1
|
Li H, Seugnet L. Decoding the nexus: branched-chain amino acids and their connection with sleep, circadian rhythms, and cardiometabolic health. Neural Regen Res 2025; 20:1350-1363. [PMID: 39075896 PMCID: PMC11624887 DOI: 10.4103/nrr.nrr-d-23-02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 07/31/2024] Open
Abstract
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and, either directly or indirectly, overall body health, encompassing metabolic and cardiovascular well-being. Given the heightened metabolic activity of the brain, there exists a considerable demand for nutrients in comparison to other organs. Among these, the branched-chain amino acids, comprising leucine, isoleucine, and valine, display distinctive significance, from their contribution to protein structure to their involvement in overall metabolism, especially in cerebral processes. Among the first amino acids that are released into circulation post-food intake, branched-chain amino acids assume a pivotal role in the regulation of protein synthesis, modulating insulin secretion and the amino acid sensing pathway of target of rapamycin. Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors, competing for a shared transporter. Beyond their involvement in protein synthesis, these amino acids contribute to the metabolic cycles of γ-aminobutyric acid and glutamate, as well as energy metabolism. Notably, they impact GABAergic neurons and the excitation/inhibition balance. The rhythmicity of branched-chain amino acids in plasma concentrations, observed over a 24-hour cycle and conserved in rodent models, is under circadian clock control. The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood. Disturbed sleep, obesity, diabetes, and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics. The mechanisms driving these effects are currently the focal point of ongoing research efforts, since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies. In this context, the Drosophila model, though underutilized, holds promise in shedding new light on these mechanisms. Initial findings indicate its potential to introduce novel concepts, particularly in elucidating the intricate connections between the circadian clock, sleep/wake, and metabolism. Consequently, the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle. They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, Xijing Hospital, Xi’an, Shaanxi Province, China
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Integrated Physiology of the Brain Arousal Systems (WAKING), Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Bron, France
| |
Collapse
|
2
|
van Steenis EM, Huijbregts SCJ, Vliet DDV, Heiner-Fokkema MR, Rennings AJM, Baron P, Sijens PE, van Spronsen FJ. Inter-individuality in the transport and effect of phenylalanine in the brain: A double case report of two 'unusual' phenylketonuria patients. Mol Genet Metab 2025; 145:109085. [PMID: 40154188 DOI: 10.1016/j.ymgme.2025.109085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND In phenylketonuria, high plasma phenylalanine concentrations have been associated with cognitive impairments. Still, there are reports of patients with high plasma phenylalanine without apparent cognitive dysfunction. This suggests inter-individual differences in the extent and nature of the negative effects of elevated plasma phenylalanine. This work reports two 'unusual' female patients, of 56 and 57 years old, who were late-treated, with a diagnosis at 8 and 2 years old, but show an estimated IQ of 105. Insight into the functioning of these 'unusual' patients aids our understanding of the pathology behind phenylketonuria. METHODS Neurocognitive functioning was evaluated with the Amsterdam Neuropsychological Tasks, comparing measures of executive functions (EF; sustained attention, cognitive flexibility and working memory) and emotion recognition with 25 adult early-treated phenylketonuria patients (ET-PKU; mean 35.2 years, SD 3.3) from the COBESO-PKU database. Brain phenylalanine levels were determined with magnetic resonance spectroscopy, and compared to those of 'usual' phenylketonuria patients reported in literature. RESULTS On the EF, performance was only slightly decreased (#A), or similar (#B) compared to ET-PKU, while plasma phenylalanine concentrations were 883 and 1181 μmol/L (mean ET-PKU: 687.5 μmol/L, SD 329.5). The brain-to-blood phenylalanine ratio of patient #A (0.20) was close to the expected range for 'usual' phenylketonuria patients (median 0.28, IQR 0.11), while #B showed a lower ratio (0.07). DISCUSSION Both #A and #B have a far better outcome than expected based on their late diagnosis and dietary adherence afterwards. Although both patients had no severe neurocognitive dysfunction, slight deficits on EF and emotion regulation compared to ET-PKU cannot be ruled out. This underlines the importance of individually-tailored treatment in these patients. Interestingly, inter-individuality in the brain-to-blood phenylalanine ratio could explain the 'unusually' good outcome of patient #B, but not in patient #A. Suggesting that altered phenylalanine transport between blood and brain can explain some, but not all 'unusual' cases. Other explanations are needed and may relate to inter-individual vulnerability of the brain to elevated phenylalanine.
Collapse
Affiliation(s)
- E M van Steenis
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Metabolic Diseases, Groningen, the Netherlands
| | - S C J Huijbregts
- Leiden University, Department of Education and Child Studies, Leiden, the Netherlands
| | - D Draaisma-van Vliet
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Metabolic Diseases, Groningen, the Netherlands
| | - M R Heiner-Fokkema
- University of Groningen, University Medical Center Groningen, Laboratory of Metabolic Diseases, Groningen, the Netherlands
| | - A J M Rennings
- Radboud University Medical Center Nijmegen, Department of Internal Medicine, Nijmegen, the Netherlands
| | - P Baron
- University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen, the Netherlands
| | - P E Sijens
- University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen, the Netherlands
| | - F J van Spronsen
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Division of Metabolic Diseases, Groningen, the Netherlands.
| |
Collapse
|
3
|
Hernandez P, Rackles E, Alboniga OE, Martínez‐Lage P, Camacho EN, Onaindia A, Fernandez M, Talamillo A, Falcon‐Perez JM. Metabolic Profiling of Brain Tissue and Brain-Derived Extracellular Vesicles in Alzheimer's Disease. J Extracell Vesicles 2025; 14:e70043. [PMID: 39901643 PMCID: PMC11791017 DOI: 10.1002/jev2.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/05/2025] Open
Abstract
Alzheimer´s disease (AD) is the most frequent neurodegenerative disorder in the world and is characterised by the loss of memory and other cognitive functions. Metabolic changes associated with AD are important players in the development of the disease. However, the mechanism underlying these changes is still unknown. Extracellular vesicles (EVs) are nano-sized particles that play an important role in regulating pathophysiological processes and are a non-invasive manner to obtain information of the cell that is secreting them. The analysis of brain-derived EVs (bdEVs) will provide new insights in the metabolic processes associated with AD. To characterize bdEVs in AD, we optimised a method to isolate them from tissue of different brain regions, obtaining the highest enrichment in isolations from the temporal cortex. We performed unbiased untargeted metabolomics analysis on post-mortem human temporal cortex tissue and bdEVs from the same region of AD patients and healthy controls. Both, univariate and multivariate statistical analysis were used to determine the metabolites that influence the separation between AD patients and controls. Interestingly, a clear separation between control and AD groups was obtained with bdEVs, which allowed to select 12 relevant features by a validated PLS-DA model. Furthermore, comparison of tissue and bdEVs identified 68 common features. The pathway enrichment analysis of the common metabolites showed that the alanine, aspartate and glutamate pathway and the arginine, phenylalanine, tyrosine pathway were the most significant ones in the separation between the AD patients and controls. The phenylalanine, tyrosine and tryptophan pathway, still had a very high influence in the separation between groups, albeit not significant. Notably, some metabolites were identified for the first time in bdEVs. For example, the N-acetyl aspartic acid (NAA) metabolite present in bdEVs was suitable to differentiate AD patients from healthy controls. Furthermore, the analysis of the hippocampus, midbrain, temporal and entorhinal cortex and their respective bdEVs indicated that the metabolic profiles of different brain areas were distinct and showed some correlation between the metabolome of the tissue and its respective bdEVs. Thus, our study highlights the potential of bdEVs to understand the metabolic fingerprint associated with AD and their potential use as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Patricia Hernandez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Elisabeth Rackles
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Oihane E. Alboniga
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Pablo Martínez‐Lage
- Center for Research and Advanced TherapiesCITA‐Alzheimer FoundationGipuzkoaSpain
| | - Emma N. Camacho
- Anatomic PathologyAraba University HospitalVitoria‐GazteizAlavaSpain
| | - Arantza Onaindia
- Bioaraba Health Research InstituteOncohaematology Research GroupVitoria‐GasteizSpain
- Pathology DepartmentOsakidetza Basque Health ServiceAraba University HospitalVitoria‐GasteizSpain
| | - Manuel Fernandez
- Neurological DepartmentHospital Universitario Cruces (HUC)BarakaldoSpain
- Neuroscience DepartmentUniversidad del País Vasco (UPV‐EHU)LeioaSpain
| | - Ana Talamillo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
- Biomedical Research Centre of Hepatic and Digestive Diseases (CIBERehd)Carlos III Health Institute (ISCIII)MadridSpain
- IKERBASQUE Basque Foundation for ScienceBilbao, BizkaiaSpain
| |
Collapse
|
4
|
Bregalda A, Carducci C, Pascucci T, Ambrogini P, Sartini S, Pierigè F, di Carlo E, Fiori E, Ielpo D, Pagliarini M, Leuzzi V, Magnani M, Rossi L. New findings about neuropathological outcomes in the PKU mouse throughout lifespan. Mol Genet Metab 2024; 143:108543. [PMID: 39047302 DOI: 10.1016/j.ymgme.2024.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Phenylketonuria (PKU, OMIM 261600) is a genetic disorder caused by a deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH). If left untreated, PKU leads to systemic phenylalanine (Phe) accumulation, which can result in irreversible brain damage and intellectual disabilities. In the last 60 years, early and strict dietary restriction of phenylalanine (Phe) intake proved to prevent the severe clinical phenotype of untreated PKU. While the specific mechanisms through which phenylalanine causes brain damage are still poorly understood, preclinical models have been deeply explored to characterize the neurotoxic effect of Phe on neurodevelopmental processes. At the same time, that on the aging brain still needs to be explored. In the brain of untreated PAHEnu2(-/-) mouse, we previously reported a reduction of myelin basic protein (MBP) during postnatal development up to 60 PND. Later in the diseased mouse's life, a spontaneous and persistent restoration of MBP was detected. In this present longitudinal study, ranging from 14 to 540 post-natal days (PND) of untreated PAHEnu2(-/-) mice, we further investigated: a) the long-life consistency of two Phe-related brain metabolic alterations, such as large neutral amino acids (LNAA) and biogenic amine neurotransmitters' depletion; b) the outcome of locomotor functions during the same life span; c) the integrity of myelin as assessed ex vivo by central (hippocampus) and peripheral (extensor digitorum longus-sciatic nerve) action potential conduction velocities. In contrast with the results of other studies, brain Leu, Ile, and Val concentrations were not significantly altered in the brain PAHEnu2(-/-) mouse. On the other hand, 3-O-Methyldopa (3-OMD, a biomarker of L-DOPA), serotonin, and its associated metabolites were reduced throughout most of the considered time points, with consistent reductions observed prevalently from 14 to 60 PND. Normal saltatory conduction was restored after 60 PND and remained normal at the last examination at 360 PND, resulting nonetheless in a persistent locomotor impairment throughout a lifetime. These new findings contribute to laying the foundations for the preclinical characterization of aging in PKU, confirming neurotransmitter defects as consistent metabolic traits. LNAAs have a minor role, if any, in brain damage pathogenesis. Transient myelin synthesis failure may impact brain connectivity during postnatal development but not nervous signal conduction.
Collapse
Affiliation(s)
- Alessandro Bregalda
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Ca' Le Suore 2, 61029 Urbino (PU), Italy.
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University, viale del Policlinico 155, 00161 Rome, Italy
| | - Tiziana Pascucci
- Fondazione Santa Lucia IRCCS, via Del Fosso di Fiorano, 64, 00143 Rome, Italy; Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Ca' Le Suore 2, 61029 Urbino (PU), Italy
| | - Stefano Sartini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Ca' Le Suore 2, 61029 Urbino (PU), Italy
| | - Francesca Pierigè
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Ca' Le Suore 2, 61029 Urbino (PU), Italy
| | - Emanuele di Carlo
- Department of Experimental Medicine, Sapienza University, viale del Policlinico 155, 00161 Rome, Italy
| | - Elena Fiori
- Fondazione Santa Lucia IRCCS, via Del Fosso di Fiorano, 64, 00143 Rome, Italy; Technopole Foundation, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Donald Ielpo
- Fondazione Santa Lucia IRCCS, via Del Fosso di Fiorano, 64, 00143 Rome, Italy; Department of Psychology and Centro "Daniel Bovet", Sapienza University, via dei Marsi 78, 00185 Rome, Italy
| | - Marica Pagliarini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Ca' Le Suore 2, 61029 Urbino (PU), Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University, via dei Sabelli 108, 00185 Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Ca' Le Suore 2, 61029 Urbino (PU), Italy; EryDel SpA, via Antonio Meucci 3, 20091 Bresso (MI), Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Ca' Le Suore 2, 61029 Urbino (PU), Italy; EryDel SpA, via Antonio Meucci 3, 20091 Bresso (MI), Italy
| |
Collapse
|
5
|
Weerd JCVD, Wegberg AMJV, Boer TS, Engelke UFH, Coene KLM, Wevers RA, Bakker SJL, Blaauw PD, Groen J, Spronsen FJV, Heiner-Fokkema MR. Impact of Phenylketonuria on the Serum Metabolome and Plasma Lipidome: A Study in Early-Treated Patients. Metabolites 2024; 14:479. [PMID: 39330486 PMCID: PMC11434371 DOI: 10.3390/metabo14090479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Data suggest that metabolites, other than blood phenylalanine (Phe), better and independently predict clinical outcomes in patients with phenylketonuria (PKU). METHODS To find new biomarkers, we compared the results of untargeted lipidomics and metabolomics in treated adult PKU patients to those of matched controls. Samples (lipidomics in EDTA-plasma (22 PKU and 22 controls) and metabolomics in serum (35 PKU and 20 controls)) were analyzed using ultra-high-performance liquid chromatography and high-resolution mass spectrometry. Data were subjected to multivariate (PCA, OPLS-DA) and univariate (Mann-Whitney U test, p < 0.05) analyses. RESULTS Levels of 33 (of 20,443) lipid features and 56 (of 5885) metabolite features differed statistically between PKU patients and controls. For lipidomics, findings include higher glycerolipids, glycerophospholipids, and sphingolipids species. Significantly lower values were found for sterols and glycerophospholipids species. Seven features had unknown identities. Total triglyceride content was higher. Higher Phe and Phe catabolites, tryptophan derivatives, pantothenic acid, and dipeptides were observed for metabolomics. Ornithine levels were lower. Twenty-six metabolite features were not annotated. CONCLUSIONS This study provides insight into the metabolic phenotype of PKU patients. Additional studies are required to establish whether the observed changes result from PKU itself, diet, and/or an unknown reason.
