1
|
Rosas S, Kwok A, Moore J, Shi L, Smith TL, Tallant EA, Kerr BA, Willey JS. Osteoarthritis as a Systemic Disease Promoted Prostate Cancer In Vivo and In Vitro. Int J Mol Sci 2024; 25:6014. [PMID: 38892202 PMCID: PMC11172560 DOI: 10.3390/ijms25116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is increasing worldwide, and previous work found that OA increases systemic cartilage oligomeric matrix protein (COMP), which has also been implicated in prostate cancer (PCa). As such, we sought to investigate whether OA augments PCa progression. Cellular proliferation and migration of RM1 murine PCa cells treated with interleukin (IL)-1α, COMP, IL-1α + COMP, or conditioned media from cartilage explants treated with IL-1α (representing OA media) and with inhibitors of COMP were assessed. A validated murine model was used for tumor growth and marker expression analysis. Both proliferation and migration were greater in PCa cells treated with OA media compared to controls (p < 0.001), which was not seen with direct application of the stimulants. Migration and proliferation were not negatively affected when OA media was mixed with downstream and COMP inhibitors compared to controls (p > 0.05 for all). Mice with OA developed tumors 100% of the time, whereas mice without OA only 83.4% (p = 0.478). Tumor weight correlated with OA severity (Pearson correlation = 0.813, p = 0.002). Moreover, tumors from mice with OA demonstrated increased Ki-67 expression compared to controls (mean 24.56% vs. 6.91%, p = 0.004) but no difference in CD31, PSMA, or COMP expression (p > 0.05). OA appears to promote prostate cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Samuel Rosas
- Department of Orthopedic Surgery, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA
| | - Andy Kwok
- Department of Radiation Oncology, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA (J.S.W.)
| | - Joseph Moore
- Department of Radiation Oncology, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA (J.S.W.)
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA
| | - Thomas L. Smith
- Department of Orthopedic Surgery, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA
| | - E. Ann Tallant
- Department of Hypertension, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA
| | - Bethany A. Kerr
- Department of Orthopedic Surgery, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA (J.S.W.)
| |
Collapse
|
2
|
Sojan JM, Gioacchini G, Giorgini E, Orlando P, Tiano L, Maradonna F, Carnevali O. Zebrafish caudal fin as a model to investigate the role of probiotics in bone regeneration. Sci Rep 2022; 12:8057. [PMID: 35577882 PMCID: PMC9110718 DOI: 10.1038/s41598-022-12138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Probiotics are live microorganisms that confer several beneficial effects to the host, including enhancement of bone mineralization. However, probiotic action on bone regeneration is not well studied and therefore we analysed various effects of probiotic treatment on the caudal fin regeneration of zebrafish. Morphological analysis revealed an increased regenerated area with shorter and thicker lepidotrichia segments after probiotic treatment. Fourier transform infrared spectroscopy imaging analysis highlighted the distribution of phosphate groups in the regenerated fins and probiotic group showed higher amounts of well-crystallized hydroxyapatite. At the midpoint (5 days post amputation) of regeneration, probiotics were able to modulate various stages of osteoblast differentiation as confirmed by the upregulation of some key marker genes such as runx2b, sp7, col10a1a, spp1 and bglap, besides suppressing osteoclast activity as evidenced from the downregulation of ctsk. Probiotics also caused an enhanced cell cycle by regulating the expression of genes involved in Retinoic acid (rarga, cyp26b1) and Wnt/β-catenin (ctnnb1, ccnd1, axin2, sost) signaling pathways, and also modulated phosphate homeostasis by increasing the entpd5a levels. These findings provide new outlooks for the use of probiotics as a prophylactic treatment in accelerating bone regeneration and improving skeletal health in both aquaculture and biomedical fields.
Collapse
Affiliation(s)
- Jerry Maria Sojan
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- Biostructures and Biosystems National Institute-Interuniversity Consortium, Viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
- Biostructures and Biosystems National Institute-Interuniversity Consortium, Viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
3
|
Sobh MM, Abdalbary M, Elnagar S, Nagy E, Elshabrawy N, Abdelsalam M, Asadipooya K, El-Husseini A. Secondary Osteoporosis and Metabolic Bone Diseases. J Clin Med 2022; 11:2382. [PMID: 35566509 PMCID: PMC9102221 DOI: 10.3390/jcm11092382] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Fragility fracture is a worldwide problem and a main cause of disability and impaired quality of life. It is primarily caused by osteoporosis, characterized by impaired bone quantity and or quality. Proper diagnosis of osteoporosis is essential for prevention of fragility fractures. Osteoporosis can be primary in postmenopausal women because of estrogen deficiency. Secondary forms of osteoporosis are not uncommon in both men and women. Most systemic illnesses and organ dysfunction can lead to osteoporosis. The kidney plays a crucial role in maintaining physiological bone homeostasis by controlling minerals, electrolytes, acid-base, vitamin D and parathyroid function. Chronic kidney disease with its uremic milieu disturbs this balance, leading to renal osteodystrophy. Diabetes mellitus represents the most common secondary cause of osteoporosis. Thyroid and parathyroid disorders can dysregulate the osteoblast/osteoclast functions. Gastrointestinal disorders, malnutrition and malabsorption can result in mineral and vitamin D deficiencies and bone loss. Patients with chronic liver disease have a higher risk of fracture due to hepatic osteodystrophy. Proinflammatory cytokines in infectious, autoimmune, and hematological disorders can stimulate osteoclastogenesis, leading to osteoporosis. Moreover, drug-induced osteoporosis is not uncommon. In this review, we focus on causes, pathogenesis, and management of secondary osteoporosis.
Collapse
Affiliation(s)
- Mahmoud M. Sobh
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Mohamed Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40506, USA
| | - Sherouk Elnagar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Eman Nagy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Nehal Elshabrawy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Mostafa Abdelsalam
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Kamyar Asadipooya
- Division of Endocrinology, University of Kentucky, Lexington, KY 40506, USA;
| | - Amr El-Husseini
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
4
|
Chen MH, Yu SF, Chen JF, Chen WS, Liou TL, Chou CT, Hsu CY, Lai HM, Chen YC, Tsai CY, Cheng TT. Different Effects of Biologics on Systemic Bone Loss Protection in Rheumatoid Arthritis: An Interim Analysis of a Three-Year Longitudinal Cohort Study. Front Immunol 2022; 12:783030. [PMID: 34987510 PMCID: PMC8720866 DOI: 10.3389/fimmu.2021.783030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022] Open
Abstract
Objective To compare changes in bone mineral density (BMD) in rheumatoid arthritis (RA) patients receiving three-year conventional synthetic disease-modifying anti-rheumatic drugs (csDMARD), tumor necrosis factor-α inhibitors (TNFi), and abatacept. Methods Patients with RA were recruited from September 2014 to February 2021. Dual-energy X-ray absorptiometry was used to measure BMD at the femoral neck (FN), total hip (TH), and lumbar spine (L1-4) at enrollment and three years later. Changes in the BMD of each regimen group were analyzed. Multiple ordinary least squares regression was used with the dependent variables to develop a model to predict the change in BMD. Results A total of 752 participants were enrolled and 485 completed the three-year follow-up period. Of these, 375 (Group I), 84 (Group II), and 26 (Group III) participants received csDMARDs, TNFi, and abatacept therapy, respectively. Considering both type of therapy and completion of the follow-up period, participants were divided into groups A (csDMARDs, n = 104), B (TNFi, n = 52), and C (abatacept, n = 26). Compared to baseline, BMD decreased significantly at FN (p = 0.003) and L1-4 (p = 0.002) in Group A and at L1-4 (p = 0.005) in Group B, but remained stable at all sites in Group C. In terms of regression-adjusted percent change in BMD, there was a significant difference seen at all measured sites between group C compared to both groups A and B (+0.8%, -2.7%, -1.8% at FN; +0.5%, -1.1%, -1.0% at TH; +0.8%, -2.0%, -3.5% at L1-4, respectively; all p < 0.05). Anti-osteoporosis therapy had a BMD-preserving effect in RA. Conclusion Compared with csDMARDs and TNFi, abatacept may have a better BMD-preserving effect in RA. Anti-osteoporosis therapy can prevent systemic bone loss irrespective of RA therapy.
Collapse
Affiliation(s)
- Ming-Han Chen
- Division of Allergy- Immunology- Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shan-Fu Yu
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-Feng Chen
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Sheng Chen
- Division of Allergy- Immunology- Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - The-Ling Liou
- Division of Allergy- Immunology- Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Tei Chou
- Division of Allergy- Immunology- Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Yuan Hsu
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Han-Ming Lai
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Chou Chen
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy- Immunology- Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tien-Tsai Cheng
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Probiotics as a New Regulator for Bone Health: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3582989. [PMID: 34394379 PMCID: PMC8355998 DOI: 10.1155/2021/3582989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023]
Abstract
Despite the proposed role of the gut microbiota-bone axis, findings on the association between probiotic consumption and bone health are conflicting. This systematic review aimed to assess the effect of probiotic consumption on bone health parameters. A systematic literature search of relevant reports published in PubMed/Medline, Web of Science, SCOPUS, EMBASE, and Google scholar before December 2020 was conducted. All clinical trials or experimental studies, which examined the relationship between probiotic consumption and bone health parameters, were included. No limitation was applied during the search. After screening articles based on inclusion criteria, 44 studies remained. In clinical trials, probiotic consumption affects bone health parameters such as serum calcium levels (3.82; 95% CI: 1.05, 6.59 mmol/l), urinary calcium levels (4.85; 95% CI: 1.16, 8.53 mmol/l), and parathyroid hormone (PTH) levels (−5.53; 95% CI: −9.83, −0.86 ng/l). In most studies, Lactobacillus species such as L. helveticus, L. reuteri, and L. casei were consumed and women aged 50 years or older were assessed. Spinal and total hip bone mineral density (BMD) was not affected significantly by probiotic consumption. In 37 animal experiments, probiotic or symbiotic feeding mostly had effects on bone health parameters. Some strains of Bifidobacterium and Lactobacillus including L. reuteri, L. casei, L. paracasei, L. bulgaricus, and L. acidophilus have indicated beneficial effects on bone health parameters. In conclusion, this systematic review and meta-analysis indicate that probiotic supplementation might improve bone health. Further studies are needed to decide on the best probiotic species and appropriate dosages.
Collapse
|
6
|
Orellana J, Pastor YY, Calle F, Pastor JY. Influence of HRGO Nanoplatelets on Behaviour and Processing of PMMA Bone Cement for Surgery. Polymers (Basel) 2021; 13:polym13122027. [PMID: 34205816 PMCID: PMC8235300 DOI: 10.3390/polym13122027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Bone cement, frequently based on poly (methyl methacrylate), is commonly used in different arthroplasty surgical procedures and its use is essential for prosthesis fixation. However, its manufacturing process reaches high temperatures (up to 120 °C), producing necrosis in the patients’ surrounding tissues. To help avoid this problem, the addition of graphene could delay the polymerisation of the methyl methacrylate as it could, simultaneously, favour the optimisation of the composite material’s properties. In this work, we address the effect of different percentages of highly reduced graphene oxide with different wt.% (0.10, 0.50, and 1.00) and surface densities (150, 300, 500, and 750 m2/g) on the physical, mechanical, and thermal properties of commercial poly (methyl methacrylate)-based bone cement and its processing. It was noted that a lower sintering temperature was achieved with this addition, making it less harmful to use in surgery and reducing its adverse effects. In contrast, the variation of the density of the materials did not introduce significant changes, which indicates that the addition of highly reduced graphene oxide would not significantly increase bone porosity. Lastly, the mechanical properties (strength, elastic modulus, and fracture toughness) were reduced by almost 20%. Nevertheless, their typical values are high enough that these new materials could still fulfil their structural function. In conclusion, this paper presents a way to control the sintering temperature, without significant degradation of the mechanical performance, by adding highly reduced graphene oxide so that local necrosis of bone cement based on poly (methyl methacrylate) used in surgery is avoided.
Collapse
Affiliation(s)
- Jaime Orellana
- Departamento de Ciencia de los Materiales and CIME, Universidad Politécnica de Madrid, E28040 Madrid, Spain; (J.O.); (Y.Y.P.)
| | - Ynés Yohana Pastor
- Departamento de Ciencia de los Materiales and CIME, Universidad Politécnica de Madrid, E28040 Madrid, Spain; (J.O.); (Y.Y.P.)
