1
|
Zou X, Liang X, Dai W, Zhu T, Wang C, Zhou Y, Qian Y, Yan Z, Gao C, Gao L, Cui Y, Liu J, Meng Y. Peroxiredoxin 4 deficiency induces accelerated ovarian aging through destroyed proteostasis in granulosa cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167334. [PMID: 38971505 DOI: 10.1016/j.bbadis.2024.167334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Ovarian aging, a complex and challenging concern within the realm of reproductive medicine, is associated with reduced fertility, menopausal symptoms and long-term health risks. Our previous investigation revealed a correlation between Peroxiredoxin 4 (PRDX4) and human ovarian aging. The purpose of this research was to substantiate the protective role of PRDX4 against ovarian aging and elucidate the underlying molecular mechanism in mice. In this study, a Prdx4-/- mouse model was established and it was observed that the deficiency of PRDX4 led to only an accelerated decline of ovarian function in comparison to wild-type (WT) mice. The impaired ovarian function observed in this study can be attributed to an imbalance in protein homeostasis, an exacerbation of endoplasmic reticulum stress (ER stress), and ultimately an increase in apoptosis of granulosa cells. Furthermore, our research reveals a noteworthy decline in the expression of Follicle-stimulating hormone receptor (FSHR) in aging Prdx4-/- mice, especially the functional trimer, due to impaired disulfide bond formation. Contrarily, the overexpression of PRDX4 facilitated the maintenance of protein homeostasis, mitigated ER stress, and consequently elevated E2 levels in a simulated KGN cell aging model. Additionally, the overexpression of PRDX4 restored the expression of the correct spatial conformation of FSHR, the functional trimer. In summary, our research reveals the significant contribution of PRDX4 in delaying ovarian aging, presenting a novel and promising therapeutic target for ovarian aging from the perspective of endoplasmic reticulum protein homeostasis.
Collapse
Affiliation(s)
- Xiaofei Zou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiuru Liang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wangjuan Dai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ting Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chaoyi Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yutian Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi Qian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengjie Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chao Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan Meng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Touraine P, Chabbert-Buffet N, Plu-Bureau G, Duranteau L, Sinclair AH, Tucker EJ. Premature ovarian insufficiency. Nat Rev Dis Primers 2024; 10:63. [PMID: 39266563 DOI: 10.1038/s41572-024-00547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/14/2024]
Abstract
Premature ovarian insufficiency (POI) is a cause of infertility and endocrine dysfunction in women, defined by loss of normal, predictable ovarian activity before the age of 40 years. POI is clinically characterized by amenorrhoea (primary or secondary) with raised circulating levels of follicle-stimulating hormone. This condition can occur due to medical interventions such as ovarian surgery or cytotoxic cancer therapy, metabolic and lysosomal storage diseases, infections, chromosomal anomalies and autoimmune diseases. At least 1 in 100 women is affected by POI, including 1 in 1,000 before the age of 30 years. Substantial evidence suggests a genetic basis to POI. However, the cause of idiopathic POI remains unknown in most patients, indicating that gene variants associated with this condition remain to be discovered. Over the past 10 years, tremendous progress has been made in our knowledge of genes involved in POI. Genetic approaches in diagnosis are important as they enable patients with familial POI to be identified, with the opportunity for oocyte preservation. Moreover, genetic approaches could provide a better understanding of disease mechanisms, which will ultimately aid the development of improved treatments.
Collapse
Affiliation(s)
- Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, AP-HP Pitié Salpêtrière Hospital, Sorbonne Université Médecine, Paris, France.
- Inserm U1151 INEM, Necker Hospital, Paris, France.
| | - Nathalie Chabbert-Buffet
- Department of Obstetrics, Gynecology and Reproductive Medicine, Tenon Hospital, AP-HP Sorbonne Université, Paris, France
- INSERM UMR S 938, CDR St Antoine, Paris, France
| | - Genevieve Plu-Bureau
- Department of Medical Gynecology, AP-HP Port Royal-Cochin Hospital, Université Paris Cité, Paris, France
- U1151 EPOPEE Team, Paris, France
| | - Lise Duranteau
- Department of Medical Gynecology, Bicêtre Hospital, AP-HP Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Elena J Tucker
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Radomsky T, Anderson RC, Millar RP, Newton CL. Restoring function to inactivating G protein-coupled receptor variants in the hypothalamic-pituitary-gonadal axis 1. J Neuroendocrinol 2024; 36:e13418. [PMID: 38852954 DOI: 10.1111/jne.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/30/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
G protein-coupled receptors (GPCRs) are central to the functioning of the hypothalamic-pituitary-gonadal axis (HPG axis) and include the rhodopsin-like GPCR family members, neurokinin 3 receptor, kappa-opioid receptor, kisspeptin 1 receptor, gonadotropin-releasing hormone receptor, and the gonadotropin receptors, luteinizing hormone/choriogonadotropin receptor and follicle-stimulating hormone receptor. Unsurprisingly, inactivating variants of these receptors have been implicated in a spectrum of reproductive phenotypes, including failure to undergo puberty, and infertility. Clinical induction of puberty in patients harbouring such variants is possible, but restoration of fertility is not always a realisable outcome, particularly for those patients suffering from primary hypogonadism. Thus, novel pharmaceuticals and/or a fundamental change in approach to treating these patients are required. The increasing wealth of data describing the effects of coding-region genetic variants on GPCR function has highlighted that the majority appear to be dysfunctional as a result of misfolding of the encoded receptor protein, which, in turn, results in impaired receptor trafficking through the secretory pathway to the cell surface. As such, these intracellularly retained receptors may be amenable to 'rescue' using a pharmacological chaperone (PC)-based approach. PCs are small, cell permeant molecules hypothesised to interact with misfolded intracellularly retained proteins, stabilising their folding and promoting their trafficking through the secretory pathway. In support of the use of this approach as a viable therapeutic option, it has been observed that many rescued variant GPCRs retain at least a degree of functionality when 'rescued' to the cell surface. In this review, we examine the GPCR PC research landscape, focussing on the rescue of inactivating variant GPCRs with important roles in the HPG axis, and describe what is known regarding the mechanisms by which PCs restore trafficking and function. We also discuss some of the merits and obstacles associated with taking this approach forward into a clinical setting.
Collapse
Affiliation(s)
- Tarryn Radomsky
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ross C Anderson
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Robert P Millar
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Claire L Newton
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Bakhshalizadeh S, Afkhami F, Bell KM, Robevska G, van den Bergen J, Cronin S, Jaillard S, Ayers KL, Kumar P, Siebold C, Xiao Z, Tate EW, Danaei S, Farzadi L, Shahbazi S, Sinclair AH, Tucker EJ. Diverse genetic causes of amenorrhea in an ethnically homogeneous cohort and an evolving approach to diagnosis. Mol Cell Endocrinol 2024; 587:112212. [PMID: 38521400 DOI: 10.1016/j.mce.2024.112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
RESEARCH QUESTION Premature ovarian insufficiency (POI) is characterised by amenorrhea associated with elevated follicle stimulating hormone (FSH) under the age of 40 years and affects 1-3.7% women. Genetic factors explain 20-30% of POI cases, but most causes remain unknown despite genomic advancements. DESIGN We used whole exome sequencing (WES) in four Iranian families, validated variants via Sanger sequencing, and conducted the Acyl-cLIP assay to measure HHAT enzyme activity. RESULTS Despite ethnic homogeneity, WES revealed diverse genetic causes, including a novel homozygous nonsense variant in SYCP2L, impacting synaptonemal complex (SC) assembly, in the first family. Interestingly, the second family had two independent causes for amenorrhea - the mother had POI due to a novel homozygous loss-of-function variant in FANCM (required for chromosomal stability) and her daughter had primary amenorrhea due to a novel homozygous GNRHR (required for gonadotropic signalling) frameshift variant. WES analysis also provided cytogenetic insights. WES revealed one individual was in fact 46, XY and had a novel homozygous missense variant of uncertain significance in HHAT, potentially responsible for complete sex reversal although functional assays did not support impaired HHAT activity. In the remaining individual, WES indicated likely mosaic Turners with the majority of X chromosome variants having an allelic balance of ∼85% or ∼15%. Microarray validated the individual had 90% 45,XO. CONCLUSIONS This study demonstrates the diverse causes of amenorrhea in a small, isolated ethnic cohort highlighting how a genetic cause in one individual may not clarify familial cases. We propose that, in time, genomic sequencing may become a single universal test required for the diagnosis of infertility conditions such as POI.
Collapse
Affiliation(s)
- Shabnam Bakhshalizadeh
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Fateme Afkhami
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Katrina M Bell
- Department of Bioinformatics, Murdoch Children's Research Institute, Melbourne, Australia
| | | | | | - Sara Cronin
- Cyto-Molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052, Victoria, Australia
| | - Sylvie Jaillard
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France; CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - Katie L Ayers
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Pramod Kumar
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Zhangping Xiao
- Department of Chemistry, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Shahla Danaei
- Department of Obstetrics and Gynecology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Department of Obstetrics and Gynecology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Shahbazi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Elena J Tucker
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
5
|
Sanghavi P, Chandel D. The Effect of FSHR (G2039A) Polymorphism on Müllerian Duct Development and Hormonal Profile of Women with Primary Amenorrhea. J Reprod Infertil 2023; 24:240-247. [PMID: 38164425 PMCID: PMC10757686 DOI: 10.18502/jri.v24i4.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/24/2023] [Indexed: 01/03/2024] Open
Abstract
Background The function of follicle-stimulating hormone (FSH) is mediated by binding to its G-protein coupled receptor (GPCR) which is expressed on granulosa cells of the ovary. The purpose of the current study was to examine the impact of FSHR G2039A polymorphism (rs6166; Ser680Asn) on clinical and radiology profiles of women with primary amenorrhea (PA) in Gujarat, India. Methods A total of 90 women (45 controls and 45 cases) were recruited for the study after obtaining informed consent. The DNA extraction was performed on the venous blood samples collected from the participants, followed by polymerase chain reaction (PCR). The presence of polymorphism was then analyzed using restriction fragment polymorphism (RFLP) with the BSeNI enzyme. The statistical analysis was conducted using an independent t-test, chi-square test, and ANOVA. Significance was determined by a p<0.05. Results Results revealed that homozygous wild type genotype was observed in 46.7% (n=21) of the control group and 11.1% (n=5) of the case group. Heterozygous genotype was observed in 33.3% (n=15) of the control group and 55.6% (n=25) of the case group (p<0.001). Homozygous mutant genotype was observed in 20% (n=9) of the control group and 33.3% (n=15) of the case group (p<0.01). The hormonal profile revealed that serum levels of FSH and luteinizing hormone (LH) were significantly higher (p<0.05) in the AA and AG genotypes compared to the GG genotypes. Conclusion The FSHR rs6166 G2039A was associated with PA in women, and the A allele could be considered a causative risk factor in developing the condition.