Collapse
Affiliation(s)
- Jorine C van der Weerd
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Annemiek M J van Wegberg
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Theo S Boer
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Udo F H Engelke
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Karlien L M Coene
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Laboratory of Clinical Chemistry and Hematology, Máxima Medical Centre, 5504 DB Veldhoven, The Netherlands
| | - Ron A Wevers
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Pim de Blaauw
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Joost Groen
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Francjan J van Spronsen
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
6
|
van Wegberg AMJ, van der Weerd JC, Engelke UFH, Coene KLM, Jahja R, Bakker SJL, Huijbregts SCJ, Wevers RA, Heiner-Fokkema MR, van Spronsen FJ. The clinical relevance of novel biomarkers as outcome parameter in adults with phenylketonuria. J Inherit Metab Dis 2024; 47:624-635. [PMID: 38556470 DOI: 10.1002/jimd.12732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
Recent studies in PKU patients identified alternative biomarkers in blood using untargeted metabolomics. To test the added clinical value of these novel biomarkers, targeted metabolomics of 11 PKU biomarkers (phenylalanine, glutamyl-phenylalanine, glutamyl-glutamyl-phenylalanine, N-lactoyl-phenylalanine, N-acetyl-phenylalanine, the dipeptides phenylalanyl-phenylalanine and phenylalanyl-leucine, phenylalanine-hexose conjugate, phenyllactate, phenylpyruvate, and phenylacetate) was performed in stored serum samples of the well-defined PKU patient-COBESO cohort and a healthy control group. Serum samples of 35 PKU adults and 20 healthy age- and sex-matched controls were analyzed using ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry. Group differences were tested using the Mann-Whitney U test. Multiple linear regression analyses were performed with these biomarkers as predictors of (neuro-)cognitive functions working memory, sustained attention, inhibitory control, and mental health. Compared to healthy controls, phenylalanine, glutamyl-phenylalanine, N-lactoyl-phenylalanine, N-acetyl-phenylalanine, phenylalanine-hexose conjugate, phenyllactate, phenylpyruvate, and phenylacetate were significant elevated in PKU adults (p < 0.001). The remaining three were below limit of detection in PKU and controls. Both phenylalanine and N-lactoyl-phenylalanine were associated with DSM-VI Attention deficit/hyperactivity (R2 = 0.195, p = 0.039 and R2 = 0.335, p = 0.002, respectively) of the ASR questionnaire. In addition, N-lactoyl-phenylalanine showed significant associations with ASR DSM-VI avoidant personality (R2 = 0.265, p = 0.010), internalizing (R2 = 0.192, p = 0.046) and externalizing problems (R2 = 0.217, p = 0.029) of the ASR questionnaire and multiple aspects of the MS2D and FI tests, reflecting working memory with R2 between 0.178 (p = 0.048) and 0.204 (p = 0.033). Even though the strength of the models was not considered strong, N-lactoyl-phenylalanine outperformed phenylalanine in its association with working memory and mental health outcomes.
Collapse
Affiliation(s)
- A M J van Wegberg
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, The Netherlands
| | - J C van der Weerd
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University of Groningen, University Medical Centre Groningen, The Netherlands
| | - U F H Engelke
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - K L M Coene
- Laboratory of Clinical Chemistry and Hematology, Máxima Medical Centre, Veldhoven, The Netherlands
| | - R Jahja
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, The Netherlands
| | - S J L Bakker
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, The Netherlands
| | - S C J Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, The Netherlands
| | - R A Wevers
- Department of Human Genetics, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M R Heiner-Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Diseases, University of Groningen, University Medical Centre Groningen, The Netherlands
| | - F J van Spronsen
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, The Netherlands
| |
Collapse
|
7
|
Dar W. Aspartame-induced cognitive dysfunction: Unveiling role of microglia-mediated neuroinflammation and molecular remediation. Int Immunopharmacol 2024; 135:112295. [PMID: 38776852 DOI: 10.1016/j.intimp.2024.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Aspartame, an artificial sweetener, is consumed by millions of people globally. There are multiple reports of aspartame and its metabolites affecting cognitive functions in animal models and humans, which include learning problems, headaches, seizures, migraines, irritable moods, anxiety, depression, and insomnia. These cognitive deficits and associated symptoms are partly attributed to dysregulated excitatory and inhibitory neurotransmitter balance due to aspartate released from aspartame, resulting in an excitotoxic effect in neurons, leading to neuronal damage. However, microglia, a central immunocompetent cell type in brain tissue and a significant player in inflammation can contribute to the impact. Microglia rapidly respond to changes in CNS homeostasis. Aspartame consumption might affect the microglia phenotype directly via methanol-induced toxic effects and indirectly via aspartic acid-mediated excitotoxicity, exacerbating symptoms of cognitive decline. Long-term oral consumption of aspartame thus might change microglia's phenotype from ramified to activated, resulting in chronic or sustained activation, releasing excess pro-inflammatory molecules. This pro-inflammatory surge might lead to the degeneration of healthy neurons and other glial cells, impairing cognition. This review will deliberate on possible links and research gaps that need to be explored concerning aspartame consumption, ecotoxicity and microglia-mediated inflammatory cognitive impairment. The study covers a comprehensive analysis of the impact of aspartame consumption on cognitive function, considering both direct and indirect effects, including the involvement of microglia-mediated neuroinflammation. We also propose a novel intervention strategy involving tryptophan supplementation to mitigate cognitive decline symptoms in individuals with prolonged aspartame consumption, providing a potential solution to address the adverse effects of aspartame on cognitive function.
Collapse
Affiliation(s)
- Waseem Dar
- Translational Neurobiology and Disease Modelling Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, 201314, India.
| |
Collapse
|
8
|
Shyam R, Sekhar Panda H, Mishra J, Jyoti Panda J, Kour A. Emerging biosensors in Phenylketonuria. Clin Chim Acta 2024; 559:119725. [PMID: 38734223 DOI: 10.1016/j.cca.2024.119725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Phenylketonuria (PKU) is an autosomal recessive metabolic disorder resulting from deficient phenylalanine hydroxylase (PAH) enzyme activity, leading to impaired phenylalanine (Phe) metabolism. This condition can lead to intellectual disability, epilepsy, and behavioural issues. Treatment typically involves strict dietary restrictions on natural protein intake, supplemented with chemically manufactured protein substitutes containing amino acids other than Phe. Various approaches, including casein glycomacropeptide (GMP), tetrahydrobiopterin (BH4), phenylalanine ammonia-lyase (PAL) therapy, large neutral amino acid (LNAA) supplementation, enzyme therapy, gene therapy, and medical therapies, aim to prevent Phe transport in the brain to potentially treat PKU. Although newborn screening programs and early dietary interventions have enhanced outcomes of the potential treatment strategies, limitations still persist in this direction. These involve potent accuracy concerns in diagnosis due to the existence of antibiotics in blood of PKU patients, affecting growth of the bacteria in the bacterial inhibition assay. Monitoring involves complex methods for instance, mass spectrometry and high-pressure liquid chromatography, which involve shortcomings such as lengthy protocols and the need for specialized equipment. To address these limitations, adaptable testing formats like bio/nano sensors are emerging with their cost-effectiveness, biodegradability, and rapid, accurate, and sensitive detection capabilities, offering promising alternatives for PKU diagnosis. This review provides insights into current treatment and diagnostic approaches, emphasizing on the potential applications of the diverse sensors intended for PKU diagnosis.
Collapse
Affiliation(s)
- Ritika Shyam
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | | | - Jibanananda Mishra
- School of Biosciences, RIMT University, Mandi Gobindgarh, Punjab 147301, India
| | - Jiban Jyoti Panda
- Institute of Nanoscience and Technology, Mohali, Punjab 140306, India.
| | - Avneet Kour
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India.
| |
Collapse
|
9
|
Ebrahimi A, Andishmand H, Huo C, Amjadi S, Khezri S, Hamishehkar H, Mahmoudzadeh M, Kim KH. Glycomacropeptide: A comprehensive understanding of its major biological characteristics and purification methodologies. Compr Rev Food Sci Food Saf 2024; 23:e13370. [PMID: 38783570 DOI: 10.1111/1541-4337.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Glycomacropeptide (GMP) is a bioactive peptide derived from whey protein, consisting of 64 amino acids. It is a phenylalanine-free peptide, making it a beneficial dietary option for individuals dealing with phenylketonuria (PKU). PKU is an inherited metabolic disorder characterized by high levels of phenylalanine in the bloodstream, resulting from a deficiency of phenylalanine dehydrogenase in affected individuals. Consequently, patients with PKU require lifelong adherence to a low-phenylalanine diet, wherein a significant portion of their protein intake is typically sourced from a phenylalanine-free amino acid formula. GMP has several nutritional values, numerous bioactivity properties, and therapeutic effects in various inflammatory disorders. Despite all these features, the purification of GMP is an imperative requirement; however, there are no unique methods for achieving this goal. Traditionally, several methods have been used for GMP purification, such as thermal or acid treatment, alcoholic precipitation, ultrafiltration (UF), gel filtration, and membrane separation techniques. However, these methods have poor specificity, and the presence of large amounts of impurities can interfere with the analysis of GMP. More efficient and highly specific GMP purification methods need to be developed. In this review, we have highlighted and summarized the current research progress on the major biological features and purification methodologies associated with GMP, as well as providing an extensive overview of the recent developments in using charged UF membranes for GMP purification and the influential factors.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Student research committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sajed Amjadi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Sima Khezri
- Student research committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Mahmoudzadeh
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
10
|
Martínez-Magaña JJ, Genis-Mendoza AD, Gallegos-Silva I, López-Narváez ML, Juárez-Rojop IE, Diaz-Zagoya JC, Tovilla-Zárate CA, González-Castro TB, Nicolini H, Solis-Medina A. Differential Alterations of Expression of the Serotoninergic System Genes and Mood-Related Behavior by Consumption of Aspartame or Potassium Acesulfame in Rats. Nutrients 2024; 16:490. [PMID: 38398814 PMCID: PMC10892058 DOI: 10.3390/nu16040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The use of aspartame (ASP) and potassium acesulfame (ACK) to reduce weight gain is growing; however, contradictory effects in body mass index control and neurobiological alterations resulting from artificial sweeteners consumption have been reported. This study aimed to evaluate the impact of the chronic consumption of ASP and ACK on mood-related behavior and the brain expression of serotonin genes in male Wistar rats. Mood-related behaviors were evaluated using the swim-forced test and defensive burying at two time points: 45 days (juvenile) and 95 days (adult) postweaning. Additionally, the mRNA expression of three serotoninergic genes (Slc6a4, Htr1a, and Htr2c) was measured in the brain areas (prefrontal cortex, hippocampus, and hypothalamus) involved in controlling mood-related behaviors. In terms of mood-related behaviors, rats consuming ACK exhibited anxiety-like behavior only during the juvenile stage. In contrast, rats consuming ASP showed a reduction in depressive-like behavior during the juvenile stage but an increase in the adult stage. The expression of Slc6a4 mRNA increased in the hippocampus of rats consuming artificial sweeteners during the juvenile stage. In the adult stage, there was an upregulation in the relative expression of Slc6a4 and Htr1a in the hypothalamus, while Htr2c expression decreased in the hippocampus of rats consuming ASP. Chronic consumption of ASP and ACK appears to have differential effects during neurodevelopmental stages in mood-related behavior, potentially mediated by alterations in serotoninergic gene expression.
Collapse
Affiliation(s)
- José Jaime Martínez-Magaña
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - Ileana Gallegos-Silva
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - María Lilia López-Narváez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (M.L.L.-N.); (I.E.J.-R.)
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (M.L.L.-N.); (I.E.J.-R.)
| | - Juan C. Diaz-Zagoya
- División de Investigación, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Carlos Alfonso Tovilla-Zárate
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (M.L.L.-N.); (I.E.J.-R.)
| | | | - Humberto Nicolini
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - Anayelly Solis-Medina
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| |
Collapse
|
11
|
Manti F, Nardecchia F, De Leo S, Carducci C, Romani C, Palermo L, Angeloni A, Leuzzi V. Towards precision medicine for phenylketonuria: The effect of restoring a strict metabolic control in adult patients with early-treated phenylketonuria. Mol Genet Metab 2023; 140:107666. [PMID: 37549444 DOI: 10.1016/j.ymgme.2023.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND AND OBJECTIVE Neonatal screening and early treatment have changed the natural history of PKU, preventing severe neurological and intellectual disability. Nevertheless, the outcome of the disease in early-treated adult patients (ETPKU) is less than optimal, the predictive value of metabolic biomarkers is feeble, and the recommended levels of blood phenylalanine (Phe) for adulthood are controversial. A crucial question whose answer will improve our understanding and treatment of PKU is whether cognitive outcomes can be modulated by levels of Phe even in early-treated adults. To address this question, we carried out an interventional study in seven ETPKU women planning a pregnancy. METHODS They underwent an extensive neurocognitive assessment at baseline, and 3 and 6 months after having attained the blood Phe concentration recommended to prevent PKU fetopathy, but before pregnancy. RESULTS After 3 and 6 months with a stable blood Phe level of about 240 μmol/L, all participants experienced significant improvements in almost all neurocognitive domains and tasks. IQ also increased of 11 to 21 points from the last assessment before enrolment. This pattern remained strong and consistent after correction for multiple comparisons. CONCLUSION Our results indicate that a) strong cognitive improvement is possible even in adulthood and may be demonstrated by lowering Phe near normal levels; b) testing cognition under different metabolic conditions may unveil an individual vulnerability to Phe. These results pave the way for personalised treatment of the disease in adults with ETPKU.
Collapse
Affiliation(s)
- Filippo Manti
- Department of Human Neuroscience - Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Francesca Nardecchia
- Department of Human Neuroscience - Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Sabrina De Leo
- Department of Clinical Medicine, Azienda Ospedaliero Universitaria Policlinico Umberto I, Rome, Italy
| | - Claudia Carducci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Romani
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Liana Palermo
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience - Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
12
|
Adams AD, Fiesco-Roa MÓ, Wong L, Jenkins GP, Malinowski J, Demarest OM, Rothberg PG, Hobert JA. Phenylalanine hydroxylase deficiency treatment and management: A systematic evidence review of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100358. [PMID: 37470789 DOI: 10.1016/j.gim.2022.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 07/21/2023] Open
Abstract
PURPOSE Elevated serum phenylalanine (Phe) levels due to biallelic pathogenic variants in phenylalanine hydroxylase (PAH) may cause neurodevelopmental disorders or birth defects from maternal phenylketonuria. New Phe reduction treatments have been approved in the last decade, but uncertainty on the optimal lifespan goal Phe levels for patients with PAH deficiency remains. METHODS We searched Medline and Embase for evidence of treatment concerning PAH deficiency up to September 28, 2021. Risk of bias was evaluated based on study design. Random-effects meta-analyses were performed to compare IQ, gestational outcomes, and offspring outcomes based on Phe ≤ 360 μmol/L vs > 360 μmol/L and reported as odds ratio and 95% CI. Remaining results were narratively synthesized. RESULTS A total of 350 studies were included. Risk of bias was moderate. Lower Phe was consistently associated with better outcomes. Achieving Phe ≤ 360 μmol/L before conception substantially lowered the risk of negative effect to offspring in pregnant individuals (odds ratio = 0.07, 95% CI = 0.04-0.14; P < .0001). Adverse events due to pharmacologic treatment were common, but medication reduced Phe levels, enabling dietary liberalization. CONCLUSIONS Reduction of Phe levels to ≤360 μmol/L through diet or medication represents effective interventions to treat PAH deficiency.
