus offering an attractive alternative to autologous, patient-derived T cells. Current approaches for T cell engineering mainly rely on the use of viral vectors. Here, we optimized and validated a non-viral genetic modification platform based on Sleeping Beauty (SB) transposons delivered with minicircles to express CD19-28z.CAR and CRISPR-Cas9 ribonucleoparticles to inactivate allogeneic TCRs. Efficient TCR gene disruption was achieved with minimal cytotoxicity and with attainment of robust and stable CD19-28z.CAR expression. The CAR T cells were responsive to CD19+ tumor cells with antitumor activities that induced complete tumor remission in NALM6 tumor-bearing mice while significantly reducing TCR alloreactivity and GvHD development. Single CAR signaling induced the similar T cell signaling signatures in TCR-disrupted CAR T cells and control CAR T cells. In contrast, TCR disruption inhibited T cell signaling/protein phosphorylation compared with the control CAR T cells during dual CAR/TCR signaling. This non-viral SB transposon-CRISPR-Cas9 combination strategy serves as an alternative for generating next-generation CD19-specific CAR T while reducing GvHD risk and easing potential manufacturing constraints intrinsic to viral vectors.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
13
|
Sabatino DE, Bushman FD, Chandler RJ, Crystal RG, Davidson BL, Dolmetsch R, Eggan KC, Gao G, Gil-Farina I, Kay MA, McCarty DM, Montini E, Ndu A, Yuan J. Evaluating the state of the science for adeno-associated virus integration: An integrated perspective. Mol Ther 2022; 30:2646-2663. [PMID: 35690906 PMCID: PMC9372310 DOI: 10.1016/j.ymthe.2022.06.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
On August 18, 2021, the American Society of Gene and Cell Therapy (ASGCT) hosted a virtual roundtable on adeno-associated virus (AAV) integration, featuring leading experts in preclinical and clinical AAV gene therapy, to further contextualize and understand this phenomenon. Recombinant AAV (rAAV) vectors are used to develop therapies for many conditions given their ability to transduce multiple cell types, resulting in long-term expression of transgenes. Although most rAAV DNA typically remains episomal, some rAAV DNA becomes integrated into genomic DNA at a low frequency, and rAAV insertional mutagenesis has been shown to lead to tumorigenesis in neonatal mice. Currently, the risk of rAAV-mediated oncogenesis in humans is theoretical because no confirmed genotoxic events have been reported to date. However, because insertional mutagenesis has been reported in a small number of murine studies, there is a need to characterize this genotoxicity to inform research, regulatory needs, and patient care. The purpose of this white paper is to review the evidence of rAAV-related host genome integration in animal models and possible risks of insertional mutagenesis in patients. In addition, technical considerations, regulatory guidance, and bioethics are discussed.
Collapse
Affiliation(s)
- Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randy J Chandler
- National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | | | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adora Ndu
- BridgeBio Pharma, Inc., Palo Alto, CA, USA
| | - Jing Yuan
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
14
|
A novel preclinical model of mucopolysaccharidosis type II for developing human hematopoietic stem cell gene therapy. Gene Ther 2022; 30:288-296. [PMID: 35835952 DOI: 10.1038/s41434-022-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Abstract
A hematopoietic stem cell (HSC) gene therapy (GT) using lentiviral vectors has attracted interest as a promising treatment approach for neuropathic lysosomal storage diseases. To proceed with the clinical development of HSC-GT, evaluation of the therapeutic potential of gene-transduced human CD34+ (hCD34+) cells in vivo is one of the key issues before human trials. Here, we established an immunodeficient murine model of mucopolysaccharidosis type II (MPS II), which are transplantable human cells, and demonstrated the application of those mice in evaluating the therapeutic efficacy of gene-modified hCD34+ cells. NOG/MPS II mice, which were generated using CRISPR/Cas9, exhibited a reduction of disease-causing enzyme iduronate-2-sulfatatase (IDS) activity and the accumulation of glycosaminoglycans in their tissues. When we transplanted hCD34+ cells transduced with a lentiviral vector carrying the IDS gene into NOG/MPS II mice, a significant amelioration of biochemical pathophenotypes was observed in the visceral and neuronal tissues of those mice. In addition, grafted cells in the NOG/MPS II mice showed the oligoclonal integration pattern of the vector, but no obvious clonal dominance was detected in the mice. Our findings indicate the promising application of NOG/MPS II mice to preclinical study of HSC-GT for MPS II using human cells.
Collapse
|
15
|
Morgan MA, Galla M, Grez M, Fehse B, Schambach A. Retroviral gene therapy in Germany with a view on previous experience and future perspectives. Gene Ther 2021; 28:494-512. [PMID: 33753908 PMCID: PMC8455336 DOI: 10.1038/s41434-021-00237-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 02/01/2023]
Abstract
Gene therapy can be used to restore cell function in monogenic disorders or to endow cells with new capabilities, such as improved killing of cancer cells, expression of suicide genes for controlled elimination of cell populations, or protection against chemotherapy or viral infection. While gene therapies were originally most often used to treat monogenic diseases and to improve hematopoietic stem cell transplantation outcome, the advent of genetically modified immune cell therapies, such as chimeric antigen receptor modified T cells, has contributed to the increased numbers of patients treated with gene and cell therapies. The advancement of gene therapy with integrating retroviral vectors continues to depend upon world-wide efforts. As the topic of this special issue is "Spotlight on Germany," the goal of this review is to provide an overview of contributions to this field made by German clinical and research institutions. Research groups in Germany made, and continue to make, important contributions to the development of gene therapy, including design of vectors and transduction protocols for improved cell modification, methods to assess gene therapy vector efficacy and safety (e.g., clonal imbalance, insertion sites), as well as in the design and conduction of clinical gene therapy trials.
Collapse
Affiliation(s)
- Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Herbst F, Lang TJL, Eckert ESP, Wünsche P, Wurm AA, Kindinger T, Laaber K, Hemmati S, Hotz-Wagenblatt A, Zavidij O, Paruzynski A, Lu J, von Kalle C, Zenz T, Klein C, Schmidt M, Ball CR, Glimm H. The balance between the intronic miR-342 and its host gene Evl determines hematopoietic cell fate decision. Leukemia 2021; 35:2948-2963. [PMID: 34021250 PMCID: PMC8478659 DOI: 10.1038/s41375-021-01267-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/06/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Protein-coding and non-coding genes like miRNAs tightly control hematopoietic differentiation programs. Although miRNAs are frequently located within introns of protein-coding genes, the molecular interplay between intronic miRNAs and their host genes is unclear. By genomic integration site mapping of gamma-retroviral vectors in genetically corrected peripheral blood from gene therapy patients, we identified the EVL/MIR342 gene locus as a hotspot for therapeutic vector insertions indicating its accessibility and expression in human hematopoietic stem and progenitor cells. We therefore asked if and how EVL and its intronic miRNA-342 regulate hematopoiesis. Here we demonstrate that overexpression (OE) of Evl in murine primary Lin- Sca1+ cKit+ cells drives lymphopoiesis whereas miR-342 OE increases myeloid colony formation in vitro and in vivo, going along with a profound upregulation of canonical pathways essential for B-cell development or myelopoietic functions upon Evl or miR-342 OE, respectively. Strikingly, miR-342 counteracts its host gene by targeting lymphoid signaling pathways, resulting in reduced pre-B-cell output. Moreover, EVL overexpression is associated with lymphoid leukemia in patients. In summary, our data show that one common gene locus regulates distinct hematopoietic differentiation programs depending on the gene product expressed, and that the balance between both may determine hematopoietic cell fate decision.
