1
|
Salem MM, Gerges MN, Abd El Salam HA, Noser AA. New thiadiazolopyrimidine-ornamented pyrazolones as prospective anticancer candidates via suppressing VEGFR-2/PI3K/Akt signaling pathway: Synthesis, characterization, in-silico, and in-vitro studies. Int J Biol Macromol 2024; 289:138735. [PMID: 39689791 DOI: 10.1016/j.ijbiomac.2024.138735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
New thiadiazolopyrimidine-ornamented pyrazolones (4a-8b) have been synthesized by a cyclocondensation reaction of 3a, b with different active methylene compounds. The structure of our products was confirmed via different physical and spectroscopic data. We assessed all newly thiadiazolopyrimidine-ornamented pyrazolones' potential to inhibit angiogenesis, metastasis, and cancer growth by utilizing in-silico investigations focused on the VEGFR-2 signaling pathway and elucidate their pharmacokinetic features using ADMET. Based on our results, compound 8b was chosen for in vitro evaluation since it had the highest binding energy of -10.252 kcal/mol using molecular docking. Compound 8b significantly damaged the T47D (IC50 = 33.01 ± 2.2 μM) cells, without any toxic effect on normal cells in comparison to chemotheraputic FDA approved drug cisplatin (Cis) (IC50 = 3.163 ± 1.7 μM). Additionally, compound 8b significantly suppressed the VEGFR-2 receptor protein that triggers the inhibition of PI3K/Akt genes which causes mitochondrial membrane malfunction resulting in Bax overexpression and Bcl-2 downregulation levels. Besides, compound 8b showed a notable decrease in the levels of nitric oxide (NO) production levels and arrested the cell cycle in the G0/G1 stage. These outcomes demonstrated that compound 8b adhered to Lipinski's rules and may serve as a potential candidate for future breast cancer treatments via obstructing the VEGFR-2/PI3K/Akt signaling pathway, which in turn prevents metastasis, angiogenesis, and proliferation.
Collapse
Affiliation(s)
- Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Marian N Gerges
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Hayam A Abd El Salam
- Green Chemistry Department, National Research Centre, Dokki, Giza 12622, Cairo, Egypt
| | - Ahmed A Noser
- Organic Chemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
2
|
Dos Reis RA, Sarkar I, Rodrigues MG, Matson JB, Seabra AB, Kashfi K. NO- and H 2S- releasing nanomaterials: A crosstalk signaling pathway in cancer. Nitric Oxide 2024; 151:17-30. [PMID: 39179197 PMCID: PMC11424202 DOI: 10.1016/j.niox.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
The gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) play important roles not only in maintaining physiological functions, but also in pathological conditions and events. Importantly, these molecules show a complex interplay in cancer biology, demonstrating both tumor-promoting and anti-tumor activities depending on their concentration, flux, and the environmental redox state. Additionally, various cell types respond differently to NO and H2S. These gasotransmitters can be synergistically combined with traditional anticancer treatments such as radiotherapy, immunotherapy, chemotherapy, and phototherapy. Notably, NO, and more recently H2S, have been shown to reverse multidrug resistance. Nanomaterials to deliver NO donors and, to a lesser extent, H2S donors, have emerged as a promising approach for targeted delivery of these gasotransmitters. Nanotechnology has advanced the delivery of anticancer drugs, enhancing efficiency and reducing side effects on non-cancerous cells. This review highlights recent progress in the design of NO and H2S-releasing nanomaterials for anticancer effects. It also explores the interactions between NO and H2S, which are crucial for developing combined therapies and nanomedicines with minimal side effects.
Collapse
Affiliation(s)
- Roberta Albino Dos Reis
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580, SP, Brazil
| | - Ishani Sarkar
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580, SP, Brazil
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
3
|
Ridnour LA, Heinz WF, Cheng RY, Wink AL, Kedei N, Pore M, Imtiaz F, Femino EL, Gonzalez AL, Coutinho LL, Moffat RL, Butcher D, Edmondson EF, Li X, Rangel MC, Kinders RJ, Rittscher J, Lipkowitz S, Wong ST, Anderson SK, McVicar DW, Glynn SA, Billiar TR, Chang JC, Hewitt SM, Ambs S, Lockett SJ, Wink DA. Tumor NOS2 and COX2 Spatial Juxtaposition with CD8+ T Cells Promote Metastatic and Cancer Stem Cell Niches that Lead to Poor Outcome in ER- Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:2766-2782. [PMID: 39356141 PMCID: PMC11497117 DOI: 10.1158/2767-9764.crc-24-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
SIGNIFICANCE This work identifies CD8-NOS2+COX2+ and CD8-NOS2-COX2+ unique cellular neighborhoods that drive the tumor immune spatial architecture of CD8+ T cells predictive of clinical outcome and can be targeted with clinically available NOS inhibitors and NSAIDs.
Collapse
Affiliation(s)
- Lisa A. Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Robert Y.S. Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Adelaide L. Wink
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Noemi Kedei
- Collaborative Protein Technology Resource (CPTR) Nanoscale Protein Analysis, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Milind Pore
- Imaging Mass Cytometry, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Fatima Imtiaz
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Elise L. Femino
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Ana L. Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Leandro L. Coutinho
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil
| | - Rebecca L. Moffat
- Optical Microscopy and Analysis Laboratory, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Donna Butcher
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Elijah F. Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Maria Cristina Rangel
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil
| | - Robert J. Kinders
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Jens Rittscher
- Institute of Biomedical Engineering, Big Data Institute, Ludwig Oxford Branch, University of Oxford, Oxford, United Kingdom
| | - Stanley Lipkowitz
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen T.C. Wong
- Houston Methodist Neal Cancer Center, Weill Cornell Medical College, Houston Methodist Hospital, Houston, Texas
| | - Stephen K. Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Daniel W. McVicar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Sharon A. Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jenny C. Chang
- Houston Methodist Neal Cancer Center, Weill Cornell Medical College, Houston Methodist Hospital, Houston, Texas
| | - Stephen M. Hewitt
- Laboratory of Pathology Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen J. Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - David A. Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
4
|
Consoli V, Sorrenti V, Gulisano M, Spampinato M, Vanella L. Navigating heme pathways: the breach of heme oxygenase and hemin in breast cancer. Mol Cell Biochem 2024:10.1007/s11010-024-05119-5. [PMID: 39287890 DOI: 10.1007/s11010-024-05119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Breast cancer remains a significant global health challenge, with diverse subtypes and complex molecular mechanisms underlying its development and progression. This review comprehensively examines recent advances in breast cancer research, with a focus on classification, molecular pathways, and the role of heme oxygenases (HO), heme metabolism implications, and therapeutic innovations. The classification of breast cancer subtypes based on molecular profiling has significantly improved diagnosis and treatment strategies, allowing for tailored approaches to patient care. Molecular studies have elucidated key signaling pathways and biomarkers implicated in breast cancer pathogenesis, shedding light on potential targets for therapeutic intervention. Notably, emerging evidence suggests a critical role for heme oxygenases, particularly HO-1, in breast cancer progression and therapeutic resistance, highlighting the importance of understanding heme metabolism in cancer biology. Furthermore, this review highlights recent advances in breast cancer therapy, including targeted therapies, immunotherapy, and novel drug delivery systems. Understanding the complex interplay between breast cancer subtypes, molecular pathways, and innovative therapeutic approaches is essential for improving patient outcomes and developing more effective treatment strategies in the fight against breast cancer.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mariarita Spampinato
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
5
|
Al-Wahaibi LH, Abou-Zied HA, Abdelrahman MH, Morcoss MM, Trembleau L, Youssif BGM, Bräse S. Design and synthesis new indole-based aromatase/iNOS inhibitors with apoptotic antiproliferative activity. Front Chem 2024; 12:1432920. [PMID: 39308851 PMCID: PMC11414412 DOI: 10.3389/fchem.2024.1432920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
The present study details the design, synthesis, and bio-evaluation of indoles 3-16 as dual inhibitors of aromatase and inducible nitric oxide synthase (iNOS)with antiproliferative activity. The study evaluates the antiproliferative efficacy of 3-16 against various cancer cell lines, highlighting hybrids 12 and 16 for their exceptional activity with GI50 values of 25 nM and 28 nM, respectively. The inhibitory effects of the most active hybrids 5, 7, 12, and 16, on both aromatase and iNOS were evaluated. Compounds 12 and 16 were investigated for their apoptotic potential activity, and the results showed that the studied compounds enhance apoptosis by activating caspase-3, 8, and Bax and down-regulating the anti-apoptotic Bcl-2. Molecular docking studies are intricately discussed to confirm most active hybrids' 12- and 16-binding interactions with the aromatase active site. Additionally, our novel study discussed the ADME characteristics of derivatives 8-16, highlighting their potential as therapeutic agents with reduced toxicity.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hesham A. Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mostafa H. Abdelrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Martha M. Morcoss
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
6
|
Hu X, Li Y, Cao Y, Shi F, Shang L. The role of nitric oxide synthase/ nitric oxide in infection-related cancers: Beyond antimicrobial activity. Biochim Biophys Acta Rev Cancer 2024; 1879:189156. [PMID: 39032540 DOI: 10.1016/j.bbcan.2024.189156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
As a free radical and endogenous effector molecule, mammalian endogenous nitric oxide (NO) is mainly derived from nitric oxide synthase (NOS) via L-arginine. NO participates in normal physiological reactions and provides immune responses to prevent the invasion of foreign bacteria. However, NO also has complex and contradictory biological effects. Abnormal NO signaling is involved in the progression of many diseases, such as cancer. In the past decades, cancer research has been closely linked with NOS/ NO, and many tumors with poor prognosis are associated with high expression of NOS. In this review, we give a overview of the biological effects of NOS/ NO. Then we focus on the oncogenic role of iNOS/ NO in HPV, HBV, EBV and H. pylori related tumors. In fact, there is growing evidence that iNOS could be used as a potential therapeutic target in cancer therapy. We emphasize that the pro-tumor effect of NOS/ NO is greater than the anti-tumor effect.
Collapse
Affiliation(s)
- Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
7
|
Mitsui A, Iioka H, Ling Y, Okuda S, Kurose A, Schopperle M, Kondo T, Sakaguchi M, Saito K, Kondo E. Pathological and Biological Significance of the Specific Glycan, TRA-1-60, on Aggressive Gastric Adenocarcinoma. J Transl Med 2024; 104:102073. [PMID: 38718982 DOI: 10.1016/j.labinv.2024.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024] Open
Abstract
The glycans form a unique complex on the surface of cancer cells and play a pivotal role in tumor progression, impacting proliferation, invasion, and metastasis. TRA-1-60 is a glycan that was identified as a critical marker for the establishment of fully reprogrammed inducible pluripotent stem cells. Its expression has been detected in multiple cancer tissues, including embryonal carcinoma, prostate cancer, and pancreatic cancer, but the biological and pathological characterization of TRA-1-60-expressing tumor cells remains unclear within various types of malignancies. Here, we report the biological characteristics of TRA-1-60-expressing gastric cancer cells, especially those with its cell surface expression, and the therapeutic significance of targeting TRA-1-60. The cells with cell membrane expression of TRA-1-60 were mainly observed in the invasive area of patient gastric cancer tissues and correlated with advanced stages of the disease based on histopathological and clinicopathological analyses. In vitro analysis using a scirrhous gastric adenocarcinoma line, HSC-58, which highly expresses TRA-1-60 on its plasma membrane, revealed increased stress-resistant mechanisms, supported by the upregulation of glutathione synthetase and NCF-1 (p47phox) via lipid-ROS regulatory pathways, as detected by RNA-seq analysis followed by oxidative stress gene profiling. Our in vivo therapeutic study using the TRA-1-60-targeting antibody-drug conjugate, namely, Bstrongomab-conjugated monomethyl auristatin E, showed robust efficacy in a mouse model of peritoneal carcinomatosis induced by intraperitoneal xenograft of HSC-58, by markedly reducing massive tumor ascites. Thus, targeting the specific cell surface glycan, TRA-1-60, shows a significant therapeutic impact in advanced-stage gastric cancers.
