1
|
Zhang A, Cong L, Nan C, Zhao Z, Liu L. 3D biological scaffold delivers Bergenin to reduce neuroinflammation in rats with cerebral hemorrhage. J Transl Med 2024; 22:946. [PMID: 39420402 PMCID: PMC11484212 DOI: 10.1186/s12967-024-05735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a severe form of stroke characterized by high incidence and mortality rates. Currently, there is a significant lack of effective treatments aimed at improving clinical outcomes. Our research team has developed a three-dimensional (3D) biological scaffold that incorporates Bergenin, allowing for the sustained release of the compound. METHODS This 3D biological scaffold was fabricated using a combination of photoinitiator, GEMA, silk fibroin, and decellularized brain matrix (dECM) to encapsulate Bergenin through advanced 3D bioprinting techniques. The kinetics of drug release were evaluated through both in vivo and in vitro studies. A cerebral hemorrhage model was established, and a 3D biological scaffold containing Bergenin was transplanted in situ. Levels of inflammatory response, oxidative stress, and apoptosis were quantified. The neurological function of rats with cerebral hemorrhage was assessed on days 1, 3, and 5 using the turning test, forelimb placement test, Longa score, and Bederson score. RESULTS The 3D biological scaffold incorporating Bergenin significantly enhances the maintenance of drug concentration in the bloodstream, leading to a marked reduction in inflammatory markers such as IL-6, iNOS, and COX-2 levels in a cerebral hemorrhage model, primarily through the inhibition of the NF-κB pathway. Additionally, the scaffold effectively reduces the expression of hypoxia-inducible factor 1-alpha (HIF-1α) in primary cultured astrocytes, which in turn decreases the production of reactive oxygen species (ROS) and inhibits IL-6 production induced by hemin. Subsequent experiments reveal that the 3D biological scaffold containing Bergenin promotes the activation of the Nrf-2/HO-1 signaling pathway, both in vivo and in vitro, thereby preventing cell death. Moreover, the application of this 3D biological scaffold has been demonstrated to improve drug retention in the bloodstream. CONCLUSION This strategy effectively mitigates inflammation, oxidative stress, and cell death in rats with cerebral hemorrhage by inhibiting the NF-κB pathway while concurrently activating the Nrf-2/HO-1 pathway.
Collapse
Affiliation(s)
- Aobo Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Lulu Cong
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Chengrui Nan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Liqiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
2
|
Low ZXB, Ng WS, Lim ESY, Goh BH, Kumari Y. The immunomodulatory effects of classical psychedelics: A systematic review of preclinical studies. Prog Neuropsychopharmacol Biol Psychiatry 2024:111139. [PMID: 39251080 DOI: 10.1016/j.pnpbp.2024.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Emerging evidence suggests that classical psychedelics possess immunomodulatory and anti-inflammatory properties; however, these effects are yet to be well-established. This systematic review aims to provide a timely and comprehensive overview of the immunomodulatory effects of classical psychedelics in preclinical studies. A systematic search was conducted on six databases, including CINAHL, EMBASE, MEDLINE, PsychINFO, Scopus, and Web of Science. Eligible studies targeting classical psychedelics for evaluation of their effects on inflammatory markers and immunomodulation have been included for analysis. Data was extracted from 40 out of 2822 eligible articles, and their risk of bias was assessed using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool and Quality Assessment Tool for In Vitro Studies (QUIN). Studies examined 2,5-dimethoxy-4-iodoamphetamine (DOI; n = 18); psilocybin (4-PO-DMT; n = 9); N,N-dimethyltryptamine (DMT; n = 8); lysergic acid diethylamide (LSD; n = 6); 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT; n = 3); psilocin (4-HO-DMT; n = 3); and mescaline (n = 2). In 36 studies where inflammatory cytokine levels were measured following psychedelic administration, a decrease in at least one inflammatory cytokine was observed in 29 studies. Immune cell activity was assessed in 10 studies and findings were mixed, with an equal number of studies (n = 5 out of 10) reporting either an increase or decrease in immune cell activity. Classical psychedelics were found to alleviate pre-existing inflammation but promote inflammation when administered under normal physiological conditions. This information is anticipated to inform future clinical trials, exploring classical psychedelics' potential to alleviate inflammation in various pathologies.
Collapse
Affiliation(s)
- Zhen Xuen Brandon Low
- Neurological Disorder and Aging (NDA) Research Group, Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Wei Shen Ng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Eugene Sheng Yao Lim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yatinesh Kumari
- Neurological Disorder and Aging (NDA) Research Group, Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
3
|
Watts E, Willison J, Arienti S, Sadiku P, Coelho P, Sanchez-Garcia M, Zhang A, Murphy F, Dickinson R, Mirchandani A, Morrison T, Lewis A, Vermaelen W, Ghesquiere B, Carmeliet P, Mazzone M, Maxwell P, Pugh C, Dockrell D, Whyte M, Walmsley S. Differential roles for the oxygen sensing enzymes PHD1 and PHD3 in the regulation of neutrophil metabolism and function. Wellcome Open Res 2024; 8:569. [PMID: 39257914 PMCID: PMC11384204 DOI: 10.12688/wellcomeopenres.19915.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/12/2024] Open
Abstract
Background Neutrophils are essential in the early innate immune response to pathogens. Harnessing their antimicrobial powers, without driving excessive and damaging inflammatory responses, represents an attractive therapeutic possibility. The neutrophil population is increasingly recognised to be more diverse and malleable than was previously appreciated. Hypoxic signalling pathways are known to regulate important neutrophil behaviours and, as such, are potential therapeutic targets for regulating neutrophil antimicrobial and inflammatory responses. Methods We used a combination of in vivo and ex vivo models, utilising neutrophil and myeloid specific PHD1 or PHD3 deficient mouse lines to investigate the roles of oxygen sensing prolyl hydroxylase enzymes in the regulation of neutrophilic inflammation and immunity. Mass spectrometry and Seahorse metabolic flux assays were used to analyse the role of metabolic shifts in driving the downstream phenotypes. Results We found that PHD1 deficiency drives alterations in neutrophil metabolism and recruitment, in an oxygen dependent fashion. Despite this, PHD1 deficiency did not significantly alter ex vivo neutrophil phenotypes or in vivo outcomes in mouse models of inflammation. Conversely, PHD3 deficiency was found to enhance neutrophil antibacterial properties without excessive inflammatory responses. This was not linked to changes in the abundance of core metabolites but was associated with increased oxygen consumption and increased mitochondrial reactive oxygen species (mROS) production. Conclusions PHD3 deficiency drives a favourable neutrophil phenotype in infection and, as such, is an important potential therapeutic target.
Collapse
Affiliation(s)
- Emily Watts
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Joseph Willison
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Simone Arienti
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Pranvera Sadiku
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Patricia Coelho
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Manuel Sanchez-Garcia
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Ailiang Zhang
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Fiona Murphy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, G4 0RE, UK
| | - Rebecca Dickinson
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Ananda Mirchandani
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Tyler Morrison
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Amy Lewis
- The Bateson Centre, Department of Infection and Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, England, S10 2TN, UK
| | - Wesley Vermaelen
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Flanders, Belgium
- Metabolomics Core Facility, Vlaams Instituut voor Biotechnologie KU Leuven Center for Cancer Biology, Leuven, Flanders, Belgium
| | - Bart Ghesquiere
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Flanders, Belgium
- Metabolomics Core Facility, Vlaams Instituut voor Biotechnologie KU Leuven Center for Cancer Biology, Leuven, Flanders, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vlaams Instituut voor Biotechnologie KU Leuven Center for Cancer Biology, Leuven, Flanders, Belgium
| | - Massimilliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis (VIB-KU Leuven), KU Leuven, Leuven, Flanders, Belgium
| | - Patrick Maxwell
- School of Clinical Medicine, University of Cambridge, Cambridge, England, UK
| | - Christopher Pugh
- Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - David Dockrell
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Moira Whyte
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| | - Sarah Walmsley
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, EH16 4UU, UK
| |
Collapse
|
4
|
Jucht AE, Scholz CC. PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions. Pflugers Arch 2024; 476:1307-1337. [PMID: 38509356 PMCID: PMC11310289 DOI: 10.1007/s00424-024-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.
Collapse
Affiliation(s)
- Agnieszka E Jucht
- Institute of Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany.
| |
Collapse
|
5
|
Duan M, Ru X, Zhou J, Li Y, Guo P, Kang W, Li W, Chen Z, Feng H, Chen Y. Endothelial EGLN3-PKM2 signaling induces the formation of acute astrocytic barrier to alleviate immune cell infiltration after subarachnoid hemorrhage. Fluids Barriers CNS 2024; 21:42. [PMID: 38755642 PMCID: PMC11100217 DOI: 10.1186/s12987-024-00550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Most subarachnoid hemorrhage (SAH) patients have no obvious hematoma lesions but exhibit blood-brain barrier dysfunction and vasogenic brain edema. However, there is a few days between blood‒brain barrier dysfunction and vasogenic brain edema. The present study sought to investigate whether this phenomenon is caused by endothelial injury induced by the acute astrocytic barrier, also known as the glial limitans. METHODS Bioinformatics analyses of human endothelial cells and astrocytes under hypoxia were performed based on the GEO database. Wild-type, EGLN3 and PKM2 conditional knock-in mice were used to confirm glial limitan formation after SAH. Then, the effect of endothelial EGLN3-PKM2 signaling on temporal and spatial changes in glial limitans was evaluated in both in vivo and in vitro models of SAH. RESULTS The data indicate that in the acute phase after SAH, astrocytes can form a temporary protective barrier, the glia limitans, around blood vessels that helps maintain barrier function and improve neurological prognosis. Molecular docking studies have shown that endothelial cells and astrocytes can promote glial limitans-based protection against early brain injury through EGLN3/PKM2 signaling and further activation of the PKC/ERK/MAPK signaling pathway in astrocytes after SAH. CONCLUSION Improving the ability to maintain glial limitans may be a new therapeutic strategy for improving the prognosis of SAH patients.
Collapse
Affiliation(s)
- Mingxu Duan
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xufang Ru
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiru Zhou
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuanshu Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peiwen Guo
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wenbo Kang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wenyan Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhi Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Troise D, Infante B, Mercuri S, Piccoli C, Lindholm B, Stallone G. Hypoxic Inducible Factor Stabilization in Pericytes beyond Erythropoietin Production: The Good and the Bad. Antioxidants (Basel) 2024; 13:537. [PMID: 38790642 PMCID: PMC11118908 DOI: 10.3390/antiox13050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The paracrine signaling pathways for the crosstalk between pericytes and endothelial cells are essential for the coordination of cell responses to challenges such as hypoxia in both healthy individuals and pathological conditions. Ischemia-reperfusion injury (IRI), one of the causes of cellular dysfunction and death, is associated with increased expression of genes involved in cellular adaptation to a hypoxic environment. Hypoxic inducible factors (HIFs) have a central role in the response to processes initiated by IRI not only linked to erythropoietin production but also because of their participation in inflammation, angiogenesis, metabolic adaptation, and fibrosis. While pericytes have an essential physiological function in erythropoietin production, a lesser-known role of HIF stabilization during IRI is that pericytes' HIF expression could influence vascular remodeling, cell loss and organ fibrosis. Better knowledge of mechanisms that control functions and consequences of HIF stabilization in pericytes beyond erythropoietin production is advisable for the development of therapeutic strategies to influence disease progression and improve treatments. Thus, in this review, we discuss the dual roles-for good or bad-of HIF stabilization during IRI, focusing on pericytes, and consequences in particular for the kidneys.