Collapse
Affiliation(s)
- Friederike Herbst
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tonio J. L. Lang
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.6363.00000 0001 2218 4662Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Tumorimmunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elias S. P. Eckert
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, University Heidelberg, 69120 Heidelberg, Germany
| | - Peer Wünsche
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, University Heidelberg, 69120 Heidelberg, Germany
| | - Alexander A. Wurm
- grid.4488.00000 0001 2111 7257Mildred Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany ,grid.461742.2Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), 01307 Dresden, Germany ,grid.4488.00000 0001 2111 7257Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus Dresden at TU Dresden, 01307 Dresden, Germany
| | - Tim Kindinger
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karin Laaber
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, University Heidelberg, 69120 Heidelberg, Germany
| | - Shayda Hemmati
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, University Heidelberg, 69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- grid.7497.d0000 0004 0492 0584Omics IT and Data Management Core Facility, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Oksana Zavidij
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Junyan Lu
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Christof von Kalle
- grid.461742.2Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,GeneWerk GmbH, 69120 Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Thorsten Zenz
- grid.412004.30000 0004 0478 9977Department of Medical Oncology and Haematology, University Hospital Zurich & University of Zurich, 8091 Zurich, Switzerland
| | - Christoph Klein
- grid.411095.80000 0004 0477 2585Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Manfred Schmidt
- grid.461742.2Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,GeneWerk GmbH, 69120 Heidelberg, Germany
| | - Claudia R. Ball
- grid.461742.2Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), 01307 Dresden, Germany ,grid.4488.00000 0001 2111 7257Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus Dresden at TU Dresden, 01307 Dresden, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), 01307 Dresden, Germany
| | - Hanno Glimm
- grid.461742.2Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany ,grid.461742.2Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden and German Cancer Research Center (DKFZ), 01307 Dresden, Germany ,grid.4488.00000 0001 2111 7257Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus Dresden at TU Dresden, 01307 Dresden, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), 01307 Dresden, Germany
| |
Collapse
|
17
|
Bosma PJ, Wits M, Oude-Elferink RPJ. Gene Therapy for Progressive Familial Intrahepatic Cholestasis: Current Progress and Future Prospects. Int J Mol Sci 2020; 22:E273. [PMID: 33383947 PMCID: PMC7796371 DOI: 10.3390/ijms22010273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Progressive Familial Intrahepatic Cholestasis (PFIC) are inherited severe liver disorders presenting early in life, with high serum bile salt and bilirubin levels. Six types have been reported, two of these are caused by deficiency of an ABC transporter; ABCB11 (bile salt export pump) in type 2; ABCB4 (phosphatidylcholine floppase) in type 3. In addition, ABCB11 function is affected in 3 other types of PFIC. A lack of effective treatment makes a liver transplantation necessary in most patients. In view of long-term adverse effects, for instance due to life-long immune suppression needed to prevent organ rejection, gene therapy could be a preferable approach, as supported by proof of concept in animal models for PFIC3. This review discusses the feasibility of gene therapy as an alternative for liver transplantation for all forms of PFIC based on their pathological mechanism. Conclusion: Using presently available gene therapy vectors, major hurdles need to be overcome to make gene therapy for all types of PFIC a reality.
Collapse
Affiliation(s)
- Piter J. Bosma
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AGEM, Amsterdam UMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.W.); (R.P.J.O.-E.)
| | | | | |
Collapse
|
18
|
Brommel CM, Cooney AL, Sinn PL. Adeno-Associated Virus-Based Gene Therapy for Lifelong Correction of Genetic Disease. Hum Gene Ther 2020; 31:985-995. [PMID: 32718227 PMCID: PMC7495917 DOI: 10.1089/hum.2020.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
The list of successful gene therapy trials using adeno-associated virus (AAV)-based vectors continues to grow and includes a wide range of monogenic diseases. Replication incompetent AAV genomes typically remain episomal and expression dilutes as cells divide and die. Consequently, long-term transgene expression from AAV is best suited for quiescent cell types, such as retinal cells, myocytes, or neurons. For genetic diseases that involve cells with steady turnover, AAV-conferred correction may require routine readministration, where every dose carries the risk of developing an adaptive immune response that renders treatment ineffective. Here, we discuss innovative approaches to permanently modify the host genome using AAV-based platforms, thus potentially requiring only a single dose. Such approaches include using AAV delivery of DNA transposons, homologous recombination templates into safe harbors, and nucleases for targeting integration. In tissues with continual cell turnover, genetic modification of progenitor cell populations will help ensure persistent therapeutic outcomes. Combining the safety profile of AAV-based gene therapy vectors with the ability to integrate a therapeutic transgene creates novel solutions to the challenge of lifelong curative treatments for human genetic diseases.
Collapse
Affiliation(s)
| | - Ashley L. Cooney
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
19
|
Yang Y, Lee JE, Jeong HY, Shim JY, Baek MJ, Son MJ, Kim YJ, Noh H, Lim KI. Alteration of gammaretroviral vector integration patterns by insertion of histone and leucine zipper into integrase. Biotechnol Bioeng 2020; 117:3924-3937. [PMID: 32816306 DOI: 10.1002/bit.27540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022]
Abstract
Retroviral vectors show long-term gene expression in gene therapy through the integration of transgenes into the human cell genome. Murine leukemia virus (MLV), a well-studied gammaretrovirus, has been often used as a representative retroviral vector. However, frequent integrations of MLV-based vectors into transcriptional start sites (TSSs) could lead to the activation of oncogenes by enhancer effects of the genetic components within the vectors. Therefore, the MLV integration preference for TSSs limits its wider use in clinical applications. To reduce the integration preference of MLV-based vectors, we attempted to perturb the structure of the viral integrase that plays a key role in determining integration sites. For this goal, we inserted histones and leucine zippers, having DNA-binding property, into internal sites of MLV integrase. This integrase engineering yielded multiple mutant vectors that showed significantly different integration patterns compared with that of wild-type vector. Some mutant vectors did not prefer the key regulatory genomic domains of human cells, TSSs. Moreover, a couple of engineered vectors did not integrate into the genomic sites near the TSSs of oncogenes. Overall, this study suggests that structural perturbation of integrase is a simple way to develop safer MLV-based retroviral vectors for use in clinical applications.
Collapse
Affiliation(s)
- Yeji Yang
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea.,Division of Analytical Science Research, Research Center for Biocenvergence Analysis, Korea Basic Science Institute, Chungcheongbukdo, Korea
| | - Ji-Eun Lee
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea.,Health and Environment Research Institute of Gwangju, Gwangju, Korea
| | - Hye-Young Jeong
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Ji-Yeon Shim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Min-Jeong Baek
- Bioinformatics Analysis Team, Research Institute, National Cancer Center, Goyang, Korea
| | - Min-Jeong Son
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Yeon-Ju Kim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Hohsuk Noh
- Department of Statistics, Sookmyung Women's University, Seoul, Korea
| | - Kwang-Il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea.,Institute of Advanced Materials and Systems, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
20
|
Nobles CL, Sherrill-Mix S, Everett JK, Reddy S, Fraietta JA, Porter DL, Frey N, Gill SI, Grupp SA, Maude SL, Siegel DL, Levine BL, June CH, Lacey SF, Melenhorst JJ, Bushman FD. CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration. J Clin Invest 2020; 130:673-685. [PMID: 31845905 PMCID: PMC6994131 DOI: 10.1172/jci130144] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor-engineered T cells targeting CD19 (CART19) provide an effective treatment for pediatric acute lymphoblastic leukemia but are less effective for chronic lymphocytic leukemia (CLL), focusing attention on improving efficacy. CART19 harbor an engineered receptor, which is delivered through lentiviral vector integration, thereby marking cell lineages and modifying the cellular genome by insertional mutagenesis. We recently reported that vector integration within the host TET2 gene was associated with CLL remission. Here, we investigated clonal population structure and therapeutic outcomes in another 39 patients by high-throughput sequencing of vector-integration sites. Genes at integration sites enriched in responders were commonly found in cell-signaling and chromatin modification pathways, suggesting that insertional mutagenesis in these genes promoted therapeutic T cell proliferation. We also developed a multivariate model based on integration-site distributions and found that data from preinfusion products forecasted response in CLL successfully in discovery and validation cohorts and, in day 28 samples, reported responders to CLL therapy with high accuracy. These data clarify how insertional mutagenesis can modulate cell proliferation in CART19 therapy and how data on integration-site distributions can be linked to treatment outcomes.