Collapse
Affiliation(s)
- April D Adams
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX; Division of Maternal-Fetal Medicine, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Moisés Ó Fiesco-Roa
- Programa de Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico; Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | | | | | | | - Paul G Rothberg
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Judith A Hobert
- University of Utah School of Medicine, Salt Lake City, UT; ARUP Laboratories, Salt Lake City, UT
| |
Collapse
|
13
|
Merkel M, Berg D, Brüggemann N, Classen J, Mainka T, Zittel S, Muntau AC. Characterisation and differential diagnosis of neurological complications in adults with phenylketonuria: literature review and expert opinion. J Neurol 2023; 270:3675-3687. [PMID: 37081197 PMCID: PMC10345006 DOI: 10.1007/s00415-023-11703-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Phenylketonuria (PKU) is a rare inherited metabolic disorder characterised by elevated phenylalanine (Phe) concentrations that can exert neurotoxic effects if untreated or upon treatment discontinuation. This systematic review supported by expert opinion aims to raise awareness among the neurological community on neurological complications experienced by adults with PKU (AwPKU). METHODS The PubMed database was searched for articles on neurological signs and symptoms in AwPKU published before March 2022. In addition, two virtual advisory boards were held with a panel of seven neurologists and two metabolic physicians from Germany and Austria. Findings are supported by three illustrative patient cases. RESULTS Thirty-nine articles were included. Despite early diagnosis and treatment, neurological signs and symptoms (e.g. ataxia, brisk tendon reflexes, tremor, visual impairment) can emerge in adulthood, especially if treatment has been discontinued after childhood. In PKU, late-onset neurological deficits often co-occur with cognitive impairment and psychiatric symptoms, all of which can be completely or partially reversed through resumption of treatment. CONCLUSION Ideally, neurologists should be part of the PKU multidisciplinary team, either to bring lost to follow-up patients back to clinic or to manage symptoms in referred patients, considering that symptoms are often reversible upon regaining metabolic control. The current findings have been combined in a leaflet that will be disseminated among neurologists in Germany and Austria to create awareness.
Collapse
Affiliation(s)
- Martin Merkel
- Endokrinologikum Hamburg, Lornsenstraße 6, 22767, Hamburg, Germany.
- Asklepios Campus Hamburg, Semmelweis University, Hamburg, Germany.
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | | | - Joseph Classen
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Tina Mainka
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Chen R, Li L, Zhao W. Antibiotics-induced dysbiosis in gut microbiota affects bumblebee health via regulating host amino acid metabolism. Amino Acids 2023; 55:519-528. [PMID: 36749379 DOI: 10.1007/s00726-023-03247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The gut bacteria can provide nutrition for the host, and regulate host physiological functions and host behavior. In this study, we specifically examined the important roles of free amino acids in the gut microbiota-host interaction. Bumblebees were treated with different concentrations of antibiotics (ampicillin combined with low/high concentrations of tetracycline). Then the effect of antibiotic treatments on the host body weight, gut microbiota, and the free amino acid profiles in the hindgut, hemolymph and brain of bees was evaluated. The results showed that antibiotic treatments resulted in a significant decrease in the host body weight at 11 days of age, the total bacterial load and the abundance of Bifidobacterium bohemicum and Gilliamella apicola in the bumblebee's hindgut. Additionally, the higher the concentration of antibiotics (tetracycline), the greater their impact on the body weight and intestinal microbiota of bumblebees. Further, we found that antibiotic treatments caused changes of free amino acids in different tissues, especially in the hindgut and hemolymph, including particularly the decrease of several types of essential amino acids and branched-chain amino acids. Our results suggest that the gut microbiota may modulate the host growth via specific essential amino acids and branched-chain amino acids, which further reveals the crucial roles of free amino acids in the gut microbiota-host interplay.
Collapse
Affiliation(s)
- Rong Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
15
|
Costa-Lathan C, Vazquez-Agra N, Marques-Afonso AT, Cruces-Sande A, Martinez-Olmos MA, Araujo-Vilar D, Hermida-Ameijeiras A. The role of phenylalanine levels in the neuropsychological and neuroanatomical status of adult patients with phenylketonuria: The impact of fluctuations. J Investig Med 2023; 71:149-158. [PMID: 36647337 DOI: 10.1177/10815589221143485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We aimed to evaluate the role of plasma phenylalanine (Phe) levels and its fluctuations in some neurocognitive domains and brain magnetic resonance imaging (MRI) findings in adult patients with phenylketonuria (PKU). It was an observational study that included patients older than 18 years with early-treated classical PKU. Plasma Phe levels were measured every other month throughout 2 years and predictor variables were the mean, maximum (max), minimum (min), range (min-max), and plasma Phe levels at the time of cognitive testing. Patients were evaluated for executive function, processing speed, visual attention, and fluid cognitive abilities using the Trail Making Test (TMT) and for the presence of brain MRI abnormalities. In all, 22 patients with a mean age of 34 years were included, of which 18 (81%) were women. Patients with higher range and maximum Phe levels had a poorer time-based performance on TMT form A and form B. Patients with brain MRI abnormalities had higher range, maximum, and mean Phe levels. Range of Phe levels showed a good performance for MRI abnormalities (area under the curve (AUC): 0.881, standard error (SE): 0.095, 95% CI: 0.695-0.999, p = 0.044) and for the poorest time-based performances on TMT form A (AUC: 0.822, SE: 0.092, 95% CI: 0.641-0.999, p = 0.024) and B (AUC: 0.816, SE: 0.094, 95% CI: 0.632-0.999, p = 0.021). Greater Phe variability may have a negative impact on some neurocognitive domains and could be related to the severity of brain structural damage in adult patients with PKU.
Collapse
Affiliation(s)
| | - Nestor Vazquez-Agra
- Department of Internal Medicine, University Hospital of Santiago de Compostela, A Coruña, Spain
| | | | - Anton Cruces-Sande
- Laboratory of Neurochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Santiago de Compostela, A Coruña, Spain
| | - Miguel-Angel Martinez-Olmos
- Division of Endocrinology and Nutrition, University Hospital of Santiago de Compostela, A Coruña, Spain.,CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute, Madrid, Spain
| | - David Araujo-Vilar
- Division of Endocrinology and Nutrition, University Hospital of Santiago de Compostela, A Coruña, Spain.,UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, A Coruña, Spain
| | - Alvaro Hermida-Ameijeiras
- Department of Internal Medicine, University Hospital of Santiago de Compostela, A Coruña, Spain.,UETeM-Molecular Pathology Group, Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
16
|
Yilmaz O, Cochrane B, Wildgoose J, Pinto A, Evans S, Daly A, Ashmore C, MacDonald A. Phenylalanine free infant formula in the dietary management of phenylketonuria. Orphanet J Rare Dis 2023; 18:16. [PMID: 36698214 PMCID: PMC9878783 DOI: 10.1186/s13023-023-02621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/15/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Phenylalanine-free infant formula is an essential source of safe protein in a phenylalanine restricted diet, but its efficacy is rarely studied. We report a multicentre, open, longitudinal, prospective intervention study on a phenylalanine-free infant formula (PKU Start: Vitaflo International Ltd.). RESULTS This was a 2-part study: part I (28 days short term evaluation) and part II (12 months extension). Data was collected on infant blood phenylalanine concentrations, dietary intake, growth, and gastrointestinal tolerance. Ten infants (n = 8 males, 80%), with a median age of 14 weeks (range 4-36 weeks) were recruited from 3 treatment centres in the UK. Nine of ten infants completed the 28-day follow-up (one caregiver preferred the usual phenylalanine-free formula and discontinued the study formula after day 14) and 7/9 participated in study part II. The phenylalanine-free infant formula contributed a median of 57% (IQR 50-62%) energy and 53% (IQR 33-66%) of total protein intake from baseline to the end of the part II extension study. During the 12-month follow-up, infants maintained normal growth and satisfactory blood phenylalanine control. Any early gastrointestinal symptoms (constipation, colic, vomiting and poor feeding) improved with time. CONCLUSION The study formula was well tolerated, helped maintain good metabolic control, and normal growth in infants with PKU. The long-term efficacy of phenylalanine-free infant formula should continue to be observed and monitored.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Birmingham Women’s and Children’s Hospital, Birmingham, B4 6NH UK
- Department of Nutrition and Dietetics, Ankara Yildirim Beyazit University, 06760 Ankara, Turkey
| | - Barbara Cochrane
- Dietetic Department, Royal Hospital for Children, Queen Elizabeth Hospital, Glasgow, 51 4TF UK
| | - Jo Wildgoose
- Bradford Children’s Hospital, Bradford, BD5 0NA UK
| | - Alex Pinto
- Birmingham Women’s and Children’s Hospital, Birmingham, B4 6NH UK
| | - Sharon Evans
- Birmingham Women’s and Children’s Hospital, Birmingham, B4 6NH UK
| | - Anne Daly
- Birmingham Women’s and Children’s Hospital, Birmingham, B4 6NH UK
| | | | - Anita MacDonald
- Birmingham Women’s and Children’s Hospital, Birmingham, B4 6NH UK
| |
Collapse
|
17
|
Thau-Zuchman O, Pallier PN, Savelkoul PJM, Kuipers AAM, Verkuyl JM, Michael-Titus AT. High phenylalanine concentrations induce demyelination and microglial activation in mouse cerebellar organotypic slices. Front Neurosci 2022; 16:926023. [PMID: 36248632 PMCID: PMC9559601 DOI: 10.3389/fnins.2022.926023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Phenylketonuria (PKU) is an inborn error of metabolism. Mutations in the enzyme phenylalanine hydroxylase (PAH)-encoding gene lead to a decreased metabolism of the amino acid phenylalanine (Phe). The deficiency in PAH increases Phe levels in blood and brain. Accumulation of Phe can lead to delayed development, psychiatric problems and cognitive impairment. White matter (WM) damage is a neuropathological hallmark of PKU and can be seen even in early detected and treated PKU patients. The mechanisms linking high Phe concentrations to WM abnormalities remain unclear. We tested the effects of high Phe concentrations on myelin in three in vitro models of increasing complexity: two simple cell culture models and one model that preserves local brain tissue architecture, a cerebellar organotypic slice culture prepared from postnatal day (P) 8 CD-1 mice. Various Phe concentrations (0.1–10 mM) and durations of exposure were tested. We found no toxic effect of high Phe in the cell culture models. On the contrary, the treatment promoted the maturation of oligodendrocytes, particularly at the highest, non-physiological Phe concentrations. Exposure of cerebellar organotypic slices to 2.4 mM Phe for 21 days in vitro (DIV), but not 7 or 10 DIV, resulted in a significant decrease in myelin basic protein (MBP), calbindin-stained neurites, and neurites co-stained with MBP. Following exposure to a toxic concentration of Phe, a switch to the control medium for 7 days did not lead to remyelination, while very active remyelination was seen in slices following demyelination with lysolecithin. An enhanced number of microglia, displaying an activated type morphology, was seen after exposure of the slices to 2.4 mM Phe for 10 or 21 DIV. The results suggest that prolonged exposure to high Phe concentrations can induce microglial activation preceding significant disruption of myelin.
Collapse
Affiliation(s)
- Orli Thau-Zuchman
- Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Patrick N. Pallier
- Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Patrick N. Pallier,
| | | | | | | | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
18
|
Elhawary NA, AlJahdali IA, Abumansour IS, Elhawary EN, Gaboon N, Dandini M, Madkhali A, Alosaimi W, Alzahrani A, Aljohani F, Melibary EM, Kensara OA. Genetic etiology and clinical challenges of phenylketonuria. Hum Genomics 2022; 16:22. [PMID: 35854334 PMCID: PMC9295449 DOI: 10.1186/s40246-022-00398-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 02/08/2023] Open
Abstract
This review discusses the epidemiology, pathophysiology, genetic etiology, and management of phenylketonuria (PKU). PKU, an autosomal recessive disease, is an inborn error of phenylalanine (Phe) metabolism caused by pathogenic variants in the phenylalanine hydroxylase (PAH) gene. The prevalence of PKU varies widely among ethnicities and geographic regions, affecting approximately 1 in 24,000 individuals worldwide. Deficiency in the PAH enzyme or, in rare cases, the cofactor tetrahydrobiopterin results in high blood Phe concentrations, causing brain dysfunction. Untreated PKU, also known as PAH deficiency, results in severe and irreversible intellectual disability, epilepsy, behavioral disorders, and clinical features such as acquired microcephaly, seizures, psychological signs, and generalized hypopigmentation of skin (including hair and eyes). Severe phenotypes are classic PKU, and less severe forms of PAH deficiency are moderate PKU, mild PKU, mild hyperphenylalaninaemia (HPA), or benign HPA. Early diagnosis and intervention must start shortly after birth to prevent major cognitive and neurological effects. Dietary treatment, including natural protein restriction and Phe-free supplements, must be used to maintain blood Phe concentrations of 120-360 μmol/L throughout the life span. Additional treatments include the casein glycomacropeptide (GMP), which contains very limited aromatic amino acids and may improve immunological function, and large neutral amino acid (LNAA) supplementation to prevent plasma Phe transport into the brain. The synthetic BH4 analog, sapropterin hydrochloride (i.e., Kuvan®, BioMarin), is another potential treatment that activates residual PAH, thus decreasing Phe concentrations in the blood of PKU patients. Moreover, daily subcutaneous injection of pegylated Phe ammonia-lyase (i.e., pegvaliase; PALYNZIQ®, BioMarin) has promised gene therapy in recent clinical trials, and mRNA approaches are also being studied.