Collapse
Affiliation(s)
- Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Bengt Lindholm
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
7
|
Kalinin RE, Suchkov IA, Raitsev SN, Zvyagina VI, Bel'skikh ES. Role of Hypoxia-Inducible Factor 1α in Adaptation to Hypoxia in the Pathogenesis of Novel Coronavirus Disease 2019. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2024; 32:133-144. [DOI: 10.17816/pavlovj165536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
INTRODUCTION: A novel coronavirus (severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)) emerged in December 2019 and rapidly spread over the world having provoked a pandemic of respiratory disease. This highly pathogenic virus can attack the lung tissue and derange gas exchange leading to acute respiratory distress syndrome and systemic hypoxia. Hypoxic conditions trigger activation of adaptation mechanisms including hypoxia-inducible factor-1á (HIF-1á) which is involved in the regulation of the key processes, e. g, proliferation and metabolism of cells and angiogenesis. Besides, the level of HIF-1á expression is associated with the intensity of the immune response of an organism including that of the innate immunity mediating inflammatory reaction. Therefore, understanding the peculiarities of the mechanisms underlying the pathogenesis of this disease is of great importance for effective therapy of coronavirus disease 2019 (COVID-19).
AIM: Analysis of the current data on HIF-1á and its effect on the pathogenesis and progression of COVID-19.
The analysis of the relevant domestic and international literature sources was performed in the following sections: HIF-1á as a key factor of adaptation to hypoxia, targets for HIF-1á in the aspect of the pathogenesis of COVID-19, disorders in HIF-1á-mediated adaptation to hypoxia as an element of the pathogenesis of hyperactivation of the immune cells.
CONCLUSION: HIF-1á prevents penetration of SARS-CoV-2 virus into a cell and primarily acts as the main regulator of the proinflammatory activity at the inflammation site surrounded by hypoxia. In the conditions of the deranged metabolic flexibility, a high level of HIF-1á evokes an excessive inflammatory response of the immune cells. A high HIF-1á level in cells of the inflammation focus is associated with enhanced production of the factors of angiogenesis mediating vascular permeability and capillary leakage process. This is accompanied by tissue damage and organ failure. At the same time, HIF-1á can mediate the anti-inflammatory effect through activation of adenosine receptor-dependent pathway, which is considered as a probable protection of cells and organs against damage by hyperactive immune cells.
Collapse
|
8
|
Solanki S, Shah YM. Hypoxia-Induced Signaling in Gut and Liver Pathobiology. ANNUAL REVIEW OF PATHOLOGY 2024; 19:291-317. [PMID: 37832943 DOI: 10.1146/annurev-pathmechdis-051122-094743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Oxygen (O2) is essential for cellular metabolism and biochemical reactions. When the demand for O2 exceeds the supply, hypoxia occurs. Hypoxia-inducible factors (HIFs) are essential to activate adaptive and survival responses following hypoxic stress. In the gut (intestines) and liver, the presence of oxygen gradients or physiologic hypoxia is necessary to maintain normal homeostasis. While physiologic hypoxia is beneficial and aids in normal functions, pathological hypoxia is harmful as it exacerbates inflammatory responses and tissue dysfunction and is a hallmark of many cancers. In this review, we discuss the role of gut and liver hypoxia-induced signaling, primarily focusing on HIFs, in the physiology and pathobiology of gut and liver diseases. Additionally, we examine the function of HIFs in various cell types during gut and liver diseases, beyond intestinal epithelial and hepatocyte HIFs. This review highlights the importance of understanding hypoxia-induced signaling in the pathogenesis of gut and liver diseases and emphasizes the potential of HIFs as therapeutic targets.
Collapse
Affiliation(s)
- Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Dinarello A, Betto RM, Diamante L, Tesoriere A, Ghirardo R, Cioccarelli C, Meneghetti G, Peron M, Laquatra C, Tiso N, Martello G, Argenton F. STAT3 and HIF1α cooperatively mediate the transcriptional and physiological responses to hypoxia. Cell Death Discov 2023; 9:226. [PMID: 37407568 DOI: 10.1038/s41420-023-01507-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
STAT3 and HIF1α are two fundamental transcription factors involved in many merging processes, like angiogenesis, metabolism, and cell differentiation. Notably, under pathological conditions, the two factors have been shown to interact genetically, but both the molecular mechanisms underlying such interactions and their relevance under physiological conditions remain unclear. In mouse embryonic stem cells (ESCs) we manage to determine the specific subset of hypoxia-induced genes that need STAT3 to be properly transcribed and, among them, fundamental genes like Vegfa, Hk1, Hk2, Pfkp and Hilpda are worth mentioning. Unexpectedly, we also demonstrated that the absence of STAT3 does not affect the expression of Hif1α mRNA nor the stabilization of HIF1α protein, but the STAT3-driven regulation of the hypoxia-dependent subset of gene could rely on the physical interaction between STAT3 and HIF1α. To further elucidate the physiological roles of this STAT3 non-canonical nuclear activity, we used a CRISPR/Cas9 zebrafish stat3 knock-out line. Notably, hypoxia-related fluorescence of the hypoxia zebrafish reporter line (HRE:mCherry) cannot be induced when Stat3 is not active and, while Stat3 Y705 phosphorylation seems to have a pivotal role in this process, S727 does not affect the Stat3-dependent hypoxia response. Hypoxia is fundamental for vascularization, angiogenesis and immune cells mobilization; all processes that, surprisingly, cannot be induced by low oxygen levels when Stat3 is genetically ablated. All in all, here we report the specific STAT3/HIF1α-dependent subset of genes in vitro and, for the first time with an in vivo model, we determined some of the physiological roles of STAT3-hypoxia crosstalk.
Collapse
Affiliation(s)
| | | | - Linda Diamante
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | | | | - Claudio Laquatra
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | | | | |
Collapse
|
10
|
DeBerge M, Chaudhary R, Schroth S, Thorp EB. Immunometabolism at the Heart of Cardiovascular Disease. JACC Basic Transl Sci 2023; 8:884-904. [PMID: 37547069 PMCID: PMC10401297 DOI: 10.1016/j.jacbts.2022.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 08/08/2023]
Abstract
Immune cell function among the myocardium, now more than ever, is appreciated to regulate cardiac function and pathophysiology. This is the case for both innate immunity, which includes neutrophils, monocytes, dendritic cells, and macrophages, as well as adaptive immunity, which includes T cells and B cells. This function is fueled by cell-intrinsic shifts in metabolism, such as glycolysis and oxidative phosphorylation, as well as metabolite availability, which originates from the surrounding extracellular milieu and varies during ischemia and metabolic syndrome. Immune cell crosstalk with cardiac parenchymal cells, such as cardiomyocytes and fibroblasts, is also regulated by complex cellular metabolic circuits. Although our understanding of immunometabolism has advanced rapidly over the past decade, in part through valuable insights made in cultured cells, there remains much to learn about contributions of in vivo immunometabolism and directly within the myocardium. Insight into such fundamental cell and molecular mechanisms holds potential to inform interventions that shift the balance of immunometabolism from maladaptive to cardioprotective and potentially even regenerative. Herein, we review our current working understanding of immunometabolism, specifically in the settings of sterile ischemic cardiac injury or cardiometabolic disease, both of which contribute to the onset of heart failure. We also discuss current gaps in knowledge in this context and therapeutic implications.
Collapse
Affiliation(s)
| | | | - Samantha Schroth
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
11
|
Yang Y, Geng Y, Cheng X, Gao J, Shi Z, Zhao M. Cyclooxygenase‑2 contributes to the hypoxia‑induced aggravation of the neuroinflammation response stimulated by lipopolysaccharide in microglia. Exp Ther Med 2023; 25:123. [PMID: 36845947 PMCID: PMC9947573 DOI: 10.3892/etm.2023.11822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Hypoxia and neuroinflammation are key risk factors involved in various pathophysiological neural disorders. Hypoxia can aggravate neuroinflammation in vitro and in vivo; however, the underlying mechanisms remain unknown. In the present study, hypoxia [either 3 or 1% oxygen (O2)] increased lipopolysaccharide (LPS)-induced expression of the IL-6, IL-1β and TNF-α proinflammatory cytokines in BV2 cells. At the molecular level, both hypoxia and FG-4592, an hypoxia inducible factor 1 pathway activator, effectively induced cyclooxygenase-2 (COX-2) expression. The COX-2 inhibitor celecoxib significantly reduced the expression of cytokines induced by LPS under hypoxic conditions. Additionally, the administration of celecoxib inhibited the activation of microglia as well as cytokine expression in mice administered with hypoxia exposure and LPS injection. The present data demonstrated that COX-2 is involved in the hypoxia-induced aggravation of neuroinflammation stimulated by LPS.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Pain Medicine, Peking University People's Hospital, Beijing 100044, P.R. China,Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Yanan Geng
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Xiang Cheng
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Jiayue Gao
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Zibi Shi
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Ming Zhao
- Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China,Correspondence to: Dr Ming Zhao, Department of Brain Plasticity, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian, Beijing 100850, P.R. China
| |
Collapse
|
12
|
Hypoxia and Intestinal Inflammation: Common Molecular Mechanisms and Signaling Pathways. Int J Mol Sci 2023; 24:ijms24032425. [PMID: 36768744 PMCID: PMC9917195 DOI: 10.3390/ijms24032425] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The gastrointestinal tract (GI) has a unique oxygenation profile. It should be noted that the state of hypoxia can be characteristic of both normal and pathological conditions. Hypoxia-inducible factors (HIF) play a key role in mediating the response to hypoxia, and they are tightly regulated by a group of enzymes called HIF prolyl hydroxylases (PHD). In this review, we discuss the involvement of inflammation hypoxia and signaling pathways in the pathogenesis of inflammatory bowel disease (IBD) and elaborate in detail on the role of HIF in multiple immune reactions during intestinal inflammation. We emphasize the critical influence of tissue microenvironment and highlight the existence of overlapping functions and immune responses mediated by the same molecular mechanisms. Finally, we also provide an update on the development of corresponding therapeutic approaches that would be useful for treatment or prophylaxis of inflammatory bowel disease.
Collapse
|
13
|
Lun J, Zhang H, Guo J, Yu M, Fang J. Hypoxia inducible factor prolyl hydroxylases in inflammatory bowel disease. Front Pharmacol 2023; 14:1045997. [PMID: 37201028 PMCID: PMC10187758 DOI: 10.3389/fphar.2023.1045997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease that is characterized by intestinal inflammation. Epithelial damage and loss of intestinal barrier function are believed to be the hallmark pathologies of the disease. In IBD, the resident and infiltrating immune cells consume much oxygen, rendering the inflamed intestinal mucosa hypoxic. In hypoxia, the hypoxia-inducible factor (HIF) is induced to cope with the lack of oxygen and protect intestinal barrier. Protein stability of HIF is tightly controlled by prolyl hydroxylases (PHDs). Stabilization of HIF through inhibition of PHDs is appearing as a new strategy of IBD treatment. Studies have shown that PHD-targeting is beneficial to the treatment of IBD. In this Review, we summarize the current understanding of the role of HIF and PHDs in IBD and discuss the therapeutic potential of targeting PHD-HIF pathway for IBD treatment.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Guo
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Yu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Fang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang,
| |
Collapse
|
14
|
Chou YH, Pan SY, Lin SL. Pleotropic effects of hypoxia-inducible factor-prolyl hydroxylase domain inhibitors: are they clinically relevant? Kidney Res Clin Pract 2023; 42:27-38. [PMID: 36634968 PMCID: PMC9902737 DOI: 10.23876/j.krcp.22.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
Anemia is common in patients with chronic kidney disease (CKD) and is mainly caused by insufficient production of erythropoietin from fibrotic kidney. Because anemia impairs quality of life and overall prognosis, recombinant human erythropoietin-related products (erythropoiesis-stimulating agents, ESAs) have been developed to increase hemoglobin level for decades. However, many safety concerns have been announced regarding the use of ESAs, including an increased occurrence of cardiovascular events, vascular access thrombosis, cancer progression, and recurrence. Hypoxia-inducible factor (HIF) is crucial to erythropoietin production, as a result, prolyl hydroxylase domain (PHD) enzyme inhibitors have been new therapeutic agents for the treatment of anemia in CKD. They can be administered orally, which is a preferred route for patients not undergoing hemodialysis. In clinical trials, PHD inhibitor could induce noninferior effect on erythropoiesis and improve functional iron deficiency compared with ESAs. Although no serious adverse events were reported, safety is still a concern because HIF stabilization induced by PHD inhibitor has pleotropic effects, such as angiogenesis, metabolic change, and cell survival, which might lead to unwanted deleterious effects, including fibrosis, inflammation, cardiovascular risk, and tumor growth. More molecular mechanisms of PHD inhibition and long-term clinical trials are needed to observe these pleotropic effects for the confirmation of safety and efficacy of PHD inhibitors.