- Facultad de Medicina, Universidad Complutense de Madrid, E28040 Madrid, Spain
| | - Fernando Calle
- Departamento de Ingeniería Electrónica and ISOM, Universidad Politécnica de Madrid, E28040 Madrid, Spain;
| | - José Ygnacio Pastor
- Departamento de Ciencia de los Materiales and CIME, Universidad Politécnica de Madrid, E28040 Madrid, Spain; (J.O.); (Y.Y.P.)
- Correspondence:
| |
Collapse
|
7
|
Mo X, Zhao S, Wen Z, Lin W, Chen Z, Wang Z, Huang C, Qin J, Hao J, Chen B. High prevalence of osteoporosis in patients undergoing spine surgery in China. BMC Geriatr 2021; 21:361. [PMID: 34120598 PMCID: PMC8201731 DOI: 10.1186/s12877-021-02313-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023] Open
Abstract
Background With the increase in life expectancy, a large number of patients with osteoporosis (OP) are undergoing spine surgery, which may adversely affect the surgical success rate. The prevalence of OP varies in different regions, and no data are available that represent the prevalence of OP among Chinese patients over 50 years of age who are undergoing spine surgery. It was the first multicenter study to assess OP in these patients. Aiming to obtain comprehensive data, this study combined bone mineral density (BMD) measurements and visual radiography assessment (VRA) to analyze the prevalence of OP in patients aged > 50 years who underwent spine surgery. Methods Data from 1,856 patients aged over 50 years undergoing spine surgery who resided in northern, central, and southern China were reviewed between 2018 and 2019. Based on the perioperative BMD and X-ray data, we calculated the prevalence of OP in this special population according to sex, age, and spine degenerative disease. Results A total of 1,245 patients (678 females and 567 males) were included in the study. The prevalence of OP diagnosed by BMD was 52.8 % in females and 18.7 % in males. When we combined with BMD and VRA, the prevalence of OP increased from 52.8 to 65.9 % in females and from 18.7 to 40.6 % in males. Although OP was more severe in females than in males, a significant difference in the rate of vertebral fracture (VF) was not observed between females and males with a normal BMD and osteopenia (females vs. males: aged 50–59 years, P = 0.977; 60–69 years, P = 0.302; >70 years, P = 0.172). Similarly, no significant difference in the vertebral fracture rate was observed within different age groups of patients with a normal BMD and osteopenia (females: P = 0.210; males, P = 0.895). The incidence of OP in patients with degenerative scoliosis was higher than that in the remaining patients (females: 63.6 % vs. 42.4 %, P = 0.018; males: 38.9 % vs. 13.8 %, P = 0.004). Conclusions A high prevalence of OP was identified in patients aged > 50 years undergoing spine surgery, especially in patients whose primary diagnosis was degenerative scoliosis. BMD and VRA evaluations should be included in the clinical routine for these patients prior to surgery.
Collapse
Affiliation(s)
- Xiaoyi Mo
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Shengli Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Zhenxing Wen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Wei Lin
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Zhipeng Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Zhiyun Wang
- Department of Spine Surgery, Shunde Hospital of Southern Medical University, Foshan, China
| | - Chen Huang
- Department of Orthopaedic, Yantai Mountain Hospital, Yantai, Shandong, China
| | - Jie Qin
- Department of Spine Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Hao
- Department of Spine Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.
| |
Collapse
|
8
|
Peng J, Yu XJ, Yu LL, Tian FW, Zhao JX, Zhang H, Chen W, Zhai QX. The influence of gut microbiome on bone health and related dietary strategies against bone dysfunctions. Food Res Int 2021; 144:110331. [PMID: 34053534 DOI: 10.1016/j.foodres.2021.110331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
The link between the gut microbiome and bone health has begun to attract widespread interest in recent years. The gut microbiome are vital in many diseases involving bone loss. Probiotics, prebiotics, and dietary supplements have been suggested to protect bone health by altering the composition of the gut microbiota. Notably, studying the relationship between the gut microbiome and bone health can provide a basis for the prevention and treatment of bone diseases. This review focuses on the link between the gut microbiome and bone diseases, exploring current knowledge of the mechanisms by which gut bacteria affect bone health. In addition, the influences of dietary supplements on the interactions between the gut microbiome and bone health are discussed. This knowledge will promote new ideas for gut microbiota-mediated dietary interventions in patients with bone diseases.
Collapse
Affiliation(s)
- Jiang Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin-Jie Yu
- Hwa Chong Institution (College), 661 Bukit Timah Road, Singapore
| | - Lei-Lei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Feng-Wei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Xin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Qi-Xiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
9
|
Wagner JM, Schmidt SV, Dadras M, Wallner C, Huber J, Sogorski A, Sacher M, Reinkemeier F, Dittfeld S, Becerikli M, Becker K, Rauch N, Lehnhardt M, Behr B. TNF-α modulation via Etanercept restores bone regeneration of atrophic non-unions. Bone 2020; 141:115569. [PMID: 32745691 DOI: 10.1016/j.bone.2020.115569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Treatment of atrophic non-unions, especially in long bones is a challenging problem in orthopedic surgery due to the high revision and failure rate after surgical intervention. Subsequently, there is a certain need for a supportive treatment option besides surgical treatment. In our previous study we gained first insights into the dynamic processes of atrophic non-union formation and observed a prolonged inflammatory reaction with upregulated TNF-α levels and bone resorption. In this study we aimed to improve bone regeneration of atrophic non-unions via TNF-α modulation in a previously established murine femoral segmental defect model. Animals that developed atrophic non-unions of the femur after 5 and 10 weeks were treated systemically for 10 and 5 weeks with Etanercept, a soluble TNF-α antibody. μCT scans and histology revealed bony bridging of the fracture gap in the treatment group, while bone formation in control animals without treatment was not evident. Moreover, osteoclasts were markedly decreased via modulation of the RANKL/OPG axis due to Etanercept treatment. Additionally, immunomodulatory effects via Etanercept could be observed as further inflammatory agents, such as TGF-β, IL6, MMP9 and 13 were decreased in both treatment groups. This study is the first showing beneficial effects of Etanercept treatment on bone regeneration of atrophic non-union formation. Moreover, the results of this study provide a new and promising therapeutic option which might reduce the failure rate of revision surgeries of atrophic non-unions.
Collapse
Affiliation(s)
| | | | - Mehran Dadras
- University Hospital BG Bergmannsheil Bochum, Germany
| | | | - Julika Huber
- University Hospital BG Bergmannsheil Bochum, Germany
| | | | - Maxi Sacher
- University Hospital BG Bergmannsheil Bochum, Germany
| | | | | | | | | | | | | | - Björn Behr
- University Hospital BG Bergmannsheil Bochum, Germany.
| |
Collapse
|
10
|
Hsieh E, Shiau S, Nolan O, Gibert CL, Bedimo RJ, Rodriguez-Barradas MC, Justice AC, Womack JA, Yin MT. Increased Fragility Fracture Rates in Older Men With Osteomyelitis. Clin Infect Dis 2020; 69:1239-1242. [PMID: 30715288 DOI: 10.1093/cid/ciz077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, we evaluated fracture incidence over a 10-year period among men with and without osteomyelitis from the Veterans Aging Cohort Study. Fracture incidence was significantly higher among those with osteomyelitis at all osteoporotic fracture sites after adjusting for key related risk factors. Future prospective studies are warranted.
Collapse
Affiliation(s)
- Evelyn Hsieh
- Section of Rheumatology, Allergy and Clinical Immunology, Yale School of Medicine, New Haven.,Veteran Affairs (VA) Connecticut Healthcare System, West Haven
| | | | - Olivia Nolan
- Division of Infectious Diseases, Columbia University Medical Center, New York, New York
| | - Cynthia L Gibert
- Medical Service, Section of Infectious Diseases, Washington DC VA Medical Center, Washington, DC.,Division of Infectious Diseases, George Washington University School of Medicine, Washington, DC
| | - Roger J Bedimo
- Section of Infectious Diseases, VA North Texas Healthcare System, Dallas, Texas
| | - Maria C Rodriguez-Barradas
- Infectious Diseases Section, Michael E DeBakey VA Medical Center, Houston.,Department of Medicine, Baylor College of Medicine Houston, Texas
| | - Amy C Justice
- Veteran Affairs (VA) Connecticut Healthcare System, West Haven.,Section of General Internal Medicine, Yale School of Medicine, New Haven
| | - Julie A Womack
- Veteran Affairs (VA) Connecticut Healthcare System, West Haven.,Yale School of Nursing, West Haven, Connecticut
| | - Michael T Yin
- Division of Infectious Diseases, Columbia University Medical Center, New York, New York
| |
Collapse
|
11
|
Tang W, Xiao L, Ge G, Zhong M, Zhu J, Qin J, Feng C, Zhang W, Bai J, Zhu X, Wei M, Geng D, Wang Z. Puerarin inhibits titanium particle-induced osteolysis and RANKL-induced osteoclastogenesis via suppression of the NF-κB signaling pathway. J Cell Mol Med 2020; 24:11972-11983. [PMID: 32896108 PMCID: PMC7578865 DOI: 10.1111/jcmm.15821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Osteolysis around the prosthesis and subsequent aseptic loosening are the main causes of prosthesis failure. Inflammation due to wear particles and osteoclast activation are the key factors in osteolysis and are also potential targets for the treatment of osteolysis. However, it is not clear whether puerarin can inhibit chronic inflammation and alleviate osteolysis. In this study, we investigated the effect of puerarin on Ti particle-induced inflammatory osteolysis in vivo in rat femoral models and in vitro in receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast activation models. Our in vivo results showed that puerarin significantly inhibited Ti particle-induced osteolysis and the expression of matrix metallopeptidase 9 (MMP-9), nuclear factor of activated T cells 1 (NFATc1), tumour necrosis factor (TNF)-α and interleukin (IL)-6. In vitro, puerarin prevented RANKL-induced osteoclast differentiation, bone resorption and F-actin ring formation in a concentration-dependent manner. Furthermore, puerarin decreased the phosphorylation of p65 and prevented p65 moving from the cytoplasm to the nucleus. Puerarin also reduced the expression of osteoclast-specific factors and inhibited the inflammatory response. In conclusion, our study proves that puerarin can block the NF-κB signalling pathway to inhibit osteoclast activation and inflammatory processes, which provides a new direction for the treatment of osteolysis-related diseases.
Collapse
Affiliation(s)
- Wenkai Tang
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Long Xiao
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Gaoran Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengdan Zhong
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Jie Zhu
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Jialin Qin
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Chencheng Feng
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Wenhao Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Minggang Wei
- Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhirong Wang
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| |
Collapse
|
12
|
Local Wnt3a treatment restores bone regeneration in large osseous defects after surgical debridement of osteomyelitis. J Mol Med (Berl) 2020; 98:897-906. [PMID: 32424558 PMCID: PMC8526481 DOI: 10.1007/s00109-020-01924-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Impaired bone homeostasis caused by osteomyelitis provokes serious variations in the bone remodeling process, thereby involving multiple inflammatory cytokines to activate bone healing. We have previously established a mouse model for post-traumatic osteomyelitis and studied bone regeneration after sufficient debridement. Moreover, we could further characterize the postinfectious inflammatory state of bony defects after debridement with elevated osteoclasts and decreased bone formation despite the absence of bacteria. In this study, we investigated the positive effects of Wnt-pathway modulation on bone regeneration in our previous established mouse model. This was achieved by local application of Wnt3a, a recombinant activator of the canonical Wnt-pathway. Application of Wnt3a could enhance new bone formation, which was verified by histological and μ-CT analysis. Moreover, histology and western blots revealed enhanced osteoblastogenesis and downregulated osteoclasts in a RANKL-dependent manner. Further analysis of Wnt-pathway showed downregulation after bone infections were reconstituted by application of Wnt3a. Interestingly, Wnt-inhibitory proteins Dickkopf 1 (DKK1), sclerostin, and secreted frizzled protein 1 (sFRP1) were upregulated simultaneously to Wnt-pathway activation, indicating a negative feedback for active form of Beta-catenin. In this study, we could demonstrate enhanced bone formation in defects caused by post-traumatic osteomyelitis after Wnt3a application. KEY MESSAGES: Osteomyelitis decreases bone regeneration Wnt3a restores bone healing after infection Canonical Wnt-pathway activation with negative feedback.