Collapse
Affiliation(s)
- Ayaka Mitsui
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hidekazu Iioka
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yiwei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akira Kurose
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | - Tomoko Kondo
- Department of Molecular Pathology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Saito
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Tumor Pathology, NIR-PIT Research Institute, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
8
|
Chen T. Unveiling the significance of inducible nitric oxide synthase: Its impact on cancer progression and clinical implications. Cancer Lett 2024; 592:216931. [PMID: 38701892 DOI: 10.1016/j.canlet.2024.216931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The intricate role of inducible nitric oxide synthase (iNOS) in cancer pathophysiology has garnered significant attention, highlighting the complex interplay between tumorigenesis, immune response, and cellular metabolism. As an enzyme responsible for producing nitric oxide (NO) in response to inflammatory stimuli. iNOS is implicated in various aspects of cancer development, including DNA damage, angiogenesis, and evasion of apoptosis. This review synthesizes the current findings from both preclinical and clinical studies on iNOS across different cancer types, reflecting the variability depending on cellular context and tumor microenvironment. We explore the molecular mechanisms by which iNOS modulates cancer cell growth, survival, and metastasis, emphasizing its impact on immune surveillance and response to treatment. Additionally, the potential of targeting iNOS as a therapeutic strategy in cancer treatment is examined. By integrating insights from recent advances, this review aims to elucidate the significant role of iNOS in cancer and pave the way for novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Wehbe N, Badran A, Baydoun S, Al-Sawalmih A, Maresca M, Baydoun E, Mesmar JE. The Antioxidant Potential and Anticancer Activity of Halodule uninervis Ethanolic Extract against Triple-Negative Breast Cancer Cells. Antioxidants (Basel) 2024; 13:726. [PMID: 38929164 PMCID: PMC11200955 DOI: 10.3390/antiox13060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Natural remedies have been indispensable to traditional medicine practices for generations, offering therapeutic solutions for various ailments. In modern times, these natural products continue to play a pivotal role in the discovery of new drugs, especially for cancer treatment. The marine ecosystem offers a wide range of plants with potential anticancer activities due to their distinct biochemical diversity and adaptation to extreme situations. The seagrass Halodule uninervis is rich in diverse bioactive metabolites that bestow the plant with various pharmacological properties. However, its anticancer activity against invasive triple-negative breast cancer (TNBC) is still poorly investigated. In the present study, the phytochemical composition of an ethanolic extract of H. uninervis (HUE) was screened, and its antioxidant potential was evaluated. Moreover, the anticancer potential of HUE against MDA-MB-231 cells was investigated along with the possible underlying mechanisms of action. Our results showed that HUE is rich in diverse phytochemicals that are known for their antioxidant and anticancer effects. In MDA-MB-231 cells, HUE targeted the hallmarks of cancer, including cell proliferation, adhesion, migration, invasion, and angiogenesis. The HUE-mediated anti-proliferative and anti-metastatic effects were associated with the downregulation of the proto-oncogenic STAT3 signaling pathway. Taken together, H. uninervis could serve as a valuable source for developing novel drugs targeting TNBC.
Collapse
Affiliation(s)
- Nadine Wehbe
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| | - Adnan Badran
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Serine Baydoun
- Breast Imaging Section, Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Ali Al-Sawalmih
- Marine Science Station, University of Jordan, Aqaba 11942, Jordan;
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSM2, 13013 Marseille, France
| | - Elias Baydoun
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| | - Joelle Edward Mesmar
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (N.W.); (E.B.)
| |
Collapse
|
10
|
Coutinho LL, Femino EL, Gonzalez AL, Moffat RL, Heinz WF, Cheng RYS, Lockett SJ, Rangel MC, Ridnour LA, Wink DA. NOS2 and COX-2 Co-Expression Promotes Cancer Progression: A Potential Target for Developing Agents to Prevent or Treat Highly Aggressive Breast Cancer. Int J Mol Sci 2024; 25:6103. [PMID: 38892290 PMCID: PMC11173351 DOI: 10.3390/ijms25116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Nitric oxide (NO) and reactive nitrogen species (RNS) exert profound biological impacts dictated by their chemistry. Understanding their spatial distribution is essential for deciphering their roles in diverse biological processes. This review establishes a framework for the chemical biology of NO and RNS, exploring their dynamic reactions within the context of cancer. Concentration-dependent signaling reveals distinctive processes in cancer, with three levels of NO influencing oncogenic properties. In this context, NO plays a crucial role in cancer cell proliferation, metastasis, chemotherapy resistance, and immune suppression. Increased NOS2 expression correlates with poor survival across different tumors, including breast cancer. Additionally, NOS2 can crosstalk with the proinflammatory enzyme cyclooxygenase-2 (COX-2) to promote cancer progression. NOS2 and COX-2 co-expression establishes a positive feed-forward loop, driving immunosuppression and metastasis in estrogen receptor-negative (ER-) breast cancer. Spatial evaluation of NOS2 and COX-2 reveals orthogonal expression, suggesting the unique roles of these niches in the tumor microenvironment (TME). NOS2 and COX2 niche formation requires IFN-γ and cytokine-releasing cells. These niches contribute to poor clinical outcomes, emphasizing their role in cancer progression. Strategies to target these markers include direct inhibition, involving pan-inhibitors and selective inhibitors, as well as indirect approaches targeting their induction or downstream effectors. Compounds from cruciferous vegetables are potential candidates for NOS2 and COX-2 inhibition offering therapeutic applications. Thus, understanding the chemical biology of NO and RNS, their spatial distribution, and their implications in cancer progression provides valuable insights for developing targeted therapies and preventive strategies.
Collapse
Affiliation(s)
- Leandro L. Coutinho
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, SP, Brazil;
| | - Elise L. Femino
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Ana L. Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Rebecca L. Moffat
- Optical Microscopy and Analysis Laboratory, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (W.F.H.); (S.J.L.)
| | - Robert Y. S. Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Stephen J. Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (W.F.H.); (S.J.L.)
| | - M. Cristina Rangel
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, SP, Brazil;
| | - Lisa A. Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - David A. Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| |
Collapse
|
11
|
Ridnour LA, Cheng RY, Kedei N, Somasundaram V, Bhattacharyya DD, Basudhar D, Wink AL, Walke AJ, Kim C, Heinz WF, Edmondson EF, Butcher DO, Warner AC, Dorsey TH, Pore M, Kinders RJ, Lipkowitz S, Bryant RJ, Rittscher J, Wong ST, Hewitt SM, Chang JC, Shalaby A, Callagy GM, Glynn SA, Ambs S, Anderson SK, McVicar DW, Lockett SJ, Wink DA. Adjuvant COX inhibition augments STING signaling and cytolytic T cell infiltration in irradiated 4T1 tumors. JCI Insight 2024; 9:e165356. [PMID: 38912586 PMCID: PMC11383366 DOI: 10.1172/jci.insight.165356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Immune therapy is the new frontier of cancer treatment. Therapeutic radiation is a known inducer of immune response and can be limited by immunosuppressive mediators including cyclooxygenase-2 (COX2) that is highly expressed in aggressive triple negative breast cancer (TNBC). A clinical cohort of TNBC tumors revealed poor radiation therapeutic efficacy in tumors expressing high COX2. Herein, we show that radiation combined with adjuvant NSAID (indomethacin) treatment provides a powerful combination to reduce both primary tumor growth and lung metastasis in aggressive 4T1 TNBC tumors, which occurs in part through increased antitumor immune response. Spatial immunological changes including augmented lymphoid infiltration into the tumor epithelium and locally increased cGAS/STING1 and type I IFN gene expression were observed in radiation-indomethacin-treated 4T1 tumors. Thus, radiation and adjuvant NSAID treatment shifts "immune desert phenotypes" toward antitumor M1/TH1 immune mediators in these immunologically challenging tumors. Importantly, radiation-indomethacin combination treatment improved local control of the primary lesion, reduced metastatic burden, and increased median survival when compared with radiation treatment alone. These results show that clinically available NSAIDs can improve radiation therapeutic efficacy through increased antitumor immune response and augmented local generation of cGAS/STING1 and type I IFNs.
Collapse
Affiliation(s)
- Lisa A Ridnour
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| | - Robert Ys Cheng
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource (CPTR) Nanoscale Protein Analysis, OSTR, CCR, NCI, NIH, Bethesda, Maryland, USA
| | | | | | | | - Adelaide L Wink
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - Abigail J Walke
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - Caleb Kim
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - Elijah F Edmondson
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, Maryland, USA
| | - Donna O Butcher
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, Maryland, USA
| | - Andrew C Warner
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, Maryland, USA
| | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Milind Pore
- Imaging Mass Cytometry Frederick National Laboratory for Cancer Research, and
| | - Robert J Kinders
- Office of the Director, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, USA
| | | | - Richard J Bryant
- Department of Urology, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Jens Rittscher
- Institute of Biomedical Engineering, Big Data Institute, Ludwig Oxford Branch, University of Oxford, Oxford, United Kingdom
| | - Stephen Tc Wong
- Houston Methodist Neal Cancer Center, Weill Cornell Medical College, Houston Methodist Hospital, Houston, Texas, USA
| | | | - Jenny C Chang
- Houston Methodist Neal Cancer Center, Weill Cornell Medical College, Houston Methodist Hospital, Houston, Texas, USA
| | - Aliaa Shalaby
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Grace M Callagy
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Stephen K Anderson
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Daniel W McVicar
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, and
| | - David A Wink
- Cancer Innovation Laboratory, CCR, NCI, NIH, Frederick, Maryland, USA
| |
Collapse
|
12
|
Zou J, Mai C, Lin Z, Zhou J, Lai G. Targeting metabolism of breast cancer and its implications in T cell immunotherapy. Front Immunol 2024; 15:1381970. [PMID: 38680483 PMCID: PMC11045902 DOI: 10.3389/fimmu.2024.1381970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Breast cancer is a prominent health issue amongst women around the world. Immunotherapies including tumor targeted antibodies, adoptive T cell therapy, vaccines, and immune checkpoint blockers have rejuvenated the clinical management of breast cancer, but the prognosis of patients remains dismal. Metabolic reprogramming and immune escape are two important mechanisms supporting the progression of breast cancer. The deprivation uptake of nutrients (such as glucose, amino acid, and lipid) by breast cancer cells has a significant impact on tumor growth and microenvironment remodeling. In recent years, in-depth researches on the mechanism of metabolic reprogramming and immune escape have been extensively conducted, and targeting metabolic reprogramming has been proposed as a new therapeutic strategy for breast cancer. This article reviews the abnormal metabolism of breast cancer cells and its impact on the anti-tumor activity of T cells, and further explores the possibility of targeting metabolism as a therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Jialuo Zou
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Cunjun Mai
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhiqin Lin
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jian Zhou
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Guie Lai
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
13
|
Thomas D, Palczewski M, Kuschman H, Hoffman B, Yang H, Glynn S, Wilson D, Kool E, Montfort W, Chang J, Petenkaya A, Chronis C, Cundari T, Sappa S, Islam K, McVicar D, Fan Y, Chen Q, Meerzaman D, Sierk M. Nitric oxide inhibits ten-eleven translocation DNA demethylases to regulate 5mC and 5hmC across the genome. RESEARCH SQUARE 2024:rs.3.rs-4131804. [PMID: 38645113 PMCID: PMC11030528 DOI: 10.21203/rs.3.rs-4131804/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
DNA methylation at cytosine bases of eukaryotic DNA (5-methylcytosine, 5mC) is a heritable epigenetic mark that can regulate gene expression in health and disease. Enzymes that metabolize 5mC have been well-characterized, yet the discovery of endogenously produced signaling molecules that regulate DNA methyl-modifying machinery have not been described. Herein, we report that the free radical signaling molecule nitric oxide (NO) can directly inhibit the Fe(II)/2-OG-dependent DNA demethylases ten-eleven translocation (TET) and human AlkB homolog 2 (ALKBH2). Physiologic NO concentrations reversibly inhibited TET and ALKBH2 demethylase activity by binding to the mononuclear non-heme iron atom which formed a dinitrosyliron complex (DNIC) preventing cosubstrates (2-OG and O2) from binding. In cancer cells treated with exogenous NO, or cells endogenously synthesizing NO, there was a global increase in 5mC and 5-hydroxymethylcytosine (5hmC) in DNA, the substrates for TET, that could not be attributed to increased DNA methyltransferase activity. 5mC was also elevated in NO-producing cell-line-derived mouse xenograft and patient-derived xenograft tumors. Genome-wide DNA methylome analysis of cells chronically treated with NO (10 days) demonstrated enrichment of 5mC and 5hmC at gene-regulatory loci which correlated to changes in the expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a novel epigenetic role for NO.