Collapse
Affiliation(s)
- Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Yu Pan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan,Graduate Institute of Physiology, National Taiwan University School of Medicine, Taipei, Taiwan,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan,Correspondence: Shuei-Liong Lin Graduate Institute of Physiology, National Taiwan University School of Medicine, No. 1, Jen-Ai Road Section 1, Taipei, 100, Taiwan. E-mail:
| |
Collapse
|
15
|
Loh W, Vermeren S. Anti-Inflammatory Neutrophil Functions in the Resolution of Inflammation and Tissue Repair. Cells 2022; 11:cells11244076. [PMID: 36552840 PMCID: PMC9776979 DOI: 10.3390/cells11244076] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are highly abundant circulating leukocytes that are amongst the first cells to be recruited to sites of infection or sterile injury. Their ability to generate and release powerful cytotoxic products ties with their role in host defence from bacterial and fungal infections. Neutrophilic inflammation is tightly regulated to limit the amount of 'bystander injury' caused. Neutrophils were in the past regarded as short-lived, indiscriminate killers of invading microorganisms. However, this view has changed quite dramatically in recent years. Amongst other insights, neutrophils are now recognised to also have important anti-inflammatory functions that are critical for the resolution of inflammation and return to homeostasis. This minireview focusses on anti-inflammatory neutrophil functions, placing a particular focus on recent findings linked to neutrophil cell death, several types of which may be anti-inflammatory (apoptosis, secondary necrosis, and neutrophil extracellular traps). These are discussed together with features that may further promote the clearance of dead cells by efferocytosis and reprogramming of macrophages to promote resolution and repair.
Collapse
Affiliation(s)
- Waywen Loh
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Sonja Vermeren
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH10 5HF, UK
| |
Collapse
|
16
|
von Willebrand factor links primary hemostasis to innate immunity. Nat Commun 2022; 13:6320. [PMID: 36329021 PMCID: PMC9633696 DOI: 10.1038/s41467-022-33796-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
The plasma multimeric glycoprotein von Willebrand factor (VWF) plays a critical role in primary hemostasis by tethering platelets to exposed collagen at sites of vascular injury. Recent studies have identified additional biological roles for VWF, and in particular suggest that VWF may play an important role in regulating inflammatory responses. However, the molecular mechanisms through which VWF exerts its immuno-modulatory effects remain poorly understood. In this study, we report that VWF binding to macrophages triggers downstream MAP kinase signaling, NF-κB activation and production of pro-inflammatory cytokines and chemokines. In addition, VWF binding also drives macrophage M1 polarization and shifts macrophage metabolism towards glycolysis in a p38-dependent manner. Cumulatively, our findings define an important biological role for VWF in modulating macrophage function, and thereby establish a novel link between primary hemostasis and innate immunity.
Collapse
|
17
|
Winning S, Fandrey J. Oxygen Sensing in Innate Immune Cells: How Inflammation Broadens Classical Hypoxia-Inducible Factor Regulation in Myeloid Cells. Antioxid Redox Signal 2022; 37:956-971. [PMID: 35088604 DOI: 10.1089/ars.2022.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Significance: Oxygen deprivation (hypoxia) is a common feature at sites of inflammation. Immune cells and all other cells present at the inflamed site have to adapt to these conditions. They do so by stabilization and activation of hypoxia-inducible factor subunit α (HIF-1α and HIF-2α, respectively), enabling constant generation of adenosine triphosphate (ATP) under these austere conditions by the induction of, for example, glycolytic pathways. Recent Advances: During recent years, it has become evident that HIFs play a far more important role than initially believed because they shape the inflammatory phenotype of immune cells. They are indispensable for migration, phagocytosis, and the induction of inflammatory cytokines by innate immune cells and thereby enable a crosstalk between innate and adaptive immunity. In short, they ensure the survival and function of immune cells under critical conditions. Critical Issues: Up to now, there are still open questions regarding the individual roles of HIF-1 and HIF-2 for the different cell types. In particular, the loss of both HIF-1 and HIF-2 in myeloid cells led to unexpected and contradictory results in the mouse models analyzed so far. Similarly, the role of HIF-1 in dendritic cell maturation is unclear due to inconsistent results from in vitro experiments. Future Directions: The HIFs are indispensable for immune cell survival and action under inflammatory conditions, but they might also trigger over-activation of immune cells. Therefore, they might be excellent setscrews to adjust the inflammatory response by pharmaceuticals. China and Japan and very recently (August 2021) Europe have approved prolyl hydroxylase inhibitors (PHIs) to stabilize HIF such as roxadustat for clinical use to treat anemia by increasing the production of erythropoietin, the classical HIF target gene. Nonetheless, we need further work regarding the use of PHIs under inflammatory conditions, because HIFs show specific activation and distinct expression patterns in innate immune cells. The extent to which HIF-1 or HIF-2 as a transcription factor regulates the adaptation of immune cells to inflammatory hypoxia differs not only by the cell type but also with the inflammatory challenge and the surrounding tissue. Therefore, we urgently need isoform- and cell type-specific modulators of the HIF pathway. Antioxid. Redox Signal. 37, 956-971.
Collapse
Affiliation(s)
- Sandra Winning
- Institut für Physiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Joachim Fandrey
- Institut für Physiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Wu M, Liang Y, Zhang X. Changes in Pulmonary Microenvironment Aids Lung Metastasis of Breast Cancer. Front Oncol 2022; 12:860932. [PMID: 35719975 PMCID: PMC9204317 DOI: 10.3389/fonc.2022.860932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has become the most common malignant disease in the world according to the International Agency for Research on Cancer (IARC), and the most critical cause of death is distant metastasis. The lung is the extremely common visceral site for breast cancer metastasis. Lung metastasis of breast cancer is not only dependent on the invasive ability of the tumor itself, but also closely relates to the pulmonary microenvironment. In the progression of breast cancer, the formation of specific microenvironment in lungs can provide suitable conditions for the metastasis of breast cancer. Pulmonary inflammatory response, angiogenesis, extracellular matrix remodeling, some chemotherapeutic agents and so on all play important roles in the formation of the pulmonary microenvironment. This review highlights recent findings regarding the alterations of pulmonary microenvironment in lung metastasis of breast cancer, with a focus on various cells and acellular components.
Collapse
Affiliation(s)
- Meimei Wu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China.,Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
19
|
Morbid Obesity in Women Is Associated with an Altered Intestinal Expression of Genes Related to Cancer Risk and Immune, Defensive, and Antimicrobial Response. Biomedicines 2022; 10:biomedicines10051024. [PMID: 35625760 PMCID: PMC9138355 DOI: 10.3390/biomedicines10051024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Little is known about the relation between morbid obesity and duodenal transcriptomic changes. We aimed to identify intestinal genes that may be associated with the development of obesity regardless of the degree of insulin resistance (IR) of patients. Material and Methods: Duodenal samples were assessed by microarray in three groups of women: non-obese women and women with morbid obesity with low and high IR. Results: We identified differentially expressed genes (DEGs) associated with morbid obesity, regardless of IR degree, related to digestion and lipid metabolism, defense response and inflammatory processes, maintenance of the gastrointestinal epithelium, wound healing and homeostasis, and the development of gastrointestinal cancer. However, other DEGs depended on the IR degree. We mainly found an upregulation of genes involved in the response to external organisms, hypoxia, and wound healing functions in women with morbid obesity and low IR. Conclusions: Regardless of the degree of IR, morbid obesity is associated with an altered expression of genes related to intestinal defenses, antimicrobial and immune responses, and gastrointestinal cancer. Our data also suggest a deficient duodenal immune and antimicrobial response in women with high IR.
Collapse
|
20
|
Epigallocatechin Gallate Protects against Hypoxia-Induced Inflammation in Microglia via NF-κB Suppression and Nrf-2/HO-1 Activation. Int J Mol Sci 2022; 23:ijms23074004. [PMID: 35409364 PMCID: PMC8999549 DOI: 10.3390/ijms23074004] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-induced neuroinflammation in stroke, neonatal hypoxic encephalopathy, and other diseases subsequently contributes to neurological damage and neuronal diseases. Microglia are the primary neuroimmune cells that play a crucial role in cerebral inflammation. Epigallocatechin gallate (EGCG) has a protective antioxidant and anti-inflammatory effects against neuroinflammation. However, the effects of EGCG on hypoxia-induced inflammation in microglia and the underlying mechanism remain unclear. In this study, we investigated whether EGCG might have a protective effect against hypoxia injury in microglia by treatment with CoCl2 to establish a hypoxic model of BV2 microglia cells following EGCG pre-treatment. An exposure of cells to CoCl2 caused an increase in inflammatory mediator interleukin (IL)-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 expression, which were significantly ameliorated by EGCG via inhibition of NF-κB pathway. In addition, EGCG attenuated the expression of hypoxia-inducible factor (HIF)-1α and the generation of ROS in hypoxic BV2 cells. Furthermore, the suppression of hypoxia-induced IL-6 production by EGCG was mediated via the inhibition of HIF-1α expression and the suppression of ROS generation in BV2 cells. Notably, EGCG increased the Nrf-2 levels and HO-1 levels in the presence of CoCl2. Additionally, EGCG suppressed hypoxia-induced apoptosis of BV2 microglia with cleavage of poly (ADP-ribose) polymerase (PARP) and caspase-3. In summary, EGCG protects microglia from hypoxia-induced inflammation and oxidative stress via abrogating the NF-κB pathway as well as activating the Nrf-2/HO-1 pathway.
Collapse
|
21
|
Masuda S, Kato K, Ishibashi M, Nishibata Y, Sugimoto A, Nakazawa D, Tanaka S, Tomaru U, Tsujino I, Ishizu A. Phorbol 12-myristate 13-acetate stimulation under hypoxia induces nuclear swelling with DNA outflow but not extracellular trap formation of neutrophils. Exp Mol Pathol 2022; 125:104754. [DOI: 10.1016/j.yexmp.2022.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/28/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
|
22
|
Bondeva T, Wolf G. Cloning of the Human MORG1 Promoter: Differential Regulation by Hypoxia and Prolyl-Hydroxylase Inhibitors. Genes (Basel) 2022; 13:genes13030427. [PMID: 35327980 PMCID: PMC8954370 DOI: 10.3390/genes13030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
MAPK-organizer 1 (MORG1) is a molecular scaffold for prolyl-hydroxylase-3 containing a domain (PHD3) protein linking MORG1 to mechanisms of adaptation in hypoxic conditions. In this paper, we report the cloning of the promoter region of the murine and human MORG1 gene. Among other transcriptional factors binding sites, we identified that both (mouse and human) promoter regions contained several putative hypoxia-inducible factor binding motifs. Analyses of the human MORG1 promoter by reporter assays revealed that hypoxia and pharmacological inhibitors of prolyl-hydroxylases under in vitro conditions in HEK 293 cells differentially regulate the MORG1 promoter reporter activity. The exposure of the cells to 10% hypoxia showed inhibition of MORG1 promotor activity at 6 and 12 h, but stimulation after 24 h while treated with prolyl-hydroxylase inhibitors led to a time-independent MORG1 promoter activation. Mutational analyses of the individual HIF binding sites on human MORG1 promoter suggest that the binding sites work in a complex corporation because single mutations were not sufficient to abolish completely the MORG1 reporter activation by PHD inhibitors. Our data provide the first evidence that not only MORG1 regulate HIF stabilization through a PHD complex, but also that, vice versa, HIFs control MORG1 expression directly or indirectly by a complex regulatory mechanism.