Collapse
Affiliation(s)
- Priyanka Sanghavi
- - Department of Zoology, Biomedical Technology and Human Genetics, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, India
| | - Divya Chandel
- - Department of Zoology, Biomedical Technology and Human Genetics, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, India
| |
Collapse
|
6
|
Concepción-Zavaleta MJ, Coronado-Arroyo JC, Quiroz-Aldave JE, Durand-Vásquez MDC, Ildefonso-Najarro SP, Rafael-Robles LDP, Concepción-Urteaga LA, Gamarra-Osorio ER, Suárez-Rojas J, Paz-Ibarra J. Endocrine factors associated with infertility in women: an updated review. Expert Rev Endocrinol Metab 2023; 18:399-417. [PMID: 37702309 DOI: 10.1080/17446651.2023.2256405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/09/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION Infertility is defined as the inability to conceive after unprotected sexual intercourse for at least 12 consecutive months. Our objective is to present an updated narrative review on the endocrine causes of infertility in women. AREAS COVERED A comprehensive review was conducted using Scielo, Scopus, and EMBASE databases, comprising 245 articles. The pathophysiology of infertility in women was described, including endocrinopathies such as hypothalamic amenorrhea, hyperprolactinemia, polycystic ovary syndrome, primary ovarian insufficiency, obesity, thyroid dysfunction, and adrenal disorders. The diagnostic approach was outlined, emphasizing the necessity of hormonal studies and ovarian response assessments. Additionally, the treatment plan was presented, commencing with non-pharmacological interventions, encompassing the adoption of a Mediterranean diet, vitamin supplementation, moderate exercise, and maintaining a healthy weight. Subsequently, pharmacological treatment was discussed, focusing on the management of associated endocrine disorders and ovulatory dysfunction. EXPERT OPINION This comprehensive review highlights the impact of endocrine disorders on fertility in women, providing diagnostic and therapeutic algorithms. Despite remaining knowledge gaps that hinder more effective treatments, ongoing research and advancements show promise for improved fertility success rates within the next five years. Enhanced comprehension of the pathophysiology behind endocrine causes and the progress in genetic research will facilitate the delivery of personalized treatments, thus enhancing fertility rates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - José Paz-Ibarra
- Department of Medicine, School of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Perú
| |
Collapse
|
7
|
Suzuki E, Miyado M, Kuroki Y, Fukami M. Genetic variants of G-protein coupled receptors associated with pubertal disorders. Reprod Med Biol 2023; 22:e12515. [PMID: 37122876 PMCID: PMC10134480 DOI: 10.1002/rmb2.12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Background The human hypothalamic-pituitary-gonadal (HPG) axis is the regulatory center for pubertal development. This axis involves six G-protein coupled receptors (GPCRs) encoded by KISS1R, TACR3, PROKR2, GNRHR, LHCGR, and FSHR. Methods Previous studies have identified several rare variants of the six GPCR genes in patients with pubertal disorders. In vitro assays and animal studies have provided information on the function of wild-type and variant GPCRs. Main Findings Of the six GPCRs, those encoded by KISS1R and TACR3 are likely to reside at the top of the HPG axis. Several loss-of-function variants in the six genes were shown to cause late/absent puberty. In particular, variants in KISS1R, TACR3, PROKR2, and GNRHR lead to hypogonadotropic hypogonadism in autosomal dominant, recessive, and oligogenic manners. Furthermore, a few gain-of-function variants of KISS1R, PROKR2, and LHCGR have been implicated in precocious puberty. The human HPG axis may contain additional GPCRs. Conclusion The six GPCRs in the HPG axis govern pubertal development through fine-tuning of hormone secretion. Rare sequence variants in these genes jointly account for a certain percentage of genetic causes of pubertal disorders. Still, much remains to be clarified about the molecular network involving the six GPCRs.
Collapse
Affiliation(s)
- Erina Suzuki
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Mami Miyado
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- Department of Food and NutritionBeppu UniversityOitaJapan
| | - Yoko Kuroki
- Department of Genome Medicine, National Center for Child Health and DevelopmentTokyoJapan
- Division of Collaborative Research, National Center for Child Health and DevelopmentTokyoJapan
- Division of Diversity ResearchNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Maki Fukami
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- Division of Diversity ResearchNational Research Institute for Child Health and DevelopmentTokyoJapan
| |
Collapse
|
8
|
Mu Z, Shen S, Lei L. Resistant ovary syndrome: Pathogenesis and management strategies. Front Med (Lausanne) 2022; 9:1030004. [PMCID: PMC9626816 DOI: 10.3389/fmed.2022.1030004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Resistant ovary syndrome (ROS) is a rare and difficult gynecological endocrine disorder that poses a serious risk to women’s reproductive health. The clinical features are normal sex characteristics, regular female karyotype, and usual ovarian reserve, but elevated endogenous gonadotropin levels and low estrogen levels with primary or secondary amenorrhea. Although there have been many case reports of the disease over the past 50 years, the pathogenesis of the disease is still poorly understood, and there are still no effective clinical management strategies. In this review, we have collected all the current reports on ROS and summarized the pathogenesis and treatment strategies for this disease, intending to provide some clinical references for the management and treatment of this group of patients and provide the foothold for future studies.
Collapse
|
9
|
Chen X, Chen L, Wang Y, Shu C, Zhou Y, Wu R, Jin B, Yang L, Sun J, Qi M, Shu J. Identification and characterization of novel compound heterozygous variants in FSHR causing primary ovarian insufficiency with resistant ovary syndrome. Front Endocrinol (Lausanne) 2022; 13:1013894. [PMID: 36704038 PMCID: PMC9871476 DOI: 10.3389/fendo.2022.1013894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is among the foremost causes of women infertility due to premature partial or total loss of ovarian function. Resistant ovary syndrome (ROS) is a subtype of POI manifested as normal ovarian reserve but insensitive to gonadotropin stimulation. Inactivating variants of follicle-stimulating hormone receptor (FSHR), a class A G-protein coupled receptor, have been associated with POI and are inherited via an autosomal recessive pattern. In this study, we investigated the genetic causes of a primary infertility patient manifested as POI with ROS, and elucidated the structural and functional impact of variants of uncertain significance. Next-generation sequencing (NGS) combined with Sanger sequencing revealed novel compound heterozygous FSHR variants: c.1384G>C/p.Ala462Pro and c.1862C>T/p.Ala621Val, inherited from her father and mother, respectively. The two altered amino acid sequences, localized in the third and seventh transmembrane helix of FSHR, were predicted as deleterious by in silico prediction. In vitro experiments revealed that the p.Ala462Pro variant resulted in barely detectable levels of intracellular signaling both in cAMP-dependent CRE-reporter activity and ERK activation and displayed a severely reduced plasma membrane receptor expression. In contrast, the p.Ala621Val variant resulted in partial loss of receptor activation without disruption of cell surface expression. In conclusion, two unreported inactivating FSHR variants potentially responsible for POI with ROS were first identified. This study expands the current phenotypic and genotypic spectrum of POI.
Collapse
Affiliation(s)
- Xiaopan Chen
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Genetic and Genomic Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Jing Shu, ; Xiaopan Chen,
| | - Linjie Chen
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yang Wang
- Department of Genetic and Genomic Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, China
| | - Chongyi Shu
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yier Zhou
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ruifang Wu
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bihui Jin
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Leixiang Yang
- Department of Genetic and Genomic Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Junhui Sun
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Qi
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Shu
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jing Shu, ; Xiaopan Chen,
| |
Collapse
|
10
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Tao YX. Targeting trafficking as a therapeutic avenue for misfolded GPCRs leading to endocrine diseases. Front Endocrinol (Lausanne) 2022; 13:934685. [PMID: 36093106 PMCID: PMC9452723 DOI: 10.3389/fendo.2022.934685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are plasma membrane proteins associated with an array of functions. Mutations in these receptors lead to a number of genetic diseases, including diseases involving the endocrine system. A particular subset of loss-of-function mutant GPCRs are misfolded receptors unable to traffic to their site of function (i.e. the cell surface plasma membrane). Endocrine disorders in humans caused by GPCR misfolding include, among others, hypo- and hyper-gonadotropic hypogonadism, morbid obesity, familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism, X-linked nephrogenic diabetes insipidus, congenital hypothyroidism, and familial glucocorticoid resistance. Several in vitro and in vivo experimental approaches have been employed to restore function of some misfolded GPCRs linked to endocrine disfunction. The most promising approach is by employing pharmacological chaperones or pharmacoperones, which assist abnormally and incompletely folded proteins to refold correctly and adopt a more stable configuration to pass the scrutiny of the cell's quality control system, thereby correcting misrouting. This review covers the most important aspects that regulate folding and traffic of newly synthesized proteins, as well as the experimental approaches targeted to overcome protein misfolding, with special focus on GPCRs involved in endocrine diseases.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre,
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), National University of Mexico and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology & Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
11
|
Abstract
Primary ovarian insufficiency (POI) is determined by exhaustion of follicles in the ovaries, which leads to infertility before the age of 40 years. It is characterized by a strong familial and heterogeneous genetic background. Therefore, we will mainly discuss the genetic basis of POI in this review. We identified 107 genes related to POI etiology in mammals described by several independent groups. Thirty-four of these genes (AARS2, AIRE, ANTXR1, ATM, BMPR1B, CLPP, CYP17A1, CYP19A1, DCAF17, EIF2B, ERAL1, FANCA, FANCC, FMR1, FOXL2, GALT, GNAS, HARS2, HSD17B4, LARS2, LMNA, MGME1, NBN, PMM2, POLG, PREPL, RCBTB1, RECQL2/3/4, STAR, TWNK, and XRCC4/9) have been linked to syndromic POI and are mainly implicated in metabolism function and meiosis/DNA repair. In addition, the majority of genes associated with nonsyndromic POI, widely expanded by high-throughput techniques over the last decade, have been implicated in ovarian development and meiosis/DNA repair pathways (ATG7, ATG9, ANKRD31, BMP8B, BMP15, BMPR1A, BMPR1B, BMPR2, BNC1, BRCA2, CPEB1, C14ORF39, DAZL, DIAPH2, DMC1, ERCC6, FANCL, FANCM, FIGLA, FSHR, GATA4, GDF9, GJA4, HELQ, HSF2BP, HFM1, INSL3, LHCGR, LHX8, MCM8, MCM9, MEIOB, MSH4, MSH5, NANOS3, NOBOX, NOTCH2, NR5A1, NUP107, PGRMC1, POLR3H, PRDM1, PRDM9, PSMC3IP, SOHLH1, SOHLH2, SPIDR, STAG3, SYCE1, TP63, UBR2, WDR62, and XRCC2), whereas a few are related to metabolic functions (EIF4ENIF1, KHDRBS1, MRPS22, POLR2C). Some genes, such as STRA8, FOXO3A, KIT, KITL, WNT4, and FANCE, have been shown to cause ovarian insufficiency in rodents, but mutations in these genes have yet to be elucidated in women affected by POI. Lastly, some genes have been rarely implicated in its etiology (AMH, AMHR2, ERRC2, ESR1, INHA, LMN4, POF1B, POU5F1, REC8, SMC1B). Considering the heterogeneous genetic and familial background of this disorder, we hope that an overview of literature data would reinforce that genetic screening of those patients is worthwhile and helpful for better genetic counseling and patient management.
Collapse
Affiliation(s)
- Monica Malheiros França
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Section of Endocrinology Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Hanyroup S, Anderson RC, Nataraja S, Yu HN, Millar RP, Newton CL. Rescue of Cell Surface Expression and Signaling of Mutant Follicle-Stimulating Hormone Receptors. Endocrinology 2021; 162:6311857. [PMID: 34192304 DOI: 10.1210/endocr/bqab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 11/19/2022]
Abstract
Mutations in G protein-coupled receptors (GPCRs) underlie numerous diseases. Many cause receptor misfolding and failure to reach the cell surface. Pharmacological chaperones are cell-permeant small molecules that engage nascent mutant GPCRs in the endoplasmic reticulum, stabilizing folding and "rescuing" cell surface expression. We previously demonstrated rescue of cell surface expression of luteinizing hormone receptor mutants by an allosteric agonist. Here we demonstrate that a similar approach can be employed to rescue mutant follicle-stimulating hormone receptors (FSHRs) with poor cell surface expression using a small-molecule FSHR agonist, CAN1404. Seventeen FSHR mutations described in patients with reproductive dysfunction were expressed in HEK 293T cells, and cell surface expression was determined by enzyme-linked immunosorbent assay of epitope-tagged FSHRs before/after treatment with CAN1404. Cell surface expression was severely reduced to ≤18% of wild-type (WT) for 11, modestly reduced to 66% to 84% of WT for 4, and not reduced for 2. Of the 11 with severely reduced cell surface expression, restoration to ≥57% of WT levels was achieved for 6 by treatment with 1 µM CAN1404 for 24 h, and a corresponding increase in FSH-induced signaling was observed for 4 of these, indicating restored functionality. Therefore, CAN1404 acts as a pharmacological chaperone and can rescue cell surface expression and function of certain mutant FSHRs with severely reduced cell surface expression. These findings aid in advancing the understanding of the effects of genetic mutations on GPCR function and provide a proof of therapeutic principle for FSHR pharmacological chaperones.