Collapse
Affiliation(s)
| | - Marianne Palczewski
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences
| | - Hannah Kuschman
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences
| | | | - Hao Yang
- Weinberg College of Arts and Sciences, Northwestern University, Department of Chemistry
| | - Sharon Glynn
- University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, D. of Pathology
| | | | - Eric Kool
- Stanford University, Department of Chemistry, School of Humanities and Sciences
| | | | - Jenny Chang
- Houston Methodist, Department of Medicine and Oncology, Weill Cornell Medical College
| | - Aydolun Petenkaya
- University of Illinois Chicago, College of Medicine, Biochemistry and Molecular Genetics
| | - Constantinos Chronis
- University of Illinois Chicago, College of Medicine, Biochemistry and Molecular Genetics
| | | | - Sushma Sappa
- University of Pittsburgh, Department of Chemistry
| | | | - Daniel McVicar
- National Institutes of Health, National Cancer Institute, Center for Cancer Research
| | - Yu Fan
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Qingrong Chen
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Daoud Meerzaman
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Michael Sierk
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| |
Collapse
|
14
|
O’Neill CE, Sun K, Sundararaman S, Chang JC, Glynn SA. The impact of nitric oxide on HER family post-translational modification and downstream signaling in cancer. Front Physiol 2024; 15:1358850. [PMID: 38601214 PMCID: PMC11004480 DOI: 10.3389/fphys.2024.1358850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024] Open
Abstract
The human epidermal growth factor receptor (HER) family consists of four members, activated by two families of ligands. They are known for mediating cell-cell interactions in organogenesis, and their deregulation has been associated with various cancers, including breast and esophageal cancers. In particular, aberrant epidermal growth factor receptor (EGFR) and HER2 signaling drive disease progression and result in poorer patient outcomes. Nitric oxide (NO) has been proposed as an alternative activator of the HER family and may play a role in this aberrant activation due to its ability to induce s-nitrosation and phosphorylation of the EGFR. This review discusses the potential impact of NO on HER family activation and downstream signaling, along with its role in the efficacy of therapeutics targeting the family.
Collapse
Affiliation(s)
- Ciara E. O’Neill
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| | - Kai Sun
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | | | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Sharon A. Glynn
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
15
|
Festari MF, Jara E, Costa M, Iriarte A, Freire T. Truncated O-glycosylation in metastatic triple-negative breast cancer reveals a gene expression signature associated with extracellular matrix and proteolysis. Sci Rep 2024; 14:1809. [PMID: 38245559 PMCID: PMC10799929 DOI: 10.1038/s41598-024-52204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024] Open
Abstract
Breast cancer (BC) is the leading cause of death by cancer in women worldwide. Triple-negative (TN) BC constitutes aggressive and highly metastatic tumors associated with shorter overall survival of patients compared to other BC subtypes. The Tn antigen, a glycoconjugated structure resulting from an incomplete O-glycosylation process, is highly expressed in different adenocarcinomas, including BC. It also favors cancer growth, immunoregulation, and metastasis in TNBC. This work describes the differentially expressed genes (DEGs) associated with BC aggressiveness and metastasis in an incomplete O-glycosylated TNBC cell model. We studied the transcriptome of a TNBC model constituted by the metastatic murine 4T1 cell line that overexpresses the Tn antigen due to a mutation in one of the steps of the O-glycosylation pathway. We analyzed and compared the results with the parental wild-type cell line and with a Tn-negative cell clone that was poorly metastatic and less aggressive than the 4T1 parental cell line. To gain insight into the generated expression data, we performed a gene set analysis. Biological processes associated with cancer development and metastasis, immune evasion, and leukocyte recruitment were highly enriched among functional terms of DEGs. Furthermore, different highly O-glycosylated protein-coding genes, such as mmp9, ecm1 and ankyrin-2, were upregulated in 4T1/Tn+ tumor cells. The altered biological processes and DEGs that promote tumor growth, invasion and immunomodulation might explain the aggressive properties of 4T1/Tn+ tumor cells. These results support the hypothesis that incomplete O-glycosylation that leads to the expression of the Tn antigen, which might regulate activity or interaction of different molecules, promotes cancer development and immunoregulation.
Collapse
Affiliation(s)
- María Florencia Festari
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Eugenio Jara
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Monique Costa
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Dr. Alfredo Navarro 3051, 11600, Montevideo, Uruguay.
| | - Teresa Freire
- Laboratorio de Inmunomodulación y Vacunas, Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800, Montevideo, Uruguay.
| |
Collapse
|
16
|
Ohara Y, Tang W, Liu H, Yang S, Dorsey TH, Cawley H, Moreno P, Chari R, Guest MR, Azizian A, Gaedcke J, Ghadimi M, Hanna N, Ambs S, Hussain SP. SERPINB3-MYC axis induces the basal-like/squamous subtype and enhances disease progression in pancreatic cancer. Cell Rep 2023; 42:113434. [PMID: 37980563 PMCID: PMC10842852 DOI: 10.1016/j.celrep.2023.113434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) exhibits distinct molecular subtypes: classical/progenitor and basal-like/squamous. Our study aimed to identify genes contributing to the development of the basal-like/squamous subtype, known for its aggressiveness. Transcriptome analyses revealed consistent upregulation of SERPINB3 in basal-like/squamous PDAC, correlating with reduced patient survival. SERPINB3 transgene expression in PDAC cells enhanced in vitro invasion and promoted lung metastasis in a mouse PDAC xenograft model. Metabolome analyses unveiled a metabolic signature linked to both SERPINB3 and the basal-like/squamous subtype, characterized by heightened carnitine/acylcarnitine and amino acid metabolism, associated with poor prognosis in patients with PDAC and elevated cellular invasiveness. Further analysis uncovered that SERPINB3 inhibited the cysteine protease calpain, a key enzyme in the MYC degradation pathway, and drove basal-like/squamous subtype and associated metabolic reprogramming through MYC activation. Our findings indicate that the SERPINB3-MYC axis induces the basal-like/squamous subtype, proposing SERPINB3 as a potential diagnostic and therapeutic target for this variant.
Collapse
Affiliation(s)
- Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Data Science & Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shouhui Yang
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helen Cawley
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paloma Moreno
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21701, USA
| | - Mary R Guest
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21701, USA
| | - Azadeh Azizian
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
| | - Jochen Gaedcke
- Städtisches Klinikum Karlsruhe, Moltkestraße 90, 76133 Karlsruhe, Germany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Nader Hanna
- Division of General & Oncologic Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Ridnour LA, Heinz WF, Cheng RY, Wink AL, Kedei N, Pore M, Imtiaz F, Femino EL, Gonzalez AL, Coutinho L, Butcher D, Edmondson EF, Rangel MC, Kinders RJ, Lipkowitz S, Wong ST, Anderson SK, McVicar DW, Li X, Glynn SA, Billiar TR, Chang JC, Hewitt SM, Ambs S, Lockett SJ, Wink DA. NOS2 and COX2 Provide Key Spatial Targets that Determine Outcome in ER- Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572859. [PMID: 38187532 PMCID: PMC10769386 DOI: 10.1101/2023.12.21.572859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Estrogen receptor-negative (ER-) breast cancer is an aggressive breast cancer subtype with limited therapeutic options. Upregulated expression of both inducible nitric oxide synthase (NOS2) and cyclo-oxygenase (COX2) in breast tumors predicts poor clinical outcomes. Signaling molecules released by these enzymes activate oncogenic pathways, driving cancer stemness, metastasis, and immune suppression. The influence of tumor NOS2/COX2 expression on the landscape of immune markers using multiplex fluorescence imaging of 21 ER- breast tumors were stratified for survival. A powerful relationship between tumor NOS2/COX2 expression and distinct CD8+ T cell phenotypes was observed at 5 years post-diagnosis. These results were confirmed in a validation cohort using gene expression data showing that ratios of NOS2 to CD8 and COX2 to CD8 are strongly associated with poor outcomes in high NOS2/COX2-expressing tumors. Importantly, multiplex imaging identified distinct CD8+ T cell phenotypes relative to tumor NOS2/COX2 expression in Deceased vs Alive patient tumors at 5-year survival. CD8+NOS2-COX2- phenotypes defined fully inflamed tumors with significantly elevated CD8+ T cell infiltration in Alive tumors expressing low NOS2/COX2. In contrast, two distinct phenotypes including inflamed CD8+NOS2+COX2+ regions with stroma-restricted CD8+ T cells and CD8-NOS2-COX2+ immune desert regions with abated CD8+ T cell penetration, were significantly elevated in Deceased tumors with high NOS2/COX2 expression. These results were supported by applying an unsupervised nonlinear dimensionality-reduction technique, UMAP, correlating specific spatial CD8/NOS2/COX2 expression patterns with patient survival. Moreover, spatial analysis of the CD44v6 and EpCAM cancer stem cell (CSC) markers within the CD8/NOS2/COX2 expression landscape revealed positive correlations between EpCAM and inflamed stroma-restricted CD8+NOS2+COX2+ phenotypes at the tumor/stroma interface in deceased patients. Also, positive correlations between CD44v6 and COX2 were identified in immune desert regions in deceased patients. Furthermore, migrating tumor cells were shown to occur only in the CD8-NOS2+COX2+ regions, identifying a metastatic hot spot. Taken together, this study shows the strength of spatial localization analyses of the CD8/NOS2/COX2 landscape, how it shapes the tumor immune microenvironment and the selection of aggressive tumor phenotypes in distinct regions that lead to poor clinical outcomes. This technique could be beneficial for describing tumor niches with increased aggressiveness that may respond to clinically available NOS2/COX2 inhibitors or immune-modulatory agents.
Collapse
Affiliation(s)
- Lisa A Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
| | - Robert Ys Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Adelaide L Wink
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
| | - Noemi Kedei
- Collaborative Protein Technology Resource (CPTR) Nanoscale Protein Analysis, OSTR, CCR, NCI, NIH
| | - Milind Pore
- Imaging Mass Cytometry Frederick National Laboratory for Cancer Research
| | - Fatima Imtiaz
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Elise L Femino
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Ana L Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Leandro Coutinho
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Donna Butcher
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute
| | - Elijah F Edmondson
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute
| | - M Cristina Rangel
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Robert J Kinders
- Office of the Director, Division of Cancer Treatment and Diagnosis, NCI, Frederick, MD
| | | | | | - Stephen K Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Danial W McVicar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jenny C Chang
- Mary and Ron Neal Cancer Center, Houston Methodist Hospital and Weill Cornell Medicine, Houston, TX
| | | | - Stefan Ambs
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
| | - David A Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| |
Collapse
|
18
|
Ridnour LA, Cheng RYS, Heinz WF, Pore M, Gonzalez AL, Femino EL, Moffat R, Wink AL, Imtiaz F, Coutinho L, Butcher D, Edmondson EF, Rangel MC, Wong STC, Lipkowitz S, Glynn S, Vitek MP, McVicar DW, Li X, Anderson SK, Paolocci N, Hewitt SM, Ambs S, Billiar TR, Chang JC, Lockett SJ, Wink DA. Spatial analysis of NOS2 and COX2 interaction with T-effector cells reveals immunosuppressive landscapes associated with poor outcome in ER- breast cancer patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572867. [PMID: 38187660 PMCID: PMC10769421 DOI: 10.1101/2023.12.21.572867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Multiple immunosuppressive mechanisms exist in the tumor microenvironment that drive poor outcomes and decrease treatment efficacy. The co-expression of NOS2 and COX2 is a strong predictor of poor prognosis in ER- breast cancer and other malignancies. Together, they generate pro-oncogenic signals that drive metastasis, drug resistance, cancer stemness, and immune suppression. Using an ER- breast cancer patient cohort, we found that the spatial expression patterns of NOS2 and COX2 with CD3+CD8+PD1- T effector (Teff) cells formed a tumor immune landscape that correlated with poor outcome. NOS2 was primarily associated with the tumor-immune interface, whereas COX2 was associated with immune desert regions of the tumor lacking Teff cells. A higher ratio of NOS2 or COX2 to Teff was highly correlated with poor outcomes. Spatial analysis revealed that regional clustering of NOS2 and COX2 was associated with stromal-restricted Teff, while only COX2 was predominant in immune deserts. Examination of other immunosuppressive elements, such as PDL1/PD1, Treg, B7H4, and IDO1, revealed that PDL1/PD1, Treg, and IDO1 were primarily associated with restricted Teff, whereas B7H4 and COX2 were found in tumor immune deserts. Regardless of the survival outcome, other leukocytes, such as CD4 T cells and macrophages, were primarily in stromal lymphoid aggregates. Finally, in a 4T1 model, COX2 inhibition led to a massive cell infiltration, thus validating the hypothesis that COX2 is an essential component of the Teff exclusion process and, thus, tumor evasion. Our study indicates that NOS2/COX2 expression plays a central role in tumor immunosuppression. Our findings indicate that new strategies combining clinically available NOS2/COX2 inhibitors with various forms of immune therapy may open a new avenue for the treatment of aggressive ER-breast cancers.