Collapse
|
23
|
He Z, Deng F, Ma Z, Zhang Q, He J, Ye L, Chen H, Yang D, He L, Luo J, Yan T. Molecular characterization, expression, and apoptosis regulation of siva1 in protogynous hermaphrodite fish ricefield eel (Monopterus albus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1585-1596. [PMID: 34414556 DOI: 10.1007/s10695-021-00997-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Siva1, which induces extensive apoptosis, has been well characterized. To elucidate the molecular function of Siva1 in ricefield eel, molecular characterization and phylogenetic analysis were performed, and the mRNA expression in the ovary at different developmental stages and ovary tissues exposed to H2O2 and Z-VAD-FMK in vitro were also evaluated. The results indicated that ricefield eel Siva1 was highly conserved and contains three conserved motifs, despite 83 amino acid differences upstream of the initiation codon. Phylogenetic analysis demonstrated that ricefield eel Siva1 clusters together with the Siva1 protein of the other fish, with high sequence homology with that of Lates calcarifer. Quantitative real-time polymerase chain reaction analysis showed high siva1 expression levels in the ovary and low expression levels in the liver. The higher mRNA levels of siva1 were detected in the IE and IM, and the lower siva1 mRNA levels were found in the OM, IL, and TE during gonadal development. Additionally, siva1 expression levels in the ovarian tissues were significantly increased at 1 h post incubation (hpi) with H2O2 and then significantly decreased at 2 hpi; however, siva1 expression was upregulated significantly at 4 and 8 hpi, similar to the patterns observed with caspase3, which was used as a molecular marker of apoptosis. Moreover, the siva1 mRNAs were elevated significantly than that in control groups at 1 hpi, but the expression of siva1 was down-regulated dramatically at 2, 4, and 8 hpi, which were similar with that of caspase3 expression profiles after Z-VAD-FMK incubation. What's more, Pearson's correlation coefficients showed strongly positive relationships between siva1 and caspase3. These findings suggest that Siva1 plays an important apoptosis role in gonadal development of ricefield eel.
Collapse
Affiliation(s)
- Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Faqiang Deng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhijun Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiayang He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijuan Ye
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongjun Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liang He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
24
|
DeBerge M, Lantz C, Dehn S, Sullivan DP, van der Laan AM, Niessen HW, Flanagan ME, Brat DJ, Feinstein MJ, Kaushal S, Wilsbacher LD, Thorp EB. Hypoxia-inducible factors individually facilitate inflammatory myeloid metabolism and inefficient cardiac repair. J Exp Med 2021; 218:e20200667. [PMID: 34325467 PMCID: PMC8329871 DOI: 10.1084/jem.20200667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are activated in parenchymal cells in response to low oxygen and as such have been proposed as therapeutic targets during hypoxic insult, including myocardial infarction (MI). HIFs are also activated within macrophages, which orchestrate the tissue repair response. Although isoform-specific therapeutics are in development for cardiac ischemic injury, surprisingly, the unique role of myeloid HIFs, and particularly HIF-2α, is unknown. Using a murine model of myocardial infarction and mice with conditional genetic loss and gain of function, we uncovered unique proinflammatory roles for myeloid cell expression of HIF-1α and HIF-2α during MI. We found that HIF-2α suppressed anti-inflammatory macrophage mitochondrial metabolism, while HIF-1α promoted cleavage of cardioprotective MerTK through glycolytic reprogramming of macrophages. Unexpectedly, combinatorial loss of both myeloid HIF-1α and HIF-2α was catastrophic and led to macrophage necroptosis, impaired fibrogenesis, and cardiac rupture. These findings support a strategy for selective inhibition of macrophage HIF isoforms and promotion of anti-inflammatory mitochondrial metabolism during ischemic tissue repair.
Collapse
Affiliation(s)
- Matthew DeBerge
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Connor Lantz
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Shirley Dehn
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David P. Sullivan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Anja M. van der Laan
- Department of Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans W.M. Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Margaret E. Flanagan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Daniel J. Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Matthew J. Feinstein
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sunjay Kaushal
- Division of Cardiac Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL
| | - Lisa D. Wilsbacher
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
- The Heart Center, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL
| |
Collapse
|
25
|
Nasteska D, Cuozzo F, Viloria K, Johnson EM, Thakker A, Bany Bakar R, Westbrook RL, Barlow JP, Hoang M, Joseph JW, Lavery GG, Akerman I, Cantley J, Hodson L, Tennant DA, Hodson DJ. Prolyl-4-hydroxylase 3 maintains β cell glucose metabolism during fatty acid excess in mice. JCI Insight 2021; 6:e140288. [PMID: 34264866 PMCID: PMC8409982 DOI: 10.1172/jci.insight.140288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
The α-ketoglutarate–dependent dioxygenase, prolyl-4-hydroxylase 3 (PHD3), is an HIF target that uses molecular oxygen to hydroxylate peptidyl prolyl residues. Although PHD3 has been reported to influence cancer cell metabolism and liver insulin sensitivity, relatively little is known about the effects of this highly conserved enzyme in insulin-secreting β cells in vivo. Here, we show that the deletion of PHD3 specifically in β cells (βPHD3KO) was associated with impaired glucose homeostasis in mice fed a high-fat diet. In the early stages of dietary fat excess, βPHD3KO islets energetically rewired, leading to defects in the management of pyruvate fate and a shift from glycolysis to increased fatty acid oxidation (FAO). However, under more prolonged metabolic stress, this switch to preferential FAO in βPHD3KO islets was associated with impaired glucose-stimulated ATP/ADP rises, Ca2+ fluxes, and insulin secretion. Thus, PHD3 might be a pivotal component of the β cell glucose metabolism machinery in mice by suppressing the use of fatty acids as a primary fuel source during the early phases of metabolic stress.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Federica Cuozzo
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Katrina Viloria
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| | - Elspeth M Johnson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Alpesh Thakker
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Rula Bany Bakar
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rebecca L Westbrook
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Jonathan P Barlow
- Mitochondrial Profiling Centre, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Monica Hoang
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Jamie W Joseph
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Ildem Akerman
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - James Cantley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - David J Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
26
|
Li F, Yin C, Ma Z, Yang K, Sun L, Duan C, Wang T, Hussein A, Wang L, Zhu X, Gao P, Xi Q, Zhang Y, Shu G, Wang S, Jiang Q. PHD3 mediates denervation skeletal muscle atrophy through Nf-κB signal pathway. FASEB J 2021; 35:e21444. [PMID: 33749901 DOI: 10.1096/fj.202002049r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscle is the largest organ of the body, the development of skeletal muscle is very important for the health of the animal body. Prolyl hydroxylases (PHDs) are the classical regulator of the hypoxia inducible factor (HIF) signal pathway, many researchers found that PHDs are involved in the muscle fiber type transformation, muscle regeneration, and myocyte differentiation. However, whether PHDs can impact the protein turnover of skeletal muscle is poorly understood. In this study, we constructed denervated muscle atrophy mouse model and found PHD3 was highly expressed in the atrophic muscles and there was a significant correlation between the expression level of PHD3 and skeletal muscle weight which was distinct from PHD1 and PHD2. Then, the similar results were getting from the different weight muscles of normal mice. To further verify the relationship between PHD3 and skeletal muscle protein turnover, we established a PHD3 interference model by injecting PHD3 sgRNA virus into tibialis anterior muscle (TA) muscle of MCK-Cre-cas9 mice and transfecting PHD3 shRNA lentivirus into primary satellite cells. It was found that the Knock-out of PHD3 in vivo led to a significant increase in muscle weight and muscle fiber area (P < .05). Besides, the activity of protein synthesis signal pathway increased significantly, while the protein degradation pathway was inhibited evidently (P < .05). In vitro, the results of 5-ethynyl-2'-deoxyuridine (EdU) and tetramethylrhodamine ethyl ester (TMRE) fluorescence detection showed that PHD3 interference could lead to a decrease in cell proliferation and an increase of cell apoptosis. After the differentiation of satellite cells, the production of puromycin in the interference group was higher than that in the control group, and the content of 3-methylhistidine in the interference group was lower than that in the control group (P < .05) which is consistent with the change of protein turnover signal pathway in the cell. Mechanistically, there is an interaction between PHD3, NF-κB, and IKBα which was detected by immunoprecipitation. With the interfering of PHD3, the expression of the inflammatory signal pathway also significantly decreased (P < .05). These results suggest that PHD3 may affect protein turnover in muscle tissue by mediating inflammatory signal pathway. Finally, we knocked out PHD3 in denervated muscle atrophy mice and LPS-induced myotubes atrophy model. Then, we found that the decrease of PHD3 protein level could alleviate the muscle weight and muscle fiber reduction induced by denervation in mice. Meanwhile, the protein level of the inflammatory signal pathway and the content of 3-methylhistidine in denervated atrophic muscle were also significantly reduced (P < .05). In vitro, PHD3 knock-out could alleviate the decrease of myotube diameter induced by LPS, and the expression of protein synthesis pathway was also significantly increased (P < .05). On the contrary, the expression level of protein degradation and inflammatory signal pathway was significantly decreased (P < .05). Through these series of studies, we found that the increased expression of PHD3 in denervated muscle might be an important regulator in inducing muscle atrophy, and this process is likely to be mediated by the inflammatory NF-κB signal pathway.
Collapse
Affiliation(s)
- Fan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Cong Yin
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zewei Ma
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kelin Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Lijuan Sun
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chen Duan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tao Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Abdelaziz Hussein
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lina Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaotong Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ping Gao
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Songbo Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry and Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Zhu Z, Zheng Z, Liu J. Comparison of COVID-19 and Lung Cancer via Reactive Oxygen Species Signaling. Front Oncol 2021; 11:708263. [PMID: 34277453 PMCID: PMC8283805 DOI: 10.3389/fonc.2021.708263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
COVID-19 and lung cancer are two severe pulmonary diseases that cause millions of deaths globally each year. Understanding the dysregulated signaling pathways between them can benefit treating the related patients. Recent studies suggest the critical role of reactive oxygen species (ROS) in both diseases, indicating an interplay between them. Here we reviewed references showing that ROS and ROS-associated signaling pathways, specifically via NRF2, HIF-1, and Nf-κB pathways, may bridge mutual impact between COVID-19 and lung cancer. As expected, typical ROS-associated inflammation pathways (HIF-1 and Nf-κB) are activated in both diseases. The activation of both pathways in immune cells leads to an overloading immune response and exacerbates inflammation in COVID-19. In lung cancer, HIF-1 activation facilitates immune escape, while Nf-κB activation in T cells suppresses tumor growth. However, the altered NRF2 pathway show opposite trends between them, NRF2 pathways exert immunosuppressive effects in both diseases, as it represses the immune response in COVID-19 patients while facilitates the immune escape of tumor cells. Furthermore, we summarized the therapeutic targets (e.g., phytochemicals) on these ROS pathways. In sum, our review focus on the understanding of ROS Signaling in COVID-19 and lung cancer, showing that modulating ROS signaling pathways may alleviate the potentially mutual impacts between COVID-19 and lung cancer patients.