Collapse
Affiliation(s)
- Sharika Hanyroup
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ross C Anderson
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | | | - Robert P Millar
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- School of Medicine, Medical and Biological Sciences Building, University of St Andrews, St Andrews, UK
| | - Claire L Newton
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Live birth after in vitro maturation in women with gonadotropin resistance ovary syndrome: report of two cases. J Assist Reprod Genet 2021; 38:3243-3249. [PMID: 34846627 DOI: 10.1007/s10815-021-02355-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Gonadotropin-resistant ovary syndrome (GROS) is a rare endocrine disorder that causes hypergonadotropic hypogonadism, amenorrhea, and infertility. This study reports live birth in two women with GROS who underwent fertility treatment with in vitro maturation (IVM). METHODS Both patients had primary infertility, amenorrhea (primary and secondary), typical secondary sexual characters, elevated gonadotropin levels, normal ovarian reserve, normal chromosomal characteristics, and previous nonresponsiveness gonadotropin stimulations. One patient had polymorphism of the follicle-stimulating hormone receptor, which is a predictor of poor ovarian response. Given unresponsiveness to exogenous gonadotropin stimulations, IVM with human chorionic gonadotropin priming (hCG-IVM) was performed in both patients. All transferrable embryos were vitrified. RESULTS Both patients achieved pregnancy after their first frozen embryos transfer, and each delivered a healthy baby boy. CONCLUSIONS These results suggest that IVM should be a first-line therapeutic option for patients with GROS.
Collapse
|
14
|
The Roles of Luteinizing Hormone, Follicle-Stimulating Hormone and Testosterone in Spermatogenesis and Folliculogenesis Revisited. Int J Mol Sci 2021; 22:ijms222312735. [PMID: 34884539 PMCID: PMC8658012 DOI: 10.3390/ijms222312735] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Spermatogenesis and folliculogenesis involve cell–cell interactions and gene expression orchestrated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH). FSH regulates the proliferation and maturation of germ cells independently and in combination with LH. In humans, the requirement for high intratesticular testosterone (T) concentration in spermatogenesis remains both a dogma and an enigma, as it greatly exceeds the requirement for androgen receptor (AR) activation. Several data have challenged this dogma. Here we report our findings on a man with mutant LH beta subunit (LHβ) that markedly reduced T production to 1–2% of normal., but despite this minimal LH stimulation, T production by scarce mature Leydig cells was sufficient to initiate and maintain complete spermatogenesis. Also, in the LH receptor (LHR) knockout (LuRKO) mice, low-dose T supplementation was able to maintain spermatogenesis. In addition, in antiandrogen-treated LuRKO mice, devoid of T action, the transgenic expression of a constitutively activating follicle stimulating hormone receptor (FSHR) mutant was able to rescue spermatogenesis and fertility. Based on rodent models, it is believed that gonadotropin-dependent follicular growth begins at the antral stage, but models of FSHR inactivation in women contradict this claim. The complete loss of FSHR function results in the complete early blockage of folliculogenesis at the primary stage, with a high density of follicles of the prepubertal type. These results should prompt the reassessment of the role of gonadotropins in spermatogenesis, folliculogenesis and therapeutic applications in human hypogonadism and infertility.
Collapse
|
15
|
Byambaragchaa M, Ahn TY, Choi SH, Kang MH, Min KS. Functional characterization of naturally-occurring constitutively activating/inactivating mutations in equine follicle-stimulating hormone receptor (eFSHR). Anim Biosci 2021; 35:399-409. [PMID: 34474536 PMCID: PMC8902225 DOI: 10.5713/ab.21.0246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Follicle-stimulating hormone (FSH) is the central hormone involved in mammalian reproduction, maturation at puberty, and gamete production that mediates its function by control of follicle growth and function. The present study investigated the mutations involved in the regulation of FSH receptor (FSHR) activation. Methods We analyzed seven naturally-occurring mutations that were previously reported in human FSHR (hFSHR), in the context of equine FSHR (eFSHR); these include one constitutively activation variant, one allelic variant, and five inactivating variants. These mutations were introduced into wild-type eFSHR (eFSHR-wt) sequence to generate mutants that were designated as eFSHR-D566G, -A306T, -A189V, -N191I, -R572C, -A574V, and -R633H. Mutants were transfected into PathHunter EA-parental CHO-K1 cells expressing β-arrestin. The biological function of mutants was analyzed by quantitating cAMP accumulation in cells incubated with increasing concentrations of FSH. Results Cells expressing eFSHR-D566G exhibited an 8.6-fold increase in basal cAMP response, as compared to that in eFSHR-wt. The allelic variation mutant eFSHR-A306T was not found to affect the basal cAMP response or EC50 levels. On the other hand, eFSHR-D566G and eFSHR-A306T displayed a 1.5- and 1.4-fold increase in the maximal response, respectively. Signal transduction was found to be completely impaired in case of the inactivating mutants eFSHR-A189V, -R572C, and -A574V. When compared with eFSHR-wt, eFSHR-N191I displayed a 5.4-fold decrease in the EC50 levels (3910 ng/mL) and a 2.3-fold decrease in the maximal response. In contrast, cells expressing eFSHR-R633H displayed in a similar manner to that of the cells expressing the eFSHR-wt on signal transduction and maximal response. Conclusion The activating mutant eFSHR-D566G greatly enhanced the signal transduction in response to FSH, in the absence of agonist treatment. We suggest that the state of activation of the eFSHR can modulate its basal cAMP accumulation.
Collapse
Affiliation(s)
- Munkhzaya Byambaragchaa
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea
| | - Tae-Young Ahn
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea
| | - Seung-Hee Choi
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea
| | - Myung-Hwa Kang
- Department of Food Science and Nutrition, Hoseo University, Asan 31499, Korea
| | - Kwan-Sik Min
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea.,School of Animal Life Convergence Science, Institute of Genetic Engineering, Hankyong National University, Ansung 17579, Korea
| |
Collapse
|
16
|
Benammar A, Fanchin R, Filali-Baba M, Vialard F, Fossard C, Vandame J, Pirtea P, Racowsky C, Ayoubi JM, Poulain M. Utilization of in vitro maturation in cases with a FSH receptor mutation. J Assist Reprod Genet 2021; 38:1311-1321. [PMID: 34089127 DOI: 10.1007/s10815-021-02249-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE To identify the FSH receptor (FSHR) variant and efficacy of in vitro maturation (IVM) in a 28-year-old woman with secondary amenorrhea, primary infertility, and ovarian resistance to FSH, and to analyze the genotype-to-phenotype relationship in cases of FSHR mutation for the development of an IVM algorithm for use in patients with gonadotropin resistance syndrome (GRS). METHODS Oocytes retrieved after menstruation induction with norethisterone, followed by daily estrogen and an ovulatory trigger, underwent IVM, ICSI, and culture in a time-lapse (TL) incubator. Embryo transfers were performed on day 2, and after thawing on day 5. Genes associated with disorders of sex development were sequenced for both the patient and her parents. All reported cases of FSHR mutation were analyzed to investigate genotype/phenotypic relationships. RESULTS After ovum pickup, seven of 16 oocytes matured and all fertilized. After unsuccessful day 2 transfer, our patient delivered with a thawed day 5 blastocyst, the sole embryo without abnormal TL phenotypes. Genetic analysis revealed a new composite heterozygous FSHR variant. Analysis of our patient case with published cases of GRS revealed associations among FSHR variant genotype, location on the FSHR, functionality of tested variants, and type of amenorrhea. An algorithm for application of IVM for GRS patients was developed. CONCLUSIONS We report two novel variants of the FSHR. Although IVM successfully matured some oocytes, only one resulted in an embryo with normal TL phenotypes. We recommend FSHR genetic testing in GRS patients, which will help guide their suitability for IVM.
Collapse
Affiliation(s)
- Achraf Benammar
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France.
| | - Renato Fanchin
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France
| | - Meryem Filali-Baba
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France
| | - François Vialard
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France.,Genetics Federation, CHI de Poissy St Germain en Laye, 78303, Poissy, France
| | - Camille Fossard
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France
| | - Jessica Vandame
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France
| | - Paul Pirtea
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France
| | - Catherine Racowsky
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France
| | - Jean-Marc Ayoubi
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France.,Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Marine Poulain
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France.,Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| |
Collapse
|
17
|
Zariñán T, Mayorga J, Jardón-Valadez E, Gutiérrez-Sagal R, Maravillas-Montero JL, Mejía-Domínguez NR, Martínez-Luis I, Yacini-Torres OG, Cravioto MDC, Reiter E, Ulloa-Aguirre A. A Novel Mutation in the FSH Receptor (I423T) Affecting Receptor Activation and Leading to Primary Ovarian Failure. J Clin Endocrinol Metab 2021; 106:e534-e550. [PMID: 33119067 DOI: 10.1210/clinem/dgaa782] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Follicle-stimulating hormone (FSH) plays an essential role in gonadal function. Loss-of-function mutations in the follicle-stimulating hormone receptor (FSHR) are an infrequent cause of primary ovarian failure. OBJECTIVE To analyze the molecular physiopathogenesis of a novel mutation in the FSHR identified in a woman with primary ovarian failure, employing in vitro and in silico approaches, and to compare the features of this dysfunctional receptor with those shown by the trafficking-defective D408Y FSHR mutant. METHODS Sanger sequencing of the FSHR cDNA was applied to identify the novel mutation. FSH-stimulated cyclic adenosine monophosphate (cAMP) production, ERK1/2 phosphorylation, and desensitization were tested in HEK293 cells. Receptor expression was analyzed by immunoblotting, receptor-binding assays, and flow cytometry. Molecular dynamics simulations were performed to determine the in silico behavior of the mutant FSHRs. RESULTS A novel missense mutation (I423T) in the second transmembrane domain of the FSHR was identified in a woman with normal pubertal development but primary amenorrhea. The I423T mutation slightly impaired plasma membrane expression of the mature form of the receptor and severely impacted on cAMP/protein kinase A signaling but much less on β-arrestin-dependent ERK1/2 phosphorylation. Meanwhile, the D408Y mutation severely affected membrane expression, with most of the FSH receptor located intracellularly, and both signal readouts tested. Molecular dynamics simulations revealed important functional disruptions in both mutant FSHRs, mainly the loss of interhelical connectivity in the D408Y FSHR. CONCLUSIONS Concurrently, these data indicate that conformational differences during the inactive and active states account for the distinct expression levels, differential signaling, and phenotypic expression of the I423T and D408Y mutant FSHRs.
Collapse
Affiliation(s)
- Teresa Zariñán
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Julio Mayorga
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana, Unidad Lerma, Lerma, Edo. de Mexico, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Iván Martínez-Luis
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Omar G Yacini-Torres
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ma-Del-Carmen Cravioto
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, Tours, France
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
18
|
Pharmacogenomic Biomarkers of Follicle-Stimulating Hormone Receptor Malfunction in Females with Impaired Ovarian Response-A Genetic Survey. J Clin Med 2021; 10:jcm10020170. [PMID: 33561079 PMCID: PMC7825139 DOI: 10.3390/jcm10020170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 02/07/2023] Open
Abstract
Follicle-stimulating hormone receptor (FSHR) plays an essential role as one of the most important molecules in response to some of infertility related medications. Impaired ovarian reserve and poor response to such treatments are partially dependent on the FSHR molecule itself. However, the function and drug sensitivity for this receptor may change due to various allele and polymorphisms in the FSHR gene. Studies indicated some of the FSHR-mediated treatments utilized in clinical centers display different outcomes in specific populations, which may arise from FSHR altered genotypes in certain patients. To support the increased demands for reaching the personalized drug and hormone therapy in clinics, focusing on actionable variants through Pharmacogenomic analysis of this receptor may be necessary. The current study tries to display a perspective view on genetic assessments for Pharmacogenomic profiling of the FSHR gene via providing a systematic and critical overview on the genetics of FSHR and its diverse responses to ligands for infertility treatment in females with impaired ovarian responses and show the potential effects of the patient genetic make-up on related binding substances efficacy. All identified functional drug-related alleles were selected through a comprehensive literature search and analyzed. Advanced technologies for the genetic evaluation of them are also discussed properly.