Collapse
Affiliation(s)
- Lisa A Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Robert Y S Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
| | - Milind Pore
- Imaging Mass Cytometry Frederick National Laboratory for Cancer Research
| | - Ana L Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Elise L Femino
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Rebecca Moffat
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
| | - Adelaide L Wink
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
| | - Fatima Imtiaz
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
| | - Leandro Coutinho
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Donna Butcher
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute
| | - Elijah F Edmondson
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute
| | - M Cristina Rangel
- Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Sharon Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | | | - Daniel W McVicar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Stephen K Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Basic Science Program, Frederick National Laboratory for Cancer Research
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University, and Department of Biomedical Sciences, University of Padova, Italy
- Laboratory of Pathology CCR, NCI, NIH
| | | | - Stefan Ambs
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Timothy R Billiar
- Mary and Ron Neal Cancer Center, Houston Methodist Hospital and Weill Cornell Medicine, Houston, TX
| | - Jenny C Chang
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
- Imaging Mass Cytometry Frederick National Laboratory for Cancer Research
- Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute
- Houston Methodist Weill Cornell Medical College, Houston TX
- Women's Malignancies Branch, CCR, NCI, NIH
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
- (Mike Duke)
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
- Basic Science Program, Frederick National Laboratory for Cancer Research
- Division of Cardiology, Department of Medicine, Johns Hopkins University, and Department of Biomedical Sciences, University of Padova, Italy
- Laboratory of Pathology CCR, NCI, NIH
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
- Mary and Ron Neal Cancer Center, Houston Methodist Hospital and Weill Cornell Medicine, Houston, TX
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
| | - David A Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| |
Collapse
|
19
|
Switzer CH. Non-canonical nitric oxide signalling and DNA methylation: Inflammation induced epigenetic alterations and potential drug targets. Br J Pharmacol 2023. [PMID: 38116806 DOI: 10.1111/bph.16302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 12/21/2023] Open
Abstract
DNA methylation controls DNA accessibility to transcription factors and other regulatory proteins, thereby affecting gene expression and hence cellular identity and function. As epigenetic modifications control the transcriptome, epigenetic dysfunction is strongly associated with pathological conditions and ageing. The development of pharmacological agents that modulate the activity of major epigenetic proteins are in pre-clinical development and clinical use. However, recent publications have identified novel redox-based signalling pathways, and therefore novel drug targets, that may exert epigenetic effects. This review will discuss the recent developments in nitric oxide (NO) signalling on DNA methylation as well as potential epigenetic drug targets that have emerged from the intersection of inflammation/redox biology and epigenetic regulation.
Collapse
Affiliation(s)
- Christopher H Switzer
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
20
|
Kuschman HP, Palczewski MB, Hoffman B, Menhart M, Wang X, Glynn S, Islam ABMMK, Benevolenskaya EV, Thomas DD. Nitric oxide inhibits FTO demethylase activity to regulate N 6-methyladenosine mRNA methylation. Redox Biol 2023; 67:102928. [PMID: 37866163 PMCID: PMC10623363 DOI: 10.1016/j.redox.2023.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification on eukaryotic mRNAs. Demethylation of m6A on mRNA is catalyzed by the enzyme fat mass and obesity-associated protein (FTO), a member of the nonheme Fe(II) and 2-oxoglutarate (2-OG)-dependent family of dioxygenases. FTO activity and m6A-mRNA are dysregulated in multiple diseases including cancers, yet endogenous signaling molecules that modulate FTO activity have not been identified. Here we show that nitric oxide (NO) is a potent inhibitor of FTO demethylase activity by directly binding to the catalytic iron center, which causes global m6A hypermethylation of mRNA in cells and results in gene-specific enrichment of m6A on mRNA of NO-regulated transcripts. Both cell culture and tumor xenograft models demonstrated that endogenous NO synthesis can regulate m6A-mRNA levels and transcriptional changes of m6A-associated genes. These results build a direct link between NO and m6A-mRNA regulation and reveal a novel signaling mechanism of NO as an endogenous regulator of the epitranscriptome.
Collapse
Affiliation(s)
| | - Marianne B Palczewski
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Brian Hoffman
- Weinberg College of Arts and Sciences, Northwestern University, Department of Chemistry, USA
| | - Mary Menhart
- College of Medicine, Departments of Pharmacology and Bioengineering, USA
| | - Xiaowei Wang
- College of Medicine, Departments of Pharmacology and Bioengineering, USA
| | - Sharon Glynn
- University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, D. of Pathology, USA
| | | | | | - Douglas D Thomas
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences, USA.
| |
Collapse
|
21
|
Alsharabasy AM, Aljaabary A, Bohara R, Farràs P, Glynn SA, Pandit A. Nitric Oxide-Scavenging, Anti-Migration Effects, and Glycosylation Changes after Hemin Treatment of Human Triple-Negative Breast Cancer Cells: A Mechanistic Study. ACS Pharmacol Transl Sci 2023; 6:1416-1432. [PMID: 37854626 PMCID: PMC10580390 DOI: 10.1021/acsptsci.3c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 10/20/2023]
Abstract
The enhanced expression of nitric oxide (•NO) synthase predicts triple-negative breast cancer outcome and its resistance to different therapeutics. Our earlier work demonstrated the efficiency of hemin to scavenge the intra- and extracellular •NO, proposing its potency as a therapeutic agent for inhibiting cancer cell migration. In continuation, the present work evaluates the effects of •NO on the migration of MDA-MB-231 cells and how hemin modulates the accompanied cellular behavior, focusing on the corresponding expression of cellular glycoproteins, migration-associated markers, and mitochondrial functions. We demonstrated for the first time that while •NO induced cell migration, hemin contradicted that by •NO-scavenging. This was in combination with modulation of the •NO-enhanced glycosylation patterns of cellular proteins with inhibition of the expression of specific proteins involved in the epithelial-mesenchymal transition. These effects were in conjunction with changes in the mitochondrial functions related to both •NO, hemin, and its nitrosylated product. Together, these results suggest that hemin can be employed as a potential anti-migrating agent targeting •NO-scavenging and regulating the expression of migration-associated proteins.
Collapse
Affiliation(s)
- Amir M. Alsharabasy
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Amal Aljaabary
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Raghvendra Bohara
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Pau Farràs
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- School
of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway H91 TK33, Ireland
| | - Sharon A. Glynn
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- Discipline
of Pathology, Lambe Institute for Translational Research, School of
Medicine, University of Galway, Galway H91 YR71, Ireland
| | - Abhay Pandit
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
22
|
Li H, Feng X, Hu Y, Wang J, Huang C, Yao X. Development of a prognostic model based on ferroptosis-related genes for colorectal cancer patients and exploration of the biological functions of NOS2 in vivo and in vitro. Front Oncol 2023; 13:1133946. [PMID: 37346068 PMCID: PMC10280989 DOI: 10.3389/fonc.2023.1133946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Background Ferroptosis is involved in many malignant tumors and has been implicated in important mechanisms of colorectal cancer (CRC) suppression. However, the prognostic and predictive values of the ferroptosis activation pattern in CRC patients have not been noted. Here, we aimed to construct and validate a prediction model based on ferroptosis-related genes (FRGs) for CRC patients and investigated the expression pattern and biological function of the most significantly altered gene. Methods A total of 112 FRGs were obtained from the FerrDb website, and the clinical characteristics of 545 CRC patients and their global gene expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. Survival-related FRGs were identified by Cox proportional hazards regression analysis. Finally, the expression pattern and biological function of NOS2, the most implicated gene was explored in vitro and in vivo. Results The prediction model was established based on 8 FRGs. Patients in the high- or low-risk group were stratified based on the median risk value calculated by our model, and patients in the high-risk group experienced poor overall survival (p<0.01). Further validation demonstrated that the FRG model acted as an independent prognostic indicator for CRC patients (HR=1.428, 95% CI, 1.341-1.627; p<0.001). The area under the receiver operating characteristic (ROC) curve (AUC) for 5-year survival was 0.741. NOS2 was one of the most significantly affected FRGs and was highly expressed in malignant tissue, but it inhibited tumor growth and induced tumor cell death in vitro and in vivo, possibly by repressing the NF-κB pathway. Conclusion Our study revealed that FRGs have potential prognostic value in CRC patients and that NOS2 suppresses tumor progression, providing a novel therapeutic target for CRC treatment based on ferroptosis.
Collapse
Affiliation(s)
- Hongming Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Colorectal Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaochuang Feng
- Department of Colorectal Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yong Hu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junjiang Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chengzhi Huang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xueqing Yao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Elahirad E, Gharagozlou MJ, Khosravi A, Sasani F. TLRs expression in canine mammary gland neoplasms: a pathological and molecular study. Vet Immunol Immunopathol 2023; 261:110611. [PMID: 37245345 DOI: 10.1016/j.vetimm.2023.110611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/30/2023]
Abstract
TLRs are a class of PRRs that play a vital role in innate immunity. TLRs are expressed on immune cells and mammary epithelial cells. They can promote tumor growth, angiogenesis, invasion, and viability signaling. The current study aimed to test the correlation between histologic types and grades of neoplasms and TLRs gene expression levels. Twenty-one tissue samples of canine mammary neoplasms were stained with H&E. Then, it evaluated histologic type and grade according to the methods of Goldschmidt et al. and Peña, respectively. We established real-time PCR quantification assays to measure the mRNA abundances of TLRs in normal and neoplastic mammary glands. Profile pattern of TLR 1, 2, 3, 4, 5, 6, and 9 genes expression in canine mammary glands performed in 21 samples of mammary gland neoplasms and three non-neoplastic mammary gland samples from normal dogs. TLR 3, 4, and 9 mRNA overexpression were detected. In addition, tubulopapillary carcinoma grade II, SCC grade III, and carcinoma mixed type grade II demonstrated the highest relative TLR-3, and 9 mRNA expression levels. Complex carcinoma grade I, ductal carcinoma grade II, and anaplastic carcinoma grade II showed the highest relative TLR4 mRNA expression level. Although histopathological characteristics of tumors, including histologic type, grade, and inflammation, influenced TLRs mRNA expression level, such correlation was insignificant (P > 0.05).
Collapse
Affiliation(s)
- Elnaz Elahirad
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | | | - Alireza Khosravi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farhang Sasani
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
24
|
Reddy TP, Glynn SA, Billiar TR, Wink DA, Chang JC. Targeting Nitric Oxide: Say NO to Metastasis. Clin Cancer Res 2023; 29:1855-1868. [PMID: 36520504 PMCID: PMC10183809 DOI: 10.1158/1078-0432.ccr-22-2791] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Utilizing targeted therapies capable of reducing cancer metastasis, targeting chemoresistant and self-renewing cancer stem cells, and augmenting the efficacy of systemic chemo/radiotherapies is vital to minimize cancer-associated mortality. Targeting nitric oxide synthase (NOS), a protein within the tumor microenvironment, has gained interest as a promising therapeutic strategy to reduce metastatic capacity and augment the efficacy of chemo/radiotherapies in various solid malignancies. Our review highlights the influence of nitric oxide (NO) in tumor progression and cancer metastasis, as well as promising preclinical studies that evaluated NOS inhibitors as anticancer therapies. Lastly, we highlight the prospects and outstanding challenges of using NOS inhibitors in the clinical setting.