Collapse
Affiliation(s)
- Zilan Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Ziyi Zheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| |
Collapse
|
28
|
Prados ME, García-Martín A, Unciti-Broceta JD, Palomares B, Collado JA, Minassi A, Calzado MA, Appendino G, Muñoz E. Betulinic acid hydroxamate prevents colonic inflammation and fibrosis in murine models of inflammatory bowel disease. Acta Pharmacol Sin 2021; 42:1124-1138. [PMID: 32811965 DOI: 10.1038/s41401-020-0497-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 02/08/2023] Open
Abstract
Intestinal fibrosis is a common complication of inflammatory bowel disease (IBD) and is defined as an excessive accumulation of scar tissue in the intestinal wall. Intestinal fibrosis occurs in both forms of IBD: ulcerative colitis and Crohn's disease. Small-molecule inhibitors targeting hypoxia-inducing factor (HIF) prolyl-hydroxylases are promising for the development of novel antifibrotic therapies in IBD. Herein, we evaluated the therapeutic efficacy of hydroxamate of betulinic acid (BHA), a hypoxia mimetic derivative of betulinic acid, against IBD in vitro and in vivo. We showed that BAH (5-20 μM) dose-dependently enhanced collagen gel contraction and activated the HIF pathway in NIH-3T3 fibroblasts; BAH treatment also prevented the loss of trans-epithelial electrical resistance induced by proinflammatory cytokines in Caco-2 cells. In two different murine models (TNBS- and DSS-induced IBD) that cause colon fibrosis, oral administration of BAH (20, 50 mg/kg·d, for 17 days) prevented colon inflammation and fibrosis, as detected using immunohistochemistry and qPCR assays. BAH-treated animals showed a significant reduction of fibrotic markers (Tnc, Col1a2, Col3a1, Timp-1, α-SMA) and inflammatory markers (F4/80+, CD3+, Il-1β, Ccl3) in colon tissue, as well as an improvement in epithelial barrier integrity and wound healing. BHA displayed promising oral bioavailability, no significant activity against a panel of 68 potential pharmacological targets and was devoid of genotoxicity and cardiotoxicity. Taken together, our results provide evidence that oral administration of BAH can alleviate colon inflammation and colitis-associated fibrosis, identifying the enhancement of colon barrier integrity as a possible mechanism of action, and providing a solid rationale for additional clinical studies.
Collapse
|
29
|
HIF2α is a direct regulator of neutrophil motility. Blood 2021; 137:3416-3427. [PMID: 33619535 DOI: 10.1182/blood.2020007505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/24/2021] [Indexed: 12/19/2022] Open
Abstract
Orchestrated recruitment of neutrophils to inflamed tissue is essential during the initiation of inflammation. Inflamed areas are usually hypoxic, and adaptation to reduced oxygen pressure is typically mediated by hypoxia pathway proteins. However, it remains unclear how these factors influence the migration of neutrophils to and at the site of inflammation during their transmigration through the blood-endothelial cell barrier, as well as their motility in the interstitial space. Here, we reveal that activation of hypoxia-inducible factor 2 (HIF2α) as a result of a deficiency in HIF prolyl hydroxylase domain protein 2 (PHD2) boosts neutrophil migration specifically through highly confined microenvironments. In vivo, the increased migratory capacity of PHD2-deficient neutrophils resulted in massive tissue accumulation in models of acute local inflammation. Using systematic RNA sequencing analyses and mechanistic approaches, we identified RhoA, a cytoskeleton organizer, as the central downstream factor that mediates HIF2α-dependent neutrophil motility. Thus, we propose that the novel PHD2-HIF2α-RhoA axis is vital to the initial stages of inflammation because it promotes neutrophil movement through highly confined tissue landscapes.
Collapse
|
30
|
Chen W, Song J, Liu S, Tang B, Shen L, Zhu J, Fang S, Wu F, Zheng L, Qiu R, Chen C, Gao Y, Tu J, Zhao Z, Ji J. USP9X promotes apoptosis in cholangiocarcinoma by modulation expression of KIF1Bβ via deubiquitinating EGLN3. J Biomed Sci 2021; 28:44. [PMID: 34112167 PMCID: PMC8191029 DOI: 10.1186/s12929-021-00738-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background Cholangiocarcinoma represents the second most common primary liver malignancy. The incidence rate has constantly increased over the last decades. Cholangiocarcinoma silent nature limits early diagnosis and prevents efficient treatment. Methods Immunoblotting and immunohistochemistry were used to assess the expression profiling of USP9X and EGLN3 in cholangiocarcinoma patients. ShRNA was used to silence gene expression. Cell apoptosis, cell cycle, CCK8, clone formation, shRNA interference and xenograft mouse model were used to explore biological function of USP9X and EGLN3. The underlying molecular mechanism of USP9X in cholangiocarcinoma was determined by immunoblotting, co-immunoprecipitation and quantitative real time PCR (qPCR). Results Here we demonstrated that USP9X is downregulated in cholangiocarcinoma which contributes to tumorigenesis. The expression of USP9X in cholangiocarcinoma inhibited cell proliferation and colony formation in vitro as well as xenograft tumorigenicity in vivo. Clinical data demonstrated that expression levels of USP9X were positively correlated with favorable clinical outcomes. Mechanistic investigations further indicated that USP9X was involved in the deubiquitination of EGLN3, a member of 2-oxoglutarate and iron-dependent dioxygenases. USP9X elicited tumor suppressor role by preventing degradation of EGLN3. Importantly, knockdown of EGLN3 impaired USP9X-mediated suppression of proliferation. USP9X positively regulated the expression level of apoptosis pathway genes de through EGLN3 thus involved in apoptosis of cholangiocarcinoma. Conclusion These findings help to understand that USP9X alleviates the malignant potential of cholangiocarcinoma through upregulation of EGLN3. Consequently, we provide novel insight into that USP9X is a potential biomarker or serves as a therapeutic or diagnostic target for cholangiocarcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00738-2.
Collapse
Affiliation(s)
- Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Siyu Liu
- Clinical Laboratory, Lishui Central Hospital, Lishui, 323000, China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Fazong Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Rongfang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Chunmiao Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Yang Gao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China.
| |
Collapse
|
31
|
Houseright RA, Miskolci V, Mulvaney O, Bortnov V, Mosher DF, Rindy J, Bennin DA, Huttenlocher A. Myeloid-derived growth factor regulates neutrophil motility in interstitial tissue damage. J Cell Biol 2021; 220:212198. [PMID: 34047769 PMCID: PMC8167897 DOI: 10.1083/jcb.202103054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/25/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophil recruitment to tissue damage is essential for host defense but can also impede tissue repair. The cues that differentially regulate neutrophil responses to tissue damage and infection remain unclear. Here, we report that the paracrine factor myeloid-derived growth factor (MYDGF) is induced by tissue damage and regulates neutrophil motility to damaged, but not infected, tissues in zebrafish larvae. Depletion of MYDGF impairs wound healing, and this phenotype is rescued by depleting neutrophils. Live imaging and photoconversion reveal impaired neutrophil reverse migration and inflammation resolution in mydgf mutants. We found that persistent neutrophil inflammation in tissues of mydgf mutants was dependent on the HIF-1α pathway. Taken together, our data suggest that MYDGF is a damage signal that regulates neutrophil interstitial motility and inflammation through a HIF-1α pathway in response to tissue damage.
Collapse
Affiliation(s)
- Ruth A Houseright
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
| | - Veronika Miskolci
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI
| | - Oscar Mulvaney
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| | - Valeriu Bortnov
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Julie Rindy
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| | - David A Bennin
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
32
|
Reyes L, A. Sanchez-Garcia M, Morrison T, Howden AJM, Watts ER, Arienti S, Sadiku P, Coelho P, Mirchandani AS, Zhang A, Hope D, Clark SK, Singleton J, Johnston S, Grecian R, Poon A, McNamara S, Harper I, Fourman MH, Brenes AJ, Pathak S, Lloyd A, Blanco GR, von Kriegsheim A, Ghesquiere B, Vermaelen W, Cologna CT, Dhaliwal K, Hirani N, Dockrell DH, Whyte MKB, Griffith D, Cantrell DA, Walmsley SR. -------A type I IFN, prothrombotic hyperinflammatory neutrophil signature is distinct for COVID-19 ARDS--. Wellcome Open Res 2021; 6:38. [PMID: 33997298 PMCID: PMC8112464 DOI: 10.12688/wellcomeopenres.16584.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a severe critical condition with a high mortality that is currently in focus given that it is associated with mortality caused by coronavirus disease 2019 (COVID-19). Neutrophils play a key role in the lung injury characteristic of non-COVID-19 ARDS and there is also accumulating evidence of neutrophil mediated lung injury in patients who succumb to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We undertook a functional proteomic and metabolomic survey of circulating neutrophil populations, comparing patients with COVID-19 ARDS and non-COVID-19 ARDS to understand the molecular basis of neutrophil dysregulation. Results: Expansion of the circulating neutrophil compartment and the presence of activated low and normal density mature and immature neutrophil populations occurs in ARDS, irrespective of cause. Release of neutrophil granule proteins, neutrophil activation of the clotting cascade and upregulation of the Mac-1 platelet binding complex with formation of neutrophil platelet aggregates is exaggerated in COVID-19 ARDS. Importantly, activation of components of the neutrophil type I interferon responses is seen in ARDS following infection with SARS-CoV-2, with associated rewiring of neutrophil metabolism, and the upregulation of antigen processing and presentation. Whilst dexamethasone treatment constricts the immature low density neutrophil population, it does not impact upon prothrombotic hyperinflammatory neutrophil signatures. Conclusions: Given the crucial role of neutrophils in ARDS and the evidence of a disordered myeloid response observed in COVID-19 patients, this work maps the molecular basis for neutrophil reprogramming in the distinct clinical entities of COVID-19 and non-COVID-19 ARDS.
Collapse
Affiliation(s)
- Leila Reyes
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Manuel A. Sanchez-Garcia
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Tyler Morrison
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Andy J. M. Howden
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK
| | - Emily R. Watts
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Simone Arienti
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Pranvera Sadiku
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Patricia Coelho
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Ananda S. Mirchandani
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Ailiang Zhang
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - David Hope
- Anaesthesia, Critical Care and Pain, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Sarah K. Clark
- Anaesthesia, Critical Care and Pain, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Jo Singleton
- Anaesthesia, Critical Care and Pain, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Shonna Johnston
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Robert Grecian
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Azin Poon
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Sarah McNamara
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Isla Harper
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Max Head Fourman
- Anaesthesia, Critical Care and Pain, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Alejandro J. Brenes
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK,Centre for Gene Regulation and Expression, University of Dundee, Dundee, DD1 5EH, UK
| | - Shalini Pathak
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK
| | - Amy Lloyd
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK
| | - Giovanny Rodriguez Blanco
- The University of Edinburgh MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Alex von Kriegsheim
- The University of Edinburgh MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Bart Ghesquiere
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, Leuven, Belgium
| | - Wesley Vermaelen
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, Leuven, Belgium
| | - Camila T. Cologna
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, Leuven, Belgium
| | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Nik Hirani
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK,NHS Lothian, Respiratory Medicine, Edinburgh Lung Fibrosis Clinic, Royal Infirmary, Edinburgh, EH16 4SA, UK
| | - David H. Dockrell
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Moira K. B. Whyte
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - David Griffith
- Anaesthesia, Critical Care and Pain, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Doreen A. Cantrell
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK
| | - Sarah R. Walmsley
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK,
| |
Collapse
|
33
|
Reyes L, A. Sanchez-Garcia M, Morrison T, Howden AJM, Watts ER, Arienti S, Sadiku P, Coelho P, Mirchandani AS, Zhang A, Hope D, Clark SK, Singleton J, Johnston S, Grecian R, Poon A, McNamara S, Harper I, Fourman MH, Brenes AJ, Pathak S, Lloyd A, Blanco GR, von Kriegsheim A, Ghesquiere B, Vermaelen W, Cologna CT, Dhaliwal K, Hirani N, Dockrell DH, Whyte MKB, Griffith D, Cantrell DA, Walmsley SR. -------A type I IFN, prothrombotic hyperinflammatory neutrophil signature is distinct for COVID-19 ARDS--. Wellcome Open Res 2021; 6:38. [PMID: 33997298 PMCID: PMC8112464 DOI: 10.12688/wellcomeopenres.16584.2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a severe critical condition with a high mortality that is currently in focus given that it is associated with mortality caused by coronavirus disease 2019 (COVID-19). Neutrophils play a key role in the lung injury characteristic of non-COVID-19 ARDS and there is also accumulating evidence of neutrophil mediated lung injury in patients who succumb to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We undertook a functional proteomic and metabolomic survey of circulating neutrophil populations, comparing patients with COVID-19 ARDS and non-COVID-19 ARDS to understand the molecular basis of neutrophil dysregulation. Results: Expansion of the circulating neutrophil compartment and the presence of activated low and normal density mature and immature neutrophil populations occurs in ARDS, irrespective of cause. Release of neutrophil granule proteins, neutrophil activation of the clotting cascade and upregulation of the Mac-1 platelet binding complex with formation of neutrophil platelet aggregates is exaggerated in COVID-19 ARDS. Importantly, activation of components of the neutrophil type I interferon responses is seen in ARDS following infection with SARS-CoV-2, with associated rewiring of neutrophil metabolism, and the upregulation of antigen processing and presentation. Whilst dexamethasone treatment constricts the immature low density neutrophil population, it does not impact upon prothrombotic hyperinflammatory neutrophil signatures. Conclusions: Given the crucial role of neutrophils in ARDS and the evidence of a disordered myeloid response observed in COVID-19 patients, this work maps the molecular basis for neutrophil reprogramming in the distinct clinical entities of COVID-19 and non-COVID-19 ARDS.