Collapse
|
19
|
Banerjee AA, Joseph S, Mahale SD. From cell surface to signalling and back: the life of the mammalian FSH receptor. FEBS J 2020; 288:2673-2696. [DOI: 10.1111/febs.15649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Antara A. Banerjee
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Shaini Joseph
- Genetic Research Center National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Smita D. Mahale
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
- ICMR Biomedical Informatics Centre National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| |
Collapse
|
20
|
Constitutive Activation and Inactivation of Mutations Inducing Cell Surface Loss of Receptor and Impairing of Signal Transduction of Agonist-Stimulated Eel Follicle-Stimulating Hormone Receptor. Int J Mol Sci 2020; 21:ijms21197075. [PMID: 32992880 PMCID: PMC7583038 DOI: 10.3390/ijms21197075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
In the present study, we investigated the signal transduction of mutants of the eel follicle-stimulating hormone receptor (eelFSHR). Specifically, we examined the constitutively activating mutant D540G in the third intracellular loop, and four inactivating mutants (A193V, N195I, R546C, and A548V). To directly assess functional effects, we conducted site-directed mutagenesis to generate mutant receptors. We measured cyclic adenosine monophosphate (cAMP) accumulation via homogeneous time-resolved fluorescence assays in Chinese hamster ovary (CHO-K1) cells and investigated cell surface receptor loss using an enzyme-linked immunosorbent assay in human embryonic kidney (HEK) 293 cells. The cells expressing eelFSHR-D540G exhibited a 23-fold increase in the basal cAMP response without agonist treatment. The cells expressing A193V, N195I, and A548V mutants had completely impaired signal transduction, whereas those expressing the R546C mutant exhibited little increase in cAMP responsiveness and a small increase in signal transduction. Cell surface receptor loss in the cells expressing inactivating mutants A193V, R546C, and A548V was clearly slower than in the cell expressing the wild-type eelFSHR. However, cell surface receptor loss in the cells expressing inactivating mutant N195I decreased in a similar manner to that of the cells expressing the wild-type eelFSHR or the activating mutant D540G, despite the completely impaired cAMP response. These results provide important information regarding the structure–function relationships of G protein-coupled receptors during signal transduction.
Collapse
|
21
|
Abstract
During menopausal transition, decreased level of estrogen brings a number of physiological problems and hormonal changes. In this study, promoter methylation of RANKL and FSHR genes were identified in 30 premenopausal and 35 postmenopausal women using methylation-specific high resolution melting (MS-HRM) analysis. The statistical analyses and their association with patient characteristics were performed by Pearson χ2 and Fisher's exact test (p <0.05). The methylated RANKL gene was detected in 16 postmenopausal cases, and 12 (75.0%) of the RANKL methylated cases had hot flashes (p = 0.024). The methylated FSHR gene was detected in 18 postmenopausal cases, and 13 (75.0%) of the methylated cases had hot flashes (p = 0.028). In vitro studies demonstrated the association between RANKL expression, FSH level and hot flashes in the mouse. Although lack of epigenetic studies in this field proves our results crucial and therefore, our results showed magnitude of epigenetic profiles of Turkish Cypriot post-menopausal women. This was the first study which has investigated the RANKL and FSHR methylation and their relationship with hot flashes in postmenopausal women.
Collapse
|
22
|
Sassi A, Désir J, Janssens V, Marangoni M, Daneels D, Gheldof A, Bonduelle M, Van Dooren S, Costagliola S, Delbaere A. Novel inactivating follicle-stimulating hormone receptor mutations in a patient with premature ovarian insufficiency identified by next-generation sequencing gene panel analysis. F S Rep 2020; 1:193-201. [PMID: 34223243 PMCID: PMC8244262 DOI: 10.1016/j.xfre.2020.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 01/05/2023] Open
Abstract
Objective To find the genetic etiology of premature ovarian insufficiency (POI) in a patient with primary amenorrhea and hypergonadotropic hypogonadism. Design Case report. Setting University hospital. Patient(s) A Belgian woman aged 32 years with POI at the age of 17, her parents, and her sister whose POI was diagnosed at age 29. Intervention(s) Analysis of a panel of 31 genes implicated in POI (POIGP) using next-generation sequencing (NGS), Sanger sequencing, and in vitro functional study. Main Outcome Measure(s) Gene variants, family mutational segregation, and in vitro functional impact of the mutant proteins. Result(s) The analysis of the gene panel using NGS identified the presence of two novel follicle-stimulating hormone receptor (FSHR) missense mutations at a compound heterozygous state in the affected patient: c.646 G>A, p.Gly216Arg, and c.1313C>T, p.Thr438Ile. Sanger sequencing showed the presence of each mutation at heterozygous state in the patient’s parents and at heterozygous compound state in the affected sister. Both substituted amino acids (Gly216 and Thr438) were conserved in FSHR of several vertebrate species as well as in other glycoproteins receptors (TSHR and LHCGHR), suggesting a potentially important role in glycoprotein receptor function. An in vitro functional study showed similar results for both variants with more than 90% reduction of their cell surface expression and a 55% reduction of their FSH-induced cyclic adenosine 3′:5′ monophosphate (cAMP) production compared with the wild-type FSHR. Conclusion(s) The analysis of a gene panel of 31 genes implicated in POI allowed us to identify two novel partially inactivating mutations of FSHR that are likely responsible for the POI phenotype of the proband and of her affected sister.
Collapse
Affiliation(s)
- Asma Sassi
- Fertility Clinic, Department of Gynecology and Obstetrics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Désir
- Department of Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Janssens
- IRIBHM, Institute of Interdisciplinary Research in Human and Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Martina Marangoni
- Department of Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Dorien Daneels
- Brussels Interuniversity Genomics High Throughput Core (Bright Core), Brussels, Belgium.,Centre for Medical Genetics, Reproduction and Genetics and Regenerative Medicine Research Cluster, Reproduction and Genetics Research Group, Vrije Universiteit Brussel-UZ Brussel, Brussels, Belgium
| | - Alexander Gheldof
- Centre for Medical Genetics, Reproduction and Genetics and Regenerative Medicine Research Cluster, Reproduction and Genetics Research Group, Vrije Universiteit Brussel-UZ Brussel, Brussels, Belgium
| | - Maryse Bonduelle
- Brussels Interuniversity Genomics High Throughput Core (Bright Core), Brussels, Belgium.,Centre for Medical Genetics, Reproduction and Genetics and Regenerative Medicine Research Cluster, Reproduction and Genetics Research Group, Vrije Universiteit Brussel-UZ Brussel, Brussels, Belgium
| | - Sonia Van Dooren
- Brussels Interuniversity Genomics High Throughput Core (Bright Core), Brussels, Belgium.,Centre for Medical Genetics, Reproduction and Genetics and Regenerative Medicine Research Cluster, Reproduction and Genetics Research Group, Vrije Universiteit Brussel-UZ Brussel, Brussels, Belgium
| | - Sabine Costagliola
- IRIBHM, Institute of Interdisciplinary Research in Human and Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Delbaere
- Fertility Clinic, Department of Gynecology and Obstetrics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
23
|
A genomics approach to females with infertility and recurrent pregnancy loss. Hum Genet 2020; 139:605-613. [PMID: 32172300 DOI: 10.1007/s00439-020-02143-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Infertility affects 10% of reproductive-age women and is extremely heterogeneous in etiology. The genetic contribution to female infertility is incompletely understood, and involves chromosomal and single-gene defects. Our aim in this study is to decipher single-gene causes in infertile women in whom endocrinological, anatomical, and chromosomal causes have been excluded. Our cohort comprises women with recurrent pregnancy loss and no offspring from spontaneous pregnancies (RPL, n = 61) and those who never achieved clinical pregnancy and were referred for in vitro fertilization [primary infertility (PI), n = 14]. Whole-exome sequencing revealed candidate variants in 14, which represents 43% of those with PI and 13% of those with RPL. These include variants in previously established female infertility-related genes (TLE6, NLRP7, FSHR, and ZP1) as well as genes with only tentative links in the literature (NLRP5). Candidate variants in genes linked to primary ciliary dyskinesia (DNAH11 and CCNO) were identified in individuals with and without systemic features of the disease. We also identified variants in genes not previously linked to female infertility. These include one homozygous variant each in CCDC68, CBX3, CENPH, PABPC1L, PIF1, PLK1, and REXO4, which we propose as candidate genes for infertility based on their established biology or compatible animal models. Our study expands the contribution of single genes to the etiology of PI and RPL, improves the precision of disease classification at the molecular level, and offers the potential for future treatment and development of human genetics-inspired fertility regulators.
Collapse
|
24
|
Khor S, Lyu Q, Kuang Y, Lu X. Novel FSHR variants causing female resistant ovary syndrome. Mol Genet Genomic Med 2019; 8:e1082. [PMID: 31830376 PMCID: PMC7005632 DOI: 10.1002/mgg3.1082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/16/2019] [Accepted: 11/02/2019] [Indexed: 11/18/2022] Open
Abstract
Background Pathogenic variants of follicle‐stimulating hormone receptor (FSHR) are known to cause amenorrhea and infertility in women. However, only a limited number of pathogenic FSHR variants have been reported, and few reports described detailed characteristics of patients with pathogenic FSHR variants. Methods The affected siblings and both parents were subjected to whole‐genome exon sequencing. Transient transfection of HEK 293T cells was performed with constructed vectors. The cellular localization of the FSHR protein was evaluated using confocal microscopy, and cyclic adenosine monophosphate (cAMP) production was detected with a cAMP ELISA kit. Results A Chinese family with two siblings carrying compound heterozygous pathogenic variants of FSHR: c.182T>A (p.Ile61Asn) and c.2062C>A (p.Pro688Thr). Both siblings had amenorrhea, infertility, and resistance to gonadotropin (Gn) stimulation but showed high anti‐Müllerian hormone levels and early antral follicles. Molecular dynamics simulations of the FSHR variants revealed significant changes in structural characteristics and electrostatic potential. In vitro analysis indicated that the p.Ile61Asn variant lacked cell surface localization and completely abolished the cAMP second messenger response. The p.Pro688Thr variant retained cell surface localization but caused decreased FSH‐induced cAMP production. Conclusion We found two novel pathogenic FSHR variants causing resistant ovarian syndrome. This study expands the genotypic spectrum of pathogenic FSHR variants and our knowledge of phenotype–genotype correlations.
Collapse
Affiliation(s)
- Shuzin Khor
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Lu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Matsushima N, Takatsuka S, Miyashita H, Kretsinger RH. Leucine Rich Repeat Proteins: Sequences, Mutations, Structures and Diseases. Protein Pept Lett 2019; 26:108-131. [PMID: 30526451 DOI: 10.2174/0929866526666181208170027] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Mutations in the genes encoding Leucine Rich Repeat (LRR) containing proteins are associated with over sixty human diseases; these include high myopia, mitochondrial encephalomyopathy, and Crohn's disease. These mutations occur frequently within the LRR domains and within the regions that shield the hydrophobic core of the LRR domain. The amino acid sequences of fifty-five LRR proteins have been published. They include Nod-Like Receptors (NLRs) such as NLRP1, NLRP3, NLRP14, and Nod-2, Small Leucine Rich Repeat Proteoglycans (SLRPs) such as keratocan, lumican, fibromodulin, PRELP, biglycan, and nyctalopin, and F-box/LRR-repeat proteins such as FBXL2, FBXL4, and FBXL12. For example, 363 missense mutations have been identified. Replacement of arginine, proline, or cysteine by another amino acid, or the reverse, is frequently observed. The diverse effects of the mutations are discussed based on the known structures of LRR proteins. These mutations influence protein folding, aggregation, oligomerization, stability, protein-ligand interactions, disulfide bond formation, and glycosylation. Most of the mutations cause loss of function and a few, gain of function.