Collapse
Affiliation(s)
- Nasser A. Elhawary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955 Saudi Arabia
| | - Imad A. AlJahdali
- Department of Community Medicine, College of Medicine, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955 Saudi Arabia
| | - Iman S. Abumansour
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955 Saudi Arabia
| | - Ezzeldin N. Elhawary
- Faculty of Medicine, MS Genomic Medicine Program, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nagwa Gaboon
- Department of Clinical Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohammed Dandini
- Department of Laboratory and Blood Bank, Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Abdulelah Madkhali
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Wafaa Alosaimi
- Department of Hematology, Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Abdulmajeed Alzahrani
- Department of Laboratory and Blood Bank at Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Fawzia Aljohani
- Department of Pediatric Clinics, Maternity and Children Hospital, King Salman Medical City, Madinah, Saudi Arabia
| | - Ehab M. Melibary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955 Saudi Arabia
| | - Osama A. Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Jeddah, Saudi Arabia
- Department of Biochemistry, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Winn SR, Dudley S, Scherer T, Rimann N, Thöny B, Boutros S, Krenik D, Raber J, Harding CO. Modeling the cognitive effects of diet discontinuation in adults with phenylketonuria (PKU) using pegvaliase therapy in PAH-deficient mice. Mol Genet Metab 2022; 136:46-64. [PMID: 35339387 PMCID: PMC9106909 DOI: 10.1016/j.ymgme.2022.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Existing phenylalanine hydroxylase (PAH)-deficient mice strains are useful models of untreated or late-treated human phenylketonuria (PKU), as most contemporary therapies can only be initiated after weaning and the pups have already suffered irreversible consequences of chronic hyperphenylalaninemia (HPA) during early brain development. Therefore, we sought to evaluate whether enzyme substitution therapy with pegvaliase initiated near birth and administered repetitively to C57Bl/6-Pahenu2/enu2 mice would prevent HPA-related behavioral and cognitive deficits and form a model for early-treated PKU. The main results of three reported experiments are: 1) lifelong weekly pegvaliase treatment prevented the cognitive deficits associated with HPA in contrast to persisting deficits in mice treated with pegvaliase only as adults. 2) Cognitive deficits reappear in mice treated with weekly pegvaliase from birth but in which pegvaliase is discontinued at 3 months age. 3) Twice weekly pegvaliase injection also prevented cognitive deficits but again cognitive deficits emerged in early-treated animals following discontinuation of pegvaliase treatment during adulthood, particularly in females. In all studies, pegvaliase treatment was associated with complete correction of brain monoamine neurotransmitter content and with improved overall growth of the mice as measured by body weight. Mean total brain weight however remained low in all PAH deficient mice regardless of treatment. Application of enzyme substitution therapy with pegvaliase, initiated near birth and continued into adulthood, to PAH-deficient Pahenu2/enu2 mice models contemporary early-treated human PKU. This model will be useful for exploring the differential pathophysiologic effects of HPA at different developmental stages of the murine brain.
Collapse
Affiliation(s)
- Shelley R Winn
- Department of Medical and Molecular Genetics, Oregon Health & Science University, Mailstop L-103, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Sandra Dudley
- Department of Medical and Molecular Genetics, Oregon Health & Science University, Mailstop L-103, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Tanja Scherer
- Department of Pediatrics, University of Zurich, Steinwiessstrasse 75, Zurich CH-8032, Switzerland
| | - Nicole Rimann
- Department of Pediatrics, University of Zurich, Steinwiessstrasse 75, Zurich CH-8032, Switzerland
| | - Beat Thöny
- Department of Pediatrics, University of Zurich, Steinwiessstrasse 75, Zurich CH-8032, Switzerland
| | - Sydney Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Destine Krenik
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Cary O Harding
- Department of Medical and Molecular Genetics, Oregon Health & Science University, Mailstop L-103, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA.
| |
Collapse
|
20
|
Borges AC, Broersen K, Leandro P, Fernandes TG. Engineering Organoids for in vitro Modeling of Phenylketonuria. Front Mol Neurosci 2022; 14:787242. [PMID: 35082602 PMCID: PMC8784555 DOI: 10.3389/fnmol.2021.787242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Phenylketonuria is a recessive genetic disorder of amino-acid metabolism, where impaired phenylalanine hydroxylase function leads to the accumulation of neurotoxic phenylalanine levels in the brain. Severe cognitive and neuronal impairment are observed in untreated/late-diagnosed patients, and even early treated ones are not safe from life-long sequelae. Despite the wealth of knowledge acquired from available disease models, the chronic effect of Phenylketonuria in the brain is still poorly understood and the consequences to the aging brain remain an open question. Thus, there is the need for better predictive models, able to recapitulate specific mechanisms of this disease. Human induced pluripotent stem cells (hiPSCs), with their ability to differentiate and self-organize in multiple tissues, might provide a new exciting in vitro platform to model specific PKU-derived neuronal impairment. In this review, we gather what is known about the impact of phenylalanine in the brain of patients and highlight where hiPSC-derived organoids could contribute to the understanding of this disease.
Collapse
Affiliation(s)
- Alice C. Borges
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Kerensa Broersen
- Department of Applied Stem Cell Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, Netherlands
| | - Paula Leandro
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Tiago G. Fernandes,
| |
Collapse
|
21
|
van Vliet D, van der Goot E, van Ginkel WG, van Faassen HJR, de Blaauw P, Kema IP, Heiner-Fokkema MR, van der Zee EA, van Spronsen FJ. The increasing importance of LNAA supplementation in phenylketonuria at higher plasma phenylalanine concentrations. Mol Genet Metab 2022; 135:27-34. [PMID: 34974973 DOI: 10.1016/j.ymgme.2021.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/01/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Large neutral amino acid (LNAA) treatment has been suggested as alternative to the burdensome severe phenylalanine-restricted diet. While its working mechanisms and optimal composition have recently been further elucidated, the question whether LNAA treatment requires the natural protein-restricted diet, has still remained. OBJECTIVE Firstly, to determine whether an additional liberalized natural protein-restricted diet could further improve brain amino acid and monoamine concentrations in phenylketonuria mice on LNAA treatment. Secondly, to compare the effect between LNAA treatment (without natural protein) restriction and different levels of a phenylalanine-restricted diet (without LNAA treatment) on brain amino acid and monoamine concentrations in phenylketonuria mice. DESIGN BTBR Pah-enu2 mice were divided into two experimental groups that received LNAA treatment with either an unrestricted or semi phenylalanine-restricted diet. Control groups included Pah-enu2 mice on the AIN-93 M diet, a severe or semi phenylalanine-restricted diet without LNAA treatment, and wild-type mice receiving the AIN-93 M diet. After ten weeks, brain and plasma samples were collected to measure amino acid profiles and brain monoaminergic neurotransmitter concentrations. RESULTS Adding a semi phenylalanine-restricted diet to LNAA treatment resulted in lower plasma phenylalanine but comparable brain amino acid and monoamine concentrations as compared to LNAA treatment (without phenylalanine restriction). LNAA treatment (without phenylalanine restriction) resulted in comparable brain monoamine but higher brain phenylalanine concentrations compared to the severe phenylalanine-restricted diet, and significantly higher brain monoamine but comparable phenylalanine concentrations as compared to the semi phenylalanine-restricted diet. CONCLUSIONS Present results in PKU mice suggest that LNAA treatment in PKU patients does not need the phenylalanine-restricted diet. In PKU mice, LNAA treatment (without phenylalanine restriction) was comparable to a severe phenylalanine-restricted diet with respect to brain monoamine concentrations, notwithstanding the higher plasma and brain phenylalanine concentrations, and resulted in comparable brain phenylalanine concentrations as on a semi phenylalanine-restricted diet.
Collapse
Affiliation(s)
- D van Vliet
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, the Netherlands
| | - E van der Goot
- University of Groningen, Groningen Institute for Evolutionary Life Sciences, Department of Molecular Neurobiology, Groningen, the Netherlands
| | - W G van Ginkel
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, the Netherlands
| | - H J R van Faassen
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen, the Netherlands
| | - P de Blaauw
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen, the Netherlands
| | - I P Kema
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen, the Netherlands
| | - M R Heiner-Fokkema
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen, the Netherlands
| | - E A van der Zee
- University of Groningen, Groningen Institute for Evolutionary Life Sciences, Department of Molecular Neurobiology, Groningen, the Netherlands
| | - F J van Spronsen
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, the Netherlands.
| |
Collapse
|
22
|
Dijkstra AM, van Vliet N, van Vliet D, Romani C, Huijbregts SCJ, van der Goot E, Hovens IB, van der Zee EA, Kema IP, Heiner-Fokkema MR, van Spronsen FJ. Correlations of blood and brain biochemistry in phenylketonuria: Results from the Pah-enu2 PKU mouse. Mol Genet Metab 2021; 134:250-256. [PMID: 34656426 DOI: 10.1016/j.ymgme.2021.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND In phenylketonuria (PKU), treatment monitoring is based on frequent blood phenylalanine (Phe) measurements, as this is the predictor of neurocognitive and behavioural outcome by reflecting brain Phe concentrations and brain biochemical changes. Despite clinical studies describing the relevance of blood Phe to outcome in PKU patients, blood Phe does not explain the variance in neurocognitive and behavioural outcome completely. METHODS In a PKU mouse model we investigated 1) the relationship between plasma Phe and brain biochemistry (Brain Phe and monoaminergic neurotransmitter concentrations), and 2) whether blood non-Phe Large Neutral Amino Acids (LNAA) would be of additional value to blood Phe concentrations to explain brain biochemistry. To this purpose, we assessed blood amino acid concentrations and brain Phe as well as monoaminergic neurotransmitter levels in in 114 Pah-Enu2 mice on both B6 and BTBR backgrounds using (multiple) linear regression analyses. RESULTS Plasma Phe concentrations were strongly correlated to brain Phe concentrations, significantly negatively correlated to brain serotonin and norepinephrine concentrations and only weakly correlated to brain dopamine concentrations. From all blood markers, Phe showed the strongest correlation to brain biochemistry in PKU mice. Including non-Phe LNAA concentrations to the multiple regression model, in addition to plasma Phe, did not help explain brain biochemistry. CONCLUSION This study showed that blood Phe is still the best amino acid predictor of brain biochemistry in PKU. Nevertheless, neurocognitive and behavioural outcome cannot fully be explained by blood or brain Phe concentrations, necessitating a search for other additional parameters. TAKE-HOME MESSAGE Blood Phe is still the best amino acid predictor of brain biochemistry in PKU. Nevertheless, neurocognitive and behavioural outcome cannot fully be explained by blood or brain Phe concentrations, necessitating a search for other additional parameters.
Collapse
Affiliation(s)
- Allysa M Dijkstra
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, the Netherlands
| | - Ninke van Vliet
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, the Netherlands
| | - Danique van Vliet
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, the Netherlands
| | - Cristina Romani
- School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Stephan C J Huijbregts
- Department of Clinical Child and Adolescent Studies-Neurodevelopmental Disorders, Faculty of Social Sciences, Leiden University, Leiden, the Netherlands
| | - Els van der Goot
- University of Groningen, Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Molecular Neurobiology, Groningen, the Netherlands
| | - Iris B Hovens
- University of Groningen, Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Molecular Neurobiology, Groningen, the Netherlands
| | - Eddy A van der Zee
- University of Groningen, Groningen Institute for Evolutionary Life Sciences (GELIFES), Department of Molecular Neurobiology, Groningen, the Netherlands
| | - Ido P Kema
- University of Groningen, University Medical Center Groningen, Department of laboratory Medicine, Groningen, the Netherlands
| | - M Rebecca Heiner-Fokkema
- University of Groningen, University Medical Center Groningen, Department of laboratory Medicine, Groningen, the Netherlands
| | - Francjan J van Spronsen
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, the Netherlands.
| |
Collapse
|
23
|
Gudowska A, Drobniak SM. Diet modulates behaviour in house sparrows: insights into possible hormone-mediated mechanisms. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Abstract
Phenylketonuria (PKU; also known as phenylalanine hydroxylase (PAH) deficiency) is an autosomal recessive disorder of phenylalanine metabolism, in which especially high phenylalanine concentrations cause brain dysfunction. If untreated, this brain dysfunction results in severe intellectual disability, epilepsy and behavioural problems. The prevalence varies worldwide, with an average of about 1:10,000 newborns. Early diagnosis is based on newborn screening, and if treatment is started early and continued, intelligence is within normal limits with, on average, some suboptimal neurocognitive function. Dietary restriction of phenylalanine has been the mainstay of treatment for over 60 years and has been highly successful, although outcomes are still suboptimal and patients can find the treatment difficult to adhere to. Pharmacological treatments are available, such as tetrahydrobiopterin, which is effective in only a minority of patients (usually those with milder PKU), and pegylated phenylalanine ammonia lyase, which requires daily subcutaneous injections and causes adverse immune responses. Given the drawbacks of these approaches, other treatments are in development, such as mRNA and gene therapy. Even though PAH deficiency is the most common defect of amino acid metabolism in humans, brain dysfunction in individuals with PKU is still not well understood and further research is needed to facilitate development of pathophysiology-driven treatments.
Collapse
Affiliation(s)
- Francjan J van Spronsen
- Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.
| | - Nenad Blau
- University Children's Hospital in Zurich, Zurich, Switzerland
| | - Cary Harding
- Department of Molecular and Medical Genetics and Department of Pediatrics, Oregon Health & Science University, Oregon, USA
| | | | - Nicola Longo
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Annet M Bosch
- University of Amsterdam, Department of Pediatrics, Division of Metabolic Disorders, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Study of the l-Phenylalanine Ammonia-Lyase Penetration Kinetics and the Efficacy of Phenylalanine Catabolism Correction Using In Vitro Model Systems. Pharmaceutics 2021; 13:pharmaceutics13030383. [PMID: 33805682 PMCID: PMC7999051 DOI: 10.3390/pharmaceutics13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/02/2022] Open
Abstract
The kinetics of l-phenylalanine ammonia-lyase (PAL) penetration into the monolayer of liver cells after its release from capsules was studied. The studies showed the absence of the effect of the capsule shell based on plant hydrocolloids on the absorption of l-phenylalanine ammonia-lyase in systems simulating the liver surface. After 120 min of incubation, in all variants of the experiment, from 87.0 to 96.8% of the enzyme penetrates the monolayer of liver cells. The combined analysis of the results concludes that the developed encapsulated form of l-phenylalanine ammonia-lyase is characterized by high efficiency in correcting the disturbed catabolism of phenylalanine in phenylketonuria, which is confirmed by the results of experiments carried out on in vitro model systems. PAL is approved for the treatment of adult patients with phenylketonuria. The encapsulated l-phenylalanine ammonia-lyase form can find therapeutic application in the phenylketonuria treatment after additional in vitro and in vivo studies, in particular, the study of preparation safety indicators. Furthermore, it demonstrated high efficacy in tumor regression and the treatment of tyrosine-related metabolic disorders such as tyrosinemia. Several therapeutically valuable metabolites biosynthesized by PAL via its catalytic action are included in food supplements, antimicrobial peptides, drugs, amino acids, and their derivatives. PAL, with improved pharmacodynamic and pharmacokinetic properties, is a highly effective medical drug.