Collapse
Affiliation(s)
- Leila Reyes
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Manuel A. Sanchez-Garcia
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Tyler Morrison
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Andy J. M. Howden
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK
| | - Emily R. Watts
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Simone Arienti
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Pranvera Sadiku
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Patricia Coelho
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Ananda S. Mirchandani
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Ailiang Zhang
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - David Hope
- Anaesthesia, Critical Care and Pain, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Sarah K. Clark
- Anaesthesia, Critical Care and Pain, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Jo Singleton
- Anaesthesia, Critical Care and Pain, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Shonna Johnston
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Robert Grecian
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Azin Poon
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Sarah McNamara
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Isla Harper
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Max Head Fourman
- Anaesthesia, Critical Care and Pain, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Alejandro J. Brenes
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK,Centre for Gene Regulation and Expression, University of Dundee, Dundee, DD1 5EH, UK
| | - Shalini Pathak
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK
| | - Amy Lloyd
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK
| | - Giovanny Rodriguez Blanco
- The University of Edinburgh MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Alex von Kriegsheim
- The University of Edinburgh MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Bart Ghesquiere
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, Leuven, Belgium
| | - Wesley Vermaelen
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, Leuven, Belgium
| | - Camila T. Cologna
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, Leuven, Belgium
| | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Nik Hirani
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK,NHS Lothian, Respiratory Medicine, Edinburgh Lung Fibrosis Clinic, Royal Infirmary, Edinburgh, EH16 4SA, UK
| | - David H. Dockrell
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Moira K. B. Whyte
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - David Griffith
- Anaesthesia, Critical Care and Pain, University of Edinburgh, Royal Infirmary of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Doreen A. Cantrell
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, DD1 5EH, UK
| | - Sarah R. Walmsley
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK,
| |
Collapse
|
34
|
Watts ER, Howden AJ, Morrison T, Sadiku P, Hukelmann J, von Kriegsheim A, Ghesquiere B, Murphy F, Mirchandani AS, Humphries DC, Grecian R, Ryan EM, Coelho P, Blanco GR, Plant TM, Dickinson RS, Finch A, Vermaelen W, Cantrell DA, Whyte MK, Walmsley SR. Hypoxia drives murine neutrophil protein scavenging to maintain central carbon metabolism. J Clin Invest 2021; 131:134073. [PMID: 33822765 PMCID: PMC8121528 DOI: 10.1172/jci134073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Limiting dysfunctional neutrophilic inflammation while preserving effective immunity requires a better understanding of the processes that dictate neutrophil function in the tissues. Quantitative mass-spectrometry identified how inflammatory murine neutrophils regulated expression of cell surface receptors, signal transduction networks, and metabolic machinery to shape neutrophil phenotypes in response to hypoxia. Through the tracing of labeled amino acids into metabolic enzymes, proinflammatory mediators, and granule proteins, we demonstrated that ongoing protein synthesis shapes the neutrophil proteome. To maintain energy supplies in the tissues, neutrophils consumed extracellular proteins to fuel central carbon metabolism. The physiological stresses of hypoxia and hypoglycemia, characteristic of inflamed tissues, promoted this extracellular protein scavenging with activation of the lysosomal compartment, further driving exploitation of the protein-rich inflammatory milieu. This study provides a comprehensive map of neutrophil proteomes, analysis of which has led to the identification of active catabolic and anabolic pathways that enable neutrophils to sustain synthetic and effector functions in the tissues.
Collapse
Affiliation(s)
- Emily R. Watts
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J.M. Howden
- Division of Cell Signaling and Immunology, University of Dundee, Dundee, United Kingdom
| | - Tyler Morrison
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Pranvera Sadiku
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jens Hukelmann
- Division of Cell Signaling and Immunology, University of Dundee, Dundee, United Kingdom
| | - Alex von Kriegsheim
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Bart Ghesquiere
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, Leuven, Belgium
| | - Fiona Murphy
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ananda S. Mirchandani
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Duncan C. Humphries
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert Grecian
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Eilise M. Ryan
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Patricia Coelho
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Gio Rodriguez Blanco
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Tracie M. Plant
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca S. Dickinson
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andy Finch
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Wesley Vermaelen
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Centre, Leuven, Belgium
| | - Doreen A. Cantrell
- Division of Cell Signaling and Immunology, University of Dundee, Dundee, United Kingdom
| | - Moira K. Whyte
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah R. Walmsley
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Demandt JAF, van Kuijk K, Theelen TL, Marsch E, Heffron SP, Fisher EA, Carmeliet P, Biessen EAL, Sluimer JC. Whole-Body Prolyl Hydroxylase Domain (PHD) 3 Deficiency Increased Plasma Lipids and Hematocrit Without Impacting Plaque Size in Low-Density Lipoprotein Receptor Knockout Mice. Front Cell Dev Biol 2021; 9:664258. [PMID: 34055796 PMCID: PMC8160238 DOI: 10.3389/fcell.2021.664258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background and aims: Atherosclerosis is an important cause of clinical cardiovascular events. Atherosclerotic plaques are hypoxic, and reoxygenation improves plaque phenotype. Central players in hypoxia are hypoxia inducible factors (HIF) and their regulators, HIF-prolyl hydroxylase (PHD) isoforms 1, 2, and 3. PHD inhibitors, targeting all three isoforms, are used to alleviate anemia in chronic kidney disease. Likewise, whole-body PHD1 and PHD2ko ameliorate hypercholesterolemia and atherogenesis. As the effect of whole-body PHD3 is unknown, we investigated the effects of germline whole-body PHD3ko on atherosclerosis. Approach and Results: To initiate hypercholesterolemia and atherosclerosis low-density lipoprotein receptor knockout (LDLrko) and PHD3/LDLr double knockout (PHD3dko), mice were fed a high-cholesterol diet. Atherosclerosis and hypoxia marker pimonidazole were analyzed in aortic roots and brachiocephalic arteries. In contrast to earlier reports on PHD1- and PHD2-deficient mice, a small elevation in the body weight and an increase in the plasma cholesterol and triglyceride levels were observed after 10 weeks of diet. Dyslipidemia might be explained by an increase in hepatic mRNA expression of Cyp7a1 and fatty acid synthase, while lipid efflux of PHD3dko macrophages was comparable to controls. Despite dyslipidemia, plaque size, hypoxia, and phenotype were not altered in the aortic root or in the brachiocephalic artery of PHD3dko mice. Additionally, PHD3dko mice showed enhanced blood hematocrit levels, but no changes in circulating, splenic or lymphoid immune cell subsets. Conclusion: Here, we report that whole-body PHD3dko instigated an unfavorable lipid profile and increased hematocrit, in contrast to other PHD isoforms, yet without altering atherosclerotic plaque development.
Collapse
Affiliation(s)
- Jasper A. F. Demandt
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Kim van Kuijk
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas L. Theelen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Elke Marsch
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Sean P. Heffron
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, Grossman School of Medicine, New York University, New York, NY, United States
| | - Edward A. Fisher
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, Grossman School of Medicine, New York University, New York, NY, United States
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, Leuven, Belgium
| | - Erik A. L. Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
- BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Kiani AA, Elyasi H, Ghoreyshi S, Nouri N, Safarzadeh A, Nafari A. Study on hypoxia-inducible factor and its roles in immune system. Immunol Med 2021; 44:223-236. [PMID: 33896415 DOI: 10.1080/25785826.2021.1910187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Hypoxia-Inducible Factor-1 (HIF-1) is a dimeric protein complex that plays a significant role in responding to low oxygen or hypoxia concentrations. Chronic inflammation is one of the immune system responses and can increase HIF expression in involved tissues through lowering the oxygen and hypoxia. The HIF factor has many critical roles in immunity, and thus, we reviewed the crucial roles of this factor in the immune system. The results showed various key roles on the immune system, including physical defenses, innate immune (neutrophils apoptosis, macrophages) and inflammatory responses (pyrexia and local heat, iron access, etc.), upregulation in response to microbial infections, cytokines expression (IL-1, IL-2, IL-6, IL-8, IL-12, IL-18, TNF, etc.), drug targeting, etc. The HIF roles in the acquired immune system include: enhance the adaptation of cells (dendritic cells) to new conditions and triggering the signal pathways. The findings of the present review demonstrated that the HIF has important roles in the immune system, including physical defense, innate immune as well as acquired immunity; therefore, it may be considered as a potent drug targeting several diseases such as cancers, infectious diseases, etc.
Collapse
Affiliation(s)
- Ali Asghar Kiani
- Department of Laboratory Sciences, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Hossein Elyasi
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Shadiyeh Ghoreyshi
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Negar Nouri
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Ali Safarzadeh
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Amirhossein Nafari
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
37
|
Stabenau KA, Zimmermann MT, Mathison A, Zeighami A, Samuels TL, Chun RH, Papsin BC, McCormick ME, Johnston N, Kerschner JE. RNA Sequencing and Pathways Analyses of Middle Ear Epithelia From Patients With Otitis Media. Laryngoscope 2021; 131:2590-2597. [PMID: 33844317 DOI: 10.1002/lary.29551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Otitis media (OM) is the most common pediatric diagnosis in the United States. However, our understanding of the molecular pathogenesis of OM remains relatively poor. Investigation of molecular pathways involved in OM may improve the understanding of this disease process and elucidate novel therapeutic targets. In this study, RNA sequencing (RNA-Seq) was used to discern cellular changes associated with OME compared to healthy middle ear epithelium (MEE). STUDY DESIGN Ex vivo case-control translational. METHODS Middle ear epithelia was collected from five pediatric patients diagnosed with OME undergoing tympanostomy tube placement and five otherwise healthy pediatric patients undergoing cochlear implantation. Specimens underwent RNA-Seq and pathways analyses. RESULTS A total of 1,292 genes exhibited differential expression in MEE from OME patients compared to controls including genes involved in inflammation, immune response to bacterial OM pathogens, mucociliary clearance, regulation of proliferation and transformation, and auditory cell differentiation. Top networks identified in OME were organismal injury and abnormalities, cell morphology, and auditory disease. Top Ingenuity canonical pathways identified were axonal guidance signaling, which contains genes associated with auditory development and disease and nicotine degradation II and III pathways. Associated upstream regulators included β-estradiol, dexamethasone, and G-protein-coupled estrogen receptor-1 (GPER1), which are associated with otoprotection or inflammation during insult. CONCLUSIONS RNA-Seq demonstrates differential gene expression in MEE from patients with OME compared to healthy controls with important implications for infection susceptibility, hearing loss, and a role for tobacco exposure in the development and/or severity of OME in pediatric patients. LEVEL OF EVIDENCE 4 Laryngoscope, 2021.