Collapse
MESH Headings
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Female
- Genetic Vectors
- Humans
- Immunotherapy, Adoptive
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
| | | | | | | | - Joseph A. Fraietta
- Department of Microbiology
- Center for Cellular Immunotherapies
- Department of Pathology and Laboratory Medicine, and
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David L. Porter
- Center for Cellular Immunotherapies
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Noelle Frey
- Center for Cellular Immunotherapies
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saar I. Gill
- Center for Cellular Immunotherapies
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephan A. Grupp
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Shannon L. Maude
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Donald L. Siegel
- Center for Cellular Immunotherapies
- Department of Pathology and Laboratory Medicine, and
| | - Bruce L. Levine
- Center for Cellular Immunotherapies
- Department of Pathology and Laboratory Medicine, and
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carl H. June
- Center for Cellular Immunotherapies
- Department of Pathology and Laboratory Medicine, and
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Simon F. Lacey
- Center for Cellular Immunotherapies
- Department of Pathology and Laboratory Medicine, and
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J. Joseph Melenhorst
- Center for Cellular Immunotherapies
- Department of Pathology and Laboratory Medicine, and
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
21
|
Retroviral Insertional Mutagenesis in Humans: Evidence for Four Genetic Mechanisms Promoting Expansion of Cell Clones. Mol Ther 2020; 28:352-356. [PMID: 31951833 DOI: 10.1016/j.ymthe.2019.12.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/12/2023] Open
Abstract
Integration of new DNA into a cellular chromosome can alter the activity of nearby genes, sometimes affecting subsequent cell growth. A potent form of insertional mutagenesis involves integration of retroviral DNA produced by reverse transcription, a required step in the replication of retroviruses. In recent years retroviral replication has been adapted to allow new gene addition by retroviral vectors. Early in the history of retrovirus research, analysis of insertional mutagenesis in laboratory animals was found at times to result in transformation, leading to the discovery of cellular proto-oncogenes. In-depth analysis of the genetic consequences showed that integration of retroviral DNA could alter the gene activity in a variety of ways. Mechanisms of retroviral insertional mutagenesis in humans are much less well documented. However, recent work from the gene therapy and HIV fields now specify four genetic mechanisms of retroviral insertional mutagenesis in humans: (1) gene activation by integration of an enhancer sequence encoded in a retroviral vector (enhancer insertion), (2) gene activation by promoter insertion, (3) gene inactivation by insertional disruption, and (4) gene activation by mRNA 3' end substitution. In each example, integration in patients was associated with clonal expansion or frank transformation.
Collapse
|
22
|
Bigildeev AE, Petinati NA, Drize NJ. How Methods of Molecular Biology Shape Our Understanding of the Hematopoietic System. Mol Biol 2019. [DOI: 10.1134/s0026893319050029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Hsu AY, Liu S, Syahirah R, Brasseale KA, Wan J, Deng Q. Inducible overexpression of zebrafish microRNA-722 suppresses chemotaxis of human neutrophil like cells. Mol Immunol 2019; 112:206-214. [PMID: 31176200 DOI: 10.1016/j.molimm.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022]
Abstract
Neutrophil migration is essential for battling against infections but also drives chronic inflammation. Since primary neutrophils are terminally differentiated and not genetically tractable, leukemia cells such as HL-60 are differentiated into neutrophil-like cells to study mechanisms underlying neutrophil migration. However, constitutive overexpression or inhibition in this cell line does not allow the characterization of the genes that affect the differentiation process. Here we apply the tet-on system to induce the expression of a zebrafish microRNA, dre-miR-722, in differentiated HL-60. Overexpression of miR-722 reduced the mRNA level of genes in the chemotaxis and inflammation pathways, including Ras-Related C3 Botulinum Toxin Substrate 2 (RAC2). Consistently, polarization of the actin cytoskeleton, cell migration and generation of the reactive oxygen species are significantly inhibited upon induced miR-722 overexpression. Together, zebrafish miR-722 is a suppressor for migration and signaling in human neutrophil like cells.
Collapse
Affiliation(s)
- Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Kent A Brasseale
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
24
|
Marquez Loza LI, Yuen EC, McCray PB. Lentiviral Vectors for the Treatment and Prevention of Cystic Fibrosis Lung Disease. Genes (Basel) 2019; 10:genes10030218. [PMID: 30875857 PMCID: PMC6471883 DOI: 10.3390/genes10030218] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/04/2023] Open
Abstract
Despite the continued development of cystic fibrosis transmembrane conductance regulator (CFTR) modulator drugs for the treatment of cystic fibrosis (CF), the need for mutation agnostic treatments remains. In a sub-group of CF individuals with mutations that may not respond to modulators, such as those with nonsense mutations, CFTR gene transfer to airway epithelia offers the potential for an effective treatment. Lentiviral vectors are well-suited for this purpose because they transduce nondividing cells, and provide long-term transgene expression. Studies in primary cultures of human CF airway epithelia and CF animal models demonstrate the long-term correction of CF phenotypes and low immunogenicity using lentiviral vectors. Further development of CF gene therapy requires the investigation of optimal CFTR expression in the airways. Lentiviral vectors with improved safety features have minimized insertional mutagenesis safety concerns raised in early clinical trials for severe combined immunodeficiency using γ-retroviral vectors. Recent clinical trials using improved lentiviral vectors support the feasibility and safety of lentiviral gene therapy for monogenetic diseases. While work remains to be done before CF gene therapy reaches the bedside, recent advances in lentiviral vector development reviewed here are encouraging and suggest it could be tested in clinical studies in the near future.
Collapse
Affiliation(s)
- Laura I Marquez Loza
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA.
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA.
| | - Eric C Yuen
- Talee Bio, 3001 Market Street, Suite 140, Philadelphia, PA 19104, USA.
| | - Paul B McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
25
|
Abstract
Gene therapies are gaining momentum as promising early successes in clinical studies accumulate and examples of regulatory approval for licensing increase. Investigators are advancing with cautious optimism that effective, durable, and safe therapies will provide benefit to patients-not only those with single-gene disorders but those with complex acquired diseases as well. While the strategies being translated from the lab to the clinic are numerous, this review focuses on the clinical research that has forged the gene therapy field as it currently stands.