Collapse
|
13
|
Wagner JM, Schmidt SV, Dadras M, Huber J, Wallner C, Dittfeld S, Becerikli M, Jaurich H, Reinkemeier F, Drysch M, Lehnhardt M, Behr B. Inflammatory processes and elevated osteoclast activity chaperon atrophic non-union establishment in a murine model. J Transl Med 2019; 17:416. [PMID: 31831031 PMCID: PMC6909450 DOI: 10.1186/s12967-019-02171-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/05/2019] [Indexed: 01/09/2023] Open
Abstract
Background Delayed bone healing, especially in long bones poses one of the biggest problems in orthopeadic and reconstructive surgery and causes tremendous costs every year. There is a need for exploring the causes in order to find an adequate therapy. Earlier investigations of human scaphoid non-union revealed an elevated osteoclast activity, accompanied by upregulated levels of TGF-beta and RANKL. Interestingly, scaphoid non-union seemed to be well vascularized. Methods In the current study, we used a murine femur-defect model to study atrophic non unions over a time-course of 10 weeks. Different time points were chosen, to gather insights into the dynamic processes of non-union establishment. Results Histological analyses as well as western blots and qRT-PCR indicated enhanced osteoclast activity throughout the observation period, paralleled by elevated levels of TGF-beta, TNF-alpha, MMP9, MMP13 and RANKL, especially during the early phases of non-union establishment. Interestingly, elevated levels of these mediators decreased markedly over a period of 10 weeks, as inflammatory reaction during non-union establishment seemed to wear out. To our surprise, osteoblastogenesis seemed to be unaffected during early stages of non-union establishment. Conclusion Taken together, we gained first insights into the establishment process of atrophic non unions, in which inflammatory processes accompanied by highly elevated osteoclast activity seem to play a leading role.
Collapse
Affiliation(s)
- Johannes M Wagner
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany.
| | - Sonja V Schmidt
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Mehran Dadras
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Julika Huber
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Christoph Wallner
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Stephanie Dittfeld
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Mustafa Becerikli
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Henriette Jaurich
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Felix Reinkemeier
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Marius Drysch
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Marcus Lehnhardt
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Björn Behr
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| |
Collapse
|
14
|
Massaccesi L, Ragone V, Papini N, Goi G, Corsi Romanelli MM, Galliera E. Effects of Vitamin E-Stabilized Ultra High Molecular Weight Polyethylene on Oxidative Stress Response and Osteoimmunological Response in Human Osteoblast. Front Endocrinol (Lausanne) 2019; 10:203. [PMID: 31001202 PMCID: PMC6457167 DOI: 10.3389/fendo.2019.00203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/12/2019] [Indexed: 11/30/2022] Open
Abstract
High Crosslink process was introduced in the development of joint prosthetic devices, in order to decrease the wear rate of ultrahigh molecular weight polyethylene (UHMWPE), but it also triggers the formation of free radicals and oxidative stress, which affects the physiological bone remodeling, leading to osteolysis. Vitamin E stabilization of UHMWPE was proposed to provide oxidation resistance without affecting mechanical properties and fatigue strength. The aim of this study is to evaluate the antioxidant effect of vitamin E added to UHMWPE on oxidative stress induced osteolysis, focusing in particular on the oxidative stress response in correlation with the production of osteoimmunological markers, Sclerostin and DKK-1, and the RANKL/OPG ratio compared to conventional UHMWPE wear debris. Human osteoblastic cell line SaOS2 were incubated for 96 h with wear particles derived from crosslinked and not crosslinked Vitamin E-stabilized, UHMWPE without Vitamin E, and growth medium as control. Cellular response to oxidative stress, compared to not treat cells, was evaluated in terms of proteins O-GlcNAcylation, cellular levels of OGA, and OGT proteins by immunoblotting. O-GlcNAcylation and its positive regulator OGT levels are increased in the presence of Vitamin E blended UHMWPE, in particular with not crosslinked Vit E stabilized UHMWPE. Conversely, the negative regulator OGA increased in the presence of UHMWPE not blended with Vitamin E. Vitamin E-stabilized UHMWPE induced a decrease of RANKL/OPG ratio compared to UHMWPE without Vitamin E, and the same effect was observed for Sclerostin, while DKK-1 was not significantly affected. In conclusion, Vitamin E stabilization of UHMWPE increased osteoblast response to oxidative stress, inducing a cellular mechanism aimed at cell survival. Vitamin E antioxidant effect influences the secretion of osteoimmunological factors, shifting the bone turnover balance toward bone protection stimuli. This suggests that Vitamin E-Stabilization of UHMWPE could contribute to reduction of oxidation-induced osteolysis and the consequent loosening of the prosthetic devices, therefore improving the longevity of total joint replacements.
Collapse
Affiliation(s)
- Luca Massaccesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Vincenza Ragone
- Research and Develpoment Department, Permedica S.p.A, Merate, Italy
| | - Nadia Papini
- Department of Medical Biotechnology and Traslational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Giancarlo Goi
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- U.O.C SMEL-1 Patologia Clinica San Donato, IRCCS Policlinico San Donato, Milan, Italy
| | - Emanuela Galliera
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- *Correspondence: Emanuela Galliera
| |
Collapse
|
15
|
Lechner J, Rudi T, von Baehr V. Osteoimmunology of tumor necrosis factor-alpha, IL-6, and RANTES/CCL5: a review of known and poorly understood inflammatory patterns in osteonecrosis. Clin Cosmet Investig Dent 2018; 10:251-262. [PMID: 30519117 PMCID: PMC6233471 DOI: 10.2147/ccide.s184498] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The immune and bone systems are closely linked via cytokine cross-talk. This interdisciplinary field of research is referred to as osteoimmunology and pertains to inflammatory and osteoarticular diseases that feature the primary expression of tumor necrosis factor-alpha (TNF-α) and IL-6. Objective Are there bone resorptive processes wherein chronic inflammatory conditions are not linked to TNF-α and IL-6 expression, but rather to the expression of other cytokines? Materials and methods A comprehensive literature search was performed in PubMed Central. Discussion Although all diseases with cytokines involved in bone resorption (TNF-α and IL-6) are at the forefront of destructive inflammatory processes, there is one exception in the literature: fatty oxide osteoporosis/osteolysis in the jawbone (FDOJ), which is associated with significant bone softening. However, it should be noted that TNF-α and IL-6 fall below the levels found in a healthy jawbone in this condition. Another conspicuous finding is that there is a nearly 35-fold overexpression of the chemokine RANTES/CCL5 (R/C) in all FDOJ cases studied thus far in the literature. Conclusion FDOJ appears to represent a unique cytokine and inflammatory pattern from osteolysis in the body. R/C can be defined as the dominant carrier of a “maxillomandibular osteoimmunology”.
Collapse
Affiliation(s)
- Johann Lechner
- Clinic for Integrative Dentistry, Munich 81547, Germany,
| | - Tatjana Rudi
- Institute for Epidemiological Studies, Berlin 10709, Germany
| | - Volker von Baehr
- Department of Immunology and Allergology, Institute for Medical Diagnostics in MVZ GbR, Berlin 12247, Germany
| |
Collapse
|
16
|
Chen D, Xie R, Shu B, Landay AL, Wei C, Reiser J, Spagnoli A, Torquati A, Forsyth CB, Keshavarzian A, Sumner DR. Wnt signaling in bone, kidney, intestine, and adipose tissue and interorgan interaction in aging. Ann N Y Acad Sci 2018; 1442:48-60. [PMID: 30101565 DOI: 10.1111/nyas.13945] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
Over the last two decades, it has become increasingly apparent that Wnt signaling plays a critical role in development and adult tissue homeostasis in multiple organs and in the pathogenesis of many diseases. In particular, a crucial role for Wnt signaling in bone development and bone tissue homeostasis has been well recognized. Numerous genome-wide association studies confirmed the importance of Wnt signaling in controlling bone mass. Moreover, ample evidence suggests that Wnt signaling is essential for kidney, intestine, and adipose tissue development and homeostasis. Recent emerging evidence demonstrates that Wnt signaling may play a fundamental role in the aging process of those organs. New discoveries show that bone is not only the major reservoir for calcium and phosphate storage, but also the largest organ with multiple functions, including mineral and energy metabolism. The interactions among bone, kidney, intestine, and adipose tissue are controlled and regulated by several endocrine signals, including FGF23, klotho, sclerostin, osteocalcin, vitamin D, and leptin. Since the aging process is characterized by structural and functional decline in almost all tissues and organs, understanding the Wnt signaling-related interactions among bone, kidney, intestine, and adipose tissue in aging may shed light on the pathogenesis of age-related diseases.
Collapse
Affiliation(s)
- Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Rong Xie
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Bing Shu
- Spine Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Alan L Landay
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois
| | - Changli Wei
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Anna Spagnoli
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois
| | - Alfonso Torquati
- Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | | | - Ali Keshavarzian
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - D Rick Sumner
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
17
|
Bolzoni M, Toscani D, Costa F, Vicario E, Aversa F, Giuliani N. The link between bone microenvironment and immune cells in multiple myeloma: Emerging role of CD38. Immunol Lett 2018; 205:65-70. [PMID: 29702149 DOI: 10.1016/j.imlet.2018.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022]
Abstract
The relationship between bone and immune cells is well established both in physiological and pathological conditions. Multiple myeloma (MM) is a plasma cell malignancy characterized by an increase of number and activity of osteoclasts (OCLs) and a decrease of osteoblasts (OBs). These events are responsible for bone lesions of MM patients. OCLs support MM cells survival in vitro and in vivo. Recently, the possible role of OCLs as immunosuppressive cells in the MM BM microenvironment has been underlined. OCLs protect MM cells against T cell-mediated cytotoxicity through the expression of several molecules including programmed death-ligand (PD-L) 1, galectin (Gal) 9, CD200, and indoleamine-2,3-dioxygenase (IDO). Among the molecules that could be involved in the link between immune-microenvironment and osteoclastogenesis the role of CD38 has been hypothesized. CD38 is a well-known adhesion molecule and an ectoenzyme highly expressed by MM cells. Moreover, CD38 is expressed by OCLs and at the surface level on OCL precursors. Targeting CD38 with monoclonal antibodies showed inhibition of both osteoclastogenesis and OCL-mediated suppression of T cell function. This review elucidates this evidence indicating that osteoclastogenesis affect MM immune-microenvironment being a potential target to improve anti-MM immunity and to ameliorate bone disease.
Collapse
Affiliation(s)
- Marina Bolzoni
- Department Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Denise Toscani
- Department Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Federica Costa
- Department Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Emanuela Vicario
- Department Medicine and Surgery, University of Parma, 43126 Parma, Italy; Biopathology and Medical Biotechnologies, Biology and Genetic Section, University of Palermo, 90133 Palermo, Italy
| | - Franco Aversa
- Department Medicine and Surgery, University of Parma, 43126 Parma, Italy; Hematology and BMT Center, "Azienda Ospedaliero-Universitaria di Parma", 43126 Parma, Italy
| | - Nicola Giuliani
- Department Medicine and Surgery, University of Parma, 43126 Parma, Italy; Hematology and BMT Center, "Azienda Ospedaliero-Universitaria di Parma", 43126 Parma, Italy.
| |
Collapse
|
18
|
Walsh MC, Takegahara N, Kim H, Choi Y. Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nat Rev Rheumatol 2018; 14:146-156. [PMID: 29323344 DOI: 10.1038/nrrheum.2017.213] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoimmunology encompasses all aspects of the cross-regulation of bone and the immune system, including various cell types, signalling pathways, cytokines and chemokines, under both homeostatic and pathogenic conditions. A number of key areas are of increasing interest and relevance to osteoimmunology researchers. Although rheumatoid arthritis has long been recognized as one of the most common autoimmune diseases to affect bone integrity, researchers have focused increased attention on understanding how molecular triggers and innate signalling pathways (such as Toll-like receptors and purinergic signalling pathways) related to pathogenic and/or commensal microbiota are relevant to bone biology and rheumatic diseases. Additionally, although most discussions relating to osteoimmune regulation of homeostasis and disease have focused on the effects of adaptive immune responses on bone, evidence exists of the regulation of immune cells by bone cells, a concept that is consistent with the established role of the bone marrow in the development and homeostasis of the immune system. The active regulation of immune cells by bone cells is an interesting emerging component of investigations that seek to understand how to control immune-associated diseases of the bone and joints.