Collapse
Affiliation(s)
- Kaleigh A Stabenau
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.,Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Angela Mathison
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Atefeh Zeighami
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Tina L Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Robert H Chun
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Blake C Papsin
- Archie's Cochlear Implant Laboratory, Department of Otolaryngology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael E McCormick
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| |
Collapse
|
38
|
Chen B, Han J, Chen S, Xie R, Yang J, Zhou T, Zhang Q, Xia R. MicroLet-7b Regulates Neutrophil Function and Dampens Neutrophilic Inflammation by Suppressing the Canonical TLR4/NF-κB Pathway. Front Immunol 2021; 12:653344. [PMID: 33868293 PMCID: PMC8044834 DOI: 10.3389/fimmu.2021.653344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022] Open
Abstract
Sepsis is a heterogeneous syndrome caused by a dysregulated host response during the process of infection. Neutrophils are involved in the development of sepsis due to their essential role in host defense. COVID-19 is a viral sepsis. Disfunction of neutrophils in sepsis has been described in previous studies, however, little is known about the role of microRNA-let-7b (miR-let-7b), toll-like receptor 4 (TLR4), and nuclear factor kappa B (NF-κB) activity in neutrophils and how they participate in the development of sepsis. In this study, we investigated the regulatory pathway of miR-let-7b/TLR4/NF-κB in neutrophils. We also explored the downstream cytokines released by neutrophils following miR-let-7b treatment and its therapeutic effects in cecal ligation and puncture (CLP)-induced septic mice. Six-to-eight-week-old male C57BL/6 mice underwent CLP following treatment with miR-let-7b agomir. Survival (n=10), changes in liver and lungs histopathology (n=4), circulating neutrophil counts (n=4), the liver-body weight ratio (n=4–7), and the lung wet-to-dry ratio (n=5–6) were recorded. We found that overexpression of miR-let-7b could significantly down-regulate the expression of human-derived neutrophilic TLR4 at a post-transcriptional level, a decreased level of proinflammatory factors including interleukin-6 (IL-6), IL-8, tumor necrosis factor α (TNF-α), and an upregulation of anti-inflammatory factor IL-10 in vitro. After miR-let-7b agomir treatment in vivo, neutrophil recruitment was inhibited and thus the injuries of liver and lungs in CLP-induced septic mice were alleviated (p=0.01 and p=0.04, respectively), less weight loss was reduced, and survival in septic mice was also significantly improved (p=0.013). Our study suggested that miR-let-7b could be a potential target of sepsis.
Collapse
Affiliation(s)
- Binzhen Chen
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia Han
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaoheng Chen
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Rufeng Xie
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | - Jie Yang
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | - Tongming Zhou
- Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Xia
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Zhang J, He J, Luo Y, Liu Y, Fan X. miR-210 regulates the inflammation of otitis media with effusion by inhibiting the expression of hypoxia-inducible factor (HIF)-1a. Biochem Biophys Res Commun 2020; 534:401-407. [PMID: 33248692 DOI: 10.1016/j.bbrc.2020.11.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022]
Abstract
Otitis media with effusion (OME) is the major cause of hearing impairment in children. miR-210 plays a critical role in inflammatory diseases, however, its role in OME is unknown. In this study, the miR-210 level in serum and middle ear effusion of is significantly down-regulated in serum, middle ear effusion from OME patients (100 cases) compared with healthy volunteers (50 cases). The expression of miR-210 is closely related to inflammatory factors and bone conduction disorder in patients with OME. In the in vitro study,the miR-210 level is significantly reduced in culture supernatant of lipopolysaccharide (LPS) treated human middle ear epithelial cells (HMEECs). miR-210 overexpression inhibited the LPS-induced in inflammatory cytokines production, cell viability reduction and cell apoptosis. Bioinformatics and dual-luciferase reporter assay showed that HIF-1a was a target gene of miR-210. The biological effects of miR-210 on cell viability, cell apoptosis and inflammation cytokines in LPS-induced HMEECs were reversed by HIF-1a overexpression. Furthermore, phosphorylation of NF-κB p65 was significantly decreased by miR-210 mediated HIF-1a in LPS-induced HMEECs. This study suggested that miR-210 may play a role in OME. Further studies are warranted to assess miR-210 as a potential target for the diagnosis and treatment of OME.
Collapse
Affiliation(s)
- Jintang Zhang
- Department of otorhinolaryngology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Yiwu, 322000, PR China
| | - Jianguo He
- Department of otorhinolaryngology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Yiwu, 322000, PR China
| | - Yamei Luo
- Department of otorhinolaryngology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Yiwu, 322000, PR China
| | - Yatian Liu
- Department of otorhinolaryngology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Yiwu, 322000, PR China
| | - Xiaofan Fan
- Department of otorhinolaryngology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Yiwu, 322000, PR China.
| |
Collapse
|
40
|
Jahani M, Dokaneheifard S, Mansouri K. Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm. JOURNAL OF INFLAMMATION-LONDON 2020; 17:33. [PMID: 33139969 PMCID: PMC7594974 DOI: 10.1186/s12950-020-00263-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
COVID-19, disease caused by the new coronavirus, SARS-CoV-2, appeared in the end of 2019 and was rapidly spread in most countries. This respiratory virus has different symptoms from moderate to severe, and results in lung pneumonia following acute respiratory distress syndrome (ARDS) and patient’s death in severe cases. ARDS is a severe form of acute lung injury that is caused by high inflammatory response of the innate immunity cells. Hypoxia is the common feature in the inflammatory sites with having various impacts on this condition by induction of some factors such as hypoxia inducible factor-1α (HIF-1α). HIF-1α regulates some important cellular processes including cell proliferation, metabolism and angiogenesis. Furthermore, this factor is activated during the immune responses and plays important roles in the inflammation site by inducing pro-inflammatory cytokines production through immune cells. So, in this study the possible effect of the HIF-1α on the COVID-19 pathogenesis with emphasizes on its role on innate immunity response has been discussed.
Collapse
Affiliation(s)
- Mozhgan Jahani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sadat Dokaneheifard
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136 USA
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
41
|
Kling L, Schreiber A, Eckardt KU, Kettritz R. Hypoxia-inducible factors not only regulate but also are myeloid-cell treatment targets. J Leukoc Biol 2020; 110:61-75. [PMID: 33070368 DOI: 10.1002/jlb.4ri0820-535r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia describes limited oxygen availability at the cellular level. Myeloid cells are exposed to hypoxia at various bodily sites and even contribute to hypoxia by consuming large amounts of oxygen during respiratory burst. Hypoxia-inducible factors (HIFs) are ubiquitously expressed heterodimeric transcription factors, composed of an oxygen-dependent α and a constitutive β subunit. The stability of HIF-1α and HIF-2α is regulated by oxygen-sensing prolyl-hydroxylases (PHD). HIF-1α and HIF-2α modify the innate immune response and are context dependent. We provide a historic perspective of HIF discovery, discuss the molecular components of the HIF pathway, and how HIF-dependent mechanisms modify myeloid cell functions. HIFs enable myeloid-cell adaptation to hypoxia by up-regulating anaerobic glycolysis. In addition to effects on metabolism, HIFs control chemotaxis, phagocytosis, degranulation, oxidative burst, and apoptosis. HIF-1α enables efficient infection defense by myeloid cells. HIF-2α delays inflammation resolution and decreases antitumor effects by promoting tumor-associated myeloid-cell hibernation. PHDs not only control HIF degradation, but also regulate the crosstalk between innate and adaptive immune cells thereby suppressing autoimmunity. HIF-modifying pharmacologic compounds are entering clinical practice. Current indications include renal anemia and certain cancers. Beneficial and adverse effects on myeloid cells should be considered and could possibly lead to drug repurposing for inflammatory disorders.
Collapse
Affiliation(s)
- Lovis Kling
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrian Schreiber
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
42
|
Calcagno DM, Ng RP, Toomu A, Zhang C, Huang K, Aguirre AD, Weissleder R, Daniels LB, Fu Z, King KR. The myeloid type I interferon response to myocardial infarction begins in bone marrow and is regulated by Nrf2-activated macrophages. Sci Immunol 2020; 5:5/51/eaaz1974. [PMID: 32978242 DOI: 10.1126/sciimmunol.aaz1974] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/03/2020] [Indexed: 12/27/2022]
Abstract
Sterile tissue injury is thought to locally activate innate immune responses via damage-associated molecular patterns (DAMPs). Whether innate immune pathways are remotely activated remains relatively unexplored. Here, by analyzing ~145,000 single-cell transcriptomes at steady state and after myocardial infarction (MI) in mice and humans, we show that the type I interferon (IFN) response, characterized by expression of IFN-stimulated genes (ISGs), begins far from the site of injury, in neutrophil and monocyte progenitors within the bone marrow. In the peripheral blood of patients, we observed defined subsets of ISG-expressing neutrophils and monocytes. In the bone marrow and blood of mice, ISG expression was detected in neutrophils and monocytes and their progenitors, intensified with maturation at steady-state and after MI, and was controlled by Tet2 and Irf3 transcriptional regulators. Within the infarcted heart, ISG-expressing cells were negatively regulated by Nrf2 activation in Ccr2- steady-state cardiac macrophages. Our results show that IFN signaling begins in the bone marrow, implicate multiple transcriptional regulators (Tet2, Irf3, and Nrf2) in governing ISG expression, and provide a clinical biomarker (ISG score) for studying IFN signaling in patients.
Collapse
Affiliation(s)
- David M Calcagno
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Richard P Ng
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Avinash Toomu
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Claire Zhang
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
| | - Kenneth Huang
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Aaron D Aguirre
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lori B Daniels
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Zhenxing Fu
- Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kevin R King
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA. .,Division of Cardiology and Cardiovascular Institute, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
43
|
Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat Rev Immunol 2020; 21:137-150. [PMID: 32782357 PMCID: PMC7418297 DOI: 10.1038/s41577-020-0391-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
The immune system enables organisms to combat infections and to eliminate endogenous challenges. Immune responses can be evoked through diverse inducible pathways. However, various constitutive mechanisms are also required for immunocompetence. The inducible responses of pattern recognition receptors of the innate immune system and antigen-specific receptors of the adaptive immune system are highly effective, but they also have the potential to cause extensive immunopathology and tissue damage, as seen in many infectious and autoinflammatory diseases. By contrast, constitutive innate immune mechanisms, including restriction factors, basal autophagy and proteasomal degradation, tend to limit immune responses, with loss-of-function mutations in these pathways leading to inflammation. Although they function through a broad and heterogeneous set of mechanisms, the constitutive immune responses all function as early barriers to infection and aim to minimize any disruption of homeostasis. Supported by recent human and mouse data, in this Review we compare and contrast the inducible and constitutive mechanisms of immunosurveillance.
Collapse
|
44
|
Mahiddine K, Blaisdell A, Ma S, Créquer-Grandhomme A, Lowell CA, Erlebacher A. Relief of tumor hypoxia unleashes the tumoricidal potential of neutrophils. J Clin Invest 2020; 130:389-403. [PMID: 31600172 DOI: 10.1172/jci130952] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/08/2019] [Indexed: 12/29/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are increasingly recognized to influence solid tumor development, but why their effects are so context dependent and even frequently divergent remains poorly understood. Using an autochthonous mouse model of uterine cancer and the administration of respiratory hyperoxia as a means to improve tumor oxygenation, we provide in vivo evidence that hypoxia is a potent determinant of tumor-associated PMN phenotypes and direct PMN-tumor cell interactions. Upon relief of tumor hypoxia, PMNs were recruited less intensely to the tumor-bearing uterus, but the recruited cells much more effectively killed tumor cells, an activity our data moreover suggested was mediated via their production of NADPH oxidase-derived reactive oxygen species and MMP-9. Simultaneously, their ability to promote tumor cell proliferation, which appeared to be mediated via their production of neutrophil elastase, was rendered less effective. Relieving tumor hypoxia thus greatly improved net PMN-dependent tumor control, leading to a massive reduction in tumor burden. Remarkably, this outcome was T cell independent. Together, these findings identify key hypoxia-regulated molecular mechanisms through which PMNs directly induce tumor cell death and proliferation in vivo and suggest that the contrasting properties of PMNs in different tumor settings may in part reflect the effects of hypoxia on direct PMN-tumor cell interactions.