Collapse
Affiliation(s)
- Tejaswini P. Reddy
- Texas A&M University Health Science Center, Bryan, Texas
- Houston Methodist Research Institute, Houston, Texas
- Houston Methodist Neal Cancer Center, Houston, Texas
| | - Sharon A. Glynn
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David A. Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland
| | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, Texas
- Houston Methodist Neal Cancer Center, Houston, Texas
| |
Collapse
|
25
|
Cheng RYS, Ridnour LA, Wink AL, Gonzalez AL, Femino EL, Rittscher H, Somasundaram V, Heinz WF, Coutinho L, Rangel MC, Edmondson EF, Butcher D, Kinders RJ, Li X, Wong STC, McVicar DW, Anderson SK, Pore M, Hewitt SM, Billiar TR, Glynn SA, Chang JC, Lockett SJ, Ambs S, Wink DA. Interferon-gamma is quintessential for NOS2 and COX2 expression in ER - breast tumors that lead to poor outcome. Cell Death Dis 2023; 14:319. [PMID: 37169743 PMCID: PMC10175544 DOI: 10.1038/s41419-023-05834-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER breast cancer has been established. However, the mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single-cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1β or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγ presents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8+ T cells were spatially analyzed in aggressive ER-, TNBC, and HER2 + breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8+ T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8+ T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis, suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ + IL1β/TNFα increased the elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight into distinct neighborhoods where stroma-restricted CD8+ T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.
Collapse
Affiliation(s)
- Robert Y S Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Lisa A Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Adelaide L Wink
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD, USA
| | - Ana L Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Elise L Femino
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Helene Rittscher
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Veena Somasundaram
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD, USA
| | - Leandro Coutinho
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo; and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - M Cristina Rangel
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo; and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Elijah F Edmondson
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for NCI, Frederick, MD, USA
| | - Donna Butcher
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for NCI, Frederick, MD, USA
| | - Robert J Kinders
- Office of the Director, Division of Cancer Treatment and Diagnosis, NCI, Frederick, MD, USA
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Stephen T C Wong
- Systems Medicine and Bioengineering Department, Houston Methodist Neal Cancer Center, Houston Methodist Hospital and Weill Cornell Medicine, Houston, TX, USA
| | - Daniel W McVicar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Stephen K Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Milind Pore
- Imaging Mass Cytometry Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | - Jenny C Chang
- Mary and Ron Neal Cancer Center, Houston Methodist Hospital and Weill Cornell Medicine, Houston, TX, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD, USA
| | - David A Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
26
|
Cheng RY, Ridnour LA, Wink AL, Gonzalez AL, Femino EL, Rittscher H, Somasundarum V, Heinz WF, Coutinho L, Cristina Rangel M, Edmondson EF, Butcher D, Kinders RJ, Li X, Wong STC, McVicar DW, Anderson SK, Pore M, Hewitt SM, Billiar TR, Glynn S, Chang JC, Lockett SJ, Ambs S, Wink DA. Interferon-gamma is Quintessential for NOS2 and COX2 Expression in ER - Breast Tumors that Lead to Poor Outcome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535916. [PMID: 37066331 PMCID: PMC10104135 DOI: 10.1101/2023.04.06.535916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER-breast cancer has been established. However, mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1β or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγpresents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8 + T cells were spatially analyzed in aggressive ER-, TNBC, and HER2+ breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8 + T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8 + T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ+IL1β/TNFα increased elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight of distinct neighborhoods where stroma-restricted CD8 + T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.
Collapse
|
27
|
Predarska I, Saoud M, Morgan I, Lönnecke P, Kaluđerović GN, Hey-Hawkins E. Triphenyltin(IV) Carboxylates with Exceptionally High Cytotoxicity against Different Breast Cancer Cell Lines. Biomolecules 2023; 13:biom13040595. [PMID: 37189343 DOI: 10.3390/biom13040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Organotin(IV) carboxylates are a class of compounds explored as alternatives to platinum-containing chemotherapeutics due to propitious in vitro and in vivo results, and distinct mechanisms of action. In this study, triphenyltin(IV) derivatives of non-steroidal anti-inflammatory drugs (indomethacin (HIND) and flurbiprofen (HFBP)) are synthesized and characterized, namely [Ph3Sn(IND)] and [Ph3Sn(FBP)]. The crystal structure of [Ph3Sn(IND)] reveals penta-coordination of the central tin atom with almost perfect trigonal bipyramidal geometry with phenyl groups in the equatorial positions and two axially located oxygen atoms belonging to two distinct carboxylato (IND) ligands leading to formation of a coordination polymer with bridging carboxylato ligands. Employing MTT and CV probes, the antiproliferative effects of both organotin(IV) complexes, indomethacin, and flurbiprofen were evaluated on different breast carcinoma cells (BT-474, MDA-MB-468, MCF-7 and HCC1937). [Ph3Sn(IND)] and [Ph3Sn(FBP)], unlike the inactive ligand precursors, were found extremely active towards all examined cell lines, demonstrating IC50 concentrations in the range of 0.076–0.200 µM. Flow cytometry was employed to examine the mode of action showing that neither apoptotic nor autophagic mechanisms were triggered within the first 48 h of treatment. However, both tin(IV) complexes inhibited cell proliferation potentially related to the dramatic reduction in NO production, resulting from downregulation of nitric oxide synthase (iNOS) enzyme expression.
Collapse
|
28
|
Kinnel B, Singh SK, Oprea-Ilies G, Singh R. Targeted Therapy and Mechanisms of Drug Resistance in Breast Cancer. Cancers (Basel) 2023; 15:1320. [PMID: 36831661 PMCID: PMC9954028 DOI: 10.3390/cancers15041320] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer is the most common cause of cancer-related death in women worldwide. Multidrug resistance (MDR) has been a large hurdle in reducing BC death rates. The drug resistance mechanisms include increased drug efflux, enhanced DNA repair, senescence escape, epigenetic alterations, tumor heterogeneity, tumor microenvironment (TME), and the epithelial-to-mesenchymal transition (EMT), which make it challenging to overcome. This review aims to explain the mechanisms of resistance in BC further, identify viable drug targets, and elucidate how those targets relate to the progression of BC and drug resistance.
Collapse
Affiliation(s)
- Briana Kinnel
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Gabriela Oprea-Ilies
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
29
|
Carrión MD, Rubio-Ruiz B, Franco-Montalban F, Amoia P, Zuccarini MC, De Simone C, Camacho ME, Amoroso R, Maccallini C. New amidine-benzenesulfonamides as iNOS inhibitors for the therapy of the triple negative breast cancer. Eur J Med Chem 2023; 248:115112. [PMID: 36641860 DOI: 10.1016/j.ejmech.2023.115112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Triple negative breast cancer (TNBC) is a specific breast cancer subtype, and poor prognosis is associated to this tumour when it is in the metastatic form. The overexpression of the inducible Nitric Oxide Synthase (iNOS) is considered a predictor of poor outcome in TNBC patients, and this enzyme is reported as a valuable molecular target to compromise TNBC progression. In this work, new amidines containing a benzenesulfonamide group were designed and synthesized as selective iNOS inhibitors. An in vitro biological evaluation was performed to assess compounds activity against both the inducible and constitutive NOSs. The most interesting compounds 1b and 2b were evaluated on MDA-MB-231 cells as antiproliferative agents, and 1b capability to counteract cell migration was also studied. Finally, an in-depth docking study was performed to shed light on the observed potency and selectivity of action of the most promising compounds.
Collapse
Affiliation(s)
- M Dora Carrión
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071, Granada, Spain
| | - Belén Rubio-Ruiz
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071, Granada, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avda. Ilustración 114, 18016, Granada, Spain
| | - Francisco Franco-Montalban
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071, Granada, Spain
| | - Pasquale Amoia
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Maria Chiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Chiara De Simone
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - M Encarnación Camacho
- Department of Medicinal and Organic Chemistry, Faculty of Pharmacy, Campus Cartuja s/n, University of Granada, 18071, Granada, Spain.
| | - Rosa Amoroso
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy.
| | - Cristina Maccallini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
30
|
Cheng RYS, Burkett S, Ambs S, Moody T, Wink DA, Ridnour LA. Chronic Exposure to Nitric Oxide Induces P53 Mutations and Malignant-like Features in Human Breast Epithelial Cells. Biomolecules 2023; 13:311. [PMID: 36830680 PMCID: PMC9953427 DOI: 10.3390/biom13020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
The small endogenous signaling molecule nitric oxide (NO) has been linked with chronic inflammation and cancer. The effects of NO are both concentration and temporally dependent; under some conditions, NO protects against damage caused by reactive oxygen species and activates P53 signaling. During chronic inflammation, NO causes DNA damage and inhibits repair proteins. To extend our understanding of the roles of NO during carcinogenesis, we investigated the possible effects of chronic NO exposure on MCF10A breast epithelial cells, as defined by changes in cellular morphology, chromosome/genomic stability, RNA, and protein expression, and altered cell phenotypes. Human MCF10A cells were maintained in varying doses of the NO donor DETANO for three weeks. Distinct patterns of genomic modifications in TP53 and KRAS target genes were detected in NO-treated cells when compared to background mutations. In addition, quantitative real-time PCR demonstrated an increase in the expression of cancer stem cell (CSC) marker CD44 after prolonged exposure to 300 μM DETANO. While similar changes in cell morphology were found in cells exposed to 300-500 μM DETANO, cells cultured in 100 μM DETANO exhibited enhanced motility. In addition, 100 μM NO-treated cells proliferated in serum-free media and selected clonal populations and pooled cells formed colonies in soft agar that were clustered and disorganized. These findings show that chronic exposure to NO generates altered breast epithelial cell phenotypes with malignant characteristics.
Collapse
Affiliation(s)
- Robert Y. S. Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sandra Burkett
- Molecular Cytogenetics Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Terry Moody
- Center for Cancer Training Office of Training and Education, National Cancer Institute, Bethesda, MD 20892, USA
| | - David A. Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Lisa A. Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
31
|
Maher S, Smith LA, El-Khoury CA, Kalil H, Sossey-Alaoui K, Bayachou M. Inducible Nitric Oxide Synthase Embedded in Alginate/Polyethyleneimine Hydrogel as a New Platform to Explore NO-Driven Modulation of Biological Function. Molecules 2023; 28:1612. [PMID: 36838600 PMCID: PMC9963145 DOI: 10.3390/molecules28041612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Nitric oxide (NO), a small free radical molecule, turned out to be pervasive in biology and was shown to have a substantial influence on a range of biological activities, including cell growth and apoptosis. This molecule is involved in signaling and affects a number of physiologic functions. In recent decades, several processes related to cancer, such as angiogenesis, programmed cell death, infiltration, cell cycle progression, and metastasis, have been linked with nitric oxide. In addition, other parallel work showed that NO also has the potential to operate as an anti-cancer agent. As a result, it has gained attention in cancer-related therapeutics. The nitric oxide synthase enzyme family (NOS) is required for the biosynthesis of nitric oxide. It is becoming increasingly popular to develop NO-releasing materials as strong tumoricidal therapies that can deliver sustained high concentrations of nitric oxide to tumor sites. In this paper, we developed NO-releasing materials based on sodium alginate hydrogel. In this regard, alginate hydrogel discs were modified by adsorbing layers of polyethyleneimine and iNOS-oxygenase. These NO-releasing hydrogel discs were prepared using the layer-by-layer film building technique. The iNOS-oxygenase is adsorbed on the positively charged polyethyleneimine (PEI) matrix layer, which was formed on a negatively charged sodium alginate hydrogel. We show that nitric oxide is produced by enzymes contained within the hydrogel material when it is exposed to a solution containing all the components necessary for the NOS reaction. The electrostatic chemical adsorption of the layer-by-layer process was confirmed by FTIR measurements as well as scanning electron microscopy. We then tested the biocompatibility of the resulting modified sodium alginate hydrogel discs. We showed that this NOS-PEI-modified hydrogel is overall compatible with cell growth. We characterized the NOS/hydrogel films and examined their functional features in terms of NO release profiles. However, during the first 24 h of activity, these films show an increase in NO release flux, followed by a gradual drop and then a period of stable NO release. These findings show the inherent potential of using this system as a platform for NO-driven modulation of biological functions, including carcinogenesis.