Collapse
Affiliation(s)
- Matthew C Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Noriko Takegahara
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
19
|
Ma JF, Sanchez BJ, Hall DT, Tremblay AMK, Di Marco S, Gallouzi IE. STAT3 promotes IFNγ/TNFα-induced muscle wasting in an NF-κB-dependent and IL-6-independent manner. EMBO Mol Med 2017; 9:622-637. [PMID: 28264935 PMCID: PMC5412921 DOI: 10.15252/emmm.201607052] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cachexia is a debilitating syndrome characterized by involuntary muscle wasting that is triggered at the late stage of many cancers. While the multifactorial nature of this syndrome and the implication of cytokines such as IL‐6, IFNγ, and TNFα is well established, we still do not know how various effector pathways collaborate together to trigger muscle atrophy. Here, we show that IFNγ/TNFα promotes the phosphorylation of STAT3 on Y705 residue in the cytoplasm of muscle fibers by activating JAK kinases. Unexpectedly, this effect occurs both in vitro and in vivo independently of IL‐6, which is considered as one of the main triggers of STAT3‐mediated muscle wasting. pY‐STAT3 forms a complex with NF‐κB that is rapidly imported to the nucleus where it is recruited to the promoter of the iNos gene to activate the iNOS/NO pathway, a well‐known downstream effector of IFNγ/TNFα‐induced muscle loss. Together, these findings show that STAT3 and NF‐κB respond to the same upstream signal and cooperate to promote the expression of pro‐cachectic genes, the identification of which could provide effective targets to combat this deadly syndrome.
Collapse
Affiliation(s)
- Jennifer F Ma
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Brenda J Sanchez
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Derek T Hall
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Anne-Marie K Tremblay
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Sergio Di Marco
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Imed-Eddine Gallouzi
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada .,Life Sciences Division, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Doha, Qatar
| |
Collapse
|
20
|
Chen YJ, Chang WA, Hsu YL, Chen CH, Kuo PL. Deduction of Novel Genes Potentially Involved in Osteoblasts of Rheumatoid Arthritis Using Next-Generation Sequencing and Bioinformatic Approaches. Int J Mol Sci 2017; 18:ijms18112396. [PMID: 29137139 PMCID: PMC5713364 DOI: 10.3390/ijms18112396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 12/24/2022] Open
Abstract
The role of osteoblasts in peri-articular bone loss and bone erosion in rheumatoid arthritis (RA) has gained much attention, and microRNAs are hypothesized to play critical roles in the regulation of osteoblast function in RA. The aim of this study is to explore novel microRNAs differentially expressed in RA osteoblasts and to identify genes potentially involved in the dysregulated bone homeostasis in RA. RNAs were extracted from cultured normal and RA osteoblasts for sequencing. Using the next generation sequencing and bioinformatics approaches, we identified 35 differentially expressed microRNAs and 13 differentially expressed genes with potential microRNA–mRNA interactions in RA osteoblasts. The 13 candidate genes were involved mainly in cell–matrix adhesion, as classified by the Gene Ontology. Two genes of interest identified from RA osteoblasts, A-kinase anchoring protein 12 (AKAP12) and leucin rich repeat containing 15 (LRRC15), were found to express more consistently in the related RA synovial tissue arrays in the Gene Expression Omnibus database, with the predicted interactions with miR-183-5p and miR-146a-5p, respectively. The Ingenuity Pathway Analysis identified AKAP12 as one of the genes involved in protein kinase A signaling and the function of chemotaxis, interconnecting with molecules related to neovascularization. The findings indicate new candidate genes as the potential indicators in evaluating therapies targeting chemotaxis and neovascularization to control joint destruction in RA.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Physical Medicine and Rehabilitation, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan.
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Physical Medicine and Rehabilitation, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan.
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
21
|
Vaassen LA, Speel EJM, Kessler PA. Bone invasion by oral squamous cell carcinoma: Molecular alterations leading to osteoclastogenesis – a review of literature. J Craniomaxillofac Surg 2017; 45:1464-1471. [DOI: 10.1016/j.jcms.2017.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
|
22
|
Abstract
PURPOSE OF REVIEW The gut microbiota can be considered a hidden organ that plays essential roles in host homeostasis. Exploration of the effects of microbiota on bone has just begun. Complimentary studies using germ-free mice, antibiotic, and probiotic treatments reveal a complicated relationship between microbiota and bone. Here, we review recent reports addressing the effect of gut microbiota on bone health, discuss potential reasons for discrepant findings, and explore potential mechanisms for these effects. RECENT FINDINGS Manipulation of microbiota by colonization of germ-free mice, antibiotics, or probiotic supplementation significantly alters bone remodeling, bone development and growth, as well as bone mechanical strength. Different experimental models reveal context-dependent effects of gut microbiota on bone. By examining phenotypic effects, experimental context, and proposed mechanisms, revealed by recent reports, we hope to provide comprehensive and fresh insights into the many facets of microbiota and bone interactions.
Collapse
Affiliation(s)
- Jing Yan
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, 60 Fenwood Road, 6002Q, Boston, MA, 02115, USA
| | - Julia F Charles
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, 60 Fenwood Road, 6002Q, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Lima ILDA, Silva JMD, Rodrigues LFD, Madureira DF, Fonseca AC, Garlet GP, Teixeira MM, Russo RC, Fukada SY, Silva TAD. Contribution of atypical chemokine receptor 2/ackr2 in bone remodeling. Bone 2017; 101:113-122. [PMID: 28476575 DOI: 10.1016/j.bone.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Bone remodeling is a tightly regulated process influenced by chemokines. ACKR2 is a decoy receptor for CC chemokines functioning as regulator of inflammatory response. In this study we investigated whether the absence of ACKR2 would affect bone phenotype and remodeling induced by mechanical loading. METHODS An orthodontic appliance was placed between incisors and first molar of ACKR2 deficient (ACKR2-/-) and C57BL6/J (wild-type/WT) mice. Microtomography, histology and qPCR were performed to evaluate bone parameters, orthodontic tooth movement (OTM), bone cells counts and the expression of ACKR2, bone remodeling markers, CC chemokines and chemokines receptors. Bone marrow cells (BMC) from WT and ACKR2-/- mice were differentiated in osteoclasts and osteoblasts for analysis of activity and expression of specific markers. RESULTS Mechanical stimulus induced ACKR2 production in periodontium. The expression of ACKR2 in vitro was mostly detected in mature osteoclasts and early-differentiated osteoblasts. Although ACKR2-/- mice exhibited regular phenotype in maxillary bone, the amount of OTM, osteoclasts counts and the expression of pro-resorptive markers were increased in this group. In contrast, the number of osteoblasts and related markers were decreased. OTM resulted in augmented expression of CC chemokines and receptors CCR5 and CCR1 in periodontium, which was higher in ACKR2-/- than WT mice. In vitro experiments demonstrated an augmented formation of osteoclasts and diminished differentiation of osteoblasts in ACKR2-/- mice. CONCLUSIONS These data suggests that ACKR2 functions as a regulator of mechanically-induced bone remodeling by affecting the differentiation and activity of bone cells and the availability of CC chemokines at periodontal microenvironment. Therapeutic strategies based on increase of ACKR2 might be useful to hinder bone loss in inflammatory conditions.
Collapse
Affiliation(s)
- Izabella Lucas de Abreu Lima
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010 Belo Horizonte, MG, Brazil
| | - Janine Mayra da Silva
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010 Belo Horizonte, MG, Brazil
| | - Letícia Fernanda Duffles Rodrigues
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos 6627, 31.270-9010 Belo Horizonte, MG, Brazil
| | - Davidson Frois Madureira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010 Belo Horizonte, MG, Brazil
| | - Angélica Cristina Fonseca
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, FOB/USP, Al. Octávio Pinheiro Brisola 9-75, CEP 17012-901 Bauru, SP, Brazil
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, FOB/USP, Al. Octávio Pinheiro Brisola 9-75, CEP 17012-901 Bauru, SP, Brazil.
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010 Belo Horizonte, MG, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010 Belo Horizonte, MG, Brazil
| | - Sandra Yasuyo Fukada
- Department of Physics and Chemistry, Faculty of Pharmaceutical Science of Ribeirão Preto, São Paulo University, Avenida do Café, s/n, Cidade Universitária, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Tarcília Aparecida da Silva
- Department of Oral Pathology and Surgery, Faculty of Dentistry, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010 Belo Horizonte, MG, Brazil.
| |
Collapse
|
24
|
O'Brien W, Fissel BM, Maeda Y, Yan J, Ge X, Gravallese EM, Aliprantis AO, Charles JF. RANK-Independent Osteoclast Formation and Bone Erosion in Inflammatory Arthritis. Arthritis Rheumatol 2017; 68:2889-2900. [PMID: 27563728 DOI: 10.1002/art.39837] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/02/2016] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Proinflammatory molecules promote osteoclast-mediated bone erosion by up-regulating local RANKL production. However, recent evidence suggests that combinations of cytokines, such as tumor necrosis factor (TNF) plus interleukin-6 (IL-6), induce RANKL-independent osteoclastogenesis. The purpose of this study was to better understand TNF/IL-6-induced osteoclast formation and to determine whether RANK is absolutely required for osteoclastogenesis and bone erosion in murine inflammatory arthritis. METHODS Myeloid precursors from wild-type (WT) mice or mice with either germline or conditional deletion of Rank, Nfatc1, Dap12, or Fcrg were treated with either RANKL or TNF plus IL-6. Osteoprotegerin, anti-IL-6 receptor (anti-IL-6R), and hydroxyurea were used to block RANKL, the IL-6R, and cell proliferation, respectively. Clinical scoring, histologic assessment, micro-computed tomography, and quantitative polymerase chain reaction (qPCR) were used to evaluate K/BxN serum-transfer arthritis in WT and RANK-deleted mice. Loss of Rank was verified by qPCR and by osteoclast cultures. RESULTS TNF/IL-6 generated osteoclasts in vitro that resorbed mineralized tissue through a pathway dependent on IL-6R, NFATc1, DNAX-activation protein 12, and cell proliferation, but independent of RANKL or RANK. Bone erosion and osteoclast formation were reduced, but not absent, in arthritic mice with inducible deficiency of RANK. TNF/IL-6, but not RANKL, induced osteoclast formation in bone marrow and synovial cultures from animals deficient in Rank. Multiple IL-6 family members (IL-6, leukemia inhibitory factor, oncostatin M) were up-regulated in the synovium of arthritic mice. CONCLUSION The persistence of bone erosion and synovial osteoclasts in Rank-deficient mice, and the ability of TNF/IL-6 to induce osteoclastogenesis, suggest that more than one cytokine pathway exists to generate these bone-resorbing cells in inflamed joints.