Collapse
Affiliation(s)
- Norio Matsushima
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.,Institute of Tandem Repeats, Noboribetsu 059-0464, Japan
| | - Shintaro Takatsuka
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroki Miyashita
- Institute of Tandem Repeats, Noboribetsu 059-0464, Japan.,Hokubu Rinsho Co., Ltd, Sapporo 060-0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
26
|
Hsueh AJ, He J. Gonadotropins and their receptors: coevolution, genetic variants, receptor imaging, and functional antagonists. Biol Reprod 2019; 99:3-12. [PMID: 29462242 DOI: 10.1093/biolre/ioy012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/06/2018] [Indexed: 12/29/2022] Open
Abstract
Gonadotropins belong to the family of dimeric glycoprotein hormones and regulate gonadal physiology mediated by G protein-coupled, seven-transmembrane receptors. These glycoprotein hormones are widely used in the clinic to promote ovarian follicle development and for treating some cases of male infertility. We traced the coevolution of dimeric gonadotropin hormones and their receptors, together with thyrotropin and its receptor. We updated recent findings on human genetic variants of these genes and their association with dizygotic twining, polycystic ovarian syndrome, primary ovarian insufficiency, male-limited precocious puberty, and infertility. In addition to the known physiological roles of gonadotropin-receptor signaling in gonadal tissues, we also discussed emerging understanding of extragonadal functions of gonadotropins in bones and adipose tissues, together with recent advances in in vivo imaging of gonadotropin receptors in live animals. Recent development of gonadotropin receptor agonists and antagonists were summarized with an emphasis on the development of functional antagonists for FSH receptors to alleviate osteoporosis and obesity associated with menopause.
Collapse
Affiliation(s)
- Aaron J Hsueh
- Program of Reproductive and Stem Cell Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, USA
| | - Jiahuan He
- Program of Reproductive and Stem Cell Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
27
|
Liu H, Guo T, Gong Z, Yu Y, Zhang Y, Zhao S, Qin Y. Novel FSHR mutations in Han Chinese women with sporadic premature ovarian insufficiency. Mol Cell Endocrinol 2019; 492:110446. [PMID: 31077743 DOI: 10.1016/j.mce.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Premature ovarian insufficiency (POI) is characterized by amenorrhea and elevated levels of follicle-stimulating hormone (FSH, usually > 25 IU/L) before 40 years of age. To identify the relationship between FSHR mutations and sporadic POI patients of Han Chinese descent, we performed Sanger sequencing of FSHR gene in 192 sporadic POI patients and 192 matched controls of Han Chinese descent. Two heterozygous missense variants, c.793A > G (p.M265V) and c.1789C > A (p.L597I), were identified exclusively in POI patients. Functional studies showed that both mutants were expressed on the cell surface, while p.L597I showed decreased membrane localization compared with wild-type FSHR. Moreover, FSH-induced cAMP production and ERK1/2 phosphorylation were reduced in the cells transfected with p.L597I mutant, but not in the cells transfected with p.M265V mutant. In addition, two single-nucleotide polymorphisms (SNPs), rs1394205 (c.-29G > A) and rs140106399 (c.*111 T > C), were identified in both POI group and control group with significantly different genotypic and allelic distributions. These results indicated that dysfunctional FSHR due to mutation or SNPs might explain a fraction of sporadic POI cases in Han Chinese population.
Collapse
Affiliation(s)
- Hongli Liu
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China; Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Ting Guo
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Zheng Gong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Yongze Yu
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Yingxin Zhang
- Department of Obstetrics & Gynecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.
| |
Collapse
|
28
|
Gharemirshamlu FR, Afsar M, Mokhdomi TA, Amin A, Bukhari S, Krishnan A, Kumar CV, Bamdad K, Patel TN, Qadri RA, Chikan NA, Shabir N. D224V and S128Y mutation in FSHR ED influence thumb movement differentially: An intricate insight gained by short-term molecular dynamics simulation. J Cell Biochem 2019; 120:7701-7710. [PMID: 30390320 DOI: 10.1002/jcb.28044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Follicle-stimulating hormone-follicle-stimulating hormone receptor (FSH-FSHR) interaction is one of the most thoroughly studied signaling pathways primarily because of being implicated in sexual reproduction in mammals by way of maintaining gonadal function and sexual fertility. Despite material advances in understanding the role of point mutations, their mechanistic basis in FSH-FSHR signaling is still confined to mystically altered behavior of sTYS335 (sulfated tyrosine) yet lacking a substantial theory. To understand the structural basis of receptor modulation, we choose two behaviorally contradicting mutations, namely S128Y (activating) and D224Y (inactivating), found in FSH receptor responsible for ovarian hyperstimulation syndrome and ovarian dysgenesis, respectively. Using short-term molecular dynamics simulations, the atomic scale investigations reveal that the binding pattern of sTYS with FSH and movement of the thumb region of FSHR show distinct contrasting patterns in the two mutants, which supposedly could be a critical factor for differential FSHR behavior in activating and inactivating mutations.
Collapse
Affiliation(s)
| | - Maliha Afsar
- Department of Pathology, Osmania General Hospital, Hyderabad, India
| | - Taseem A Mokhdomi
- Division of Animal Health, Computational Lab, Daskdān Biotech Solutions Ltd, Srinagar, India
| | - Asif Amin
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Shoiab Bukhari
- Division of Animal Health, Computational Lab, Daskdān Biotech Solutions Ltd, Srinagar, India
| | - Anbarasu Krishnan
- Department of Bioinformatics, School of Life Sciences, Vels University, Chennai, India
| | - Chundi Vinay Kumar
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | - Trupti N Patel
- Department of Medical Biotechnology, School of Bioscience and Technology, VIT University, Vellore, India
| | - Raies A Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Naveed Anjum Chikan
- Division of Animal Health, Computational Lab, Daskdān Biotech Solutions Ltd, Srinagar, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
29
|
Parivesh A, Barseghyan H, Délot E, Vilain E. Translating genomics to the clinical diagnosis of disorders/differences of sex development. Curr Top Dev Biol 2019; 134:317-375. [PMID: 30999980 PMCID: PMC7382024 DOI: 10.1016/bs.ctdb.2019.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The medical and psychosocial challenges faced by patients living with Disorders/Differences of Sex Development (DSD) and their families can be alleviated by a rapid and accurate diagnostic process. Clinical diagnosis of DSD is limited by a lack of standardization of anatomical and endocrine phenotyping and genetic testing, as well as poor genotype/phenotype correlation. Historically, DSD genes have been identified through positional cloning of disease-associated variants segregating in families and validation of candidates in animal and in vitro modeling of variant pathogenicity. Owing to the complexity of conditions grouped under DSD, genome-wide scanning methods are better suited for identifying disease causing gene variant(s) and providing a clinical diagnosis. Here, we review a number of established genomic tools (karyotyping, chromosomal microarrays and exome sequencing) used in clinic for DSD diagnosis, as well as emerging genomic technologies such as whole-genome (short-read) sequencing, long-read sequencing, and optical mapping used for novel DSD gene discovery. These, together with gene expression and epigenetic studies can potentiate the clinical diagnosis of DSD diagnostic rates and enhance the outcomes for patients and families.
Collapse
Affiliation(s)
- Abhinav Parivesh
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States
| | - Emmanuèle Délot
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
30
|
He WB, Du J, Yang XW, Li W, Tang WL, Dai C, Chen YZ, Zhang YX, Lu GX, Lin G, Gong F, Tan YQ. Novel inactivating mutations in the FSH receptor cause premature ovarian insufficiency with resistant ovary syndrome. Reprod Biomed Online 2019; 38:397-406. [DOI: 10.1016/j.rbmo.2018.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/29/2018] [Accepted: 11/29/2018] [Indexed: 02/05/2023]
|
31
|
Flageole C, Toufaily C, Bernard DJ, Ates S, Blais V, Chénier S, Benkhalifa M, Miron P. Successful in vitro maturation of oocytes in a woman with gonadotropin-resistant ovary syndrome associated with a novel combination of FSH receptor gene variants: a case report. J Assist Reprod Genet 2019; 36:425-432. [PMID: 30610662 DOI: 10.1007/s10815-018-1394-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/18/2018] [Indexed: 01/03/2023] Open
Abstract
Infertility due to Gonadotropin-Resistant Ovary Syndrome (GROS) is a rare type of hypergonadotropic hypogonadism. Here, we report an original case of GROS, associated with compound heterozygous follicle-stimulating hormone receptor (FSHR) variants, in a woman who achieved a live birth by in vitro maturation (IVM) of her oocytes. This 31-year-old woman consulted our assisted reproduction center for a second opinion after having been advised, because of pervasive high serum follicle-stimulating hormone (FSH) levels, to pursue in vitro fertilization (IVF) with donor oocytes. She presented with primary infertility and progressively prolonged menstrual cycles. Her serum FSH levels were indeed found to be high, but in discordance with a normal anti-Müllerian hormone (AMH) level and antral follicle count. Genetic investigation found the patient to be compound heterozygous for two FSHR variants: I160T, a known pathologic variant, and N558H, which has never been previously reported. As there was no ovarian response to high daily doses of exogenous gonadotropins, IVM was proposed to the patient with success and she finally delivered at term a healthy boy. Effects of the receptor variants were analyzed in heterologous cells. Whereas the I160T mutation blocked FSHR membrane trafficking and FSH-stimulated cAMP-dependent signaling in transfected CHO cells, the novel variant, N558H, functioned equivalently to wild-type FSHR in the assays employed. In conclusion, IVM should always be offered as a first-line therapy to infertile women presenting with GROS. The N558H variant discovered in FSHR is novel, but its functional significance, if any, is unresolved and merits further investigation as it may be associated with a recessive FSHR-related disorder.
Collapse
Affiliation(s)
- C Flageole
- Centre d'aide médicale à la procréation FERTILYS, Laval, Québec, Canada
| | - C Toufaily
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - D J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - S Ates
- Centre d'aide médicale à la procréation FERTILYS, Laval, Québec, Canada
| | - V Blais
- Centre d'aide médicale à la procréation FERTILYS, Laval, Québec, Canada
| | - S Chénier
- Department of Pediatrics, Division of Medical Genetics, Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - M Benkhalifa
- Centre d'aide médicale à la procréation FERTILYS, Laval, Québec, Canada.,Department of Medicine and Reproductive Genetics, Faculty of Medicine, Université de Picardie Jules-Verne, Amiens, France
| | - P Miron
- Centre d'aide médicale à la procréation FERTILYS, Laval, Québec, Canada. .,Institut National de la Recherche Scientifique (INRS) - Institut Armand-Frappier, Laval, Québec, Canada.
| |
Collapse
|
32
|
The Role of Gene Therapy in Premature Ovarian Insufficiency Management. Biomedicines 2018; 6:biomedicines6040102. [PMID: 30388808 PMCID: PMC6316312 DOI: 10.3390/biomedicines6040102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a highly prevalent disorder, characterized by the development of menopause before the age of 40. Most cases are idiopathic; however, in some women the cause of this condition (e.g.; anticancer treatment, genetic disorders, and enzymatic defects) could be identified. Although hormone-replacement therapy, the principal therapeutic approach for POI, helps alleviate the related symptoms, this does not effectively solve the issue of fertility. Assisted reproductive techniques also lack efficacy in these women. Thus, an effective approach to manage patients with POI is highly warranted. Several mechanisms associated with POI have been identified, including the lack of function of the follicle-stimulating hormone (FSH) receptor, alterations in apoptosis control, mutations in Sal-like 4 genes, and thymulin or basonuclin-1 deficiency. The above mentioned may be good targets for gene therapy in order to correct defects leading to POI. The goal of this review is to summarize current experiences on POI studies that employed gene therapy, and to discuss possible future directions in this field.