Collapse
Affiliation(s)
- Shaimaa Maher
- Chemistry Department, Cleveland State University, Cleveland, OH 44115, USA
| | - Lauren A. Smith
- Chemistry Department, Cleveland State University, Cleveland, OH 44115, USA
| | | | - Haitham Kalil
- Chemistry Department, Cleveland State University, Cleveland, OH 44115, USA
| | - Khalid Sossey-Alaoui
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Metro Health Medical Center, Cleveland, OH 44109, USA
| | - Mekki Bayachou
- Chemistry Department, Cleveland State University, Cleveland, OH 44115, USA
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
32
|
Stehle D, Barresi M, Schulz J, Feil R. Heterogeneity of cGMP signalling in tumour cells and the tumour microenvironment: Challenges and chances for cancer pharmacology and therapeutics. Pharmacol Ther 2023; 242:108337. [PMID: 36623589 DOI: 10.1016/j.pharmthera.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) is an important regulator of human (patho-)physiology and has emerged as an attractive drug target. Currently, cGMP-elevating drugs are mainly used to treat cardiovascular diseases, but there is also increasing interest in exploring their potential for cancer prevention and therapy. In this review article, we summarise recent findings in cancer-related cGMP research, with a focus on melanoma, breast cancer, colorectal cancer, prostate cancer, glioma, and ovarian cancer. These studies indicate tremendous heterogeneity of cGMP signalling in tumour tissue. It appears that different tumour and stroma cells, and perhaps different sexes, express different cGMP generators, effectors, and degraders. Therefore, the same cGMP-elevating drug can lead to different outcomes in different tumour settings, ranging from inhibition to promotion of tumourigenesis or therapy resistance. These findings, together with recent evidence that increased cGMP signalling is associated with worse prognosis in several human cancers, challenge the traditional view that cGMP elevation generally has an anti-cancer effect. As cGMP pathways appear to be more stable in the stroma than in tumour cells, we suggest that cGMP-modulating drugs should preferentially target the tumour microenvironment. Indeed, there is evidence that phosphodiesterase 5 inhibitors like sildenafil enhance anti-tumour immunity by acting on immune cells. Moreover, many in vivo results obtained with cGMP-modulating drugs could be explained by effects on the tumour vasculature rather than on the tumour cells themselves. We therefore propose a model that incorporates the NO/cGMP signalling pathway in tumour vessels as a key target for cancer therapy. Deciphering the multifaceted roles of cGMP in cancer is not only a challenge for basic research, but also provides a chance to predict potential adverse effects of cGMP-modulating drugs in cancer patients and to develop novel anti-tumour therapies by precision targeting of the relevant cells and molecular pathways.
Collapse
Affiliation(s)
- Daniel Stehle
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Mariagiovanna Barresi
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Jennifer Schulz
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
33
|
Zhi R, Wu K, Zhang J, Liu H, Niu C, Li S, Fu L. PRMT3 regulates the progression of invasive micropapillary carcinoma of the breast. Cancer Sci 2023; 114:1912-1928. [PMID: 36637351 PMCID: PMC10154826 DOI: 10.1111/cas.15724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Invasive micropapillary carcinoma (IMPC) is a special histopathological subtype of breast cancer. Clinically, IMPC exhibits a higher incidence of lymphovascular invasion and lymph node metastasis compared with that of invasive ductal carcinoma (IDC), the most common type. However, the metabolic characteristics and related mechanisms underlying malignant IMPC biological behaviors are unknown. We performed large-scale targeted metabolomics analysis on resected tumors obtained from chemotherapy-naïve IMPC (n = 25) and IDC (n = 26) patients to investigate metabolic alterations, and we integrated mass spectrometry analysis, RNA sequencing, and ChIP-sequencing data to elucidate the potential molecular mechanisms. The metabolomics revealed distinct metabolic profiles between IMPC and IDC. For IMPC patients, the metabolomic profile was characterized by significantly high levels of arginine methylation marks, and protein arginine methyltransferase 3 (PRMT3) was identified as a critical regulator that catalyzed the formation of these arginine methylation marks. Notably, overexpression of PRMT3 was an independent risk factor for poor IMPC prognosis. Furthermore, we demonstrated that PRMT3 was a key regulator of breast cancer cell proliferation and metastasis both in vitro and in vivo, and treatment with a preclinical PRMT3 inhibitor decreased the xenograft tumorigenic capacity. Mechanistically, PRMT3 regulated the endoplasmic reticulum (ER) stress signaling pathway by facilitating histone H4 arginine 3 asymmetric dimethylation (H4R3me2a), which may endow breast cancer cells with great proliferative and metastatic capacity. Our findings highlight PRMT3 importance in regulating the malignant biological behavior of IMPC and suggest that small-molecule inhibitors of PRMT3 activity might be promising breast cancer treatments.
Collapse
Affiliation(s)
- Renyong Zhi
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Kailiang Wu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jingyue Zhang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Hanjiao Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Chen Niu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
34
|
Attenuation of Inflammatory Responses in Breast and Ovarian Cancer Cells by a Novel Chalcone Derivative and Its Increased Potency by Curcumin. Mediators Inflamm 2023; 2023:5156320. [PMID: 36687217 PMCID: PMC9851785 DOI: 10.1155/2023/5156320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023] Open
Abstract
Background Breast and ovarian cancers are two common malignancies in women and a leading cause of death globally. The aim of the present study was to explore the effects of a novel chalcone derivative 1-(4-(methylsulfonyl)phenyl)-3-(phenylthio)-3-(p-tolyl)propane-1-one (MPP) individually or combined with curcumin, a well-known herbal medicine with anticancer properties, as a new combination therapy on inflammatory pathways in breast and ovarian cancer cell lines. Methods LPS-induced NF-κB DNA-binding activity and the levels of proinflammatory cytokines were measured in the MPP- and MPP-curcumin combination-treated MDA-MB-231 and SKOV3 cells by ELISA-based methods. The expression of COX2, INOS, and MMP9 genes and nitrite levels was also evaluated by real-time qRT-PCR and Griess method, respectively. IκB levels were evaluated by Western blotting. Results MPP significantly inhibited the DNA-binding activity of NF-κB in each cell line and subsequently suppressed the expression of downstream genes including COX2, MMP9, and INOS. The levels of proinflammatory cytokines, as well as NO, were also decreased in response to MPP. All the effects of MPP were enhanced by the addition of curcumin. MPP, especially when combined with curcumin, caused a remarkable increase in the concentration of IκB. Conclusion MPP and its coadministration with curcumin effectively reduced the activity of the NF-κB signaling pathway, leading to a reduced inflammatory response in the environment of cancer cells. Thus, MPP, either alone or combined with curcumin, might be considered an effective remedy for the suppression of inflammatory processes in breast and ovarian cancer cells.
Collapse
|
35
|
Regulation of pleiotropic physiological roles of nitric oxide signaling. Cell Signal 2023; 101:110496. [PMID: 36252791 DOI: 10.1016/j.cellsig.2022.110496] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Nitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O2), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology. NO is a Janus-faced molecule shown to have both tumor promoting and tumoricidal effects, which depend on its concentration, duration of exposure, and location. A high concentration is shown to have cytotoxic effects by triggering apoptosis, and at a low concentration, NO promotes angiogenesis, metastasis, and tumor progression. Upregulated NO synthesis has been implicated as a causal factor in several pathophysiological conditions including cancer. This dichotomous effect makes it highly challenging to discover its true potential in cancer biology. Understanding the mechanisms by which NO acts in different cancers helps to develop NO based therapeutic strategies for cancer treatment. This review addresses the physiological role of this molecule, with a focus on its bimodal action in various types of cancers.
Collapse
|
36
|
Miranda KM, Ridnour LA, Cheng RY, Wink DA, Thomas DD. The Chemical Biology of NO that Regulates Oncogenic Signaling and Metabolism: NOS2 and Its Role in Inflammatory Disease. Crit Rev Oncog 2023; 28:27-45. [PMID: 37824385 PMCID: PMC11318306 DOI: 10.1615/critrevoncog.2023047302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Nitric oxide (NO) and the enzyme that synthesizes it, nitric oxide synthase 2 (NOS2), have emerged as key players in inflammation and cancer. Expression of NOS2 in tumors has been correlated both with positive outcomes and with poor prognoses. The chemistry of NO is the major determinate to the biological outcome and the concentration of NO, which can range over five orders of magnitude, is critical in determining which pathways are activated. It is the activation of specific oncogenic and immunological mechanisms that shape the outcome. The kinetics of specific reactions determine the mechanisms of action. In this review, the relevant reactions of NO and related species are discussed with respect to these oncogenic and immunological signals.
Collapse
Affiliation(s)
| | - Lisa A. Ridnour
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Robert Y.S. Cheng
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - David A. Wink
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Douglas D. Thomas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
37
|
Somasundaram V, Ridnour LA, Cheng RY, Walke AJ, Kedei N, Bhattacharyya DD, Wink AL, Edmondson EF, Butcher D, Warner AC, Dorsey TH, Scheiblin DA, Heinz W, Bryant RJ, Kinders RJ, Lipkowitz S, Wong ST, Pore M, Hewitt SM, McVicar DW, Anderson SK, Chang J, Glynn SA, Ambs S, Lockett SJ, Wink DA. Systemic Nos2 Depletion and Cox inhibition limits TNBC disease progression and alters lymphoid cell spatial orientation and density. Redox Biol 2022; 58:102529. [PMID: 36375380 PMCID: PMC9661390 DOI: 10.1016/j.redox.2022.102529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Antitumor immune polarization is a key predictor of clinical outcomes to cancer therapy. An emerging concept influencing clinical outcome involves the spatial location of CD8+ T cells, within the tumor. Our earlier work demonstrated immunosuppressive effects of NOS2 and COX2 tumor expression. Here, we show that NOS2/COX2 levels influence both the polarization and spatial location of lymphoid cells including CD8+ T cells. Importantly, elevated tumor NOS2/COX2 correlated with exclusion of CD8+ T cells from the tumor epithelium. In contrast, tumors expressing low NOS2/COX2 had increased CD8+ T cell penetration into the tumor epithelium. Consistent with a causative relationship between these observations, pharmacological inhibition of COX2 with indomethacin dramatically reduced tumor growth of the 4T1 model of TNBC in both WT and Nos2- mice. This regimen led to complete tumor regression in ∼20-25% of tumor-bearing Nos2- mice, and these animals were resistant to tumor rechallenge. Th1 cytokines were elevated in the blood of treated mice and intratumoral CD4+ and CD8+ T cells were higher in mice that received indomethacin when compared to control untreated mice. Multiplex immunofluorescence imaging confirmed our phenotyping results and demonstrated that targeted Nos2/Cox2 blockade improved CD8+ T cell penetration into the 4T1 tumor core. These findings are consistent with our observations in low NOS2/COX2 expressing breast tumors proving that COX2 activity is responsible for limiting the spatial distribution of effector T cells in TNBC. Together these results suggest that clinically available NSAID's may provide a cost-effective, novel immunotherapeutic approach for treatment of aggressive tumors including triple negative breast cancer.
Collapse
Affiliation(s)
- Veena Somasundaram
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Lisa A Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Robert Ys Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Abigail J Walke
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource Nanoscale Protein Analysis, Office of Science Technology Resources, CCR, NCI, NIH, Bethesda, MD, USA
| | - Dibyangana D Bhattacharyya
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Adelaide L Wink
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD, USA
| | - Elijah F Edmondson
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for NCI, Frederick, MD, USA
| | - Donna Butcher
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for NCI, Frederick, MD, USA
| | - Andrew C Warner
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for NCI, Frederick, MD, USA
| | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD, USA
| | - David A Scheiblin
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD, USA
| | - William Heinz
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD, USA
| | - Richard J Bryant
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Robert J Kinders
- Office of the Director, Division of Cancer Treatment and Diagnosis, NCI, Frederick, MD, USA
| | | | - Stephen Tc Wong
- Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center and Weill Cornell Medical College, Houston, TX, USA
| | - Milind Pore
- Imaging Mass Cytometry Frederick National Laboratory for Cancer Research, USA
| | | | - Daniel W McVicar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Stephen K Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jenny Chang
- Mary and Ron Neal Cancer Center, Houston Methodist Weill Cornell Medical College, Houston, TX, USA
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, H91 TK33, Ireland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD, USA.
| | - David A Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
38
|
Park H, Eriksson S, Warren WS, Wang Q. Design, synthesis and evaluation of 15N- and 13C-labeled molecular probes as hyperpolarized nitric oxide sensors. Bioorg Med Chem 2022; 72:116969. [PMID: 36029732 PMCID: PMC9648624 DOI: 10.1016/j.bmc.2022.116969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Nitric oxide (NO) is an important signaling molecule involved in a wide range of biological processes. Development of non-invasive, real-time detection of NO is greatly desired yet remains challenging. Here we report the design and development of novel 15N- and 13C-labeled NO-sensing probes for hyperpolarized nuclear magnetic resonance (HP-NMR) studies. These probes undergo selective and rapid reaction with NO to generate in situ AZO-products that can be monitored with distinguishable NMR signals as a read-out. This study also allows for a direct comparison of the 15N and 13C nuclei performances in hyperpolarized reaction-based probes. The simple and general SABRE-SHEATH hyperpolarization method works on the 15N- and 13C-NO-sensing probes. Measured long spin-lattice relaxation (T1) values, especially for 15N-NO probes, will allow for real-time reaction-based imaging of NO.