Collapse
Affiliation(s)
- William O'Brien
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brian M Fissel
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yukiko Maeda
- University of Massachusetts Medical School, Worcester
| | - Jing Yan
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Xianpeng Ge
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | - Julia F Charles
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Hurtgen BJ, Henderson BEP, Ward CL, Goldman SM, Garg K, McKinley TO, Greising SM, Wenke JC, Corona BT. Impairment of early fracture healing by skeletal muscle trauma is restored by FK506. BMC Musculoskelet Disord 2017; 18:253. [PMID: 28606129 PMCID: PMC5469075 DOI: 10.1186/s12891-017-1617-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Background Heightened local inflammation due to muscle trauma or disease is associated with impaired bone regeneration. Methods We hypothesized that FK506, an FDA approved immunomodulatory compound with neurotrophic and osteogenic effects, will rescue the early phase of fracture healing which is impaired by concomitant muscle trauma in male (~4 months old) Lewis rats. FK506 (1 mg/kg; i.p.) or saline was administered systemically for 14 days after an endogenously healing tibia osteotomy was created and fixed with an intermedullary pin, and the overlying tibialis anterior (TA) muscle was either left uninjured or incurred volumetric muscle loss injury (6 mm full thickness biopsy from middle third of the muscle). Results The salient observations of this study were that 1) concomitant TA muscle trauma impaired recovery of tibia mechanical properties 28 days post-injury, 2) FK506 administration rescued the recovery of tibia mechanical properties in the presence of concomitant TA muscle trauma but did not augment mechanical recovery of an isolated osteotomy (no muscle trauma), 3) T lymphocytes and macrophage presence within the traumatized musculature were heightened by trauma and attenuated by FK506 3 days post-injury, and 4) T lymphocyte but not macrophage presence within the fracture callus were attenuated by FK506 at 14 days post-injury. FK506 did not improve TA muscle isometric torque production Conclusion Collectively, these findings support the administration of FK506 to ameliorate healing of fractures with severe muscle trauma comorbidity. The results suggest one potential mechanism of action is a reduction in local T lymphocytes within the injured musculoskeletal tissue, though other mechanisms to include direct osteogenic effects of FK506 require further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12891-017-1617-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brady J Hurtgen
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Beth E P Henderson
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Catherine L Ward
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Stephen M Goldman
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Koyal Garg
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah M Greising
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Joseph C Wenke
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA.
| |
Collapse
|
26
|
Gsα Controls Cortical Bone Quality by Regulating Osteoclast Differentiation via cAMP/PKA and β-Catenin Pathways. Sci Rep 2017; 7:45140. [PMID: 28338087 PMCID: PMC5364530 DOI: 10.1038/srep45140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/17/2017] [Indexed: 12/14/2022] Open
Abstract
Skeletal bone formation and maintenance requires coordinate functions of several cell types, including bone forming osteoblasts and bone resorbing osteoclasts. Gsα, the stimulatory subunit of heterotrimeric G proteins, activates downstream signaling through cAMP and plays important roles in skeletal development by regulating osteoblast differentiation. Here, we demonstrate that Gsα signaling also regulates osteoclast differentiation during bone modeling and remodeling. Gnas, the gene encoding Gsα, is imprinted. Mice with paternal allele deletion of Gnas (Gnas+/p-) have defects in cortical bone quality and strength during early development (bone modeling) that persist during adult bone remodeling. Reduced bone quality in Gnas+/p- mice was associated with increased endosteal osteoclast numbers, with no significant effects on osteoblast number and function. Osteoclast differentiation and resorption activity was enhanced in Gnas+/p- cells. During differentiation, Gnas+/p- cells showed diminished pCREB, β-catenin and cyclin D1, and enhanced Nfatc1 levels, conditions favoring osteoclastogenesis. Forskolin treatment increased pCREB and rescued osteoclast differentiation in Gnas+/p- by reducing Nfatc1 levels. Cortical bone of Gnas+/p- mice showed elevated expression of Wnt inhibitors sclerostin and Sfrp4 consistent with reduced Wnt/β-catenin signaling. Our data identify a new role for Gsα signaling in maintaining bone quality by regulating osteoclast differentiation and function through cAMP/PKA and Wnt/β-catenin pathways.
Collapse
|
27
|
Ginaldi L, De Martinis M. Osteoimmunology and Beyond. Curr Med Chem 2017; 23:3754-3774. [PMID: 27604089 PMCID: PMC5204071 DOI: 10.2174/0929867323666160907162546] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/27/2022]
Abstract
Abstract: Objective Osteoimmunology investigates interactions between skeleton and immune system. In the light of recent discoveries in this field, a new reading register of osteoporosis is actually emerging, in which bone and immune cells are strictly interconnected. Osteoporosis could therefore be considered a chronic immune mediated disease which shares with other age related disorders a common inflammatory background. Here, we highlight these recent discoveries and the new landscape that is emerging. Method Extensive literature search in PubMed central. Results While the inflammatory nature of osteoporosis has been clearly recognized, other interesting aspects of osteoimmunology are currently emerging. In addition, mounting evidence indicates that the immunoskeletal interface is involved in the regulation of important body functions beyond bone remodeling. Bone cells take part with cells of the immune system in various immunological functions, configuring a real expanded immune system, and are therefore variously involved not only as target but also as main actors in various pathological conditions affecting primarily the immune system, such as autoimmunity and immune deficiencies, as well as in aging, menopause and other diseases sharing an inflammatory background. Conclusion The review highlights the complexity of interwoven pathways and shared mechanisms of the crosstalk between the immune and bone systems. More interestingly, the interdisciplinary field of osteoimmunology is now expanding beyond bone and immune cells, defining new homeostatic networks in which other organs and systems are functionally interconnected. Therefore, the correct skeletal integrity maintenance may be also relevant to other functions outside its involvement in bone mineral homeostasis, hemopoiesis and immunity.
Collapse
Affiliation(s)
- Lia Ginaldi
- School and Unit of Allergy and Clinical Immunology, Department of Life, Health, & Environmental Sciences, University of L'Aquila, Italy.
| | | |
Collapse
|
28
|
Ni Mhuircheartaigh O, Crowson CS, Gabriel SE, Roger VL, Melton LJ, Amin S. Fragility Fractures Are Associated with an Increased Risk for Cardiovascular Events in Women and Men with Rheumatoid Arthritis: A Population-based Study. J Rheumatol 2017; 44:558-564. [PMID: 28089982 DOI: 10.3899/jrheum.160651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Women and men with rheumatoid arthritis (RA) have an increased risk for fragility fractures and cardiovascular disease (CVD), each of which has been reported to contribute to excess morbidity and mortality in these patients. Fragility fractures share similar risk factors for CVD but may occur at relatively younger ages in patients with RA. We aimed to determine whether a fragility fracture predicts the development of CVD in women and men with RA. METHODS We studied a population-based cohort with incident RA from 1955 to 2007 and compared it with age- and sex-matched non-RA subjects. We identified fragility fractures and CVD events following the RA incidence/index date, along with relevant risk factors. We used Cox models to examine the association between fractures and the development of CVD, in which fractures and CVD risk factors were modeled as time-dependent covariates. RESULTS There were 1171 subjects (822 women; 349 men) in each of the RA and non-RA cohorts. Over followup, there were 406 and 346 fragility fractures and 286 and 225 CVD events, respectively. The overall CVD risk was increased significantly for RA subjects following a fragility fracture (HR 1.81, 95% CI 1.38-2.37) but not for non-RA subjects (HR 1.18, 95% CI 0.85-1.63). Results were similar for women and men with RA. CONCLUSION Fragility fractures in both women and men with RA are associated with an increased risk for CVD events and should raise an alert to clinicians to target these individuals for further screening and preventive strategies for CVD.
Collapse
Affiliation(s)
- Orla Ni Mhuircheartaigh
- From the St. Vincent's Hospital, Dublin, Ireland; Division of Biomedical Statistics and Informatics, and Division of Epidemiology, Department of Health Sciences Research, and Division of Rheumatology, and Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,O. Ni Mhuircheartaigh, MB, BCh, BAO, BSc, MRCPI, St. Vincent's Hospital; C.S. Crowson, MS, Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, and Division of Rheumatology, Department of Medicine, Mayo Clinic; S.E. Gabriel, MD, MSc, Rutgers Robert Wood Johnson Medical School; V.L. Roger, MD, MPH, Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic and Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic; L.J. Melton III, MD, MPH, Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic; S. Amin, MD, CM, MPH, Division of Rheumatology, Department of Medicine, Mayo Clinic, and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic
| | - Cynthia S Crowson
- From the St. Vincent's Hospital, Dublin, Ireland; Division of Biomedical Statistics and Informatics, and Division of Epidemiology, Department of Health Sciences Research, and Division of Rheumatology, and Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,O. Ni Mhuircheartaigh, MB, BCh, BAO, BSc, MRCPI, St. Vincent's Hospital; C.S. Crowson, MS, Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, and Division of Rheumatology, Department of Medicine, Mayo Clinic; S.E. Gabriel, MD, MSc, Rutgers Robert Wood Johnson Medical School; V.L. Roger, MD, MPH, Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic and Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic; L.J. Melton III, MD, MPH, Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic; S. Amin, MD, CM, MPH, Division of Rheumatology, Department of Medicine, Mayo Clinic, and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic
| | - Sherine E Gabriel
- From the St. Vincent's Hospital, Dublin, Ireland; Division of Biomedical Statistics and Informatics, and Division of Epidemiology, Department of Health Sciences Research, and Division of Rheumatology, and Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,O. Ni Mhuircheartaigh, MB, BCh, BAO, BSc, MRCPI, St. Vincent's Hospital; C.S. Crowson, MS, Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, and Division of Rheumatology, Department of Medicine, Mayo Clinic; S.E. Gabriel, MD, MSc, Rutgers Robert Wood Johnson Medical School; V.L. Roger, MD, MPH, Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic and Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic; L.J. Melton III, MD, MPH, Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic; S. Amin, MD, CM, MPH, Division of Rheumatology, Department of Medicine, Mayo Clinic, and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic
| | - Veronique L Roger
- From the St. Vincent's Hospital, Dublin, Ireland; Division of Biomedical Statistics and Informatics, and Division of Epidemiology, Department of Health Sciences Research, and Division of Rheumatology, and Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,O. Ni Mhuircheartaigh, MB, BCh, BAO, BSc, MRCPI, St. Vincent's Hospital; C.S. Crowson, MS, Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, and Division of Rheumatology, Department of Medicine, Mayo Clinic; S.E. Gabriel, MD, MSc, Rutgers Robert Wood Johnson Medical School; V.L. Roger, MD, MPH, Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic and Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic; L.J. Melton III, MD, MPH, Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic; S. Amin, MD, CM, MPH, Division of Rheumatology, Department of Medicine, Mayo Clinic, and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic
| | - L Joseph Melton
- From the St. Vincent's Hospital, Dublin, Ireland; Division of Biomedical Statistics and Informatics, and Division of Epidemiology, Department of Health Sciences Research, and Division of Rheumatology, and Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.,O. Ni Mhuircheartaigh, MB, BCh, BAO, BSc, MRCPI, St. Vincent's Hospital; C.S. Crowson, MS, Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, and Division of Rheumatology, Department of Medicine, Mayo Clinic; S.E. Gabriel, MD, MSc, Rutgers Robert Wood Johnson Medical School; V.L. Roger, MD, MPH, Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic and Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic; L.J. Melton III, MD, MPH, Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic; S. Amin, MD, CM, MPH, Division of Rheumatology, Department of Medicine, Mayo Clinic, and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic
| | - Shreyasee Amin
- From the St. Vincent's Hospital, Dublin, Ireland; Division of Biomedical Statistics and Informatics, and Division of Epidemiology, Department of Health Sciences Research, and Division of Rheumatology, and Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA. .,O. Ni Mhuircheartaigh, MB, BCh, BAO, BSc, MRCPI, St. Vincent's Hospital; C.S. Crowson, MS, Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, and Division of Rheumatology, Department of Medicine, Mayo Clinic; S.E. Gabriel, MD, MSc, Rutgers Robert Wood Johnson Medical School; V.L. Roger, MD, MPH, Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic and Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic; L.J. Melton III, MD, MPH, Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic; S. Amin, MD, CM, MPH, Division of Rheumatology, Department of Medicine, Mayo Clinic, and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic.
| |
Collapse
|
29
|
Abstract
Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth.
Collapse
|
30
|
Hurtgen B, Ward C, Garg K, Pollot B, Goldman S, McKinley T, Wenke J, Corona B. Severe muscle trauma triggers heightened and prolonged local musculoskeletal inflammation and impairs adjacent tibia fracture healing. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2016; 16:122-34. [PMID: 27282456 PMCID: PMC5114355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVES Complicated fracture healing is often associated with the severity of surrounding muscle tissue trauma. Since inflammation is a primary determinant of musculoskeletal health and regeneration, it is plausible that delayed healing and non-unions are partly caused by compounding local inflammation in response to concomitant muscle trauma. METHODS AND RESULTS To investigate this possibility, a Lewis rat open fracture model [tibia osteotomy with adjacent tibialis anterior (TA) muscle volumetric muscle loss (VML) injury] was interrogated. We observed that VML injury impaired tibia healing, as indicated by diminished mechanical strength and decreased mineralized bone within the fracture callus, as well as continued presence of cartilage instead of woven bone 28 days post-injury. The VML injured muscle presented innate and adaptive immune responses that were atypical of canonical muscle injury healing. Additionally, the VML injury resulted in a perturbation of the inflammatory phase of fracture healing, as indicated by elevations of CD3(+) lymphocytes and CD68+ macrophages in the fracture callus at 3 and 14d post-injury, respectively. CONCLUSIONS These data indicate that heightened and sustained innate and adaptive immune responses to traumatized muscle are associated with impaired fracture healing and may be targeted for the prevention of delayed and non-union following musculoskeletal trauma.