Collapse
|
26
|
Dimitrov B, Molema F, Williams M, Schmiesing J, Mühlhausen C, Baumgartner MR, Schumann A, Kölker S. Organic acidurias: Major gaps, new challenges, and a yet unfulfilled promise. J Inherit Metab Dis 2021; 44:9-21. [PMID: 32412122 DOI: 10.1002/jimd.12254] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Organic acidurias (OADs) comprise a biochemically defined group of inherited metabolic diseases. Increasing awareness, reliable diagnostic work-up, newborn screening programs for some OADs, optimized neonatal and intensive care, and the development of evidence-based recommendations have improved neonatal survival and short-term outcome of affected individuals. However, chronic progression of organ dysfunction in an aging patient population cannot be reliably prevented with traditional therapeutic measures. Evidence is increasing that disease progression might be best explained by mitochondrial dysfunction. Previous studies have demonstrated that some toxic metabolites target mitochondrial proteins inducing synergistic bioenergetic impairment. Although these potentially reversible mechanisms help to understand the development of acute metabolic decompensations during catabolic state, they currently cannot completely explain disease progression with age. Recent studies identified unbalanced autophagy as a novel mechanism in the renal pathology of methylmalonic aciduria, resulting in impaired quality control of organelles, mitochondrial aging and, subsequently, progressive organ dysfunction. In addition, the discovery of post-translational short-chain lysine acylation of histones and mitochondrial enzymes helps to understand how intracellular key metabolites modulate gene expression and enzyme function. While acylation is considered an important mechanism for metabolic adaptation, the chronic accumulation of potential substrates of short-chain lysine acylation in inherited metabolic diseases might exert the opposite effect, in the long run. Recently, changed glutarylation patterns of mitochondrial proteins have been demonstrated in glutaric aciduria type 1. These new insights might bridge the gap between natural history and pathophysiology in OADs, and their exploitation for the development of targeted therapies seems promising.
Collapse
Affiliation(s)
- Bianca Dimitrov
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jessica Schmiesing
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chris Mühlhausen
- Department of Pediatrics and Adolescent Medicine, University Medical Centre Göttingen, Göttingen, Germany
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Anke Schumann
- Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital of Freiburg, Freiburg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Sonnay S, Christinat N, Thevenet J, Wiederkehr A, Chakrabarti A, Masoodi M. Exploring Valine Metabolism in Astrocytic and Liver Cells: Lesson from Clinical Observation in TBI Patients for Nutritional Intervention. Biomedicines 2020; 8:biomedicines8110487. [PMID: 33182557 PMCID: PMC7697144 DOI: 10.3390/biomedicines8110487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/06/2023] Open
Abstract
The utilization of alternative energy substrates to glucose could be beneficial in traumatic brain injury (TBI). Recent clinical data obtained in TBI patients reported valine, β-hydroxyisobutyrate (ibHB) and 2-ketoisovaleric acid (2-KIV) as three of the main predictors of TBI outcome. In particular, higher levels of ibHB, 2-KIV, and valine in cerebral microdialysis (CMD) were associated with better clinical outcome. In this study, we investigate the correlations between circulating and CMD levels of these metabolites. We hypothesized that the liver can metabolize valine and provide a significant amount of intermediate metabolites, which can be further metabolized in the brain. We aimed to assess the metabolism of valine in human-induced pluripotent stem cell (iPSC)-derived astrocytes and HepG2 cells using 13C-labeled substrate to investigate potential avenues for increasing the levels of downstream metabolites of valine via valine supplementation. We observed that 94 ± 12% and 84 ± 16% of ibHB, and 94 ± 12% and 87 ± 15% of 2-KIV, in the medium of HepG2 cells and in iPSC-derived astrocytes, respectively, came directly from valine. Overall, these findings suggest that both ibHB and 2-KIV are produced from valine to a large extent in both cell types, which could be of interest in the design of optimal nutritional interventions aiming at stimulating valine metabolism.
Collapse
Affiliation(s)
- Sarah Sonnay
- Lipid metabolism, Nestlé Research, Nestlé Institute of Health Sciences,1015 Lausanne, Switzerland; (S.S.); (N.C.); (A.C.)
| | - Nicolas Christinat
- Lipid metabolism, Nestlé Research, Nestlé Institute of Health Sciences,1015 Lausanne, Switzerland; (S.S.); (N.C.); (A.C.)
| | - Jonathan Thevenet
- Mitochondrial Function, Nestlé Research, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; (J.T.); (A.W.)
| | - Andreas Wiederkehr
- Mitochondrial Function, Nestlé Research, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; (J.T.); (A.W.)
| | - Anirikh Chakrabarti
- Lipid metabolism, Nestlé Research, Nestlé Institute of Health Sciences,1015 Lausanne, Switzerland; (S.S.); (N.C.); (A.C.)
| | - Mojgan Masoodi
- Lipid metabolism, Nestlé Research, Nestlé Institute of Health Sciences,1015 Lausanne, Switzerland; (S.S.); (N.C.); (A.C.)
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-664-05-32
| |
Collapse
|
28
|
Serfozo C, Barta AG, Horvath E, Sumanszki C, Csakany B, Resch M, Nagy ZZ, Reismann P. Altered visual functions, macular ganglion cell and papillary retinal nerve fiber layer thickness in early-treated adult PKU patients. Mol Genet Metab Rep 2020; 25:100649. [PMID: 32995291 PMCID: PMC7516291 DOI: 10.1016/j.ymgmr.2020.100649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Retinal changes are poorly described in early treated phenylketonuria (ETPKU). We aimed to investigate possible visual functional and ocular microstructural changes in adult patients with ETPKU. Optical coherence tomography (OCT) and its angiography (OCTA) data from patients with PKU were compared to healthy controls. Methods In this prospective, monocentric, cross-sectional, case-control study 50 patients with ETPKU and 50 healthy subjects were evaluated with OCT and OCTA. Measurements were performed on right eyes. The following visual function parameters were studied: best corrected visual acuity (BCVA), spherical equivalent (SE), contrast sensitivity and near stereoacuity; microstructural parameters: retinal nerve fiber layer thickness (RNFLT), ganglion cell layer (GCC) thickness, focal loss of volume (FLV), global loss of volume (GLV), peripapillary, papillary vessel density (VD), ocular axial length (AL) and intraocular pressure (IOP). Results Among functional tests there were significant differences in contrast sensitivity at 1.5 (p < 0.001), 6 (p < 0.013), 12 (p < 0.001), 18 (p < 0.003) cycles per degree, in near stereoacuity (Titmus Wirt circles, p < 0.001) and in best corrected visual acuity (BCVA, p < 0.001). A statistically significant, moderate positive linear correlation was observed between BCVA and average Phe levels over the last ten years (β = 0.49, p < 0.001). The average (p < 0.001), superior (p < 0.001) inferior GCC (p < 0.001), the FLV (p < 0.003), GLV (p < 0.001) and the average RNFLT (p < 0.004) values of the PKU group were significantly lower than the controls. The serum phenylalanine level (Phe) in the PKU group negatively correlated with inferior (−0.32, p < 0.007), superior (r = −0.26, p < 0.028) and average (−0.29 p < 0.014) RNFL and with AL (−0.32, p < 0.026). In AL we detected a significant difference (p < 0.04) between the good and suboptimal dietary controlled group. There was no significant difference between the ETPKU and control group in the measured vessel density parameters and in IOP. Conclusions Our results suggest that functional and ocular microstructural defects are present in patients with PKU, and some of them may depend on dietary control. The mechanism is unclear, but the correlation indicates the importance of strict dietary control in terms of preservation of retinal functions.
Collapse
Key Words
- AAS, aminoacid supplements
- AL, axial length
- BCVA, best corrected visual acuity
- BH4, Tetrahydrobiopterine
- D, diopters
- DA, dopamine
- Dopamine
- ETDRS, early treatment diabetic retinopathy study
- ETPKU, early-treated phenylketonuria
- FLV, focal loss of volume
- GCC, ganglion cell layer thickness
- GLV, global loss of volume
- GMP, Glycomacropeptide
- Ganglion cell layer thickness
- IOP, intraocular pressure
- LogMAR, logarithm of the minimum angle of resolution
- Myopia
- OCT, optical coherence tomography
- OCTA, optical coherence tomography angiography
- Optical coherence tomography angiography
- PD, Parkinson's disease
- PKU, phenylketonuria
- Phe, phenylalanine
- Phenylalanine level
- Phenylketonuria
- RNFL, retinal nerve fiber layer
- RNFLT, retinal nerve fiber layer thickness
- Retinal nerve fiber layer thickness
- SD, spectral domain
- SE, spherical equivalent
- SWCT, sine wave contrast test
- VD, vessel density
- VEPs, Visual evoked potentials
Collapse
Affiliation(s)
- Csilla Serfozo
- Department of Ophthalmology, Faculty of Medicine, Semmelweis University, Maria utca 39, Budapest 1085, Hungary
| | - Andras Gellert Barta
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Koranyi Sandor utca 2/a, Budapest 1083, Hungary
| | - Endre Horvath
- Independent statistician, H-1171, Alsodabas park 4/2, Budapest, Hungary
| | - Csaba Sumanszki
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Koranyi Sandor utca 2/a, Budapest 1083, Hungary
| | - Bela Csakany
- Department of Ophthalmology, Faculty of Medicine, Semmelweis University, Maria utca 39, Budapest 1085, Hungary
| | - Miklos Resch
- Department of Ophthalmology, Faculty of Medicine, Semmelweis University, Maria utca 39, Budapest 1085, Hungary
| | - Zoltan Zsolt Nagy
- Department of Ophthalmology, Faculty of Medicine, Semmelweis University, Maria utca 39, Budapest 1085, Hungary
| | - Peter Reismann
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Koranyi Sandor utca 2/a, Budapest 1083, Hungary
| |
Collapse
|
29
|
Lipids and phenylketonuria: Current evidences pointed the need for lipidomics studies. Arch Biochem Biophys 2020; 688:108431. [DOI: 10.1016/j.abb.2020.108431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
|
30
|
Levy H, Lamppu D, Anastosoaie V, Baker JL, DiBona K, Hawthorne S, Lindenberger J, Kinch D, Seymour A, McIlduff M, Watling S, Vockley J. 5-year retrospective analysis of patients with phenylketonuria (PKU) and hyperphenylalaninemia treated at two specialized clinics. Mol Genet Metab 2020; 129:177-185. [PMID: 31883647 DOI: 10.1016/j.ymgme.2019.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Phenylketonuria (PKU) is an autosomal recessive disease caused by mutations in the PAH gene, resulting in deficiency of phenylalanine hydroxylase (PAH), an enzyme that converts phenylalanine (Phe) to tyrosine (Tyr). The purpose of this study was to capture real-world data associated with managing PKU under current standard of care and to characterize a representative population for a planned gene therapy trial. METHODS A retrospective chart review was conducted at two U.S. clinics for individuals 10-40 years old diagnosed with PKU-related hyperphenylalaninemia (HPA). Demographics, medical history, treatments and blood Phe data were collected from electronic medical records spanning a five-year period ending in November 2017. RESULTS 152 patients were enrolled (65.8% had classical PKU). Although >95% of patients were prescribed a Phe-restricted diet, blood Phe concentrations remained substantially elevated, particularly in patients diagnosed with classical PKU. As the Phe threshold was lowered (Phe < 600, 360, 120 or 30 μmol/L), the number of patients with consecutive lab values below the threshold decreased, suggesting that many patients' Phe levels are inadequately controlled. 62.5% of patients were reported as having a history of at least one neuropsychiatric comorbidity, and adults were more likely than adolescents (69.5% vs. 54.3%). 92 of 98 PAH genotypes collected were distinct mutations; the 6 null-null genotypes were associated with classical PKU. Overall the demographics and clinical data were consistent across both sites. CONCLUSION Despite dietary restrictions, mean Phe concentrations were > 360 μmol/L (a level considered well-controlled based on current U.S. treatment guidelines) for mild, moderate, and classical PKU patients. There remains an unmet need for therapies to control Phe concentrations.
Collapse
Affiliation(s)
- Harvey Levy
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Vera Anastosoaie
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Jennifer L Baker
- Division Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin DiBona
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Sarah Hawthorne
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Jessica Lindenberger
- Division Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Mark McIlduff
- Boston Biomedical Associates, LLC, Marlborough, MA, USA
| | | | - Jerry Vockley
- Division Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Appaiah P, Vasu P. Improvement, cloning, and expression of an in silico designed protein enriched with large neutral amino acids in Pichia pastoris for possible application in phenylketonuria. J Food Biochem 2020; 44:e13151. [PMID: 31960483 DOI: 10.1111/jfbc.13151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/25/2019] [Accepted: 12/28/2019] [Indexed: 11/29/2022]
Abstract
Phenylketonuria (PKU) is an inborn disease caused by defective phenylalanine hydroxylase, which consequently results in the accumulation of phenylalanine in the brain leading to further complications. One of the promising approaches in dietary treatment is the supplementation of large neutral amino acid (LNAA). The LNAA compete with phenylalanine for the common L-type LNAA transporter across the blood-brain barrier, and decrease phenylalanine levels in the brain. In this study, the earlier LNAA-enriched protein model was improved (Protein Model-66) and validated in silico. The reverse translated and codon-optimized synthetic LNAA66 gene was cloned into pPICZαC and expressed in Pichia pastoris. The expressed protein was purified by His Select affinity chromatography. SDS-PAGE and Western blotting analysis showed a band at an expected molecular weight of 12 kDa, confirming the expression of the modeled protein. To our knowledge, this is the first report showing the cloning and expression of an in silico designed LNAA-enriched protein. PRACTICAL APPLICATIONS: One of the promising dietary treatment of phenylketonuria (PKU) is the supplementation of large neutral amino acid (LNAA), wherein high levels of LNAA compete with phenylalanine for the same L-type LNAA transporter, and consequently decrease phenylalanine accumulation in the brain, thereby decreasing neurological complications. For the first time, here, we are showing that an in silico designed and validated Protein Model-66, rich in LNAA, can be successfully cloned and expressed in Pichia pastoris. The complete biochemical and structural characterization of this protein will give a clear insight into its potential application for PKU treatment. The protein can be potentially used as a supplement to treat PKU to those who are non-adherent to the restricted, non-palatable, and expensive diet. Furthermore, this novel and effective strategy of in silico designing, cloning and expression can be exploited to develop proteins for various applications of industrial, food, medical, and academic relevance.