Collapse
Affiliation(s)
- Hyejin Park
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Shannon Eriksson
- Department of Chemistry, Duke University, Durham, NC 27708, USA; School of Medicine, Duke University, Durham, NC 27708, USA
| | - Warren S Warren
- Department of Chemistry, Duke University, Durham, NC 27708, USA; Department of Physics, Radiology and Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
39
|
Heterogeneity and Functions of Tumor-Infiltrating Antibody Secreting Cells: Lessons from Breast, Ovarian, and Other Solid Cancers. Cancers (Basel) 2022; 14:cancers14194800. [PMID: 36230721 PMCID: PMC9563085 DOI: 10.3390/cancers14194800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary B cells are gaining increasing recognition as important contributors to the tumor microenvironment, influencing, positively or negatively, tumor growth, patient survival, and response to therapies. Antibody secreting cells (ASCs) constitute a variable fraction of tumor-infiltrating B cells in most solid tumors, and they produce tumor-specific antibodies that can drive distinct immune responses depending on their isotypes and specificities. In this review, we discuss the current knowledge of the heterogeneity of ASCs infiltrating solid tumors and how both their canonical and noncanonical functions shape antitumor immunity, with a special emphasis on breast and ovarian cancers. Abstract Neglected for a long time in cancer, B cells and ASCs have recently emerged as critical actors in the tumor microenvironment, with important roles in shaping the antitumor immune response. ASCs indeed exert a major influence on tumor growth, patient survival, and response to therapies. The mechanisms underlying their pro- vs. anti-tumor roles are beginning to be elucidated, revealing the contributions of their secreted antibodies as well as of their emerging noncanonical functions. Here, concentrating mostly on ovarian and breast cancers, we summarize the current knowledge on the heterogeneity of tumor-infiltrating ASCs, we discuss their possible local or systemic origin in relation to their immunoglobulin repertoire, and we review the different mechanisms by which antibody (Ab) subclasses and isoforms differentially impact tumor cells and anti-tumor immunity. We also discuss the emerging roles of cytokines and other immune modulators produced by ASCs in cancer. Finally, we propose strategies to manipulate the tumor ASC compartment to improve cancer therapies.
Collapse
|
40
|
Safrhansova L, Hlozkova K, Starkova J. Targeting amino acid metabolism in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:37-79. [PMID: 36283767 DOI: 10.1016/bs.ircmb.2022.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic rewiring is a characteristic hallmark of cancer cells. This phenomenon sustains uncontrolled proliferation and resistance to apoptosis by increasing nutrients and energy supply. However, reprogramming comes together with vulnerabilities that can be used against tumor and can be applied in targeted therapy. In the last years, the genetic background of tumors has been identified thoroughly and new therapies targeting those mutations tested. Nevertheless, we propose that targeting the phenotype of cancer cells could be another way of treatment aiming to avoid drug resistance and non-responsiveness of cancer patients. Amino acid metabolism is part of the altered processes in cancer cells. Amino acids are building blocks and also sensors of signaling pathways regulating main biological processes. In this comprehensive review, we described four amino acids (asparagine, arginine, methionine, and cysteine) which have been actively investigated as potential targets for anti-tumor therapy. Asparagine depletion is successfully used for decades in the treatment of acute lymphoblastic leukemia and there is a strong implication to apply it to other types of tumors. Arginine auxotrophic tumors are great candidates for arginine-starvation therapy. Higher requirement for essential amino acids such as methionine and cysteine point out promising targetable weaknesses of cancer cells.
Collapse
Affiliation(s)
- Lucie Safrhansova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Hlozkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Julia Starkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
41
|
Qiu J, Zhang Z, Hu A, Zhao P, Wei X, Song H, Yang J, Li Y. Integrating UPLC-HR-MS/MS, Network Pharmacology, and Experimental Validation to Uncover the Mechanisms of Jin'gan Capsules against Breast Cancer. ACS OMEGA 2022; 7:28003-28015. [PMID: 35990498 PMCID: PMC9386888 DOI: 10.1021/acsomega.2c01921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In the theory of traditional Chinese medicine (TCM), "liver-qi" stagnation and heat-induced toxicity represent the main etiologies of breast cancer. Recently, several TCMs with heat-clearing and detoxification efficacy have shown inhibitory effects on breast cancer. Jin'gan capsules (JGCs), initially approved to treat colds in China, are a heat-clearing and detoxification TCM formula. However, the anticancer activity of JGCs against breast cancer and its underlying mechanisms remain unclear. First, we assessed the antiproliferative activity of JGCs in breast cancer cell lines and evaluated their effects on cell apoptosis and the cell cycle by flow cytometry. Furthermore, we identified the potential bioactive components of JGCs and their corresponding target genes and constructed a bioactive compound-target interaction network by ultra-performance liquid chromatography-high-resolution tandem mass spectrometry (UPLC-HR-MS/MS) and network pharmacology analysis. Finally, the underlying mechanism was investigated through gene function enrichment analysis and experimental validation. We found that JGCs significantly inhibited breast cancer cell growth with IC50 values of 0.56 ± 0.03, 0.16 ± 0.03, and 0.94 ± 0.09 mg/mL for MDA-MB-231, MDA-MB-468, and MCF-7, respectively. In addition, JGC treatment dramatically induced apoptosis and S phase cell cycle arrest in breast cancer cells. Western blot analysis confirmed that JGCs could regulate the protein levels of apoptosis- and cell cycle-related genes. Utilizing UPLC-HR-MS/MS analysis and network pharmacology, we identified 7 potential bioactive ingredients in JGCs and 116 antibreast cancer targets. Functional enrichment analysis indicated that the antitumor effects of JGCs were strongly associated with apoptosis and the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. Western blot analysis validated that JGC treatment markedly decreased the expression levels of p-JAK2, p-STAT3, and STAT3. Our findings suggest that JGCs suppress breast cancer cell proliferation and induce cell cycle arrest and apoptosis partly by inhibiting the JAK2/STAT3 signaling pathway, highlighting JGCs as a potential therapeutic candidate against breast cancer.
Collapse
Affiliation(s)
- Jianfei Qiu
- State
Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The
Key Laboratory of Chemistry for Natural Products of Guizhou Province
and Chinese Academic of Sciences & Key Laboratory of Endemic and
Ethnic Diseases, Ministry of Education & Key Laboratory of Medical
Molecular Biology of Guizhou Province, Guizhou
Medical University, Guiyang 550004, China
| | - Zhiyin Zhang
- Guiyang
Hospital of Guizhou Aviation Industry Group, Guiyang 550025, China
| | - Anling Hu
- State
Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The
Key Laboratory of Chemistry for Natural Products of Guizhou Province
and Chinese Academic of Sciences & Key Laboratory of Endemic and
Ethnic Diseases, Ministry of Education & Key Laboratory of Medical
Molecular Biology of Guizhou Province, Guizhou
Medical University, Guiyang 550004, China
| | - Peng Zhao
- State
Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The
Key Laboratory of Chemistry for Natural Products of Guizhou Province
and Chinese Academic of Sciences & Key Laboratory of Endemic and
Ethnic Diseases, Ministry of Education & Key Laboratory of Medical
Molecular Biology of Guizhou Province, Guizhou
Medical University, Guiyang 550004, China
| | - Xuenai Wei
- State
Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The
Key Laboratory of Chemistry for Natural Products of Guizhou Province
and Chinese Academic of Sciences & Key Laboratory of Endemic and
Ethnic Diseases, Ministry of Education & Key Laboratory of Medical
Molecular Biology of Guizhou Province, Guizhou
Medical University, Guiyang 550004, China
| | - Hui Song
- The
Key Laboratory of Chemistry for Natural Products of Guizhou Province
and Chinese Academic of Sciences & Key Laboratory of Endemic and
Ethnic Diseases, Ministry of Education & Key Laboratory of Medical
Molecular Biology of Guizhou Province, Guizhou
Medical University, Guiyang 550004, China
| | - Jue Yang
- State
Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The
Key Laboratory of Chemistry for Natural Products of Guizhou Province
and Chinese Academic of Sciences & Key Laboratory of Endemic and
Ethnic Diseases, Ministry of Education & Key Laboratory of Medical
Molecular Biology of Guizhou Province, Guizhou
Medical University, Guiyang 550004, China
| | - Yanmei Li
- State
Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- The
Key Laboratory of Chemistry for Natural Products of Guizhou Province
and Chinese Academic of Sciences & Key Laboratory of Endemic and
Ethnic Diseases, Ministry of Education & Key Laboratory of Medical
Molecular Biology of Guizhou Province, Guizhou
Medical University, Guiyang 550004, China
| |
Collapse
|
42
|
Alsharabasy AM, Glynn S, Farràs P, Pandit A. Interactions between Nitric Oxide and Hyaluronan Implicate the Migration of Breast Cancer Cells. Biomacromolecules 2022; 23:3621-3647. [PMID: 35921128 PMCID: PMC9472231 DOI: 10.1021/acs.biomac.2c00545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Nitric oxide (•NO) is one of the prominent
free
radicals, playing a pivotal role in breast cancer progression. Hyaluronic
acid (HA) plays an essential role in neutralizing free radicals in
tumor tissues. However, its interactions with nitric oxide have not
been thoroughly investigated. Hence, this study attempts to understand
the mechanism of these interactions and the different effects on the
intracellular •NO levels and migration of breast
cancer cells. The affinity of HA to scavenge •NO
was investigated alongside the accompanying changes in specific physico-chemical
properties and the further effects on the •NO-induced
attachment and migration of the breast cancer cell lines, MDA-MB-231
and HCC1806. The reaction of the nitrogen dioxide radical, formed
via •NO/O2 interactions, with HA initiated
a series of oxidative reactions, which, in the presence of •NO, induce the fragmentation of the polymeric chains. Furthermore,
these interactions were found to hinder the NO-induced migration of
cancer cells. However, the NO-induced HA modification/fragmentation
was inhibited in the presence of hemin, a NO-scavenging compound.
Collectively, these results help toward understanding the involvement
of HA in the •NO-induced cell migration and suggest
the possible modification of HA, used as one of the main materials
in different biomedical applications.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H91 W2TY, Ireland
| | - Sharon Glynn
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H91 W2TY, Ireland.,Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Pau Farràs
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H91 W2TY, Ireland.,School of Biological and Chemical Sciences, Ryan Institute, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
43
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
44
|
Burke AJ, McAuliffe JD, Natoni A, Ridge S, Sullivan FJ, Glynn SA. Chronic nitric oxide exposure induces prostate cell carcinogenesis, involving genetic instability and a pro-tumorigenic secretory phenotype. Nitric Oxide 2022; 127:44-53. [PMID: 35872082 DOI: 10.1016/j.niox.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
Prostate cancer is a leading cause of cancer death in men. Inflammation and overexpression of inducible nitric oxide synthase (NOS2) have been implicated in prostate carcinogenesis. We aimed to explore the hypothesis that nitric oxide NO exerts pro-tumorigenic effects on prostate cells at physiologically relevant levels contributing to carcinogenesis. We investigated the impact of acute exposure of normal immortalised prostate cells (RWPE-1) to NO on cell proliferation and activation of DNA damage repair pathways. Furthermore we investigated the long term effects of chronic NO exposure on RWPE-1 cell migration and invasion potential and hallmarks of transformation. Our results demonstrate that NO induces DNA damage as indicated by γH2AX foci and p53 activation resulting in a G1/S phase block and activation of 53BP1 DNA damage repair protein. Long term adaption to NO results in increased migration and invasion potential, acquisition of anchorage independent growth and increased resistance to chemotherapy. This was recapitulated in PC3 and DU145 prostate cancer cells which upon chronic exposure to NO displayed increased cell migration, colony formation and increased resistance to chemotherapeutics. These findings indicate that NO may play a key role in the development of prostate cancer and the acquisition of an aggressive metastatic phenotype.