Collapse
Affiliation(s)
- B.J. Hurtgen
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX
| | - C.L. Ward
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX
| | - K. Garg
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX
| | - B.E. Pollot
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX
| | - S.M. Goldman
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX
| | - T.O. McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - J.C. Wenke
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX
| | - B.T. Corona
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX,Corresponding author: Benjamin T. Corona, Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX 78234 E-mail: •
| |
Collapse
|
31
|
Wagner JM, Zöllner H, Wallner C, Ismer B, Schira J, Abraham S, Harati K, Lehnhardt M, Behr B. Surgical Debridement Is Superior to Sole Antibiotic Therapy in a Novel Murine Posttraumatic Osteomyelitis Model. PLoS One 2016; 11:e0149389. [PMID: 26872128 PMCID: PMC4752466 DOI: 10.1371/journal.pone.0149389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/01/2016] [Indexed: 11/19/2022] Open
Abstract
Introduction Bone infections after trauma, i.e. posttraumatic osteomyelitis, pose one of the biggest problems of orthopedic surgery. Even after sufficient clinical therapy including vast debridement of infected bone and antibiotic treatment, regeneration of postinfectious bone seems to be restricted. One explanation includes the large sized defects resulting from sufficient debridement. Furthermore, it remains unclear if inflammatory processes after bone infection do affect bone regeneration. For continuing studies in this field, an animal model is needed where bone regeneration after sufficient treatment can be studied in detail. Methods For this purpose we created a stable infection in murine tibiae by Staphylococcus aureus inoculation. Thereafter, osteomyelitic bones were debrided thoroughly and animals were subsequently treated with antibiotics. Controls included debrided, non-infected, as well as infected animals exclusively treated with antibiotics. To verify sufficient treatment of infected bone, different assessments detecting S. aureus were utilized: agar plates, histology and RT-qPCR. Results All three detection methods revealed massive reduction or eradication of S. aureus within debrided bones 1 and 2 weeks postoperatively, whereas sole antibiotic therapy could not provide sufficient treatment of osteomyelitic bones. Debrided, previously infected bones showed significantly decreased bone formation, compared to debrided, non-infected controls. Discussion Thus, the animal model presented herein provides a reliable and fascinating tool to study posttraumatic osteomyelitis for clinical therapies.
Collapse
Affiliation(s)
| | - Hannah Zöllner
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Britta Ismer
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Jessica Schira
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Stephanie Abraham
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Kamran Harati
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG Bergmannsheil Bochum, Ruhr-University of Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
32
|
Wakkach A, Rouleau M, Blin-Wakkach C. Osteoimmune Interactions in Inflammatory Bowel Disease: Central Role of Bone Marrow Th17 TNFα Cells in Osteoclastogenesis. Front Immunol 2015; 6:640. [PMID: 26734007 PMCID: PMC4683185 DOI: 10.3389/fimmu.2015.00640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022] Open
Abstract
Osteoimmunology is an interdisciplinary research field dedicated to the study of the crosstalk between the immune and bone systems. CD4+ T cells are central players in this crosstalk. There is an emerging understanding that CD4+ T cells play an important role in the bone marrow (BM) under physiological and pathological conditions and modulate the differentiation of bone-resorbing osteoclasts. However, identification of the mechanisms that maintain CD4+ T cells in the BM is still a matter of investigation. This article describes the CD4+ T cell populations of the BM and reviews their role as osteoclastogenic population in inflammatory bowel disease.
Collapse
Affiliation(s)
- Abdelilah Wakkach
- CNRS, UMR 7370, Laboratoire de PhysioMédecine Moléculaire (LP2M), Faculté de Médecine, Nice, France; University Nice Sophia Antipolis, Nice, France
| | - Matthieu Rouleau
- CNRS, UMR 7370, Laboratoire de PhysioMédecine Moléculaire (LP2M), Faculté de Médecine, Nice, France; University Nice Sophia Antipolis, Nice, France
| | - Claudine Blin-Wakkach
- CNRS, UMR 7370, Laboratoire de PhysioMédecine Moléculaire (LP2M), Faculté de Médecine, Nice, France; University Nice Sophia Antipolis, Nice, France
| |
Collapse
|
33
|
Zach F, Mueller A, Gessner A. Production and Functional Characterization of Murine Osteoclasts Differentiated from ER-Hoxb8-Immortalized Myeloid Progenitor Cells. PLoS One 2015; 10:e0142211. [PMID: 26529319 PMCID: PMC4631598 DOI: 10.1371/journal.pone.0142211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/19/2015] [Indexed: 02/02/2023] Open
Abstract
In vitro differentiation into functional osteoclasts is routinely achieved by incubation of embryonic stem cells, induced pluripotent stem cells, or primary as well as cryopreserved spleen and bone marrow-derived cells with soluble receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor. Additionally, osteoclasts can be derived from co-cultures with osteoblasts or by direct administration of soluble receptor activator of nuclear factor kappa-B ligand to RAW 264.7 macrophage lineage cells. However, despite their benefits for osteoclast-associated research, these different methods have several drawbacks with respect to differentiation yields, time and animal consumption, storage life of progenitor cells or the limited potential for genetic manipulation of osteoclast precursors. In the present study, we therefore established a novel protocol for the differentiation of osteoclasts from murine ER-Hoxb8-immortalized myeloid stem cells. We isolated and immortalized bone marrow cells from wild type and genetically manipulated mouse lines, optimized protocols for osteoclast differentiation and compared these cells to osteoclasts derived from conventional sources. In vitro generated ER-Hoxb8 osteoclasts displayed typical osteoclast characteristics such as multi-nucleation, tartrate-resistant acid phosphatase staining of supernatants and cells, F-actin ring formation and bone resorption activity. Furthermore, the osteoclast differentiation time course was traced on a gene expression level. Increased expression of osteoclast-specific genes and decreased expression of stem cell marker genes during differentiation of osteoclasts from ER-Hoxb8-immortalized myeloid progenitor cells were detected by gene array and confirmed by semi-quantitative and quantitative RT-PCR approaches. In summary, we established a novel method for the quantitative production of murine bona fide osteoclasts from ER-Hoxb8 stem cells generated from wild type or genetically manipulated mouse lines. These cells represent a standardized and theoretically unlimited source for osteoclast-associated research projects.
Collapse
Affiliation(s)
- Frank Zach
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Alexandra Mueller
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
34
|
Quach JM, Askmyr M, Jovic T, Baker EK, Walsh NC, Harrison SJ, Neeson P, Ritchie D, Ebeling PR, Purton LE. Myelosuppressive therapies significantly increase pro-inflammatory cytokines and directly cause bone loss. J Bone Miner Res 2015; 30:886-97. [PMID: 25418357 DOI: 10.1002/jbmr.2415] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/29/2014] [Accepted: 11/20/2014] [Indexed: 12/12/2022]
Abstract
Skeletal-related events resulting from accelerated bone loss are common complications in patients treated for a range of cancers. However, the mechanisms and rate of bone loss after myelosuppression are unclear. We, therefore, investigated this in mice and humans. We treated mice with different myelosuppressive therapies (chemotherapy or irradiation with or without transplantation) and studied their effects on bone structure. Myelosuppression of mice rapidly caused an increase in bone resorption that was not matched by bone formation. The resultant significant and persistent bone loss early after therapy was associated with increased inflammatory cytokines, in particular, monocyte chemoattractant protein 1 (MCP1). Therapy-induced bone loss was prevented with a single dose of the bisphosphonate zoledronic acid (ZA), administered before myelosuppression. Importantly, ZA treatment of mice did not impair hematopoiesis, including hematopoietic stem cell function. Furthermore, examination of serum from patients before and after autologous or allogeneic stem cell transplantion (SCT) revealed altered levels of bone turnover markers and elevated inflammatory cytokines. MCP1 levels in serum obtained between days 7 and 14 post-SCT positively correlated with bone loss observed at 100 days after allogeneic SCT. Similar to that observed in our studies in mice, the bone loss was long term, persisting at 12 months post-SCT. Furthermore, patients who received chemotherapy less than 100 days before SCT had significantly more bone loss at the hip. In these patients, serum levels of MCP1, but not routine biomarkers of bone turnover, including C-terminal cross-linking telopeptide of type-1 collagen (β-CTx), positively correlated with their bone loss. Hence, myelosuppressive therapies increase inflammation and directly contribute to bone loss. Administration of an osteoclast inhibitor before the initiation of cancer therapy is likely to have the best outcome in preventing bone loss in patients with cancer.
Collapse
Affiliation(s)
- Julie M Quach
- Stem Cell Regulation Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Charles JF, Ermann J, Aliprantis AO. The intestinal microbiome and skeletal fitness: Connecting bugs and bones. Clin Immunol 2015; 159:163-9. [PMID: 25840106 DOI: 10.1016/j.clim.2015.03.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/15/2023]
Abstract
Recent advances have dramatically increased our understanding of how organ systems interact. This has been especially true for immunology and bone biology, where the term "osteoimmunology" was coined to capture this relationship. The importance of the microbiome to the immune system has also emerged as a driver of health and disease. It makes sense therefore to ask the question: how does the intestinal microbiome influence bone biology and does dysbiosis promote bone disease? Surprisingly, few studies have analyzed this connection. A broader interpretation of this question reveals many mechanisms whereby the microbiome may affect bone cells. These include effects of the microbiome on immune cells, including myeloid progenitors and Th17 cells, as well as steroid hormones, fatty acids, serotonin and vitamin D. As mechanistic interactions of the microbiome and skeletal system are revealed within and without the immune system, novel strategies to optimize skeletal fitness may emerge.
Collapse
Affiliation(s)
- Julia F Charles
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, One Jimmy Fund Way, Rm650A, Boston, MA 02115, USA
| | - Joerg Ermann
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, One Jimmy Fund Way, Rm650A, Boston, MA 02115, USA
| | - Antonios O Aliprantis
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, One Jimmy Fund Way, Rm650A, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Nishikawa K, Iwamoto Y, Kobayashi Y, Katsuoka F, Kawaguchi SI, Tsujita T, Nakamura T, Kato S, Yamamoto M, Takayanagi H, Ishii M. DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nat Med 2015; 21:281-7. [PMID: 25706873 DOI: 10.1038/nm.3774] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022]
Abstract
Metabolic reprogramming occurs in response to the cellular environment to mediate differentiation, but the fundamental mechanisms linking metabolic processes to differentiation programs remain to be elucidated. During osteoclast differentiation, a shift toward more oxidative metabolic processes occurs. In this study we identified the de novo DNA methyltransferase 3a (Dnmt3a) as a transcription factor that couples these metabolic changes to osteoclast differentiation. We also found that receptor activator of nuclear factor-κB ligand (RANKL), an essential cytokine for osteoclastogenesis, induces this metabolic shift towards oxidative metabolism, which is accompanied by an increase in S-adenosylmethionine (SAM) production. We found that SAM-mediated DNA methylation by Dnmt3a regulates osteoclastogenesis via epigenetic repression of anti-osteoclastogenic genes. The importance of Dnmt3a in bone homeostasis was underscored by the observations that Dnmt3a-deficient osteoclast precursor cells do not differentiate efficiently into osteoclasts and that mice with an osteoclast-specific deficiency in Dnmt3a have elevated bone mass due to a smaller number of osteoclasts. Furthermore, inhibition of DNA methylation by theaflavin-3,3'-digallate abrogated bone loss in models of osteoporosis. Thus, this study reveals the role of epigenetic processes in the regulation of cellular metabolism and differentiation, which may provide the molecular basis for a new therapeutic strategy for a variety of bone disorders.