Collapse
Affiliation(s)
- Xavier M Anguela
- Spark Therapeutics, Inc., Philadelphia, Pennsylvania 19104, USA; ,
| | - Katherine A High
- Spark Therapeutics, Inc., Philadelphia, Pennsylvania 19104, USA; ,
| |
Collapse
|
26
|
Puig-Saus C, Parisi G, Garcia-Diaz A, Krystofinski PE, Sandoval S, Zhang R, Champhekar AS, McCabe J, Cheung-Lau GC, Truong NA, Vega-Crespo A, Komenan MDS, Pang J, Macabali MH, Saco JD, Goodwin JL, Bolon B, Seet CS, Montel-Hagen A, Crooks GM, Hollis RP, Campo-Fernandez B, Bischof D, Cornetta K, Gschweng EH, Adelson C, Nguyen A, Yang L, Witte ON, Baltimore D, Comin-Anduix B, Kohn DB, Wang X, Cabrera P, Kaplan-Lefko PJ, Berent-Maoz B, Ribas A. IND-Enabling Studies for a Clinical Trial to Genetically Program a Persistent Cancer-Targeted Immune System. Clin Cancer Res 2018; 25:1000-1011. [PMID: 30409823 DOI: 10.1158/1078-0432.ccr-18-0963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/21/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE To improve persistence of adoptively transferred T-cell receptor (TCR)-engineered T cells and durable clinical responses, we designed a clinical trial to transplant genetically-modified hematopoietic stem cells (HSCs) together with adoptive cell transfer of T cells both engineered to express an NY-ESO-1 TCR. Here, we report the preclinical studies performed to enable an investigational new drug (IND) application. EXPERIMENTAL DESIGN HSCs transduced with a lentiviral vector expressing NY-ESO-1 TCR and the PET reporter/suicide gene HSV1-sr39TK and T cells transduced with a retroviral vector expressing NY-ESO-1 TCR were coadministered to myelodepleted HLA-A2/Kb mice within a formal Good Laboratory Practice (GLP)-compliant study to demonstrate safety, persistence, and HSC differentiation into all blood lineages. Non-GLP experiments included assessment of transgene immunogenicity and in vitro viral insertion safety studies. Furthermore, Good Manufacturing Practice (GMP)-compliant cell production qualification runs were performed to establish the manufacturing protocols for clinical use. RESULTS TCR genetically modified and ex vivo-cultured HSCs differentiated into all blood subsets in vivo after HSC transplantation, and coadministration of TCR-transduced T cells did not result in increased toxicity. The expression of NY-ESO-1 TCR and sr39TK transgenes did not have a detrimental effect on gene-modified HSC's differentiation to all blood cell lineages. There was no evidence of genotoxicity induced by the lentiviral vector. GMP batches of clinical-grade transgenic cells produced during qualification runs had adequate stability and functionality. CONCLUSIONS Coadministration of HSCs and T cells expressing an NY-ESO-1 TCR is safe in preclinical models. The results presented in this article led to the FDA approval of IND 17471.
Collapse
Affiliation(s)
- Cristina Puig-Saus
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California. .,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Giulia Parisi
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Angel Garcia-Diaz
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Paige E Krystofinski
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Salemiz Sandoval
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Ruixue Zhang
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Ameya S Champhekar
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - James McCabe
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Gardenia C Cheung-Lau
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Nhat A Truong
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Agustin Vega-Crespo
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Marie Desiles S Komenan
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Jia Pang
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Mignonette H Macabali
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Justin D Saco
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Jeffrey L Goodwin
- Division of Laboratory Animal Medicine (DLAM), Department of Medicine, DGSOM, UCLA, Los Angeles, California
| | | | - Christopher S Seet
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California
| | - Amelie Montel-Hagen
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California
| | - Gay M Crooks
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.,Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, DGSOM, UCLA, Los Angeles, California.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California
| | - Roger P Hollis
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California
| | - Daniela Bischof
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University Vector Production Facility, Indianapolis, Indiana
| | - Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indiana University Vector Production Facility, Indianapolis, Indiana
| | - Eric H Gschweng
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California
| | - Celia Adelson
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California
| | - Alexander Nguyen
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Lili Yang
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California
| | - Owen N Witte
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - David Baltimore
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Begonya Comin-Anduix
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.,Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, California
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, California.,Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, DGSOM, University of California, Los Angeles, California
| | - Xiaoyan Wang
- Statistics Core, Department of Medicine, UCLA, Los Angeles, California
| | - Paula Cabrera
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Paula J Kaplan-Lefko
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Beata Berent-Maoz
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Antoni Ribas
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California, Los Angeles (UCLA), Los Angeles, California. .,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California.,Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, California
| |
Collapse
|
27
|
Hematopoietic stem cell gene therapy for the cure of blood diseases: primary immunodeficiencies. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0742-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Yabe IM, Truitt LL, Espinoza DA, Wu C, Koelle S, Panch S, Corat MA, Winkler T, Yu KR, Hong SG, Bonifacino A, Krouse A, Metzger M, Donahue RE, Dunbar CE. Barcoding of Macaque Hematopoietic Stem and Progenitor Cells: A Robust Platform to Assess Vector Genotoxicity. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 11:143-154. [PMID: 30547048 PMCID: PMC6258888 DOI: 10.1016/j.omtm.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
Gene therapies using integrating retrovirus vectors to modify hematopoietic stem and progenitor cells have shown great promise for the treatment of immune system and hematologic diseases. However, activation of proto-oncogenes via insertional mutagenesis has resulted in the development of leukemia. We have utilized cellular bar coding to investigate the impact of different vector designs on the clonal behavior of hematopoietic stem and progenitor cells (HSPCs) during in vivo expansion, as a quantitative surrogate assay for genotoxicity in a non-human primate model with high relevance for human biology. We transplanted two rhesus macaques with autologous CD34+ HSPCs transduced with three lentiviral vectors containing different promoters and/or enhancers of a predicted range of genotoxicities, each containing a high-diversity barcode library that uniquely tags each individual transduced HSPC. Analysis of clonal output from thousands of individual HSPCs transduced with these barcoded vectors revealed sustained clonal diversity, with no progressive dominance of clones containing any of the three vectors for up to almost 3 years post-transplantation. Our data support a low genotoxic risk for lentivirus vectors in HSPCs, even those containing strong promoters and/or enhancers. Additionally, this flexible system can be used for the testing of future vector designs.
Collapse
Affiliation(s)
- Idalia M. Yabe
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Lauren L. Truitt
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Diego A. Espinoza
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Chuanfeng Wu
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Samson Koelle
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
| | - Sandhya Panch
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Marcus A.F. Corat
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
- Multidisciplinary Center for Biological Research, University of Campinas, Campinas, SP 13083-877, Brazil
| | - Thomas Winkler
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Kyung-Rok Yu
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - So Gun Hong
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Aylin Bonifacino
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Allen Krouse
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Mark Metzger
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Robert E. Donahue
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Cynthia E. Dunbar
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
- Corresponding author: Cynthia E. Dunbar, National Heart, Lung and Blood Institute, NIH, Building 10 CRC Room 4E-5132, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Paiva RA, Ramos CV, Martins VC. Thymus autonomy as a prelude to leukemia. FEBS J 2018; 285:4565-4574. [DOI: 10.1111/febs.14651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Rafael A. Paiva
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Camila V. Ramos
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Vera C. Martins
- Lymphocyte Development and Leukemogenesis Laboratory Instituto Gulbenkian de Ciência Oeiras Portugal
| |
Collapse
|
30
|
Biasco L. Integration Site Analysis in Gene Therapy Patients: Expectations and Reality. Hum Gene Ther 2018; 28:1122-1129. [PMID: 29160103 DOI: 10.1089/hum.2017.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Integration site (IS) analysis is one of the major tools for addressing the safety of gene therapy clinical protocols based on the use of integrating vectors. Over the past years, the study of viral insertions in gene therapy-treated patients has allowed identifying insertional mutagenesis events, evaluating the safety of new viral vector platforms and tracking the in vivo clonal dynamics of genetically engineered cell products. While gene therapy is progressively expanding its impact on a broader area of clinical applications, increasingly more accessible, faster, and more reliable safety readouts are required from IS analysis. Several actors, from researchers to clinicians, from regulatory agencies to private companies, have to interface to different degrees with the results of IS analysis while developing and evaluating gene therapy products based on retroviral vectors. This review is aimed at providing a brief overview of what the current state and the future is of these studies with a particular focus on what are the main analytical constraints that should be considered upon conducting IS analysis in clinical gene therapy.