Collapse
Affiliation(s)
- Amy J Burke
- Prostate Cancer Institute, School of Medicine, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Jake D McAuliffe
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Sarah Ridge
- Prostate Cancer Institute, School of Medicine, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Francis J Sullivan
- Prostate Cancer Institute, School of Medicine, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, H91 TK33, Ireland.
| |
Collapse
|
45
|
The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2 and Their Regulation by the iNOS/NOS2 Axis. Antioxidants (Basel) 2022; 11:antiox11061195. [PMID: 35740092 PMCID: PMC9227079 DOI: 10.3390/antiox11061195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.
Collapse
|
46
|
Switzer CH, Cho HJ, Eykyn TR, Lavender P, Eaton P. NOS2 and S-nitrosothiol signaling induces DNA hypomethylation and LINE-1 retrotransposon expression. Proc Natl Acad Sci U S A 2022; 119:e2200022119. [PMID: 35584114 PMCID: PMC9173756 DOI: 10.1073/pnas.2200022119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/29/2022] [Indexed: 12/31/2022] Open
Abstract
Inducible nitric oxide synthase (NOS2) produces high local concentrations of nitric oxide (NO), and its expression is associated with inflammation, cellular stress signals, and cellular transformation. Additionally, NOS2 expression results in aggressive cancer cell phenotypes and is correlated with poor outcomes in patients with breast cancer. DNA hypomethylation, especially of noncoding repeat elements, is an early event in carcinogenesis and is a common feature of cancer cells. In addition to altered gene expression, DNA hypomethylation results in genomic instability via retrotransposon activation. Here, we show that NOS2 expression and associated NO signaling results in substantial DNA hypomethylation in human cell lines by inducing the degradation of DNA (cytosine-5)–methyltransferase 1 (DNMT1) protein. Similarly, NOS2 expression levels were correlated with decreased DNA methylation in human breast tumors. NOS2 expression and NO signaling also resulted in long interspersed noncoding element 1 (LINE-1) retrotransposon hypomethylation, expression, and DNA damage. DNMT1 degradation was mediated by an NO/p38-MAPK/lysine acetyltransferase 5–dependent mechanism. Furthermore, we show that this mechanism is required for NO-mediated epithelial transformation. Therefore, we conclude that NOS2 and NO signaling results in DNA damage and malignant cellular transformation via an epigenetic mechanism.
Collapse
Affiliation(s)
- Christopher H. Switzer
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Hyun-Ju Cho
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Thomas R. Eykyn
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, SE1 7EH, United Kingdom
| | - Paul Lavender
- AsthmaUK Centre in Allergic Mechanisms of Asthma, School of Immunology and Microbial Science, King’s College London, Guy’s Hospital, London, SE1 9RT, United Kingdom
| | - Philip Eaton
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| |
Collapse
|
47
|
Drehmer D, Mesquita Luiz JP, Hernandez CAS, Alves-Filho JC, Hussell T, Townsend PA, Moncada S. Nitric oxide favours tumour-promoting inflammation through mitochondria-dependent and -independent actions on macrophages. Redox Biol 2022; 54:102350. [PMID: 35660630 PMCID: PMC9511697 DOI: 10.1016/j.redox.2022.102350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/12/2022] [Accepted: 05/21/2022] [Indexed: 12/22/2022] Open
Abstract
Production of nitric oxide (NO) has been demonstrated in several malignancies, however its role remains not fully understood, specifically in relation to the metabolic and functional implications that it may have on immune cells participating in tumorigenesis. Here, we show that inducible NO synthase (iNOS) is expressed in cancers of the colon and the prostate, mainly by tumour cells, and NO generation is evidenced by widespread nitrotyrosine (NT) staining in tumour tissue. Furthermore, presence of NT is observed in the majority of tumour-associated macrophages (TAMs), despite low iNOS expression by these cells, suggesting that NO from the tumour microenvironment affects TAMs. Indeed, using a co-culture model, we demonstrate that NO produced by colon and prostate cancer cells is sufficient to induce NT formation in neighbouring macrophages. Moreover, exposure to exogenous NO promotes mitochondria-dependent and -independent changes in macrophages, which orientate their polarity towards an enhanced pro-inflammatory phenotype, whilst decreasing antigen-presenting function and wound healing capacity. Abrogating endogenous NO generation in murine macrophages, on the other hand, decreases their pro-inflammatory phenotype. These results suggest that the presence of NO in cancer may regulate TAM metabolism and function, favouring the persistence of inflammation, impairing healing and subverting adaptive immunity responses. Nitric oxide (NO) from the cancer microenvironment acts on tumour-associated macrophages (TAMs). NO induces a phenotypic shift in macrophages through mitochondria-dependent and -independent pathways. NO favours pro-inflammatory cytokine production whilst decreasing macrophage function as antigen presenting cell. NO impairs repair function of macrophages. Presence of NO in cancer may regulate TAM metabolism and function, favouring tumour-promoting inflammation.
Collapse
|
48
|
Zhang L, Xi Y, Guo R, Miao Y, Chen H, Zhang M, Li B. Bone Marrow Mesenchymal Stem Cells Mediated Radiosensitive Promoter-Combined Sodium Iodide Symporter for the Treatment of Breast Cancer. Hum Gene Ther 2022; 33:638-648. [PMID: 35171716 DOI: 10.1089/hum.2021.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To develop a genetically engineered bone marrow mesenchymal stem cells (BMSCs) that carries a radiotherapy gene to target triple-negative breast cancer (TNBC) and to evaluate the efficacy of radiation damage within the tumor microenvironment (TME). METHODS The early growth response protein 1 (Egr1)-human sodium iodide symporter (hNIS) gene was transfected into BMSCs by lentiviral transfection and the expression levels were evaluated by RT-PCR. Transwell and adipogenesis and osteogenesis assays were performed to determine the targeting properties and adipogenic and osteogenic characteristics of the transgenic stem cells. The uptake of radioiodine and the efflux characteristics of the transgenic stem cells were determined by iodine uptake experiments. 131I-SPECT imaging was used to determine the characteristics of targeting to TNBC and to quantify the iodine uptake of transgenic stem cells in vivo. The effects of 131I treatment on BMSCs were characterized using tumor growth, immune cell infiltration and tumor invasion endpoints based on immunohistochemistry and flow cytometry analysis of tumor samples. RESULTS BMSCs-Egr1-hNIS cells abundantly express hNIS after radiation induction and are chemotactically attracted to TNBC tumors. Iodine uptake of BMSCs-Egr1-hNIS gradually increased with increasing induction concentrations and times. When the inductive concentration of 131I was > 100 μCi/mL and lasted for 36 h, the rate of iodine uptake in cells increased. In vitro, the radioiodine quickly flowed out from cells within 20 minutes but in vivo, the rate of radioiodine loss was significantly slower and occurred over 24 hours. After 131I therapy, tumor growth was inhibited, white blood cells infiltrated into tumor site and the levels of invasion-related cytokines significantly decreased. CONCLUSIONS BMSCs-Egr1-hNIS mediates 131I therapy can achieve precisely targeted radiotherapy to inhibit tumor growth, promote immune cells infiltration to the tumor sites and reduce the invasiveness and metastasis characteristics of tumor cells.
Collapse
Affiliation(s)
- Lu Zhang
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, 66281, No.197, Ruijin Er Road, Huangpu District, Shanghai, Shanghai, Shanghai, China, 021;
| | - Yue Xi
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, 66281, Shanghai, China;
| | - Rui Guo
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, 66281, Shanghai, China;
| | - Ying Miao
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, 66281, Shanghai, China;
| | - Hong Chen
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, 66281, Shanghai, China;
| | - Min Zhang
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, 66281, Shanghai, China;
| | - Biao Li
- Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, 66281, Department of Nuclear Medicine, Shanghai, China;
| |
Collapse
|
49
|
Immune response and inflammation in cancer health disparities. Trends Cancer 2021; 8:316-327. [PMID: 34965905 DOI: 10.1016/j.trecan.2021.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022]
Abstract
Cancer death rates vary among population groups. Underserved populations continue to experience an excessive burden of lethal cancers that is largely explained by health-care disparities. However, the prominent role of advanced-stage disease as a driver of cancer survival disparities may indicate that some cancers are more aggressive in certain population groups than others. The tumor mutational burden can show large differences among patients with similar-stage disease but differences in race/ethnicity or residence. These dissimilarities may result from environmental or chronic inflammatory exposures, altering tumor biology and the immune response. We discuss the evidence that inflammation and immune response dissimilarities among population groups contribute to cancer disparities and how they can be targeted to reduce these disparities.
Collapse
|
50
|
Jin LY, Gu YL, Zhu Q, Li XH, Jiang GQ. The role of ferroptosis-related genes for overall survival prediction in breast cancer. J Clin Lab Anal 2021; 35:e24094. [PMID: 34741349 PMCID: PMC8649350 DOI: 10.1002/jcla.24094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
Background Ferroptosis is a novel iron‐dependent form of cell death, which is implicated in various diseases including cancers. However, the influence of ferroptosis‐related genes on the prognosis of breast cancer remains unclear. Methods RNA sequencing data of 1053 breast cancer tissue samples and 111 normal tissue samples from The Cancer Genome Atlas (TCGA) were analyzed. Expression levels of 259 ferroptosis‐related genes were compared. Gene Ontology (GO) and the Kyoto Gene and Genomic Encyclopedia (KEGG) analyses were conducted on differentially expressed genes. Cox univariate analysis was conducted to explore the potential prognostic biomarkers of breast cancer. Infiltrating immune cell status was assessed. Results A total of 66 ferroptosis‐related genes were differentially expressed in breast cancer tissues. The enriched GO terms included Biological Process (mainly included response to oxidative stress, cellular response to chemical stress, multicellular organismal homeostasis, cofactor metabolic process, response to metal ion, response to steroid hormone, cellular response to oxidative stress, transition metal ion homeostasis, iron ion homeostasis, and cellular iron ion homeostasis), Cellular Component (mainly included apical plasma membrane, early endosome, apical part of cell, lipid droplet, basolateral plasma membrane, blood microparticle, clathrin‐coated pit, caveola, astrocyte projection, and pronucleus) and Molecular Function (mainly included iron ion binding, ubiquitin protein ligase binding, oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, oxidoreductase activity, acting on the CH−OH group of donors, NAD or NADP as acceptor, ferric iron binding, aldo−keto reductase (NADP) activity, oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, steroid dehydrogenase activity, alditol:NADP+1−oxidoreductase activity, and alcohol dehydrogenase (NADP+) activity). The enriched KEGG pathway mainly included the HIF‐1 signaling pathway, NOD‐like receptor signaling pathway, ferroptosis, IL‐17 signaling pathway, central carbon metabolism in cancer, PPAR signaling pathway, PD‐L1 expression, and PD‐1 checkpoint pathway in cancer. Among them, 38 ferroptosis‐related genes were significantly associated with the prognosis of breast cancer. The prognostic model was constructed, and breast cancer patients in low‐risk group had a better prognosis. In addition, risk score of ferroptosis prognostic model was negatively correlated with B cells (r = −0.063, p = 0.049), CD8+ T cells (r = −0.083, p = 0.010), CD4+ T cells (r = −0.097, p = 0.002), neutrophils (r = −0.068, p = 0.033), and dendritic cells (r = 0.088, p = 0.006). Conclusions The ferroptosis pathway plays a key role in breast cancer. Some differentially expressed ferroptosis‐related genes can be used as prognostic biomarkers for breast cancer.
Collapse
Affiliation(s)
- Li-Yan Jin
- Department of Thyroid and breast surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan-Lin Gu
- Department of Thyroid and breast surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Zhu
- Department of Thyroid and breast surgery, Traditional Chinese medicine hospital of kunshan, Kunshan, China
| | - Xiao-Hua Li
- Department of Thyroid and breast surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, China
| | - Guo-Qin Jiang
- Department of Thyroid and breast surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|