Collapse
|
33
|
Zhou X, Sun D, Guang X, Ma S, Fang X, Mariotti M, Nielsen R, Gladyshev VN, Yang G. Molecular Footprints of Aquatic Adaptation Including Bone Mass Changes in Cetaceans. Genome Biol Evol 2018; 10:967-975. [PMID: 29608729 PMCID: PMC5952927 DOI: 10.1093/gbe/evy062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2018] [Indexed: 01/04/2023] Open
Abstract
Cetaceans (whales, dolphins, and porpoises) are a group of specialized mammals that evolved from terrestrial ancestors and are fully adapted to aquatic habitats. Taking advantage of the recently sequenced finless porpoise genome, we conducted comparative analyses of the genomes of seven cetaceans and related terrestrial species to provide insight into the molecular bases of adaptation of these aquatic mammals. Changes in gene sequences were identified in main lineages of cetaceans, offering an evolutionary picture of cetacean genomes that reveal new pathways that could be associated with adaptation to aquatic lifestyle. We profiled bone microanatomical structures across 28 mammals, including representatives of cetaceans, pinnipeds, and sirenians. Subsequent phylogenetic comparative analyses revealed genes (including leptin, insulin-like growth factor 1, and collagen type I alpha 2 chain) with the root-to-tip substitution rate significantly correlated with bone compactness, implicating these genes could be involved in bone mass control. Overall, this study described adjustments of the genomes of cetaceans according to lifestyle, phylogeny, and bone mass.
Collapse
Affiliation(s)
- Xuming Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Di Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| | - Xuanmin Guang
- BGI-Shenzhen, Shenzhen, China.,The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Siming Ma
- Genome Institute of Singapore, Singapore
| | | | - Marco Mariotti
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
34
|
Szymańska K, Kałafut J, Rivero-Müller A. The gonadotropin system, lessons from animal models and clinical cases. ACTA ACUST UNITED AC 2018; 70:561-587. [PMID: 30264954 DOI: 10.23736/s0026-4784.18.04307-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review article centers upon family of gonadotropin hormones which consists of two pituitary hormones - follicle-stimulating hormone (FSH) and luteinizing hormone (LH) as well as one non-pituitary hormone - human chorionic gonadotropin (hCG) secreted by placenta, and their receptors. Gonadotropins play an essential role in proper sexual development, puberty, gametogenesis, maintenance of pregnancy and male sexual differentiation during the fetal development. They belong to the family of glycoprotein hormones thus they constitute heterodimeric proteins built of common α subunit and hormone-specific β-subunit. Hitherto, several mutations in genes encoding both gonadotropins and their receptors have been identified in humans. Their occurrence resulted in a number of different phenotypes including delayed puberty, primary amenorrhea, hermaphroditism, infertility and hypogonadism. In order to understand the effects of mutations on the phenotype observed in affected patients, detailed molecular studies are required to map the relationship between the structure and function of gonadotropins and their receptors. Nonetheless, in vitro assays are often insufficient to understand physiology. Therefore, several animal models have been developed to unravel the physiological roles of gonadotropins and their receptors.
Collapse
|
35
|
Santi D, Potì F, Simoni M, Casarini L. Pharmacogenetics of G-protein-coupled receptors variants: FSH receptor and infertility treatment. Best Pract Res Clin Endocrinol Metab 2018; 32:189-200. [PMID: 29678285 DOI: 10.1016/j.beem.2018.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Infertility treatment may represent a paradigmatic example of precision medicine. Follicle-stimulating hormone (FSH) has been proposed as a valuable therapeutic option both in males and in females, even if a standardized approach is far to be established. To date, several genetic mutations as well as polymorphisms have been demonstrated to significantly affect the pathophysiology of FSH-FSH receptor (FSHR) interaction, although the underlying molecular mechanisms remain unclear. This review aims to highlight possible aspects of FSH therapy that could benefit from a pharmacogenetic approach, providing an up-to-date overview of the variability of the response to FSH treatment in both sexes. Specific sections are dedicated to the clinical use of FSH in infertility and how FSHR polymorphisms may affect the therapeutic endpoints.
Collapse
Affiliation(s)
- Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy; Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda Ospedaliero-Universitaria of Modena, Italy.
| | - Francesco Potì
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy; Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda Ospedaliero-Universitaria of Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy; Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda Ospedaliero-Universitaria of Modena, Italy
| |
Collapse
|
36
|
Bachelot A, Gilleron J, Meduri G, Guberto M, Dulon J, Boucherie S, Touraine P, Misrahi M. A common African variant of human connexin 37 is associated with Caucasian primary ovarian insufficiency and has a deleterious effect in vitro. Int J Mol Med 2018; 41:640-648. [PMID: 29207017 PMCID: PMC5752242 DOI: 10.3892/ijmm.2017.3257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/20/2017] [Indexed: 11/06/2022] Open
Abstract
Folliculogenesis requires communication between granulosa cells and oocytes, mediated by connexin-based gap junctions. Connexin 37 (Cx37)-deficient female mice are infertile. The present study assessed Cx37 deficiency in patients with primary ovarian insufficiency (POI). A candidate gene study was performed in patients and controls from the National Genotyping Center (Evry, France) including 58 Caucasian patients with idiopathic isolated POI and 142 Caucasian controls. Direct genomic sequencing of the coding regions of the GJA4 gene (encoding Cx37) was performed with the aim to identify a deleterious variant associated with POI and absent in ethnically matched controls. A single Cx37 variant absent in the control population was identified, namely a c.946G>A heterozygous substitution leading to a p.Gly316Ser variant that was present in two POI patients. This variant was absent in all Caucasian controls from various databases, and has been observed exclusively in African populations. This variant was identified to have a dominant negative effect in HeLa cells in vitro to alter connexon function (by 67.2±7.17%), as determined by Gap-fluorescence recovery after photobleaching. The alteration principally resulted from a decrease of cell surface connexons due to altered trafficking (by 47.73±8.59%). In marked contrast to this observation, a p.Pro258Ser variant frequent in all ethnic populations in databases had no functional effect in vitro. In conclusion, the present study reported on a Cx37 variant in two Caucasian POI patients, which was absent in control Caucasian populations, and which had a deleterious effect in vitro. It is therefore suggested that in the genetic context of the Caucasian population, this variant may contribute to POI.
Collapse
Affiliation(s)
- Anne Bachelot
- AP-HP, Department of Endocrinology and Reproductive Medicine, Pitié-Salpêtrière Hospital, Reference Center for Rare Endocrine Diseases of Growth, Reference Center for Rare Gynecological Pathologies
- University Pierre and Marie Curie, University Paris 6, F-75013 Paris
| | - Jerome Gilleron
- National Institute of Health and Medical Research INSERM U1065 - University of Nice-Sophia Antipolis, Mediterranean Center for Molecular Medicine C3M, F-06000 Nice
| | - Geri Meduri
- National Institute of Health and Medical Research INSERM U1195
| | - Mihelai Guberto
- University Paris-Sud, University Paris Saclay, Medical Faculty Paris-Sud, Bicêtre Hospital, F-94275 Le Kremlin Bicêtre
| | - Jerome Dulon
- AP-HP, Department of Endocrinology and Reproductive Medicine, Pitié-Salpêtrière Hospital, Reference Center for Rare Endocrine Diseases of Growth, Reference Center for Rare Gynecological Pathologies
| | - Sylviane Boucherie
- National Institute of Health and Medical Research UMR-S 757 INSERM, University Paris-Sud, F-91400 Orsay, France
| | - Philippe Touraine
- AP-HP, Department of Endocrinology and Reproductive Medicine, Pitié-Salpêtrière Hospital, Reference Center for Rare Endocrine Diseases of Growth, Reference Center for Rare Gynecological Pathologies
- University Pierre and Marie Curie, University Paris 6, F-75013 Paris
| | - Micheline Misrahi
- University Paris-Sud, University Paris Saclay, Medical Faculty Paris-Sud, Bicêtre Hospital, F-94275 Le Kremlin Bicêtre
| |
Collapse
|
37
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Dias JA. Intracellular Trafficking of Gonadotropin Receptors in Health and Disease. Handb Exp Pharmacol 2018; 245:1-39. [PMID: 29063275 DOI: 10.1007/164_2017_49] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gonadotropin receptors belong to the highly conserved subfamily of the G protein-coupled receptor (GPCR) superfamily, the so-called Rhodopsin-like family (class A), which is the largest class of GPCRs and currently a major drug target. Both the follicle-stimulating hormone receptor (FSHR) and the luteinizing hormone/chorionic gonadotropin hormone receptor (LHCGR) are mainly located in the gonads where they play key functions associated to essential reproductive functions. As any other protein, gonadotropin receptors must be properly folded into a mature tertiary conformation compatible with quaternary assembly and endoplasmic reticulum export to the cell surface plasma membrane. Several primary and secondary structural features, including presence of particular amino acid residues and short motifs and in addition, posttranslational modifications, regulate intracellular trafficking of gonadotropin receptors to the plasma membrane as well as internalization and recycling of the receptor back to the cell surface after activation by agonist. Inactivating mutations of gonadotropin receptors may derive from receptor misfolding and lead to absent or reduced plasma membrane expression of the altered receptor, thereby manifesting an array of phenotypical abnormalities mostly characterized by reproductive failure and/or abnormal or absence of development of secondary sex characteristics. In this chapter we review the structural requirements necessary for intracellular trafficking of the gonadotropin receptors, and describe how mutations in these receptors may lead to receptor misfolding and disease in humans.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico.
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico
| | - James A Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| |
Collapse
|
38
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E, Gutiérrez-Sagal R, Dias JA. Structure-Function Relationships of the Follicle-Stimulating Hormone Receptor. Front Endocrinol (Lausanne) 2018; 9:707. [PMID: 30555414 PMCID: PMC6281744 DOI: 10.3389/fendo.2018.00707] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
The follicle-stimulating hormone receptor (FSHR) plays a crucial role in reproduction. This structurally complex receptor is a member of the G-protein coupled receptor (GPCR) superfamily of membrane receptors. As with the other structurally similar glycoprotein hormone receptors (the thyroid-stimulating hormone and luteinizing hormone-chorionic gonadotropin hormone receptors), the FSHR is characterized by an extensive extracellular domain, where binding to FSH occurs, linked to the signal specificity subdomain or hinge region. This region is involved in ligand-stimulated receptor activation whereas the seven transmembrane domain is associated with receptor activation and transmission of the activation process to the intracellular loops comprised of amino acid sequences, which predicate coupling to effectors, interaction with adapter proteins, and triggering of downstream intracellular signaling. In this review, we describe the most important structural features of the FSHR intimately involved in regulation of FSHR function, including trafficking, dimerization, and oligomerization, ligand binding, agonist-stimulated activation, and signal transduction.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eduardo Jardón-Valadez
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - James A. Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| |
Collapse
|
39
|
Abstract
The gonadotropin receptors (luteinising hormone receptor; LHR and follicle-stimulating hormone receptor; FSHR) are G protein-coupled receptors (GPCRs) that play an important role in the endocrine control of reproduction. Thus genetic mutations that cause impaired function of these receptors have been implicated in a number of reproductive disorders. Disease-causing genetic mutations in GPCRs frequently result in intracellular retention and degradation of the nascent protein through misfolding and subsequent recognition by cellular quality control machinery. The discovery and development of novel compounds termed pharmacological chaperones (pharmacoperones) that can stabilise misfolded receptors and restore trafficking and plasma membrane expression are therefore of great interest clinically, and promising in vitro data describing the pharmacoperone rescue of a number of intracellularly retained mutant GPCRs has provided a platform for taking these compounds into in vivo trials. Thienopyrimidine small molecule allosteric gonadotropin receptor agonists (Org 42599 and Org 41841) have been demonstrated to have pharmacoperone activity. These compounds can rescue cell surface expression and in many cases, hormone responsiveness, of a range of retained mutant gonadotropin receptors. Should gonadotropin receptor selectivity of these compounds be improved, they could offer therapeutic benefit to subsets of patients suffering from reproductive disorders attributed to defective gonadotropin receptor trafficking.