Collapse
Affiliation(s)
- Luca Biasco
- 1 Harvard Medical School, Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts.,2 University College London , Great Ormond Street Institute of Child Health, Faculty of Population Health Sciences, London, United Kingdom
| |
Collapse
|
31
|
Hogan DJ, Zhu JJ, Diago OR, Gammon D, Haghighi A, Lu G, Das A, Gruber HE, Jolly DJ, Ostertag D. Molecular Analyses Support the Safety and Activity of Retroviral Replicating Vector Toca 511 in Patients. Clin Cancer Res 2018; 24:4680-4693. [DOI: 10.1158/1078-0432.ccr-18-0619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/03/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
|
32
|
Wang W, Bartholomae CC, Gabriel R, Deichmann A, Schmidt M. The LAM-PCR Method to Sequence LV Integration Sites. Methods Mol Biol 2018; 1448:107-20. [PMID: 27317177 DOI: 10.1007/978-1-4939-3753-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Integrating viral gene transfer vectors are commonly used gene delivery tools in clinical gene therapy trials providing stable integration and continuous gene expression of the transgene in the treated host cell. However, integration of the reverse-transcribed vector DNA into the host genome is a potentially mutagenic event that may directly contribute to unwanted side effects. A comprehensive and accurate analysis of the integration site (IS) repertoire is indispensable to study clonality in transduced cells obtained from patients undergoing gene therapy and to identify potential in vivo selection of affected cell clones. To date, next-generation sequencing (NGS) of vector-genome junctions allows sophisticated studies on the integration repertoire in vitro and in vivo. We have explored the use of the Illumina MiSeq Personal Sequencer platform to sequence vector ISs amplified by non-restrictive linear amplification-mediated PCR (nrLAM-PCR) and LAM-PCR. MiSeq-based high-quality IS sequence retrieval is accomplished by the introduction of a double-barcode strategy that substantially minimizes the frequency of IS sequence collisions compared to the conventionally used single-barcode protocol. Here, we present an updated protocol of (nr)LAM-PCR for the analysis of lentiviral IS using a double-barcode system and followed by deep sequencing using the MiSeq device.
Collapse
Affiliation(s)
- Wei Wang
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Cynthia C Bartholomae
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Richard Gabriel
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Annette Deichmann
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
33
|
Analyzing the Genotoxicity of Retroviral Vectors in Hematopoietic Cell Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 8:21-30. [PMID: 29159200 PMCID: PMC5684499 DOI: 10.1016/j.omtm.2017.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Retroviral vectors, including those derived from gammaretroviruses and lentiviruses, have found their way into the clinical arena and demonstrated remarkable efficacy for the treatment of immunodeficiencies, leukodystrophies, and globinopathies. Despite these successes, gene therapy unfortunately also has had to face severe adverse events in the form of leukemias and myelodysplastic syndromes, related to the semi-random vector integration into the host cell genome that caused deregulation of neighboring proto-oncogenes. Although improvements in vector design clearly lowered the risk of this insertional mutagenesis, analysis of potential genotoxicity and the consequences of vector integration remain important parameters for basic and translational research and most importantly for the clinic. Here, we review current assays to analyze biodistribution and genotoxicity in the pre-clinical setting and describe tools to monitor vector integration sites in vector-treated patients as a biosafety readout.
Collapse
|
34
|
Biasco L, Rothe M, Schott JW, Schambach A. Integrating Vectors for Gene Therapy and Clonal Tracking of Engineered Hematopoiesis. Hematol Oncol Clin North Am 2017; 31:737-752. [DOI: 10.1016/j.hoc.2017.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Kebriaei P, Izsvák Z, Narayanavari SA, Singh H, Ivics Z. Gene Therapy with the Sleeping Beauty Transposon System. Trends Genet 2017; 33:852-870. [PMID: 28964527 DOI: 10.1016/j.tig.2017.08.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
The widespread clinical implementation of gene therapy requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective, and economical manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient nonviral gene delivery approaches that are prevalent in ongoing clinical trials. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here, we review the most important aspects of using SB for gene therapy, including vectorization as well as genomic integration features. We also illustrate the path to successful clinical implementation by highlighting the application of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Partow Kebriaei
- Department of Stem Cell Transplant and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suneel A Narayanavari
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Harjeet Singh
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.
| |
Collapse
|
36
|
Abstract
Transfer of gene-corrected autologous hematopoietic stem cells in patients with primary immunodeficiencies has emerged as a new therapeutic approach. Patients with various conditions lacking a suitable donor have been treated with retroviral vectors and a gene-addition strategy. Initial promising results were shadowed by the occurrence of malignancies in some of these patients. Current trials, developed in the last decade, use safer viral vectors to overcome the risk of genotoxicity and have led to improved clinical outcomes. This review reflects the progresses made in specific disorders, including adenosine deaminase deficiency, X-linked severe combined immunodeficiency, chronic granulomatous disease, and Wiskott-Aldrich syndrome.
Collapse
|
37
|
Hudecek M, Izsvák Z, Johnen S, Renner M, Thumann G, Ivics Z. Going non-viral: the Sleeping Beauty transposon system breaks on through to the clinical side. Crit Rev Biochem Mol Biol 2017; 52:355-380. [PMID: 28402189 DOI: 10.1080/10409238.2017.1304354] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular medicine has entered a high-tech age that provides curative treatments of complex genetic diseases through genetically engineered cellular medicinal products. Their clinical implementation requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective and economically viable manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are prevalent in ongoing pre-clinical and translational research. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here we review several recent refinements of the system, including the development of optimized transposons and hyperactive SB variants, the vectorization of transposase and transposon as mRNA and DNA minicircles (MCs) to enhance performance and facilitate vector production, as well as a detailed understanding of SB's genomic integration and biosafety features. This review also provides a perspective on the regulatory framework for clinical trials of gene delivery with SB, and illustrates the path to successful clinical implementation by using, as examples, gene therapy for age-related macular degeneration (AMD) and the engineering of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Michael Hudecek
- a Medizinische Klinik und Poliklinik II , Universitätsklinikum Würzburg , Würzburg , Germany
| | - Zsuzsanna Izsvák
- b Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Sandra Johnen
- c Department of Ophthalmology , University Hospital RWTH Aachen , Aachen , Germany
| | - Matthias Renner
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| | - Gabriele Thumann
- e Département des Neurosciences Cliniques Service d'Ophthalmologie , Hôpitaux Universitaires de Genève , Genève , Switzerland
| | - Zoltán Ivics
- d Division of Medical Biotechnology , Paul Ehrlich Institute , Langen, Germany
| |
Collapse
|
38
|
Yadak R, Sillevis Smitt P, van Gisbergen MW, van Til NP, de Coo IFM. Mitochondrial Neurogastrointestinal Encephalomyopathy Caused by Thymidine Phosphorylase Enzyme Deficiency: From Pathogenesis to Emerging Therapeutic Options. Front Cell Neurosci 2017; 11:31. [PMID: 28261062 PMCID: PMC5309216 DOI: 10.3389/fncel.2017.00031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/01/2017] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a progressive metabolic disorder caused by thymidine phosphorylase (TP) enzyme deficiency. The lack of TP results in systemic accumulation of deoxyribonucleosides thymidine (dThd) and deoxyuridine (dUrd). In these patients, clinical features include mental regression, ophthalmoplegia, and fatal gastrointestinal complications. The accumulation of nucleosides also causes imbalances in mitochondrial DNA (mtDNA) deoxyribonucleoside triphosphates (dNTPs), which may play a direct or indirect role in the mtDNA depletion/deletion abnormalities, although the exact underlying mechanism remains unknown. The available therapeutic approaches include dialysis and enzyme replacement therapy, both can only transiently reverse the biochemical imbalance. Allogeneic hematopoietic stem cell transplantation is shown to be able to restore normal enzyme activity and improve clinical manifestations in MNGIE patients. However, transplant related complications and disease progression result in a high mortality rate. New therapeutic approaches, such as adeno-associated viral vector and hematopoietic stem cell gene therapy have been tested in Tymp-/-Upp1-/- mice, a murine model for MNGIE. This review provides background information on disease manifestations of MNGIE with a focus on current management and treatment options. It also outlines the pre-clinical approaches toward future treatment of the disease.