Collapse
Affiliation(s)
- Prakruthi Appaiah
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prasanna Vasu
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
32
|
Abstract
Phenylalanine hydroxylase (PAH) deficiency is an inborn error of metabolism that results in elevated phenylalanine levels in blood. The classical form of the disease with phenylalanine level > 1200 µmol/L in blood is called phenylketonuria (PKU) and is associated with severe intellectual disability when untreated. In addition, phenylalanine levels above the therapeutic range in pregnant female patients lead to adverse fetal effects. Lowering the plasma phenylalanine level prevents intellectual disability, maintaining the level in the therapeutic range of 120-360 µmol/L is associated with good outcome for patients as well as their pregnancies. Patient phenotypes are on a continuous spectrum from mild hyperphenylalaninemia to mild PKU, moderate PKU, and severe classic PKU. There is a good correlation between the biochemical phenotype and the patient's genotype. For over four decades the only available treatment was a very restrictive low phenylalanine diet. This changed in 2007 with the approval of cofactor therapy which is effective in up to 55% of patients depending on the population. Cofactor therapy typically is more effective in patients with milder forms of the disease and less effective in classical PKU. A new therapy has just been approved that can be effective in all patients with PAH deficiency regardless of their degree of enzyme deficiency or the severity of their phenotype. This article reviews the mainstay therapy, adjunct enzyme cofactor therapy, and the newly available enzyme substitution therapy for hyperphenylalaninemia. It also provides an outlook on emerging approaches for hyperphenylalaninemia treatment such as recruiting the microbiome into the therapeutic endeavor as well as therapies under development such as gene therapy.
Collapse
Affiliation(s)
- Uta Lichter-Konecki
- Division Medical Genetics, Department of Pediatrics, University of Pittsburgh, School of Medicine, Center for Rare Disease Therapy, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| | - Jerry Vockley
- Division Medical Genetics, Department of Pediatrics, University of Pittsburgh, School of Medicine, Center for Rare Disease Therapy, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Large Neutral Amino Acid Therapy Increases Tyrosine Levels in Adult Patients with Phenylketonuria: A Long-Term Study. Nutrients 2019; 11:nu11102541. [PMID: 31640267 PMCID: PMC6835503 DOI: 10.3390/nu11102541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022] Open
Abstract
The standard treatment for phenylketonuria (PKU) is a lifelong low-phenylalanine (Phe) diet, supplemented with Phe-free protein substitutes; however, adult patients often show poor adherence to therapy. Alternative treatment options include the use of large neutral amino acids (LNAA). The aim of this study was to determine the Phe, tyrosine (Tyr), and Phe/Tyr ratio in a cohort of sub-optimally controlled adult patients with classical PKU treated with a new LNAA formulation. Twelve patients received a Phe-restricted diet plus a slow-release LNAA product taken three times per day, at a dose of 1 g/kg body weight (mean 0.8 ± 0.24 g/kg/day), over a 12-month period. The product is in a microgranulated formulation, which incorporates all amino acids and uses sodium alginate as a hydrophilic carrier to prolong its release. This LNAA formulation provides up to 80% of the total protein requirement, with the rest of the protein supplied by natural food. Patients had fortnightly measurements of Phe and Tyr levels over a 12-month period after the introduction of LNAA. All patients completed the 12-month treatment period. Overall, adherence to the new LNAA tablets was very good compared with a previous amino acid mixture, for which taste was a major complaint by patients. Phe levels remained unchanged (p = 0.0522), and Tyr levels increased (p = 0.0195). Consequently, the Phe/Tyr ratio decreased significantly (p < 0.05) in the majority of patients treated. In conclusion, LNAA treatment increases Tyr levels in sub-optimally controlled adult PKU patients, while offering the potential to improve their adherence to treatment.
Collapse
|
34
|
Green B, Browne R, Firman S, Hill M, Rahman Y, Kaalund Hansen K, Adam S, Skeath R, Hallam P, Herlihy I, Jenkinson F, Nicol C, Adams S, Gaff L, Donald S, Dawson C, Robertson L, Fitzachary C, Chan H, Slabbert A, Dunlop C, Cozens A, Newby C, Bittle V, Hubbard G, Stratton R. Nutritional and Metabolic Characteristics of UK Adult Phenylketonuria Patients with Varying Dietary Adherence. Nutrients 2019; 11:nu11102459. [PMID: 31615158 PMCID: PMC6835765 DOI: 10.3390/nu11102459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 01/20/2023] Open
Abstract
The nutritional and metabolic characteristics of adult phenylketonuria (PKU) patients in the UK with varying dietary adherence is unknown. In other countries, nutritional and metabolic abnormalities have been reported in nonadherent patients compared to adherent counterparts. A pooled analysis of primary baseline data from two UK multi-centre studies was therefore performed to establish whether this is true from a UK perspective. Adult PKU patients who had provided 3-day food records and amino acid blood samples were included and grouped according to dietary adherence (adherent; n = 16 vs. nonadherent; n = 14). Nonadherent patients consumed greater amounts of natural protein compared to adherent patients (61.6 ± 30.7 vs. 18.3 ± 7.7 g/day; q < 0.001). In contrast, the contribution of protein substitutes to total protein intake was lower in nonadherent compared to adherent patients (3.9 ± 9.2 g/day vs. 58.6 ± 10.2 g/day; q < 0.001). Intakes of iron, zinc, vitamin D3, magnesium, calcium, selenium, iodine, vitamin C, vitamin A and copper were significantly lower in nonadherent compared to adherent patients and were below UK Reference Nutrient Intakes. Similarly, intakes of thiamin, riboflavin, niacin, vitamin B6 and phosphorus were significantly lower in nonadherent compared to adherent patients but met the UK Reference Nutrient Intakes. Phenylalanine concentrations in nonadherent patients were significantly higher than adherent patients (861 ± 348 vs. 464 ± 196 µmol/L; q=0.040) and fell outside of European treatment target ranges. This study shows the nutritional and metabolic consequences of deviation from phenylalanine restriction and intake of PKU protein substitutes in nonadherent adult PKU patients. Collectively, these data further underlie the importance of life-long adherence to the PKU diet.
Collapse
Affiliation(s)
- Benjamin Green
- Medical Affairs, Nutricia Advanced Medical Nutrition, Wiltshire BA14 0XQ, UK.
| | - Robert Browne
- Medical Affairs, Nutricia Advanced Medical Nutrition, Wiltshire BA14 0XQ, UK.
| | - Sarah Firman
- Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| | - Melanie Hill
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK.
| | - Yusof Rahman
- Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| | - Kit Kaalund Hansen
- University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK.
| | - Sarah Adam
- Royal Hospital for Children, Glasgow, Glasgow G51 4TF, UK.
| | - Rachel Skeath
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| | - Paula Hallam
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| | - Ide Herlihy
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
| | - Fiona Jenkinson
- Royal Victoria Infirmary, Newcastle, Newcastle upon Tyne NE1 4LP, UK.
| | - Claire Nicol
- Royal Victoria Infirmary, Newcastle, Newcastle upon Tyne NE1 4LP, UK.
| | - Sandra Adams
- Royal Victoria Infirmary, Newcastle, Newcastle upon Tyne NE1 4LP, UK.
| | - Lisa Gaff
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK.
| | - Sarah Donald
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK.
| | | | | | | | - Heidi Chan
- Medical Affairs, Nutricia Advanced Medical Nutrition, Wiltshire BA14 0XQ, UK.
- Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| | - Arlene Slabbert
- Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| | - Carolyn Dunlop
- Royal Hospital for Sick Children, Edinburgh EH9 1LF, UK.
| | - Alison Cozens
- Royal Hospital for Sick Children, Edinburgh EH9 1LF, UK.
| | - Camille Newby
- Bristol University Hospitals NHS Foundation Trust, Bristol BS1 3NU, UK.
| | - Victoria Bittle
- Bristol University Hospitals NHS Foundation Trust, Bristol BS1 3NU, UK.
| | - Gary Hubbard
- Medical Affairs, Nutricia Advanced Medical Nutrition, Wiltshire BA14 0XQ, UK.
| | - Rebecca Stratton
- Medical Affairs, Nutricia Advanced Medical Nutrition, Wiltshire BA14 0XQ, UK.
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
35
|
van Vliet D, van der Goot E, van Ginkel WG, van Faassen MHJR, de Blaauw P, Kema IP, Martinez A, Heiner-Fokkema MR, van der Zee EA, van Spronsen FJ. The Benefit of Large Neutral Amino Acid Supplementation to a Liberalized Phenylalanine-Restricted Diet in Adult Phenylketonuria Patients: Evidence from Adult Pah-Enu2 Mice. Nutrients 2019; 11:E2252. [PMID: 31546852 PMCID: PMC6770592 DOI: 10.3390/nu11092252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022] Open
Abstract
Many phenylketonuria (PKU) patients cannot adhere to the severe dietary restrictions as advised by the European PKU guidelines, which can be accompanied by aggravated neuropsychological impairments that, at least in part, have been attributed to brain monoaminergic neurotransmitter deficiencies. Supplementation of large neutral amino acids (LNAA) to an unrestricted diet has previously been shown to effectively improve brain monoamines in PKU mice of various ages. To determine the additive value of LNAA supplementation to a liberalized phenylalanine-restricted diet, brain and plasma monoamine and amino acid concentrations in 10 to 16-month-old adult C57Bl/6 PKU mice on a less severe phenylalanine-restricted diet with LNAA supplementation were compared to those on a non-supplemented severe or less severe phenylalanine-restricted diet. LNAA supplementation to a less severe phenylalanine-restricted diet was found to improve both brain monoamine and phenylalanine concentrations. Compared to a severe phenylalanine-restricted diet, it was equally effective to restore brain norepinephrine and serotonin even though being less effective to reduce brain phenylalanine concentrations. These results in adult PKU mice support the idea that LNAA supplementation may enhance the effect of a less severe phenylalanine-restricted diet and suggest that cerebral outcome of PKU patients treated with a less severe phenylalanine-restricted diet may be helped by additional LNAA treatment.
Collapse
Affiliation(s)
- Danique van Vliet
- Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Els van der Goot
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Wiggert G van Ginkel
- Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Martijn H J R van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Pim de Blaauw
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Aurora Martinez
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5009 Bergen, Norway.
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Eddy A van der Zee
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Francjan J van Spronsen
- Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
36
|
Yeoh C, Teng H, Jackson J, Hingula L, Irie T, Legler A, Levine C, Chu I, Chai C, Tollinche L. Metabolic Disorders and Anesthesia. CURRENT ANESTHESIOLOGY REPORTS 2019; 9:340-359. [PMID: 31406490 DOI: 10.1007/s40140-019-00345-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of Review Metabolic disorders encompass a group of inherited inborn errors of metabolism that are uncommonly encountered but can pose challenges when encountered during the perioperative period. Hence, it is paramount that anesthesiologists are experienced and familiar with management of these conditions. Recent Findings Hundreds of inborn errors of metabolism have already been identified, yet new metabolic disorders continue to be discovered with advancements in genomic science. Summary In our general review, we define the more common metabolic disorders encountered in perioperative medicine and discuss the perioperative anesthetic considerations and challenges associated with each disorder. The following disorders are covered in our review: disorders of carbohydrate metabolism, disorders of amino acid metabolism, disorders of branched-chain amino acid metabolism, organic acidemias, mitochondrial disorders, lysosomal storage disorders, metal metabolism disorders, and urea cycle disorders.
Collapse
Affiliation(s)
- Cindy Yeoh
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Howard Teng
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jacob Jackson
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Lee Hingula
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Takeshi Irie
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Aron Legler
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Corrine Levine
- Department of Anesthesiology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY, USA
| | - Iris Chu
- Department of Anesthesiology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY, USA
| | - Casey Chai
- Department of Anesthesiology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, NY, USA
| | - Luis Tollinche
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
37
|
Neuropsychological Profile of Children with Early and Continuously Treated Phenylketonuria: Systematic Review and Future Approaches. J Int Neuropsychol Soc 2019; 25:624-643. [PMID: 31030702 DOI: 10.1017/s1355617719000146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To provide a comprehensive systematic review of the literature by examining studies published on all cognitive aspects of children with early and continuously treated phenylketonuria (ECT-PKU) included in the databases Medline, PsycINFO, and PsycARTICLE. METHOD In addition to a classical approach, we summarized methodology and results of each study in order to discuss current theoretical and methodological issues. We also examined recent advances in biochemical markers and treatments of PKU, with implications for future research on metabolic control and its role as a determinant of neuropsychological outcome. RESULTS Consistent with previous reviews, the hypothesis of a specific and central executive impairment in children with ECT-PKU was suggested. However, findings are inconclusive regarding the nature of executive impairments as well as their specificity, impact on everyday life, persistence over time, and etiology. CONCLUSION Given the current state of the science, we suggest future directions for research that utilizes a developmental and integrative approach to examine the effects of recent advances in biochemical markers and treatment of PKU. (JINS, 2019, 25, 624-643).
Collapse
|
38
|
Spiegelaar N, Martin ID, Tsuji LJS. Indigenous Subarctic Food Systems in Transition: Amino Acid Composition (Including Tryptophan) in Wild-Harvested and Processed Meats. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2019; 2019:7096416. [PMID: 31346512 PMCID: PMC6620842 DOI: 10.1155/2019/7096416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
Indigenous people of northern Canada traditionally lived a nomadic lifestyle subsisting on wild game and fish for thousands of years. With colonization came an increasing dependence on imported processed foods. This dietary change has often been reported to be one of the factors leading to Indigenous health and wellbeing disparities worldwide. We determined the amino acid (AA) profile including tryptophan (Trp) of wild meats (game and fish) and processed meats found in the traditional and modern diets of Indigenous subarctic communities in Canada. Trp is a limited essential AA necessary for synthesis of serotonin (5-HT), an important neurotransmitter and homeostatic regulator. The dietary ratio of Trp relative to other large neutral AAs (LNAA) can alter Trp transport and 5-HT synthesis in the brain. We determined AA composition of wild meats and processed meats using standardized NaOH and HCl hydrolysis for Trp and other AAs, respectively, followed by ultraperformance liquid chromatography. A Principal Components Analysis revealed that overall AA composition is significantly different between wild and processed meats. (M)ANOVA showed significantly higher protein in wild meats (wet weight, ww). Trp was significantly lower in processed meat samples (n=15; 0.18g/100g ± 0.02 ww) compared to wild meat samples (n=25; 0.24g/100g ± 0.06 ww). The proportion of Trp:LNAA and Trp in sample protein were not significantly different between wild (1:21-1:27, 0.92-1.27 g/100g protein) and processed (1:20-1:24, 1.03-1.27 g/100g protein) meats. Within wild meats, AA composition is significantly different between fish and waterfowl, fish and moose, and moose and goose. (M)ANOVA results indicate significantly higher protein in goose compared to moose and fish and in moose compared to fish. We compared our Trp findings to previous analyses and discuss the substantial gap in human nutritional studies of Trp.