Collapse
Affiliation(s)
- Keizo Nishikawa
- 1] Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan. [2] WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan. [3] Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Yoriko Iwamoto
- 1] Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan. [2] WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan. [3] Japan Science and Technology Agency, CREST, Tokyo, Japan. [4] Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | - Fumiki Katsuoka
- 1] Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan. [2] Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin-ichi Kawaguchi
- Department of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadayuki Tsujita
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Nakamura
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, Japan
| | | | - Masayuki Yamamoto
- 1] Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan. [2] Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Takayanagi
- 1] Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan. [2] Japan Science and Technology Agency, ERATO, Takayanagi Osteonetwork Project, Tokyo, Japan
| | - Masaru Ishii
- 1] Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan. [2] WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan. [3] Japan Science and Technology Agency, CREST, Tokyo, Japan
| |
Collapse
|
37
|
Charles JF, Aliprantis AO. Osteoclasts: more than 'bone eaters'. Trends Mol Med 2014; 20:449-59. [PMID: 25008556 PMCID: PMC4119859 DOI: 10.1016/j.molmed.2014.06.001] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 02/08/2023]
Abstract
As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. We highlight here the functions that osteoclasts perform beyond bone resorption. First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and to the pathology of bone lesions such as fibrous dysplasia and giant cell tumors. Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework.
Collapse
Affiliation(s)
- Julia F Charles
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Antonios O Aliprantis
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
38
|
Wu DJ, Dixit N, Suzuki E, Nguyen T, Shin HS, Davis J, Maverakis E, Adamopoulos IE. A novel in vivo gene transfer technique and in vitro cell based assays for the study of bone loss in musculoskeletal disorders. J Vis Exp 2014. [PMID: 24961167 DOI: 10.3791/51810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Differentiation and activation of osteoclasts play a key role in the development of musculoskeletal diseases as these cells are primarily involved in bone resorption. Osteoclasts can be generated in vitro from monocyte/macrophage precursor cells in the presence of certain cytokines, which promote survival and differentiation. Here, both in vivo and in vitro techniques are demonstrated, which allow scientists to study different cytokine contributions towards osteoclast differentiation, signaling, and activation. The minicircle DNA delivery gene transfer system provides an alternative method to establish an osteoporosis-related model is particularly useful to study the efficacy of various pharmacological inhibitors in vivo. Similarly, in vitro culturing protocols for producing osteoclasts from human precursor cells in the presence of specific cytokines enables scientists to study osteoclastogenesis in human cells for translational applications. Combined, these techniques have the potential to accelerate drug discovery efforts for osteoclast-specific targeted therapeutics, which may benefit millions of osteoporosis and arthritis patients worldwide.
Collapse
Affiliation(s)
- Dennis J Wu
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis
| | - Neha Dixit
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis
| | - Erika Suzuki
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis
| | - Thanh Nguyen
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California
| | - Hyun Seock Shin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis
| | - Jack Davis
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California
| | | | - Iannis E Adamopoulos
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California;
| |
Collapse
|
39
|
de Aquino SG, Abdollahi-Roodsaz S, Koenders MI, van de Loo FAJ, Pruijn GJM, Marijnissen RJ, Walgreen B, Helsen MM, van den Bersselaar LA, de Molon RS, Avila Campos MJ, Cunha FQ, Cirelli JA, van den Berg WB. Periodontal pathogens directly promote autoimmune experimental arthritis by inducing a TLR2- and IL-1-driven Th17 response. THE JOURNAL OF IMMUNOLOGY 2014; 192:4103-11. [PMID: 24683190 DOI: 10.4049/jimmunol.1301970] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increasing epidemiologic evidence supports a link between periodontitis and rheumatoid arthritis. The actual involvement of periodontitis in the pathogenesis of rheumatoid arthritis and the underlying mechanisms remain, however, poorly understood. We investigated the influence of concomitant periodontitis on clinical and histopathologic characteristics of T cell-mediated experimental arthritis and evaluated modulation of type II collagen (CII)-reactive Th cell phenotype as a potential mechanism. Repeated oral inoculations of periodontal pathogens Porphyromonas gingivalis and Prevotella nigrescens induced periodontitis in mice, as evidenced by alveolar bone resorption. Interestingly, concurrent periodontitis induced by both bacteria significantly aggravated the severity of collagen-induced arthritis. Exacerbation of arthritis was characterized by increased arthritic bone erosion, whereas cartilage damage remained unaffected. Both P. gingivalis and P. nigrescens skewed the CII-specific T cell response in lymph nodes draining arthritic joints toward the Th17 phenotype without affecting Th1. Importantly, the levels of IL-17 induced by periodontal pathogens in CII-specific T cells directly correlated with the intensity of arthritic bone erosion, suggesting relevance in pathology. Furthermore, IL-17 production was significantly correlated with periodontal disease-induced IL-6 in lymph node cell cultures. The effects of the two bacteria diverged in that P. nigrescens, in contrast to P. gingivalis, suppressed the joint-protective type 2 cytokines, including IL-4. Further in vitro studies showed that the Th17 induction strongly depended on TLR2 expression on APCs and was highly promoted by IL-1. Our data provide evidence of the involvement of periodontitis in the pathogenesis of T cell-driven arthritis through induction of Ag-specific Th17 response.
Collapse
Affiliation(s)
- Sabrina G de Aquino
- Department of Rheumatology, Rheumatology Research and Advanced Therapeutics, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The immune system and bone are intimately linked with significant physical and functionally related interactions. The innate immune system functions as an immediate response system to initiate protections against local challenges such as pathogens and cellular damage. Bone is a very specific microenvironment, in which infectious attack is less common but repair and regeneration are ongoing and important functions. Thus, in the bone the primary goal of innate immune and bone interactions is to maintain tissue integrity. Innate immune signals are critical for removal of damaged and apoptotic cells and to stimulate normal tissue repair and regeneration. In this review we focus on the innate immune mechanisms that function to regulate bone homeostasis.
Collapse
Affiliation(s)
- Julia F. Charles
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA, 02115 Phone: FAX:
| | - Mary C. Nakamura
- Department of Medicine, Division of Rheumatology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143
- Arthritis/Immunology Section, Veterans Affairs Medical Center, 4150 Clement Street, 111R, San Francisco, CA 94121, Phone: 415 750-2104, FAX: 415 750-6920,
- corresponding author: Arthritis/Immunology Section, Veterans Affairs Medical Center, 4150 Clement Street, 111R, San Francisco, CA 94121
| |
Collapse
|
41
|
Benasciutti E, Mariani E, Oliva L, Scolari M, Perilli E, Barras E, Milan E, Orfanelli U, Fazzalari NL, Campana L, Capobianco A, Otten L, Particelli F, Acha-Orbea H, Baruffaldi F, Faccio R, Sitia R, Reith W, Cenci S. MHC class II transactivator is an in vivo regulator of osteoclast differentiation and bone homeostasis co-opted from adaptive immunity. J Bone Miner Res 2014; 29:290-303. [PMID: 24038328 DOI: 10.1002/jbmr.2090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/30/2013] [Accepted: 08/22/2013] [Indexed: 12/26/2022]
Abstract
The molecular networks controlling bone homeostasis are not fully understood. The common evolution of bone and adaptive immunity encourages the investigation of shared regulatory circuits. MHC Class II Transactivator (CIITA) is a master transcriptional co-activator believed to be exclusively dedicated for antigen presentation. CIITA is expressed in osteoclast precursors, and its expression is accentuated in osteoporotic mice. We thus asked whether CIITA plays a role in bone biology. To this aim, we fully characterized the bone phenotype of two mouse models of CIITA overexpression, respectively systemic and restricted to the monocyte-osteoclast lineage. Both CIITA-overexpressing mouse models revealed severe spontaneous osteoporosis, as assessed by micro-computed tomography and histomorphometry, associated with increased osteoclast numbers and enhanced in vivo bone resorption, whereas osteoblast numbers and in vivo bone-forming activity were unaffected. To understand the underlying cellular and molecular bases, we investigated ex vivo the differentiation of mutant bone marrow monocytes into osteoclasts and immune effectors, as well as osteoclastogenic signaling pathways. CIITA-overexpressing monocytes differentiated normally into effector macrophages or dendritic cells but showed enhanced osteoclastogenesis, whereas CIITA ablation suppressed osteoclast differentiation. Increased c-fms and receptor activator of NF-κB (RANK) signaling underlay enhanced osteoclast differentiation from CIITA-overexpressing precursors. Moreover, by extending selected phenotypic and cellular analyses to additional genetic mouse models, namely MHC Class II deficient mice and a transgenic mouse line lacking a specific CIITA promoter and re-expressing CIITA in the thymus, we excluded MHC Class II expression and T cells from contributing to the observed skeletal phenotype. Altogether, our study provides compelling genetic evidence that CIITA, the molecular switch of antigen presentation, plays a novel, unexpected function in skeletal homeostasis, independent of MHC Class II expression and T cells, by exerting a selective and intrinsic control of osteoclast differentiation and bone resorption in vivo.
Collapse
Affiliation(s)
- Elisa Benasciutti
- Division of Genetics and Cell Biology and BoNetwork, DiBiT, San Raffaele Scientific Institute, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Opoka-Winiarska V, Jurecka A, Emeryk A, Tylki-Szymańska A. Osteoimmunology in mucopolysaccharidoses type I, II, VI and VII. Immunological regulation of the osteoarticular system in the course of metabolic inflammation. Osteoarthritis Cartilage 2013; 21:1813-23. [PMID: 23954699 DOI: 10.1016/j.joca.2013.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 07/27/2013] [Accepted: 08/03/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Mucopolysaccharidoses (MPSs) are rare genetic diseases caused by a deficient activity of one of the lysosomal enzymes involved in the glycosaminoglycan (GAG) breakdown pathway. These metabolic blocks lead to the accumulation of GAGs in various organs and tissues, resulting in a multisystemic clinical picture. The pathological GAG accumulation begins a cascade of interrelated responses: metabolic, inflammatory and immunological with systemic effects. Metabolic inflammation, secondary to GAG storage, is a significant cause of osteoarticular symptoms in MPS disorders. OBJECTIVE AND METHOD The aim of this review is to present recent progress in the understanding of the role of inflammatory and immune processes in the pathophysiology of osteoarticular symptoms in MPS disorders and potential therapeutic interventions based on published reports in MPS patients and studies in animal models. RESULTS AND CONCLUSIONS The immune and skeletal systems have a number of shared regulatory molecules and many relationships between bone disorders and aberrant immune responses in MPS can be explained by osteoimmunology. The treatment options currently available are not sufficiently effective in the prevention, inhibition and treatment of osteoarticular symptoms in MPS disease. A lot can be learnt from interactions between skeletal and immune systems in autoimmune diseases such as rheumatoid arthritis (RA) and similarities between RA and MPS point to the possibility of using the experience with RA in the treatment of MPS in the future. The use of different anti-inflammatory drugs requires further study, but it seems to be an important direction for new therapeutic options for MPS patients.
Collapse
Affiliation(s)
- V Opoka-Winiarska
- Department of Paediatric Pulmonology and Rheumatology, Medical University of Lublin, Lublin, Poland.
| | | | | | | |
Collapse
|
43
|
Agas D, Marchetti L, Capitani M, Sabbieti MG. The dual face of parathyroid hormone and prostaglandins in the osteoimmune system. Am J Physiol Endocrinol Metab 2013; 305:E1185-94. [PMID: 24045870 DOI: 10.1152/ajpendo.00290.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microenvironment of bone marrow, an extraordinarily heterogeneous and dynamic system, is populated by bone and immune cells, and its functional dimension has been at the forefront of recent studies in the field of osteoimmunology. The interaction of both marrow niches supports self-renewal, differentiation, and homing of the hematopoietic stem cells and provides the essential regulatory molecules for osteoblast and osteoclast homeostasis. Impaired signaling within the niches results in a pathological tableau and enhances disease, including osteoporosis and arthritis, or the rejection of hematopoietic stem cell transplants. Discovering the anabolic players that control these mechanisms has become warranted. In this review, we focus on parathyroid hormone (PTH) and prostaglandins (PGs), potent molecular mediators, both of which carry out a multitude of functions, particularly in bone lining cells and T cells. These two regulators proved to be promising therapeutic agents when strictly clinical protocols on dose treatments were applied.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Biotechnology, University of Camerino, Italy
| | | | | | | |
Collapse
|
44
|
The relationship between pro-resorptive inflammatory cytokines and the effect of high dose vitamin D supplementation on their circulating concentrations. Int Immunopharmacol 2013; 17:693-7. [DOI: 10.1016/j.intimp.2013.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 12/24/2022]
|
45
|
Th17 and Treg cells in bone related diseases. Clin Dev Immunol 2013; 2013:203705. [PMID: 24187560 PMCID: PMC3800633 DOI: 10.1155/2013/203705] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/17/2013] [Indexed: 01/01/2023]
Abstract
Bone-related diseases share the process of immune response that targets bone tissue and bone marrow and then induce adverse effects on structure and function. In recent years, reciprocal relationship between immune cells and bone systems has been uncovered gradually. Regulatory T (Treg) and T helper 17 (Th17) cells are newly identified subsets of CD4+ T cells, and the balance between them is particularly essential for maintaining immune homeostasis. Accumulated data have demonstrated quantitative or functional imbalance between Th17 and Treg in bone related diseases, suggesting that Th17 and Treg cells are involved in these bone diseases. Understanding the molecular mechanisms regulating Th17 and Treg cells will create opportunities for the development of therapeutic approaches. This review will present the role of Th17 and Treg cells in the inflammatory bone diseases and bone marrow malignancies and find the potential therapeutic target for immunotherapy.