Collapse
Affiliation(s)
- Rana Yadak
- Department of Neurology, Erasmus University Medical Center Rotterdam, Netherlands
| | - Peter Sillevis Smitt
- Department of Neurology, Erasmus University Medical Center Rotterdam, Netherlands
| | - Marike W van Gisbergen
- Department of Radiation Oncology (MaastRO-Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre Maastricht, Netherlands
| | - Niek P van Til
- Laboratory of Translational Immunology, University Medical Center Utrecht Utrecht, Netherlands
| | - Irenaeus F M de Coo
- Department of Neurology, Erasmus University Medical Center Rotterdam, Netherlands
| |
Collapse
|
39
|
Cavazzana M, Six E, Lagresle-Peyrou C, André-Schmutz I, Hacein-Bey-Abina S. Gene Therapy for X-Linked Severe Combined Immunodeficiency: Where Do We Stand? Hum Gene Ther 2016; 27:108-16. [PMID: 26790362 DOI: 10.1089/hum.2015.137] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
More than 20 years ago, X-linked severe combined immunodeficiency (SCID-X1) appeared to be the best condition to test the feasibility of hematopoietic stem cell gene therapy. The seminal SCID-X1 clinical studies, based on first-generation gammaretroviral vectors, demonstrated good long-term immune reconstitution in most treated patients despite the occurrence of vector-related leukemia in a few of them. This gene therapy has successfully enabled correction of the T cell defect. Natural killer and B cell defects were only partially restored, most likely due to the absence of a conditioning regimen. The success of these pioneering trials paved the way for the extension of gene-based treatment to many other diseases of the hematopoietic system, but the unfortunate serious adverse events led to extensive investigations to define the retrovirus integration profiles. This review puts into perspective the clinical experience of gene therapy for SCID-X1, with the development and implementation of new generations of safer vectors such as self-inactivating gammaretroviral or lentiviral vectors as well as major advances in integrome knowledge.
Collapse
Affiliation(s)
- Marina Cavazzana
- 1 Biotherapy Department, Necker Children's Hospital , Assistance Publique-Hôpitaux de Paris, Paris.,2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,3 Paris Descartes-Sorbonne Paris Cité University, Imagine Institute , Paris.,4 INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis , Paris
| | - Emmanuelle Six
- 2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,3 Paris Descartes-Sorbonne Paris Cité University, Imagine Institute , Paris.,4 INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis , Paris
| | - Chantal Lagresle-Peyrou
- 2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,3 Paris Descartes-Sorbonne Paris Cité University, Imagine Institute , Paris.,4 INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis , Paris
| | - Isabelle André-Schmutz
- 2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,3 Paris Descartes-Sorbonne Paris Cité University, Imagine Institute , Paris.,4 INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis , Paris
| | - Salima Hacein-Bey-Abina
- 1 Biotherapy Department, Necker Children's Hospital , Assistance Publique-Hôpitaux de Paris, Paris.,2 Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest , Assistance Publique-Hôpitaux de Paris, INSERM, Paris.,5 UTCBS CNRS 8258-INSERM U1022, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes , Paris.,6 Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud , AP-HP, Le-Kremlin-Bicêtre, France
| |
Collapse
|
40
|
Towards a Safer, More Randomized Lentiviral Vector Integration Profile Exploring Artificial LEDGF Chimeras. PLoS One 2016; 11:e0164167. [PMID: 27788138 PMCID: PMC5082951 DOI: 10.1371/journal.pone.0164167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/20/2016] [Indexed: 11/19/2022] Open
Abstract
The capacity to integrate transgenes into the host cell genome makes retroviral vectors an interesting tool for gene therapy. Although stable insertion resulted in successful correction of several monogenic disorders, it also accounts for insertional mutagenesis, a major setback in otherwise successful clinical gene therapy trials due to leukemia development in a subset of treated patients. Despite improvements in vector design, their use is still not risk-free. Lentiviral vector (LV) integration is directed into active transcription units by LEDGF/p75, a host-cell protein co-opted by the viral integrase. We engineered LEDGF/p75-based hybrid tethers in an effort to elicit a more random integration pattern to increase biosafety, and potentially reduce proto-oncogene activation. We therefore truncated LEDGF/p75 by deleting the N-terminal chromatin-reading PWWP-domain, and replaced this domain with alternative pan-chromatin binding peptides. Expression of these LEDGF-hybrids in LEDGF-depleted cells efficiently rescued LV transduction and resulted in LV integrations that distributed more randomly throughout the host-cell genome. In addition, when considering safe harbor criteria, LV integration sites for these LEDGF-hybrids distributed more safely compared to LEDGF/p75-mediated integration in wild-type cells. This approach should be broadly applicable to introduce therapeutic or suicide genes for cell therapy, such as patient-specific iPS cells.
Collapse
|
41
|
Narayanavari SA, Chilkunda SS, Ivics Z, Izsvák Z. Sleeping Beauty transposition: from biology to applications. Crit Rev Biochem Mol Biol 2016; 52:18-44. [PMID: 27696897 DOI: 10.1080/10409238.2016.1237935] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host-transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications.
Collapse
Affiliation(s)
- Suneel A Narayanavari
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Shreevathsa S Chilkunda
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Zoltán Ivics
- b Division of Medical Biotechnology , Paul Ehrlich Institute , Langen , Germany
| | - Zsuzsanna Izsvák
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| |
Collapse
|
42
|
Senís E, Mockenhaupt S, Rupp D, Bauer T, Paramasivam N, Knapp B, Gronych J, Grosse S, Windisch MP, Schmidt F, Theis FJ, Eils R, Lichter P, Schlesner M, Bartenschlager R, Grimm D. TALEN/CRISPR-mediated engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus. Nucleic Acids Res 2016; 45:e3. [PMID: 27614072 PMCID: PMC5224498 DOI: 10.1093/nar/gkw805] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 12/12/2022] Open
Abstract
Successful RNAi applications depend on strategies allowing robust and persistent expression of minimal gene silencing triggers without perturbing endogenous gene expression. Here, we propose a novel avenue which is integration of a promoterless shmiRNA, i.e. a shRNA embedded in a micro-RNA (miRNA) scaffold, into an engineered genomic miRNA locus. For proof-of-concept, we used TALE or CRISPR/Cas9 nucleases to site-specifically integrate an anti-hepatitis C virus (HCV) shmiRNA into the liver-specific miR-122/hcr locus in hepatoma cells, with the aim to obtain cellular clones that are genetically protected against HCV infection. Using reporter assays, Northern blotting and qRT-PCR, we confirmed anti-HCV shmiRNA expression as well as miR-122 integrity and functionality in selected cellular progeny. Moreover, we employed a comprehensive battery of PCR, cDNA/miRNA profiling and whole genome sequencing analyses to validate targeted integration of a single shmiRNA molecule at the expected position, and to rule out deleterious effects on the genomes or transcriptomes of the engineered cells. Importantly, a subgenomic HCV replicon and a full-length reporter virus, but not a Dengue virus control, were significantly impaired in the modified cells. Our original combination of DNA engineering and RNAi expression technologies benefits numerous applications, from miRNA, genome and transgenesis research, to human gene therapy.