Collapse
Affiliation(s)
- Claire L Newton
- Centre for Neuroendocrinology and Department of Immunology, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa.
| | - Ross C Anderson
- Centre for Neuroendocrinology and Department of Immunology, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa
| |
Collapse
|
40
|
Follicle-Stimulating Hormone Receptor: Advances and Remaining Challenges. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:1-58. [DOI: 10.1016/bs.ircmb.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
A novel homozygous mutation in the FSHR gene is causative for primary ovarian insufficiency. Fertil Steril 2017; 108:1050-1055.e2. [PMID: 29157895 DOI: 10.1016/j.fertnstert.2017.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/21/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To identify the potential FSHR mutation in a Chinese woman with primary ovarian insufficiency (POI). DESIGN Genetic and functional studies. SETTING University-based reproductive medicine center. PATIENT(S) A POI patient, her family members, and another 192 control women with regular menstruation. INTERVENTION(S) Ovarian biopsy was performed in the patient. Sanger sequencing was carried out for the patient, her sister, and parents. The novel variant identified was further confirmed with the use of control subjects. MAIN OUTCOME MEASURE(S) Sanger sequencing and genotype analysis to identify the potential variant of the FSHR gene; hematoxylin and eosin staining of the ovarian section to observe the follicular development; Western blotting and immunofluorescence to detect FSH receptor (FSHR) expression; and cyclic adenosine monophosphate (cAMP) assay to monitor FSH-induced signaling. RESULT(S) Histologic examination of the ovaries in the patient revealed follicular development up to the early antral stage. Mutational screening and genotype analysis of the FSHR gene identified a novel homozygous mutation c.175C>T (p.R59X) in exon 2, which was inherited in the autosomal recessive mode from her heterozygous parents but was absent in her sister and the 192 control women. Functional studies demonstrated that in vitro the nonsense mutation caused the loss of full-length FSHR expression and that p.R59X mutant showed no response to FSH stimulation in the cAMP level. CONCLUSION(S) The mutation p.R59X in FSHR is causative for POI by means of arresting folliculogenesis.
Collapse
|
42
|
Christofolini DM, Cordts EB, Santos-Pinheiro F, Kayaki EA, Dornas MCF, Santos MDC, Bianco B, Barbosa CP. How polymorphic markers contribute to genetic diseases in different populations? The study of inhibin A for premature ovarian insufficiency. EINSTEIN-SAO PAULO 2017; 15:269-272. [PMID: 29091146 PMCID: PMC5823038 DOI: 10.1590/s1679-45082017ao4052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To verify the incidence of the G679A mutation in exon 2 of the gene inhibin alpha (INHA), in women with secondary amenorrhea and diagnosis of premature ovarian insufficiency, and in controls. METHODS A 5mL sample of peripheral blood was collected from all study participants in an EDTA tube and was used for DNA extraction. For the patient group, 5mL of blood were also collected in a tube containing heparin for karyotype, and 5mL were collected in a dry tube for follicle stimulant hormone dosage. All patient and control samples were initially submitted to analysis of the G679A variant in exon 2 of the INHA gene by PCR-RFLP technique. Samples from patients with premature ovarian insufficiency after PCR-RFLP were submitted to Sanger sequencing of the encoding exons 2 and 3. Sequencing was performed on ABI 3500 GeneticAnalyzer equipment and the results were evaluated by SeqA and Variant Reporter software. RESULTS Samples of 70 women with premature ovarian insufficiency and 97 fertile controls were evaluated. The G769A variant was found in only one patient in the Premature Ovarian Insufficiency Group and in no control, and it appears to be rare in Brazilian patients with premature ovarian insufficiency. This polymorphism was previously associated to premature ovarian insufficiency in several populations worldwide. CONCLUSION There is genetic heterogeneity regarding the INHA gene in different populations, and among the causes of premature ovarian insufficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bianca Bianco
- Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | | |
Collapse
|
43
|
First mutation in the FSHR cytoplasmic tail identified in a non-pregnant woman with spontaneous ovarian hyperstimulation syndrome. BMC MEDICAL GENETICS 2017; 18:44. [PMID: 28446136 PMCID: PMC5405471 DOI: 10.1186/s12881-017-0407-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Background Spontaneous ovarian hyperstimulation syndrome (sOHSS) is a rare event occurring mostly during natural pregnancy. Among described etiologies, some activating mutations of FSH receptor (FSHR) have been identified. Case presentation We report hereby the case of a non-pregnant women with three episodes of sOHSS. Hormonal evaluation was normal and no pituitary adenoma was detected. However, genetic analysis identified a novel heterozygous FSHR mutation (c.1901 G > A). This R634H mutation is the first described in the cytoplasmic tail of the receptor. Functional analysis failed to reveal constitutive activity of the mutant but a decreased cAMP production in response to FSH. The weak activity of this mutant is correlated with a markedly reduced cell surface expression. Conclusion Pathophysiology of non gestationnal sOHSS is still ill established. The molecular characterization of this new mutant indicates that it might not be at play. Therefore, further investigations are needed to improve knowledge of the molecular mechanism of this syndrome.
Collapse
|
44
|
Banerjee AA, Achrekar SK, Joseph S, Pathak BR, Mahale SD. Functional characterization of two naturally occurring mutations V 221G and T 449N in the follicle stimulating hormone receptor. Mol Cell Endocrinol 2017; 440:69-79. [PMID: 27889471 DOI: 10.1016/j.mce.2016.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/28/2022]
Abstract
Naturally occurring mutations in follicle stimulating hormone receptor (FSHR) affect the receptor function. Here, we characterized two such previously reported mutations, V221G and T449N, in the extracellular domain and transmembrane helix 3, of FSHR, respectively. Functional studies with the V221G mutant demonstrated an impairment in FSH binding and signaling. Validation of X-ray crystallography data indicating the contribution of FSHR specific residues in the vicinity of V221 to contribute to FSH-FSHR interaction was carried out. In vitro mutational studies showed that these residues are determinants of both FSH binding and FSH induced signaling. Analysis of the T449N mutation revealed that it results in an increase in FSH binding and high cAMP response at lower doses of FSH. A marginal hCG induced and no TSH induced cAMP production was also observed. These findings corroborated with the clinical manifestations of primary amenorrhea (V221G) and spontaneous ovarian hyperstimulation syndrome (T449N) in women harbouring these mutations.
Collapse
Affiliation(s)
- Antara A Banerjee
- Division of Structural Biology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Swati K Achrekar
- ICMR Biomedical Informatics Centre, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Shaini Joseph
- ICMR Biomedical Informatics Centre, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Bhakti R Pathak
- Division of Structural Biology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Smita D Mahale
- Division of Structural Biology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India; ICMR Biomedical Informatics Centre, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.
| |
Collapse
|
45
|
Núñez Miguel R, Sanders J, Furmaniak J, Rees Smith B. Glycosylation pattern analysis of glycoprotein hormones and their receptors. J Mol Endocrinol 2017; 58:25-41. [PMID: 27875255 DOI: 10.1530/jme-16-0169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/13/2016] [Indexed: 11/08/2022]
Abstract
We have studied glycosylation patterns in glycoprotein hormones (GPHs) and glycoprotein hormone receptor (GPHR) extracellular domains (ECD) from different species to identify areas not glycosylated that could be involved in intermolecular or intramolecular interactions. Comparative models of the structure of the TSHR ECD in complex with TSH and in complex with TSHR autoantibodies (M22, stimulating and K1-70, blocking) were obtained based on the crystal structures of the FSH-FSHR ECD, M22-TSHR leucine-rich repeat domain (LRD) and K1-70-TSHR LRD complexes. The glycosylation sites of the GPHRs and GPHs from all species studied were mapped on the model of the human TSH TSHR ECD complex. The areas on the surfaces of GPHs that are known to interact with their receptors are not glycosylated and two areas free from glycosylation, not involved in currently known interactions, have been identified. The concave faces of GPHRs leucine-rich repeats 3-7 are free from glycosylation, consistent with known interactions with the hormones. In addition, four other non-glycosylated areas have been identified, two located on the receptors' convex surfaces, one in the long loop of the hinge regions and one at the C-terminus of the extracellular domains. Experimental evidence suggests that the non-glycosylated areas identified on the hormones and receptors are likely to be involved in forming intramolecular or intermolecular interactions.
Collapse
|
46
|
Núñez Miguel R, Sanders J, Furmaniak J, Smith BR. Structure and activation of the TSH receptor transmembrane domain. AUTOIMMUNITY HIGHLIGHTS 2016; 8:2. [PMID: 27921237 PMCID: PMC5136658 DOI: 10.1007/s13317-016-0090-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/23/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE The thyroid-stimulating hormone receptor (TSHR) is the target autoantigen for TSHR-stimulating autoantibodies in Graves' disease. The TSHR is composed of: a leucine-rich repeat domain (LRD), a hinge region or cleavage domain (CD) and a transmembrane domain (TMD). The binding arrangements between the TSHR LRD and the thyroid-stimulating autoantibody M22 or TSH have become available from the crystal structure of the TSHR LRD-M22 complex and a comparative model of the TSHR LRD in complex with TSH, respectively. However, the mechanism by which the TMD of the TSHR and the other glycoprotein hormone receptors (GPHRs) becomes activated is unknown. METHODS We have generated comparative models of the structures of the inactive (TMD_In) and active (TMD_Ac) conformations of the TSHR, follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) TMDs. The structures of TMD_Ac and TMD_In were obtained using class A GPCR crystal structures for which fully active and inactive conformations were available. RESULTS Most conserved motifs observed in GPCR TMDs are also observed in the amino acid sequences of GPHR TMDs. Furthermore, most GPCR TMD conserved helix distortions are observed in our models of the structures of GPHR TMDs. Analysis of these structures has allowed us to propose a mechanism for activation of GPHR TMDs. CONCLUSIONS Insight into the mechanism of activation of the TSHR by both TSH and TSHR autoantibodies is likely to be useful in the development of new treatments for Graves' disease.
Collapse
Affiliation(s)
| | - Jane Sanders
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, CF14 5DU, UK
| | - Jadwiga Furmaniak
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, CF14 5DU, UK
| | - Bernard Rees Smith
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, CF14 5DU, UK.
| |
Collapse
|
47
|
Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH. Premature Ovarian Insufficiency: New Perspectives on Genetic Cause and Phenotypic Spectrum. Endocr Rev 2016; 37:609-635. [PMID: 27690531 DOI: 10.1210/er.2016-1047] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Premature ovarian insufficiency (POI) is one form of female infertility, defined by loss of ovarian activity before the age of 40 and characterized by amenorrhea (primary or secondary) with raised gonadotropins and low estradiol. POI affects up to one in 100 females, including one in 1000 before the age of 30. Substantial evidence suggests a genetic basis for POI; however, the majority of cases remain unexplained, indicating that genes likely to be associated with this condition are yet to be discovered. This review discusses the current knowledge of the genetic basis of POI. We highlight genes typically known to cause syndromic POI that can be responsible for isolated POI. The role of mouse models in understanding POI pathogenesis is discussed, and a thorough list of candidate POI genes is provided. Identifying a genetic basis for POI has multiple advantages, such as enabling the identification of presymptomatic family members who can be offered counseling and cryopreservation of eggs before depletion, enabling personalized treatment based on the cause of an individual's condition, and providing better understanding of disease mechanisms that ultimately aid the development of improved treatments.