Collapse
|
39
|
Burlina AP, Lachmann RH, Manara R, Cazzorla C, Celato A, van Spronsen FJ, Burlina A. The neurological and psychological phenotype of adult patients with early-treated phenylketonuria: A systematic review. J Inherit Metab Dis 2019; 42:209-219. [PMID: 30690773 DOI: 10.1002/jimd.12065] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/21/2019] [Indexed: 11/11/2022]
Abstract
Newborn screening for phenylketonuria (PKU) and early introduction of dietary therapy has been remarkably successful in preventing the severe neurological features of PKU, including mental retardation and epilepsy. However, concerns remain that long-term outcome is still suboptimal, particularly in adult patients who are no longer on strict phenylalanine-restricted diets. With our systematic literature review we aimed to describe the neurological phenotype of adults with early-treated phenylketonuria (ETPKU). The literature search covered the period from 1 January 1990 up to 16 April 2018, using the NLM MEDLINE controlled vocabulary. Of the 643 records initially identified, 83 were included in the analysis. The most commonly reported neurological signs were tremor and hyperreflexia. The overall quality of life (QoL) of ETPKU adults was good or comparable to control populations, and there was no evidence for a significant incidence of psychiatric disease or social difficulties. Neuroimaging revealed that brain abnormalities are present in ETPKU adults, but their clinical significance remains unclear. Generally, intelligence quotient (IQ) appears normal but specific deficits in neuropsychological and social functioning were reported in early-treated adults compared with healthy individuals. However, accurately defining the prevalence of these deficits is complicated by the lack of standardized neuropsychological tests. Future research should employ standardized neurological, neuropsychological, and neuroimaging protocols, and consider other techniques such as advanced imaging analyses and the recently validated PKU-specific QoL questionnaire, to precisely define the nature of the impairments within the adult ETPKU population and how these relate to metabolic control throughout life.
Collapse
Affiliation(s)
| | - Robin H Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Renzo Manara
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Chiara Cazzorla
- Division of Inborn Metabolic Diseases, Department of Paediatrics, University Hospital, Padua, Italy
| | - Andrea Celato
- Division of Inborn Metabolic Diseases, Department of Paediatrics, University Hospital, Padua, Italy
| | - Francjan J van Spronsen
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | - Alberto Burlina
- Division of Inborn Metabolic Diseases, Department of Paediatrics, University Hospital, Padua, Italy
| |
Collapse
|
40
|
Daly A, Evans S, Chahal S, Santra S, Pinto A, Jackson R, Gingell C, Rocha J, Van Spronsen FJ, MacDonald A. Glycomacropeptide: long-term use and impact on blood phenylalanine, growth and nutritional status in children with PKU. Orphanet J Rare Dis 2019; 14:44. [PMID: 30770754 PMCID: PMC6377744 DOI: 10.1186/s13023-019-1011-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 01/28/2019] [Indexed: 11/24/2022] Open
Abstract
Abstract In phenylketonuria, casein glycomacropeptide (CGMP) requires modification with the addition of some essential and semi essential amino acids to ensure suitability as a protein substitute. The optimal amount and ratio of additional amino acids is undefined. Aim A longitudinal, parallel, controlled study over 12 months evaluating a CGMP (CGMP-AA2) formulation compared with phenylalanine-free L-amino acid supplements (L-AA) on blood Phe, Tyr, Phe:Tyr ratio, biochemical nutritional status and growth in children with PKU. The CGMP-AA2 contained 36 mg Phe per 20 g protein equivalent. Methods Children with PKU, with a median age of 9.2 y (5-16y) were divided into 2 groups: 29 were given CGMP-AA2, 19 remained on Phe-free L-AA. The CGMP-AA2 formula gradually replaced L-AA, providing blood Phe concentrations were maintained within target range. Median blood Phe, Tyr, Phe:Tyr ratio and anthropometry, were compared within and between the two groups at baseline, 26 and 52 weeks. Nutritional biochemistry was studied at baseline and 26 weeks only. Results At the end of 52 weeks only 48% of subjects were able to completely use CGMP-AA2 as their single source of protein substitute. At 52 weeks CGMP-AA2 provided a median of 75% (30–100) of the total protein substitute with the remainder being given as L-AA. Within the CGMP-AA2 group, blood Phe increased significantly between baseline and 52 weeks: [baseline to 26 weeks; baseline Phe 270 μmol/L (170–430); 26 weeks, Phe 300 μmol/L (125–485) p = 0.06; baseline to 52 weeks: baseline, Phe 270 μmol/L (170–430), 52 weeks Phe 300 μmol/L (200–490), p < 0.001)]. However, there were no differences between the CGMP-AA2 and L-AA group for Phe, Tyr, Phe:Tyr ratio or anthropometry at any of the three measured time points. Within the CGMP-AA2 group only weight (p = 0.0001) and BMI z scores (p = 0.0001) increased significantly between baseline to 52 weeks. Whole blood and plasma selenium were significantly higher (whole blood selenium [p = 0.0002]; plasma selenium [p = 0.0007]) at 26 weeks in the CGMP-AA2 group compared L-AA. No differences were observed within the L-AA group for any of the nutritional markers. Conclusions CGMP-AA increases blood Phe concentrations and so it can only be used partly to contribute to protein substitute in some children with PKU. CGMP-AA should be carefully introduced in children with PKU and close monitoring of blood Phe control is essential. Electronic supplementary material The online version of this article (10.1186/s13023-019-1011-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Daly
- Dietetic Department, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6 NH, UK.
| | - S Evans
- Dietetic Department, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6 NH, UK
| | - S Chahal
- Dietetic Department, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6 NH, UK
| | - S Santra
- Dietetic Department, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6 NH, UK
| | - A Pinto
- University of Liverpool, Brownlow Street, Liverpool, L69 3GL, UK
| | - R Jackson
- Nottingham Queen's Medical Centre, University Hospital, Derby Road, Nottingham, NG7 2UH, UK
| | - C Gingell
- Centro de Genética Médica JM, CHP EPE, Porto, Portugal.,Centro de Referência na área das Doenças Hereditárias do Metabolismo, Centro Hospitalar do Porto - CHP EPE, Porto, Portugal.,Faculdade de Ciências da Saúde, UFP, Porto, Portugal.,Center for Health Technology and Services Research (CINTESIS), Porto, Portugal
| | - J Rocha
- Beatrix Children's Hospital, University Medical Centre of Groningen, University of Groningen, Groningen, The Netherlands
| | - F J Van Spronsen
- Dietetic Department, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6 NH, UK
| | - A MacDonald
- Dietetic Department, Birmingham Childrens Hospital, Steelhouse Lane, Birmingham, B4 6 NH, UK
| |
Collapse
|
41
|
Ashe K, Kelso W, Farrand S, Panetta J, Fazio T, De Jong G, Walterfang M. Psychiatric and Cognitive Aspects of Phenylketonuria: The Limitations of Diet and Promise of New Treatments. Front Psychiatry 2019; 10:561. [PMID: 31551819 PMCID: PMC6748028 DOI: 10.3389/fpsyt.2019.00561] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Phenylketonuria (PKU) is a recessive disorder of phenylalanine metabolism due to mutations in the gene for phenylalanine hydroxylase (PAH). Reduced PAH activity results in significant hyperphenylalaninemia, which leads to alterations in cerebral myelin and protein synthesis, as well as reduced levels of serotonin, dopamine, and noradrenaline in the brain. When untreated, brain development is grossly disrupted and significant intellectual impairment and behavioral disturbance occur. The advent of neonatal heel prick screening has allowed for diagnosis at birth, and the institution of a phenylalanine restricted diet. Dietary treatment, particularly when maintained across neurodevelopment and well into adulthood, has resulted in markedly improved outcomes at a cognitive and psychiatric level for individuals with PKU. However, few individuals can maintain full dietary control lifelong, and even with good control, an elevated risk remains of-in particular-mood, anxiety, and attentional disorders across the lifespan. Increasingly, dietary recommendations focus on maintaining continuous dietary treatment lifelong to optimize psychiatric and cognitive outcomes, although the effect of long-term protein restricted diets on brain function remains unknown. While psychiatric illness is very common in adult PKU populations, very little data exist to guide clinicians on optimal treatment. The advent of new treatments that do not require restrictive dietary management, such as the enzyme therapy Pegvaliase, holds the promise of allowing patients a relatively normal diet alongside optimized mental health and cognitive functioning.
Collapse
Affiliation(s)
- Killian Ashe
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Wendy Kelso
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Sarah Farrand
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Julie Panetta
- Statewide Adult Metabolic Service, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Tim Fazio
- Statewide Adult Metabolic Service, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard De Jong
- Statewide Adult Metabolic Service, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Mark Walterfang
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Melbourne Neuropsychiatry Centre, University of Melbourne and North-Western Mental Health, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
42
|
Kölker S. Metabolism of amino acid neurotransmitters: the synaptic disorder underlying inherited metabolic diseases. J Inherit Metab Dis 2018; 41:1055-1063. [PMID: 29869166 DOI: 10.1007/s10545-018-0201-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 10/14/2022]
Abstract
Amino acids are involved in various metabolic pathways and some of them also act as neurotransmitters. Since biosynthesis of L-glutamate and γ-aminobutyric acid (GABA) requires 2-oxoglutarate while 3-phosphoglycerate is the precursor of L-glycine and D-serine, evolutionary selection of these amino acid neurotransmitters might have been driven by their capacity to provide important information about the glycolytic pathway and Krebs cycle. Synthesis and recycling of amino acid neurotransmitters as well as composition and function of their receptors are often compromised in inherited metabolic diseases. For instance, increased plasma L-phenylalanine concentrations impair cerebral biosynthesis of protein and bioamines in phenylketonuria, while elevated cerebral L-phenylalanine directly acts via ionotropic glutamate receptors. In succinic semialdehyde dehydrogenase deficiency, the neurotransmitter GABA and neuromodulatory γ-hydroxybutyric acid are elevated. Chronic hyperGABAergic state results in progressive downregulation of GABAA and GABAB receptors and impaired mitophagy. In glycine encephalopathy, the neurological phenotype is precipitated by L-glycine acting both via cortical NMDA receptors and glycine receptors in spinal cord and brain stem neurons. Serine deficiency syndromes are biochemically characterized by decreased biosynthesis of L-serine, an important neurotrophic factor, and the neurotransmitters D-serine and L-glycine. Supplementation with L-serine and L-glycine has a positive effect on seizure frequency and spasticity, while neurocognitive development can only be improved if treatment starts in utero or immediately postnatally. With novel techniques, the study of synaptic dysfunction in inherited metabolic diseases has become an emerging research field. More and better therapies are needed for these difficult-to-treat diseases.
Collapse
Affiliation(s)
- Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
43
|
Luna-Munguia H, Zestos AG, Gliske SV, Kennedy RT, Stacey WC. Chemical biomarkers of epileptogenesis and ictogenesis in experimental epilepsy. Neurobiol Dis 2018; 121:177-186. [PMID: 30304705 DOI: 10.1016/j.nbd.2018.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/29/2022] Open
Abstract
Epilepsy produces chronic chemical changes induced by altered cellular structures, and acute ones produced by conditions leading into individual seizures. Here, we aim to quantify 24 molecules simultaneously at baseline and during periods of lowered seizure threshold in rats. Using serial hippocampal microdialysis collections starting two weeks after the pilocarpine-induced status epilepticus, we evaluated how this chronic epilepsy model affects molecule levels and their interactions. Then, we quantified the changes occurring when the brain moves into a pro-seizure state using a novel model of physiological ictogenesis. Compared with controls, pilocarpine animals had significantly decreased baseline levels of adenosine, homovanillic acid, and serotonin, but significantly increased levels of choline, glutamate, phenylalanine, and tyrosine. Step-wise linear regression identified that choline, homovanillic acid, adenosine, and serotonin are the most important features to characterize the difference in the extracellular milieu between pilocarpine and control animals. When increasing the hippocampal seizure risk, the concentrations of normetanephrine, serine, aspartate, and 5-hydroxyindoleacetic acid were the most prominent; however, there were no specific, consistent changes prior to individual seizures.
Collapse
Affiliation(s)
- Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro, Mexico
| | - Alexander G Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington D.C. 20016, USA
| | - Stephen V Gliske
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William C Stacey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
44
|
Huijbregts SCJ, Bosch AM, Simons QA, Jahja R, Brouwers MCGJ, De Sonneville LMJ, De Vries MC, Hofstede FC, Hollak CEM, Janssen MCH, Langendonk JG, Rubio-Gozalbo ME, Van der Meere JJ, Van der Ploeg AT, Van Spronsen FJ. The impact of metabolic control and tetrahydrobiopterin treatment on health related quality of life of patients with early-treated phenylketonuria: A PKU-COBESO study. Mol Genet Metab 2018; 125:96-103. [PMID: 30007854 DOI: 10.1016/j.ymgme.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 11/20/2022]
Abstract
The aim of this study was to examine Health-Related Quality of Life (HRQoL) of patients with Phenylketonuria (PKU) in three different age groups and to investigate the impact of metabolic control and tetrahydrobiopterin (BH4) treatment on HRQoL of these patients. Participants were 90 early-treated patients aged 7 to 40 years (M = 21.0, SD = 10.1) and 109 controls aged 7 to 40.8 years (M = 19.4, SD = 8.6). HRQoL was assessed with the (generic) TNO-AZL questionnaires. Overall, good HRQoL was reported for children below 12 years of age, although they were judged to be less autonomic than their healthy counterparts. Adolescents aged 12-15 years showed poorer HRQoL in the domain "cognitive functioning" compared to controls. For adults ≥16 years, poorer age-controlled HRQoL was found for the domains cognition, depressive moods, and anger, with a further trend for the domain "pain". With respect to metabolic control, only for adult PKU-patients robust associations were observed, indicating poorer functioning, most notably in the domains cognition, sleep, pain, sexuality and anger, with higher historical and concurrent Phe-levels. With respect to BH4-use, effects on HRQoL were again only observed for adult PKU-patients. After controlling for age and historical Phe-levels, small but significant differences in favor of adult BH4-users compared to non-users were observed for HRQoL-categories happiness, anger, and social functioning. Together, these results show that, particularly for adult PKU-patients, HRQoL-problems are evident and that many of these problems are related to (history of) metabolic control. Beneficial effects of BH4-use appear to be limited to those associated with relief from the practical burdens related to the strict dietary treatment regimen, i.e. general mood and sociability, whereas metabolic control is more strongly related to basic physical and cognitive functioning.