Collapse
Affiliation(s)
- Elena Senís
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| | - Stefan Mockenhaupt
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| | - Daniel Rupp
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, 69120, Germany.,Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Tobias Bauer
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Nagarajan Paramasivam
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Medical Faculty Heidelberg, Heidelberg University, Heidelberg, 69120, Germany
| | - Bettina Knapp
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Jan Gronych
- Division of Molecular Genetics (B060), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
| | - Stefanie Grosse
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| | - Marc P Windisch
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Florian Schmidt
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Department of Mathematics, Technische Universität München, Garching, 85748, Germany
| | - Roland Eils
- BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany.,Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, 69120, Germany
| | - Peter Lichter
- Division of Molecular Genetics (B060), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, 69120, Germany.,Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Dirk Grimm
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, 69120, Germany .,BioQuant Center, University of Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
43
|
Garcia-Gomez M, Calabria A, Garcia-Bravo M, Benedicenti F, Kosinski P, López-Manzaneda S, Hill C, del Mar Mañu-Pereira M, Martín MA, Orman I, Vives-Corrons JLL, Kung C, Schambach A, Jin S, Bueren JA, Montini E, Navarro S, Segovia JC. Safe and Efficient Gene Therapy for Pyruvate Kinase Deficiency. Mol Ther 2016; 24:1187-1198. [PMID: 27138040 PMCID: PMC5088764 DOI: 10.1038/mt.2016.87] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/25/2016] [Indexed: 12/17/2022] Open
Abstract
Pyruvate kinase deficiency (PKD) is a monogenic metabolic disease caused by mutations in the PKLR gene that leads to hemolytic anemia of variable symptomatology and that can be fatal during the neonatal period. PKD recessive inheritance trait and its curative treatment by allogeneic bone marrow transplantation provide an ideal scenario for developing gene therapy approaches. Here, we provide a preclinical gene therapy for PKD based on a lentiviral vector harboring the hPGK eukaryotic promoter that drives the expression of the PKLR cDNA. This therapeutic vector was used to transduce mouse PKD hematopoietic stem cells (HSCs) that were subsequently transplanted into myeloablated PKD mice. Ectopic RPK expression normalized the erythroid compartment correcting the hematological phenotype and reverting organ pathology. Metabolomic studies demonstrated functional correction of the glycolytic pathway in RBCs derived from genetically corrected PKD HSCs, with no metabolic disturbances in leukocytes. The analysis of the lentiviral insertion sites in the genome of transplanted hematopoietic cells demonstrated no evidence of genotoxicity in any of the transplanted animals. Overall, our results underscore the therapeutic potential of the hPGK-coRPK lentiviral vector and provide high expectations toward the gene therapy of PKD and other erythroid metabolic genetic disorders.
Collapse
MESH Headings
- Anemia, Hemolytic, Congenital Nonspherocytic/genetics
- Anemia, Hemolytic, Congenital Nonspherocytic/metabolism
- Anemia, Hemolytic, Congenital Nonspherocytic/therapy
- Animals
- Blood Cells/metabolism
- Cell Differentiation
- Disease Models, Animal
- Erythrocytes/cytology
- Erythrocytes/metabolism
- Erythropoiesis
- Genetic Therapy/adverse effects
- Genetic Therapy/methods
- Genetic Vectors/genetics
- Glycolysis
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Lentivirus/genetics
- Metabolic Networks and Pathways
- Metabolome
- Metabolomics
- Mice
- Mice, Transgenic
- Mutation
- Phenotype
- Pyruvate Kinase/deficiency
- Pyruvate Kinase/genetics
- Pyruvate Kinase/metabolism
- Pyruvate Metabolism, Inborn Errors/genetics
- Pyruvate Metabolism, Inborn Errors/metabolism
- Pyruvate Metabolism, Inborn Errors/therapy
- Transduction, Genetic
Collapse
Affiliation(s)
- Maria Garcia-Gomez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Maria Garcia-Bravo
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | | | - Sergio López-Manzaneda
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | | | - María del Mar Mañu-Pereira
- Red Cell Pathology Laboratory. Hospital Clínic of Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Miguel A Martín
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Israel Orman
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joan-LLuis Vives-Corrons
- Red Cell Pathology Laboratory. Hospital Clínic of Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Axel Schambach
- Institute of Experimental Hematology at Hannover Medical Hospital, Hannover, Germany
| | | | - Juan A Bueren
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Susana Navarro
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Jose C Segovia
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| |
Collapse
|
44
|
Palesch D, Boldt F, Müller JA, Eisele K, Stürzel CM, Wu Y, Münch J, Weil T. PEGylated Cationic Serum Albumin for Boosting Retroviral Gene Transfer. Chembiochem 2016; 17:1504-8. [PMID: 27239020 DOI: 10.1002/cbic.201600193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 01/28/2023]
Abstract
Retroviral vectors are common tools for introducing genes into the genome of a cell. However, low transduction rates are a major limitation in retroviral gene transfer, especially in clinical applications. We generated cationic human serum albumin (cHSA) protected by a shell of poly(ethylene glycol) (PEG); this significantly enhanced retroviral gene transduction with potentially attractive pharmacokinetics and low immunogenicity. By screening a panel of chemically optimized HSA compounds, we identified a very potent enhancer that boosted the transduction rates of viral vectors. Confocal microscopy revealed a drastically increased number of viral particles attached to the surfaces of target cells. In accordance with the positive net charge of cationic and PEGylated HSA, this suggests a mechanism of action in which the repulsion of the negatively charged cellular and viral vector membranes is neutralized, thereby promoting attachment and ultimately transduction. Importantly, the transduction-enhancing PEGylated HSA derivative evaded recognition by HSA-specific antibodies and macrophage activation. Our findings hold great promise for facilitating improved retroviral gene transfer.
Collapse
Affiliation(s)
- David Palesch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081, Ulm, Germany
| | - Felix Boldt
- Institute of Organic Chemistry III/Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081, Ulm, Germany
| | - Klaus Eisele
- Institute of Organic Chemistry III/Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081, Ulm, Germany
| | - Yuzhou Wu
- Institute of Organic Chemistry III/Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081, Ulm, Germany.
| | - Tanja Weil
- Institute of Organic Chemistry III/Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
45
|
Ruggero K, Al-Assar O, Chambers JS, Codrington R, Brend T, Rabbitts TH. LMO2 and IL2RG synergize in thymocytes to mimic the evolution of SCID-X1 gene therapy-associated T-cell leukaemia. Leukemia 2016; 30:1959-62. [PMID: 27256700 PMCID: PMC5227057 DOI: 10.1038/leu.2016.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- K Ruggero
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - O Al-Assar
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - J S Chambers
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - R Codrington
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK.,ABeterno Technologies Ltd, Cambridge, UK
| | - T Brend
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - T H Rabbitts
- Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
46
|
De Ravin SS, Wu X, Moir S, Anaya-O'Brien S, Kwatemaa N, Littel P, Theobald N, Choi U, Su L, Marquesen M, Hilligoss D, Lee J, Buckner CM, Zarember KA, O'Connor G, McVicar D, Kuhns D, Throm RE, Zhou S, Notarangelo LD, Hanson IC, Cowan MJ, Kang E, Hadigan C, Meagher M, Gray JT, Sorrentino BP, Malech HL, Kardava L. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med 2016; 8:335ra57. [PMID: 27099176 PMCID: PMC5557273 DOI: 10.1126/scitranslmed.aad8856] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/03/2016] [Indexed: 12/14/2022]
Abstract
X-linked severe combined immunodeficiency (SCID-X1) is a profound deficiency of T, B, and natural killer (NK) cell immunity caused by mutations inIL2RGencoding the common chain (γc) of several interleukin receptors. Gamma-retroviral (γRV) gene therapy of SCID-X1 infants without conditioning restores T cell immunity without B or NK cell correction, but similar treatment fails in older SCID-X1 children. We used a lentiviral gene therapy approach to treat five SCID-X1 patients with persistent immune dysfunction despite haploidentical hematopoietic stem cell (HSC) transplant in infancy. Follow-up data from two older patients demonstrate that lentiviral vector γc transduced autologous HSC gene therapy after nonmyeloablative busulfan conditioning achieves selective expansion of gene-marked T, NK, and B cells, which is associated with sustained restoration of humoral responses to immunization and clinical improvement at 2 to 3 years after treatment. Similar gene marking levels have been achieved in three younger patients, albeit with only 6 to 9 months of follow-up. Lentiviral gene therapy with reduced-intensity conditioning appears safe and can restore humoral immune function to posthaploidentical transplant older patients with SCID-X1.