Collapse
|
46
|
Siegert P, Schmidt G, Papatheodorou P, Wieland T, Aktories K, Orth JHC. Pasteurella multocida toxin prevents osteoblast differentiation by transactivation of the MAP-kinase cascade via the Gα(q/11)--p63RhoGEF--RhoA axis. PLoS Pathog 2013; 9:e1003385. [PMID: 23696743 PMCID: PMC3656108 DOI: 10.1371/journal.ppat.1003385] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
The 146-kDa Pasteurella multocida toxin (PMT) is the main virulence factor to induce P. multocida-associated progressive atrophic rhinitis in various animals. PMT leads to a destruction of nasal turbinate bones implicating an effect of the toxin on osteoblasts and/or osteoclasts. The toxin induces constitutive activation of Gα proteins of the Gq/11-, G12/13- and Gi-family by deamidating an essential glutamine residue. To study the PMT effect on bone cells, we used primary osteoblasts derived from rat calvariae and stromal ST-2 cells as differentiation model. As marker of functional osteoblasts the expression and activity of alkaline phosphatase, formation of mineralization nodules or expression of specific transcription factors as osterix was determined. Here, we show that the toxin inhibits differentiation and/or function of osteoblasts by activation of Gαq/11. Subsequently, Gαq/11 activates RhoA via p63RhoGEF, which specifically interacts with Gαq/11 but not with other G proteins like Gα12/13 and Gαi. Activated RhoA transactivates the mitogen-activated protein (MAP) kinase cascade via Rho kinase, involving Ras, MEK and ERK, resulting in inhibition of osteoblast differentiation. PMT-induced inhibition of differentiation was selective for the osteoblast lineage as adipocyte-like differentiation of ST-2 cells was not hampered. The present work provides novel insights, how the bacterial toxin PMT can control osteoblastic development by activating heterotrimeric G proteins of the Gαq/11-family and is a molecular pathogenetic basis for understanding the role of the toxin in bone loss during progressive atrophic rhinitis induced by Pasteurella multocida. Pasteurella multocida causes as a facultative pathogen various diseases in men and animals. One induced syndrome is atrophic rhinitis, which is a form of osteopenia, mainly characterized by facial distortion due to degradation of nasal turbinate bones. Strains, which especially affect bone tissue, produce the protein toxin P. multocida toxin (PMT). Importantly, PMT alone is capable to induce all symptoms of atrophic rhinitis. To cause osteopenia PMT influences the development and/or activity of specialized bone cells like osteoblasts and osteoclasts. Recently, we could identify the molecular mechanism of PMT. The toxin constitutively activates certain heterotrimeric G proteins by deamidation. Here, we studied the effect of PMT on the differentiation of osteoblasts. We demonstrate the direct action of PMT on osteoblasts and osteoblast-like cells and as a consequence inhibition of osteoblastic differentiation. Moreover, we revealed the underlying signal transduction pathway to impair proper osteoblast development. We show that PMT activates small GTPases in a Gαq/11 dependent manner via a non-ubiquitously expressed RhoGEF. In turn the mitogen-activated protein kinase pathway is transactivated leading to inhibition of osteoblastogenesis. Our findings present a mechanism how PMT hijacks host cell signaling pathways to hinder osteoblast development, which contributes to the syndrome of atrophic rhinitis.
Collapse
Affiliation(s)
- Peter Siegert
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Hermann–Staudinger–Graduiertenschule Universität Freiburg, Freiburg, Germany
| | - Gudula Schmidt
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
- * E-mail: (KA); (JO)
| | - Joachim H. C. Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- * E-mail: (KA); (JO)
| |
Collapse
|
47
|
Qi WX, Tang LN, He AN, Yao Y, Shen Z. Risk of osteonecrosis of the jaw in cancer patients receiving denosumab: a meta-analysis of seven randomized controlled trials. Int J Clin Oncol 2013; 19:403-10. [PMID: 23605142 DOI: 10.1007/s10147-013-0561-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/09/2013] [Indexed: 01/18/2023]
Abstract
AIMS The aim of this study is to gain a better understanding of the overall incidence and risk of osteonecrosis of the jaw (ONJ) in cancer patients receiving denosumab. METHODS We performed a meta-analysis of relevant randomized controlled trials identified in Pubmed, Embase, and Cochrane databases. Abstracts presented at the conferences were also searched. Overall incidence rates, relative risk (RR), and 95 % confidence intervals (CI) were calculated employing fixed- or random-effects models depending on the heterogeneity of the included trials. RESULTS A total of 8963 patients with a variety of solid tumors from 7 randomized controlled trials (RCTs) were included for the meta-analysis. The overall incidence of ONJ in cancer patients receiving denosumab was 1.7 % [95 % CI: 0.9-3.1 %]. Also, the use of denosumab was associated with significantly increased risk of ONJ in comparison with bisphosphonates (BPs)/placebo treatment (RR 1.61, 95 % CI: 1.05-2.48, P = 0.029). Subgroup analysis based on controlled therapies demonstrated an increased risk of ONJ in denosumab therapy, when compared with BPs (RR 1.48, 95 % CI: 0.96-2.29, P = 0.078) or placebo (RR 16.28, 95 % CI: 1.68-158.05, P = 0.017). Similar results were observed in prostate cancer (RR 3.358, 95 % CI: 1.573-7.166, P = 0.002) while there was a non-significantly increased risk of denosumab-related osteonecrosis of the jaw (DONJ) in non-prostate cancers (RR 1.142, 95 % CI: 0.678-1.921, P = 0.618). CONCLUSIONS The use of denosumab is associated with an increased risk of developing ONJ when compared with BP treatment or placebo, although the increased risk was not statistically significant between denosumab and BP treatment. Further studies are still needed to establish guidelines for the prevention and effective treatment of ONJ.
Collapse
Affiliation(s)
- Wei-Xiang Qi
- Department of Oncology, The Sixth People's Hospital, Shanghai Jiao Tong University, No. 600, Yishan Road, Shanghai, 200233, China
| | | | | | | | | |
Collapse
|
48
|
Serum osteoprotegerin is markedly increased and may contribute to decreased blood T cell count in hemodialysis patients. Int Urol Nephrol 2013; 45:1671-7. [DOI: 10.1007/s11255-012-0371-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/17/2012] [Indexed: 01/08/2023]
|
49
|
Taddei SRDA, Queiroz-Junior CM, Moura AP, Andrade I, Garlet GP, Proudfoot AEI, Teixeira MM, da Silva TA. The effect of CCL3 and CCR1 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Bone 2013; 52:259-67. [PMID: 23059626 DOI: 10.1016/j.bone.2012.09.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 01/02/2023]
Abstract
Bone remodeling is affected by mechanical loading and inflammatory mediators, including chemokines. The chemokine (C-C motif) ligand 3 (CCL3) is involved in bone remodeling by binding to C-C chemokine receptors 1 and 5 (CCR1 and CCR5) expressed on osteoclasts and osteoblasts. Our group has previously demonstrated that CCR5 down-regulates mechanical loading-induced bone resorption. Thus, the present study aimed to investigate the role of CCR1 and CCL3 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Our results showed that bone remodeling was significantly decreased in CCL3(-/-) and CCR1(-/-) mice and in animals treated with Met-RANTES (an antagonist of CCR5 and CCR1). mRNA levels of receptor activator of nuclear factor kappa-B (RANK), its ligand RANKL, tumor necrosis factor alpha (TNF-α) and RANKL/osteoprotegerin (OPG) ratio were diminished in the periodontium of CCL3(-/-) mice and in the group treated with Met-RANTES. Met-RANTES treatment also reduced the levels of cathepsin K and metalloproteinase 13 (MMP13). The expression of the osteoblast markers runt-related transcription factor 2 (RUNX2) and periostin was decreased, while osteocalcin (OCN) was augmented in CCL3(-/-) and Met-RANTES-treated mice. Altogether, these findings show that CCR1 is pivotal for bone remodeling induced by mechanical loading during orthodontic tooth movement and these actions depend, at least in part, on CCL3.
Collapse
Affiliation(s)
- Silvana R de Albuquerque Taddei
- Laboratory Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, ICB/UFMG, Avenida Presidente Antônio Carlos 6627, 31.270-9010, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Charles JF, Coury F, Sulyanto R, Sitara D, Wu J, Brady N, Tsang K, Sigrist K, Tollefsen DM, He L, Storm D, Aliprantis AO. The collection of NFATc1-dependent transcripts in the osteoclast includes numerous genes non-essential to physiologic bone resorption. Bone 2012; 51:902-12. [PMID: 22985540 PMCID: PMC3457000 DOI: 10.1016/j.bone.2012.08.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/30/2012] [Accepted: 08/06/2012] [Indexed: 01/15/2023]
Abstract
Osteoclasts are specialized secretory cells of the myeloid lineage important for normal skeletal homeostasis as well as pathologic conditions of bone including osteoporosis, inflammatory arthritis and cancer metastasis. Differentiation of these multinucleated giant cells from precursors is controlled by the cytokine RANKL, which through its receptor RANK initiates a signaling cascade culminating in the activation of transcriptional regulators which induce the expression of the bone degradation machinery. The transcription factor nuclear factor of activated T-cells c1 (NFATc1) is the master regulator of this process and in its absence osteoclast differentiation is aborted both in vitro and in vivo. Differential mRNA expression analysis by microarray is used to identify genes of potential physiologic relevance across nearly all biologic systems. We compared the gene expression profile of murine wild-type and NFATc1-deficient osteoclast precursors stimulated with RANKL and identified that the majority of the known genes important for osteoclastic bone resorption require NFATc1 for induction. Here, five novel RANKL-induced, NFATc1-dependent transcripts in the osteoclast are described: Nhedc2, Rhoc, Serpind1, Adcy3 and Rab38. Despite reasonable hypotheses for the importance of these molecules in the bone resorption pathway and their dramatic induction during differentiation, the analysis of mice with mutations in these genes failed to reveal a function in osteoclast biology. Compared to littermate controls, none of these mutants demonstrated a skeletal phenotype in vivo or alterations in osteoclast differentiation or function in vitro. These data highlight the need for rigorous validation studies to complement expression profiling results before functional importance can be assigned to highly regulated genes in any biologic process.
Collapse
Affiliation(s)
- Julia F. Charles
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Fabienne Coury
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Oral Medicine Infection and Immunity, Harvard Dental School, Boston, Massachusetts, USA
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Rosalyn Sulyanto
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- OCC Dentistry, Columbus, OH, USA
| | - Despina Sitara
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- New York University College of Dentistry, New York, NY, USA
| | - Jing Wu
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- China Novartis Institutes for BioMedical Research Co., Shanghai 201203, China
| | - Nicholas Brady
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kelly Tsang
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Kirsten Sigrist
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Douglas M. Tollefsen
- Division of Hematology, Washington University School of Medicine, St. Louis, MO, USA
| | - Li He
- Division of Hematology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Storm
- Department of Pharmacology, University of Washington Medical School, Seattle, WA, USA
| | - Antonios O. Aliprantis
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|