Collapse
Affiliation(s)
- Elena J Tucker
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Sonia R Grover
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Anne Bachelot
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Philippe Touraine
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| | - Andrew H Sinclair
- Murdoch Children's Research Institute (E.J.T., S.R.G., A.H.S.), Royal Children's Hospital, Melbourne, VIC 3052 Australia; Department of Paediatrics (E.J.T., S.R.G., A.H.S.), University of Melbourne, Melbourne, VIC 3010, Australia; Department of Paediatric and Adolescent Gynaecology (S.R.G.), Royal Children's Hospital, Melbourne, VIC 3052, Australia; Assistance Publique Hôpitaux de Paris, (A.B., P.T.), IE3M, Université Pierre et Marie Curie, Paris 6 University, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et des Pathologies Gynécologiques Rares, Pitié-Salpêtrière Hospital, Université Pierre et Marie Curie, 75013 Paris, France; Institut National de la Santé et de la Recherche Médicale (A.B., P.T.), 75654 Paris, France
| |
Collapse
|
48
|
Fouquet B, Santulli P, Noel JC, Misrahi M. Ovarian-like differentiation in eutopic and ectopic endometrioses with aberrant FSH receptor, INSL3 and GATA4/6 expression. BBA CLINICAL 2016; 6:143-152. [PMID: 27882303 PMCID: PMC5118588 DOI: 10.1016/j.bbacli.2016.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 11/23/2022]
Abstract
Endometriosis, the hormone-dependent extrauterine dissemination of endometrial tissue outside the uterus, affects 5–15% of women of reproductive age. Pathogenesis remains poorly understood as well as the estrogen production by endometriotic tissue yielding autocrine growth. Estrogens (E2) are normally produced by the ovaries. We investigated whether aberrant “ovarian-like” differentiation occurred in endometriosis. 69 women, with (n = 38) and without (n = 31) histologically proven endometriosis were recruited. Comparative RT-qPCR was performed on 20 genes in paired eutopic and ectopic lesions, together with immunohistochemistry. Functional studies were performed in primary cultures of epithelial endometriotic cells (EEC). A broaden ovarian-like differentiation was found in half eutopic and all ectopic endometriosis with aberrant expression of transcripts and protein for the transcription factors GATA4 and GATA6 triggering ovarian differentiation, for the FSH receptor (FSHR) and the ovarian hormone INSL3. Like in ovaries the FSHR induced aromatase, the key enzyme in E2 production, and vascular factors in EEC. The LH receptor (LHR) was also aberrantly expressed in a subset of ectopic endometriosis (21%) and induced strongly androgen-synthesizing enzymes and INSL3 in EEC, as in ovaries, as well as endometriotic cell growth. The ERK pathway mediates signaling by both hormones. A positive feedback loop occurred through FSHR and LHR-dependent induction of GATA4/6 in EEC, as in ovaries, enhancing the production of the steroidogenic cascade. This work highlights a novel pathophysiological mechanism with a broadly ovarian pattern of differentiation in half eutopic and all ectopic endometriosis. This study provides new tools that might improve the diagnosis of endometriosis in the future. In endometriosis aberrant E2 production raises questions on ovarian differentiation. FSHR and INSL3 upregulation in eutopic/ectopic, and LHR in ectopic lesions are found. Ovarian GATA4/6 are upregulated in eutopic/ectopic lesions and induced by FSHR and LHR. FSHR and LHR induce steroidogenic enzymes and the ERK pathway in endometriotic cells. New pathophysiological mechanism of endometriosis with tools for diagnosis is shown.
Collapse
Key Words
- CYP11A1, Cytochrome P450 Family 11 Subfamily A Member 1
- CYP17, Cytochrome P450 Family 17 Subfamily A Member 1
- CYP19A1, Cytochrome P450 Family 19 Subfamily A Member 1
- EEC, Epithelial Endometriotic Cells
- EGVEGF, Endocrine Gland-derived vascular endothelial growth factor
- Endometriosis
- FSHR
- FSHR, Follicle Stimulating Hormone Receptor
- GATA4/6
- GATA4/6, GATA binding protein 4/6
- INSL3
- INSL3, Insulin Like 3
- LHR
- LHR, Luteinizing Hormone Receptor
- Ovarian- like differentiation
- PTGER, Prostaglandin E Receptor
- PTGS2, Prostaglandin-Endoperoxide Synthase 2
- RT-qPCR, Reverse Transcription quantitative Polymerase Chain Reaction
- SF1, Steroidogenic Factor-1
- VEGF, Vascular Endothelial Growth Factor
Collapse
Affiliation(s)
- Baptiste Fouquet
- Faculté de Médecine Paris Sud, Univ Paris Sud, Université Paris Saclay, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Pietro Santulli
- Faculté de Médecine Paris Sud, Univ Paris Sud, Université Paris Saclay, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Jean-Christophe Noel
- Erasme University Hospital, Department of Pathology, Université Libre de Bruxelles, Belgium
| | - Micheline Misrahi
- Faculté de Médecine Paris Sud, Univ Paris Sud, Université Paris Saclay, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Corresponding author.
| |
Collapse
|
49
|
Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications. PLoS Comput Biol 2016; 12:e1004805. [PMID: 27028541 PMCID: PMC4814114 DOI: 10.1371/journal.pcbi.1004805] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/11/2016] [Indexed: 11/23/2022] Open
Abstract
The understanding of G-protein coupled receptors (GPCRs) is undergoing a revolution due to increased information about their signaling and the experimental determination of structures for more than 25 receptors. The availability of at least one receptor structure for each of the GPCR classes, well separated in sequence space, enables an integrated superfamily-wide analysis to identify signatures involving the role of conserved residues, conserved contacts, and downstream signaling in the context of receptor structures. In this study, we align the transmembrane (TM) domains of all experimental GPCR structures to maximize the conserved inter-helical contacts. The resulting superfamily-wide GpcR Sequence-Structure (GRoSS) alignment of the TM domains for all human GPCR sequences is sufficient to generate a phylogenetic tree that correctly distinguishes all different GPCR classes, suggesting that the class-level differences in the GPCR superfamily are encoded at least partly in the TM domains. The inter-helical contacts conserved across all GPCR classes describe the evolutionarily conserved GPCR structural fold. The corresponding structural alignment of the inactive and active conformations, available for a few GPCRs, identifies activation hot-spot residues in the TM domains that get rewired upon activation. Many GPCR mutations, known to alter receptor signaling and cause disease, are located at these conserved contact and activation hot-spot residue positions. The GRoSS alignment places the chemosensory receptor subfamilies for bitter taste (TAS2R) and pheromones (Vomeronasal, VN1R) in the rhodopsin family, known to contain the chemosensory olfactory receptor subfamily. The GRoSS alignment also enables the quantification of the structural variability in the TM regions of experimental structures, useful for homology modeling and structure prediction of receptors. Furthermore, this alignment identifies structurally and functionally important residues in all human GPCRs. These residues can be used to make testable hypotheses about the structural basis of receptor function and about the molecular basis of disease-associated single nucleotide polymorphisms. G-protein coupled receptors (GPCRs) are a large superfamily of integral membrane proteins that share a characteristic 7 transmembrane helix fold. They detect various molecules outside of the cell and signal their presence to the inside of the cell. At least half of the 800 human GPCRs are potential drug targets, so understanding their structure and function is critical. Experimental structures are now available for at least one receptor from each GPCR class. The structure of the 7 helix fold is highly conserved even for receptors with very low sequence similarity. We analyze the available experimental structures and compare the common inter-helical contacts. Our analysis leads to a unified sequence-structure alignment of the GPCR superfamily that can then be used as the starting point for structure prediction of all other GPCRs. A key result of our analysis is a list of conserved contact residues and activation “hot-spots” residues that are critical for GPCR folding and function. We propose that mutations and natural variants of amino acids at these locations in the GPCRs can dramatically influence their activation state and alter intracellular signaling. This provides hypotheses for the molecular mechanisms underlying disease causing mutants for any GPCR.
Collapse
|
50
|
Bramble MS, Goldstein EH, Lipson A, Ngun T, Eskin A, Gosschalk JE, Roach L, Vashist N, Barseghyan H, Lee E, Arboleda VA, Vaiman D, Yuksel Z, Fellous M, Vilain E. A novel follicle-stimulating hormone receptor mutation causing primary ovarian failure: a fertility application of whole exome sequencing. Hum Reprod 2016; 31:905-14. [PMID: 26911863 DOI: 10.1093/humrep/dew025] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/28/2016] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Can whole exome sequencing (WES) and in vitro validation studies be used to find the causative genetic etiology in a patient with primary ovarian failure and infertility? SUMMARY ANSWER A novel follicle-stimulating hormone receptor (FSHR) mutation was found by WES and shown, via in vitro flow cytometry studies, to affect membrane trafficking. WHAT IS KNOWN ALREADY WES may diagnose up to 25-35% of patients with suspected disorders of sex development (DSD). FSHR mutations are an extremely rare cause of 46, XX gonadal dysgenesis with primary amenorrhea due to hypergonadotropic ovarian failure. STUDY DESIGN, SIZE, DURATION A WES study was followed by flow cytometry studies of mutant protein function. PARTICIPANTS/MATERIALS, SETTING, METHODS The study subjects were two Turkish sisters with hypergonadotropic primary amenorrhea, their parents and two unaffected sisters. The affected siblings and both parents were sequenced (trio-WES). Transient transfection of HEK 293T cells was performed with a vector containing wild-type FSHR as well as the novel FSHR variant that was discovered by WES. Cellular localization of FSHR protein as well as FSH-stimulated cyclic AMP (cAMP) production was evaluated using flow cytometry. MAIN RESULTS AND THE ROLE OF CHANCE Both affected sisters were homozygous for a previously unreported missense mutation (c.1222G>T, p.Asp408Tyr) in the second transmembrane domain of FSHR. Modeling predicted disrupted secondary structure. Flow cytometry demonstrated an average of 48% reduction in cell-surface signal detection (P < 0.01). The mean fluorescent signal for cAMP (second messenger of FSHR), stimulated by FSH, was reduced by 50% in the mutant-transfected cells (P < 0.01). LIMITATIONS, REASONS FOR CAUTION This is an in vitro validation. All novel purported genetic variants can be clinically reported only as 'variants of uncertain significance' until more patients with a similar phenotype are discovered with the same variant. WIDER IMPLICATIONS OF THE FINDINGS We report the first WES-discovered FSHR mutation, validated by quantitative flow cytometry. WES is a valuable tool for diagnosis of rare genetic diseases, and flow cytometry allows for quantitative characterization of purported variants. WES-assisted diagnosis allows for treatments aimed at the underlying molecular etiology of disease. Future studies should focus on pharmacological and assisted reproductive treatments aimed at the disrupted FSHR, so that patients with FSH resistance can be treated by personalized medicine. STUDY FUNDING/COMPETING INTERESTS E.V. is partially funded by the DSD Translational Research Network (NICHD 1R01HD068138). M.S.B. is funded by the Neuroendocrinology, Sex Differences and Reproduction training grant (NICHD 5T32HD007228). The authors have no competing interests to disclose.
Collapse
Affiliation(s)
- Matthew S Bramble
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Ellen H Goldstein
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of California Los Angeles, 10833 Le Conte Avenue, Room 24-130 CHS, Los Angeles, CA 90095, USA
| | - Allen Lipson
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Tuck Ngun
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Ascia Eskin
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Jason E Gosschalk
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Lara Roach
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Neerja Vashist
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Hayk Barseghyan
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Eric Lee
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Daniel Vaiman
- Department of Development, Reproduction, and Cancer, Institut Cochin, U1016 Inserm, University Sorbonne Paris, CNRS UMR8104, Paris, France
| | - Zafer Yuksel
- Department of Medical Genetics, Women and Children Hospital, Halkkent Mh. Fatih Sultan Mehmet Boulevard No. 23, Mersin 33240, Turkey
| | - Marc Fellous
- Department of Development, Reproduction, and Cancer, Institut Cochin, U1016 Inserm, University Sorbonne Paris, CNRS UMR8104, Paris, France
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, 695 Charles E Young Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|