Collapse
Affiliation(s)
- Suk See De Ravin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Susan Moir
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Sandra Anaya-O'Brien
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nana Kwatemaa
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Patricia Littel
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Narda Theobald
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Uimook Choi
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ling Su
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Martha Marquesen
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Dianne Hilligoss
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Janet Lee
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | - Kol A Zarember
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Geraldine O'Connor
- Cancer and Inflammation Program, National Cancer Institute Frederick, Frederick, MD 21702, USA
| | - Daniel McVicar
- Cancer and Inflammation Program, National Cancer Institute Frederick, Frederick, MD 21702, USA
| | - Douglas Kuhns
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert E Throm
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sheng Zhou
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Mort J Cowan
- Department of Pediatrics, Benioff Children's Hospital, and University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth Kang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Coleen Hadigan
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA
| | - Michael Meagher
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John T Gray
- Audentes Therapeutics, San Francisco, CA 94101, USA
| | - Brian P Sorrentino
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | | |
Collapse
|
47
|
Genome-wide Profiling Reveals Remarkable Parallels Between Insertion Site Selection Properties of the MLV Retrovirus and the piggyBac Transposon in Primary Human CD4(+) T Cells. Mol Ther 2016; 24:592-606. [PMID: 26755332 PMCID: PMC4786924 DOI: 10.1038/mt.2016.11] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/06/2016] [Indexed: 12/17/2022] Open
Abstract
The inherent risks associated with vector insertion in gene therapy need to be carefully assessed. We analyzed the genome-wide distributions of Sleeping Beauty (SB) and piggyBac (PB) transposon insertions as well as MLV retrovirus and HIV lentivirus insertions in human CD4+ T cells with respect to a panel of 40 chromatin states. The distribution of SB transposon insertions displayed the least deviation from random, while the PB transposon and the MLV retrovirus showed unexpected parallels across all chromatin states. Both MLV and PB insertions are enriched at transcriptional start sites (TSSs) and co-localize with BRD4-associated sites. We demonstrate physical interaction between the PB transposase and bromodomain and extraterminal domain proteins (including BRD4), suggesting convergent evolution of a tethering mechanism that directs integrating genetic elements into TSSs. We detect unequal biases across the four systems with respect to targeting genes whose deregulation has been previously linked to serious adverse events in gene therapy clinical trials. The SB transposon has the highest theoretical chance of targeting a safe harbor locus in the human genome. The data underscore the significance of vector choice to reduce the mutagenic load on cells in clinical applications.
Collapse
|
48
|
Serrao E, Engelman AN. Sites of retroviral DNA integration: From basic research to clinical applications. Crit Rev Biochem Mol Biol 2015; 51:26-42. [PMID: 26508664 DOI: 10.3109/10409238.2015.1102859] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.
Collapse
Affiliation(s)
- Erik Serrao
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Alan N Engelman
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
49
|
Biasco L, Scala S, Basso Ricci L, Dionisio F, Baricordi C, Calabria A, Giannelli S, Cieri N, Barzaghi F, Pajno R, Al-Mousa H, Scarselli A, Cancrini C, Bordignon C, Roncarolo MG, Montini E, Bonini C, Aiuti A. In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Sci Transl Med 2015; 7:273ra13. [PMID: 25653219 DOI: 10.1126/scitranslmed.3010314] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A definitive understanding of survival and differentiation potential in humans of T cell subpopulations is of paramount importance for the development of effective T cell therapies. In particular, uncovering the dynamics in vivo in humans of the recently described T memory stem cells (TSCM) would be crucial for therapeutic approaches that aim at taking advantage of a stable cellular vehicle with precursor potential. We exploited data derived from two gene therapy clinical trials for an inherited immunodeficiency, using either retrovirally engineered hematopoietic stem cells or mature lymphocytes to trace individual T cell clones directly in vivo in humans. We compared healthy donors and bone marrow-transplanted patients, studied long-term in vivo T cell composition under different clinical conditions, and specifically examined TSCM contribution according to age, conditioning regimen, disease background, cell source, long-term reconstitution, and ex vivo gene correction processing. High-throughput sequencing of retroviral vector integration sites (ISs) allowed tracing the fate of more than 1700 individual T cell clones in gene therapy patients after infusion of gene-corrected hematopoietic stem cells or mature lymphocytes. We shed light on long-term in vivo clonal relationships among different T cell subtypes, and we unveiled that TSCM are able to persist and to preserve their precursor potential in humans for up to 12 years after infusion of gene-corrected lymphocytes. Overall, this work provides high-resolution tracking of T cell fate and activity and validates, in humans, the safe and functional decade-long survival of engineered TSCM, paving the way for their future application in clinical settings.
Collapse
Affiliation(s)
- Luca Biasco
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy.
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy. Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Luca Basso Ricci
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy
| | - Cristina Baricordi
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy
| | | | - Federica Barzaghi
- Pediatric Immunohematology and Stem Cell Programme, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Roberta Pajno
- Pediatric Immunohematology and Stem Cell Programme, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Hamoud Al-Mousa
- King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Alessia Scarselli
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata," Rome 00165, Italy
| | - Caterina Cancrini
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata," Rome 00165, Italy
| | | | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy. Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (TIGET), Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan 20132, Italy
| | - Chiara Bonini
- IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessandro Aiuti
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata," Rome 00165, Italy. TIGET, Pediatric Immunohematology and Stem Cell Programme, San Raffaele Scientific Institute, Milan 20132, Italy.
| |
Collapse
|
50
|
Negre O, Bartholomae C, Beuzard Y, Cavazzana M, Christiansen L, Courne C, Deichmann A, Denaro M, de Dreuzy E, Finer M, Fronza R, Gillet-Legrand B, Joubert C, Kutner R, Leboulch P, Maouche L, Paulard A, Pierciey FJ, Rothe M, Ryu B, Schmidt M, von Kalle C, Payen E, Veres G. Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of β-thalassemia and sickle cell disease. Curr Gene Ther 2015; 15:64-81. [PMID: 25429463 PMCID: PMC4440358 DOI: 10.2174/1566523214666141127095336] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 01/27/2023]
Abstract
A previously published clinical trial demonstrated the benefit of autologous CD34(+) cells transduced with a selfinactivating lentiviral vector (HPV569) containing an engineered β-globin gene (β(A-T87Q)-globin) in a subject with β thalassemia major. This vector has been modified to increase transduction efficacy without compromising safety. In vitro analyses indicated that the changes resulted in both increased vector titers (3 to 4 fold) and increased transduction efficacy (2 to 3 fold). An in vivo study in which 58 β-thalassemic mice were transplanted with vector- or mock-transduced syngenic bone marrow cells indicated sustained therapeutic efficacy. Secondary transplantations involving 108 recipients were performed to evaluate long-term safety. The six month study showed no hematological or biochemical toxicity. Integration site (IS) profile revealed an oligo/polyclonal hematopoietic reconstitution in the primary transplants and reduced clonality in secondary transplants. Tumor cells were detected in the secondary transplant mice in all treatment groups (including the control group), without statistical differences in the tumor incidence. Immunohistochemistry and quantitative PCR demonstrated that tumor cells were not derived from transduced donor cells. This comprehensive efficacy and safety data provided the basis for initiating two clinical trials with this second generation vector (BB305) in Europe and in the USA in patients with β-thalassemia major and sickle cell disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gabor Veres
- bluebird bio, 150 Second Street, Cambridge, MA 02141, USA.
| |
Collapse
|