Collapse
Affiliation(s)
- Karim Mahiddine
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Adam Blaisdell
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | - Stephany Ma
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | | | - Clifford A Lowell
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA.,Biomedical Sciences Program.,ImmunoX Program, and
| | - Adrian Erlebacher
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA.,Biomedical Sciences Program.,ImmunoX Program, and.,Center for Reproductive Sciences, UCSF, San Francisco, California, USA
| |
Collapse
|
45
|
Michealraj KA, Kumar SA, Kim LJY, Cavalli FMG, Przelicki D, Wojcik JB, Delaidelli A, Bajic A, Saulnier O, MacLeod G, Vellanki RN, Vladoiu MC, Guilhamon P, Ong W, Lee JJY, Jiang Y, Holgado BL, Rasnitsyn A, Malik AA, Tsai R, Richman CM, Juraschka K, Haapasalo J, Wang EY, De Antonellis P, Suzuki H, Farooq H, Balin P, Kharas K, Van Ommeren R, Sirbu O, Rastan A, Krumholtz SL, Ly M, Ahmadi M, Deblois G, Srikanthan D, Luu B, Loukides J, Wu X, Garzia L, Ramaswamy V, Kanshin E, Sánchez-Osuna M, El-Hamamy I, Coutinho FJ, Prinos P, Singh S, Donovan LK, Daniels C, Schramek D, Tyers M, Weiss S, Stein LD, Lupien M, Wouters BG, Garcia BA, Arrowsmith CH, Sorensen PH, Angers S, Jabado N, Dirks PB, Mack SC, Agnihotri S, Rich JN, Taylor MD. Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell 2020; 181:1329-1345.e24. [PMID: 32445698 PMCID: PMC10782558 DOI: 10.1016/j.cell.2020.04.047] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/16/2020] [Accepted: 04/24/2020] [Indexed: 01/24/2023]
Abstract
Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.
Collapse
Affiliation(s)
- Kulandaimanuvel Antony Michealraj
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sachin A Kumar
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Leo J Y Kim
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Florence M G Cavalli
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - David Przelicki
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - John B Wojcik
- Department of Biochemistry and Biophysics and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V6T 1Z2, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Andrea Bajic
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Graham MacLeod
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Ravi N Vellanki
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Maria C Vladoiu
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Paul Guilhamon
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Winnie Ong
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - John J Y Lee
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Yanqing Jiang
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Borja L Holgado
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Alex Rasnitsyn
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ahmad A Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Cory M Richman
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kyle Juraschka
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Joonas Haapasalo
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Evan Y Wang
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Pasqualino De Antonellis
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hiromichi Suzuki
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hamza Farooq
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Polina Balin
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kaitlin Kharas
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Randy Van Ommeren
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Olga Sirbu
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Avesta Rastan
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Stacey L Krumholtz
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michelle Ly
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Moloud Ahmadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Geneviève Deblois
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dilakshan Srikanthan
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Betty Luu
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James Loukides
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaochong Wu
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Livia Garzia
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC H4A 3J1, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Evgeny Kanshin
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - María Sánchez-Osuna
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Ibrahim El-Hamamy
- Computational Biology Program, Adaptive Oncology Theme, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Fiona J Coutinho
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, ON M5G 1L7, Canada
| | - Sheila Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Laura K Donovan
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Craig Daniels
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Lincoln D Stein
- Computational Biology Program, Adaptive Oncology Theme, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Bradly G Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics and Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl H Arrowsmith
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Toronto, ON M5G 1L7, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V6T 1Z2, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Stephane Angers
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; Department of Pediatrics, McGill University, The Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Peter B Dirks
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1L7, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - Stephen C Mack
- Texas Children's Hospital Cancer Center, Department of Pediatrics, Baylor College of Medicine, Dan L. Duncan Cancer Center, Houston, TX 77030, USA.
| | - Sameer Agnihotri
- Department of Neurological Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
46
|
Plant T, Eamsamarng S, Sanchez-Garcia MA, Reyes L, Renshaw SA, Coelho P, Mirchandani AS, Morgan JM, Ellett FE, Morrison T, Humphries D, Watts ER, Murphy F, Raffo-Iraolagoitia XL, Zhang A, Cash JL, Loynes C, Elks PM, Van Eeden F, Carlin LM, Furley AJ, Whyte MK, Walmsley SR. Semaphorin 3F signaling actively retains neutrophils at sites of inflammation. J Clin Invest 2020; 130:3221-3237. [PMID: 32191647 PMCID: PMC7259996 DOI: 10.1172/jci130834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
Neutrophilic inflammation is central to disease pathogenesis, for example, in chronic obstructive pulmonary disease, yet the mechanisms that retain neutrophils within tissues remain poorly understood. With emerging evidence that axon guidance factors can regulate myeloid recruitment and that neutrophils can regulate expression of a class 3 semaphorin, SEMA3F, we investigated the role of SEMA3F in inflammatory cell retention within inflamed tissues. We observed that neutrophils upregulate SEMA3F in response to proinflammatory mediators and following neutrophil recruitment to the inflamed lung. In both zebrafish tail injury and murine acute lung injury models of neutrophilic inflammation, overexpression of SEMA3F delayed inflammation resolution with slower neutrophil migratory speeds and retention of neutrophils within the tissues. Conversely, constitutive loss of sema3f accelerated egress of neutrophils from the tail injury site in fish, whereas neutrophil-specific deletion of Sema3f in mice resulted in more rapid neutrophil transit through the airways, and significantly reduced time to resolution of the neutrophilic response. Study of filamentous-actin (F-actin) subsequently showed that SEMA3F-mediated retention is associated with F-actin disassembly. In conclusion, SEMA3F signaling actively regulates neutrophil retention within the injured tissues with consequences for neutrophil clearance and inflammation resolution.
Collapse
Affiliation(s)
- Tracie Plant
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Suttida Eamsamarng
- Department of Infection, Immunity and Cardiovascular Disease and
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Manuel A. Sanchez-Garcia
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Leila Reyes
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen A. Renshaw
- Department of Infection, Immunity and Cardiovascular Disease and
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Patricia Coelho
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ananda S. Mirchandani
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jessie-May Morgan
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Felix E. Ellett
- Department of Infection, Immunity and Cardiovascular Disease and
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- BioMEMS Resource Centre, Division of Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Burn Care, Shriners Hospitals for Children — Boston, Boston, Massachusetts, USA
| | - Tyler Morrison
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Duncan Humphries
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily R. Watts
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Fiona Murphy
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ailiang Zhang
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jenna L. Cash
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Catherine Loynes
- Department of Infection, Immunity and Cardiovascular Disease and
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Philip M. Elks
- Department of Infection, Immunity and Cardiovascular Disease and
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Freek Van Eeden
- Department of Infection, Immunity and Cardiovascular Disease and
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Leo M. Carlin
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J.W. Furley
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Moira K.B. Whyte
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease and
| | - Sarah R. Walmsley
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease and
| |
Collapse
|
47
|
Propofol Attenuates Hypoxia-Induced Inflammation in BV2 Microglia by Inhibiting Oxidative Stress and NF- κB/Hif-1 α Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8978704. [PMID: 32420378 PMCID: PMC7204316 DOI: 10.1155/2020/8978704] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 01/29/2023]
Abstract
Hypoxia-induced neuroinflammation typically causes neurological damage and can occur during stroke, neonatal hypoxic-ischemic encephalopathy, and other diseases. Propofol is widely used as an intravenous anesthetic. Studies have shown that propofol has antineuroinflammatory effect. However, the underlying mechanism remains to be fully elucidated. Thus, we aimed to investigate the beneficial effects of propofol against hypoxia-induced neuroinflammation and elucidated its potential cellular and biochemical mechanisms of action. In this study, we chose cobalt chloride (CoCl2) to establish a hypoxic model. We found that propofol decreased hypoxia-induced proinflammatory cytokines (TNFα, IL-1β, and IL-6) in BV2 microglia, significantly suppressed the excessive production of reactive oxygen species, and increased the total antioxidant capacity and superoxide dismutase activity. Furthermore, propofol attenuated the hypoxia-induced decrease in mitochondrial membrane potential andy 2 strongly inhibited protein expression of nuclear factor-kappa B (NF-κB) subunit p65 and hypoxia inducible factor-1α (Hif-1α) in hypoxic BV2 cells. To investigate the role of NF-κB p65, specific small interfering RNA (siRNA) against NF-κB p65 were transfected into BV2 cells, followed by exposure to hypoxia for 24 h. Hypoxia-induced Hif-1α production was downregulated after NF-κB p65 silencing. Further, propofol suppressed Hif-1α expression by inhibiting the upregulation of NF-κB p65 after exposure to hypoxia in BV2 microglia. In summary, propofol attenuates hypoxia-induced neuroinflammation, at least in part by inhibiting oxidative stress and NF-κB/Hif-1α signaling.
Collapse
|
48
|
Abstract
Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Glenn T Furuta
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
49
|
Brostjan C, Oehler R. The role of neutrophil death in chronic inflammation and cancer. Cell Death Discov 2020; 6:26. [PMID: 32351713 PMCID: PMC7176663 DOI: 10.1038/s41420-020-0255-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
The lifespan of a neutrophil is short and limited by programmed cell death, followed by efferocytosis. When activated or exposed to insult, neutrophil death may be delayed to support neutrophil effector functions such as phagocytosis, cytokine release, and pathogen destruction by degranulation. However, neutrophils may also alter the type of cell death and thereby affect inflammatory responses and tissue remodeling. This review briefly introduces the various forms of neutrophil death including apoptosis, necrosis/necroptosis, and the formation of so-called "neutrophil extracellular traps" (NETs), and it summarizes the clearance of dead cells by efferocytosis. Importantly, distinct types of neutrophil death have been found to drive chronic inflammatory disorders and cancer. Thus, the tumor and its microenvironment can delay neutrophil apoptosis to exploit their pro-angiogenic and pro-metastatic properties. Conversely, neutrophils may enter rapid and suicidal cell death by forming extracellular traps, which are expelled DNA strands with neutrophil proteins. Components of these DNA-protein complexes such as histones, high-mobility group protein B1, or neutrophil elastase have been found to promote cancer cell proliferation, adhesion, migration, invasion, and thereby tumor metastasis. In other settings of chronic inflammatory disease such as gout, NETs have been found protective rather than detrimental, as they promoted the local degradation of pro-inflammatory cytokines by neutrophil proteases. Thus, the interaction of neutrophils with the tissue environment extends beyond the stage of the living cell and the type of neutrophil death shapes immune responses and tissue remodeling in health and disease.
Collapse
Affiliation(s)
| | - Rudolf Oehler
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
50
|
Lawrence SM, Corriden R, Nizet V. How Neutrophils Meet Their End. Trends Immunol 2020; 41:531-544. [PMID: 32303452 DOI: 10.1016/j.it.2020.03.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/28/2022]
Abstract
Neutrophil death can transpire via diverse pathways and is regulated by interactions with commensal and pathogenic microorganisms, environmental exposures, and cell age. At steady state, neutrophil turnover and replenishment are continually maintained via a delicate balance between host-mediated responses and microbial forces. Disruptions in this equilibrium directly impact neutrophil numbers in circulation, cell trafficking, antimicrobial defenses, and host well-being. How neutrophils meet their end is physiologically important and can result in different immunologic consequences. Whereas nonlytic forms of neutrophil death typically elicit anti-inflammatory responses and promote healing, pathways ending with cell membrane rupture may incite deleterious proinflammatory responses, which can exacerbate local tissue injury, lead to chronic inflammation, or precipitate autoimmunity. This review seeks to provide a contemporary analysis of mechanisms of neutrophil death.
Collapse
Affiliation(s)
- Shelley M Lawrence
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, College of Medicine, University of California, San Diego, CA, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, College of Medicine, University of California, San Diego, CA, USA.
| | - Ross Corriden
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, College of Medicine, University of California, San Diego, CA, USA; Department of Pharmacology, University of California, San Diego, CA, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, College of Medicine, University of California, San Diego, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| |
Collapse
|