Collapse
Affiliation(s)
- Stephan C J Huijbregts
- Department of Clinical Child and Adolescent Studies, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Annet M Bosch
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Quirine A Simons
- Department of Clinical Child and Adolescent Studies, Leiden University, Leiden, the Netherlands
| | - Rianne Jahja
- Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Leo M J De Sonneville
- Department of Clinical Child and Adolescent Studies, Leiden University, Leiden, the Netherlands
| | - Maaike C De Vries
- Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Floris C Hofstede
- Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carla E M Hollak
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | - Jaap J Van der Meere
- Department of Developmental and Clinical Neuropsychology, University of Groningen, Groningen, the Netherlands
| | | | - Francjan J Van Spronsen
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
45
|
Scherer T, Allegri G, Sarkissian CN, Ying M, Grisch-Chan HM, Rassi A, Winn SR, Harding CO, Martinez A, Thöny B. Tetrahydrobiopterin treatment reduces brain L-Phe but only partially improves serotonin in hyperphenylalaninemic ENU1/2 mice. J Inherit Metab Dis 2018; 41:709-718. [PMID: 29520738 PMCID: PMC6041158 DOI: 10.1007/s10545-018-0150-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
Abstract
Hyperphenylalaninemia (HPA) caused by hepatic phenylalanine hydroxylase (PAH) deficiency has severe consequences on brain monoamine neurotransmitter metabolism. We have studied monoamine neurotransmitter status and the effect of tetrahydrobiopterin (BH4) treatment in Pahenu1/enu2 (ENU1/2) mice, a model of partial PAH deficiency. These mice exhibit elevated blood L-phenylalanine (L-Phe) concentrations similar to that of mild hyperphenylalaninemia (HPA), but brain levels of L-Phe are still ~5-fold elevated compared to wild-type. We found that brain L-tyrosine, L-tryptophan, BH4 cofactor and catecholamine concentrations, and brain tyrosine hydroxylase (TH) activity were normal in these mice but that brain serotonin, 5-hydroxyindolacetic acid (5HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) content, and brain TH protein, as well as tryptophan hydroxylase type 2 (TPH2) protein levels and activity were reduced in comparison to wild-type mice. Parenteral L-Phe loading conditions did not lead to significant changes in brain neurometabolite concentrations. Remarkably, enteral BH4 treatment, which normalized brain L-Phe levels in ENU1/2 mice, lead to only partial recovery of brain serotonin and 5HIAA concentrations. Furthermore, indirect evidence indicated that the GTP cyclohydrolase I (GTPCH) feedback regulatory protein (GFRP) complex may be a sensor for brain L-Phe elevation to ameliorate the toxic effects of HPA. We conclude that BH4 treatment of HPA toward systemic L-Phe lowering reverses elevated brain L-Phe content but the recovery of TPH2 protein and activity as well as serotonin levels is suboptimal, indicating that patients with mild HPA and mood problems (depression or anxiety) treated with the current diet may benefit from supplementation with BH4 and 5-OH-tryptophan.
Collapse
Affiliation(s)
- Tanja Scherer
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | - Gabriella Allegri
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | | | - Ming Ying
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Hiu Man Grisch-Chan
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | - Anahita Rassi
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland
| | - Shelley R Winn
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Science & Health University, Portland, OR, USA
| | - Cary O Harding
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Science & Health University, Portland, OR, USA
| | - Aurora Martinez
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| | - Beat Thöny
- Department of Pediatrics, Divisions of Metabolism and of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
46
|
Leung J, Selvage C, Bosdet T, Branov J, Rosen-Heath A, Bishop C, Sirrs S, Horvath G. Salivary serotonin does not correlate with central serotonin turnover in adult phenylketonuria (PKU) patients. Mol Genet Metab Rep 2018; 15:100-105. [PMID: 30023297 PMCID: PMC6047111 DOI: 10.1016/j.ymgmr.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Phenylketonuria (PKU) is an inborn error of metabolism associated with an increased risk of behavioural and mood disorders. There are currently no reliable markers for monitoring mood in PKU. The purpose of this study was to evaluate salivary serotonin as a possible non-invasive marker of long-term mood symptoms and central serotonin activity in patients with PKU. METHODS 20 patients were recruited from our Adult Metabolic Diseases Clinic. Age, sex, plasma phenylalanine (Phe) level, DASS (Depression Anxiety Stress Scales) depression score, DASS anxiety score, BMI, salivary serotonin, salivary cortisol, 2-year average Phe, 2-year average tyrosine (Tyr), and 2-year average Phe:Tyr ratio were collected for each patient. Spearman's ρ correlation analysis was used to determine if there was any relationship between any of the parameters. RESULTS There were positive correlations between DASS anxiety and DASS depression scores (Spearman's ρ = 0.8708, p-value < 0.0001), BMI and plasma Phe level (Spearman's ρ = 0.6228, p-value = .0034), and 2-year average Phe and BMI (Spearman's ρ = 0.5448, p-value = .0130). There was also a negative correlation between salivary cortisol and plasma Phe level (Spearman's ρ = -0.5018, p-value = .0338). All other correlations were not statistically significant. CONCLUSION Salivary serotonin does not correlate with peripheral phenylalanine levels, DASS depression scale scores, or DASS anxiety scale scores, implying that salivary serotonin does not reflect central serotonin turnover. Additionally, this study suggests that salivary serotonin is not a suitable marker for monitoring dietary control, mood, or anxiety in PKU. SYNOPSIS Salivary serotonin does not correlate with peripheral phenylalanine levels, DASS depression scale scores, or DASS anxiety scale scores, suggesting that salivary serotonin is not a suitable marker for monitoring dietary control, mood, or anxiety in PKU.
Collapse
Affiliation(s)
- Joseph Leung
- UBC Department of Medicine, Division of Endocrinology, Canada
| | - Caroline Selvage
- Vancouver Coastal Health, Adult Metabolic Diseases Clinic, Canada
| | - Taryn Bosdet
- Vancouver Coastal Health, Adult Metabolic Diseases Clinic, Canada
| | - Jennifer Branov
- Vancouver Coastal Health, Adult Metabolic Diseases Clinic, Canada
| | | | - Carole Bishop
- Vancouver Coastal Health, Adult Metabolic Diseases Clinic, Canada
| | - Sandra Sirrs
- UBC Department of Medicine, Division of Endocrinology, Canada
- Vancouver Coastal Health, Adult Metabolic Diseases Clinic, Canada
| | - Gabriella Horvath
- Vancouver Coastal Health, Adult Metabolic Diseases Clinic, Canada
- UBC Department of Pediatrics, Division of Biochemical Diseases, Canada
| |
Collapse
|
47
|
Mindikoglu AL, Opekun AR, Putluri N, Devaraj S, Sheikh-Hamad D, Vierling JM, Goss JA, Rana A, Sood GK, Jalal PK, Inker LA, Mohney RP, Tighiouart H, Christenson RH, Dowling TC, Weir MR, Seliger SL, Hutson WR, Howell CD, Raufman JP, Magder LS, Coarfa C. Unique metabolomic signature associated with hepatorenal dysfunction and mortality in cirrhosis. Transl Res 2018; 195:25-47. [PMID: 29291380 PMCID: PMC6037419 DOI: 10.1016/j.trsl.2017.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/16/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
The application of nontargeted metabolomic profiling has recently become a powerful noninvasive tool to discover new clinical biomarkers. This study aimed to identify metabolic pathways that could be exploited for prognostic and therapeutic purposes in hepatorenal dysfunction in cirrhosis. One hundred three subjects with cirrhosis had glomerular filtration rate (GFR) measured using iothalamate plasma clearance, and were followed until death, transplantation, or the last encounter. Concomitantly, plasma metabolomic profiling was performed using ultrahigh performance liquid chromatography-tandem mass spectrometry to identify preliminary metabolomic biomarker candidates. Among the 1028 metabolites identified, 34 were significantly increased in subjects with high liver and kidney disease severity compared with those with low liver and kidney disease severity. The highest average fold-change (2.39) was for 4-acetamidobutanoate. Metabolite-based enriched pathways were significantly associated with the identified metabolomic signature (P values ranged from 2.07E-06 to 0.02919). Ascorbate and aldarate metabolism, methylation, and glucuronidation were among the most significant protein-based enriched pathways associated with this metabolomic signature (P values ranged from 1.09E-18 to 7.61E-05). Erythronate had the highest association with measured GFR (R-square = 0.571, P <0.0001). Erythronate (R = 0.594, P <0.0001) and N6-carbamoylthreonyladenosine (R = 0.591, P <0.0001) showed stronger associations with measured GFR compared with creatinine (R = 0.588, P <0.0001) even after controlling for age, gender, and race. The 5 most significant metabolites that predicted mortality independent of kidney disease and demographics were S-adenosylhomocysteine (P = 0.0003), glucuronate (P = 0.0006), trans-aconitate (P = 0.0018), 3-ureidopropionate (P = 0.0021), and 3-(4-hydroxyphenyl)lactate (P = 0.0047). A unique metabolomic signature associated with hepatorenal dysfunction in cirrhosis was identified for further investigations that provide potentially important mechanistic insights into cirrhosis-altered metabolism.
Collapse
Affiliation(s)
- Ayse L Mindikoglu
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas; Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.
| | - Antone R Opekun
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas; Department of Pediatrics, Division of Gastroenterology, Nutrition and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Sridevi Devaraj
- Clinical Chemistry and Point of Care Technology, Texas Children's Hospital and Health Centers, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - David Sheikh-Hamad
- Department of Medicine, Division of Nephrology, Baylor College of Medicine, Houston, Texas
| | - John M Vierling
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas; Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - John A Goss
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas
| | - Abbas Rana
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas
| | - Gagan K Sood
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas
| | - Prasun K Jalal
- Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, Texas
| | - Lesley A Inker
- Department of Medicine, Division of Nephrology, Tufts Medical Center, Boston, Massachusetts
| | | | - Hocine Tighiouart
- Institute for Clinical Research and Health Policy Studies, Biostatistics, Epidemiology and Research Design (BERD) Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Robert H Christenson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Thomas C Dowling
- Ferris State University, College of Pharmacy, Grand Rapids, Michigan
| | - Matthew R Weir
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephen L Seliger
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland
| | - William R Hutson
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Charles D Howell
- Department of Medicine, Howard University College of Medicine, Washington, District of Columbia
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Laurence S Magder
- Department of Epidemiology and Public Health, Division of Biostatistics and Bioinformatics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
48
|
Gambello MJ, Li H. Current strategies for the treatment of inborn errors of metabolism. J Genet Genomics 2018; 45:61-70. [PMID: 29500085 DOI: 10.1016/j.jgg.2018.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/14/2017] [Accepted: 02/11/2018] [Indexed: 12/23/2022]
Abstract
Inborn errors of metabolism (IEMs) are a large group of inherited disorders characterized by disruption of metabolic pathways due to deficient enzymes, cofactors, or transporters. The rapid advances in the understanding of the molecular pathophysiology of many IEMs, have led to significant progress in the development of many new treatments. The institution and continued expansion of newborn screening provide the opportunity for early treatment, leading to reduced morbidity and mortality. This review provides an overview of the diverse therapeutic approaches and recent advances in the treatment of IEMs that focus on the basic principles of reducing substrate accumulation, replacing or enhancing absent or reduced enzyme or cofactor, and supplementing product deficiency. In addition, the challenges and obstacles of current treatment modalities and future treatment perspectives are reviewed and discussed.
Collapse
Affiliation(s)
- Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hong Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
49
|
Ahring KK, Lund AM, Jensen E, Jensen TG, Brøndum-Nielsen K, Pedersen M, Bardow A, Holst JJ, Rehfeld JF, Møller LB. Comparison of Glycomacropeptide with Phenylalanine Free-Synthetic Amino Acids in Test Meals to PKU Patients: No Significant Differences in Biomarkers, Including Plasma Phe Levels. J Nutr Metab 2018; 2018:6352919. [PMID: 29511574 PMCID: PMC5817308 DOI: 10.1155/2018/6352919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/11/2017] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Management of phenylketonuria (PKU) is achieved through low-phenylalanine (Phe) diet, supplemented with low-protein food and mixture of free-synthetic (FS) amino acid (AA). Casein glycomacropeptide (CGMP) is a natural peptide released in whey during cheese-making and does not contain Phe. Lacprodan® CGMP-20 used in this study contained a small amount of Phe due to minor presence of other proteins/peptides. OBJECTIVE The purpose of this study was to compare absorption of CGMP-20 to FSAA with the aim of evaluating short-term effects on plasma AAs as well as biomarkers related to food intake. METHODS This study included 8 patients, who had four visits and tested four drink mixtures (DM1-4), consisting of CGMP, FSAA, or a combination. Plasma blood samples were collected at baseline, 15, 30, 60, 120, and 240 minutes (min) after the meal. AA profiles and ghrelin were determined 6 times, while surrogate biomarkers were determined at baseline and 240 min. A visual analogue scale (VAS) was used for evaluation of taste and satiety. RESULTS The surrogate biomarker concentrations and VAS scores for satiety and taste were nonsignificant between the four DMs, and there were only few significant results for AA profiles (not Phe). CONCLUSION CGMP and FSAA had the overall same nonsignificant short-term effect on biomarkers, including Phe. This combination of FSAA and CGMP is a suitable supplement for PKU patients.
Collapse
Affiliation(s)
- Kirsten K. Ahring
- The PKU Clinic, Kennedy Centre, Centre for Paediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Rigshospitalet, Denmark
- Centre for Inherited Metabolic Diseases, Centre for Paediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Allan M. Lund
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Rigshospitalet, Denmark
- Centre for Inherited Metabolic Diseases, Centre for Paediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Erik Jensen
- Arla Foods Ingredients Group P/S, Viby J, Denmark
| | | | - Karen Brøndum-Nielsen
- The PKU Clinic, Kennedy Centre, Centre for Paediatric and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Michael Pedersen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Allan Bardow
- Department of Odontology, Copenhagen University, Copenhagen, Denmark
| | - Jens Juul Holst
- Institute of Clinical Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens F. Rehfeld
- Department of Clinical Biochemistry, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lisbeth B. Møller
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Rigshospitalet, Denmark
| |
Collapse
|
50
|
Winn SR, Scherer T, Thöny B, Ying M, Martinez A, Weber S, Raber J, Harding CO. Blood phenylalanine reduction corrects CNS dopamine and serotonin deficiencies and partially improves behavioral performance in adult phenylketonuric mice. Mol Genet Metab 2018; 123:6-20. [PMID: 29331172 PMCID: PMC5786171 DOI: 10.1016/j.ymgme.2017.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 01/12/2023]
Abstract
Central nervous system (CNS) deficiencies of the monoamine neurotransmitters dopamine and serotonin have been implicated in the pathophysiology of neuropsychiatric dysfunction in human phenylketonuria (PKU). In this study, we confirmed the occurrence of brain dopamine and serotonin deficiencies in association with severe behavioral alterations and cognitive impairments in hyperphenylalaninemic C57BL/6-Pahenu2/enu2 mice, a model of human PKU. Phenylalanine-reducing treatments, including either dietary phenylalanine restriction or liver-directed gene therapy, initiated during adulthood were associated with increased brain monoamine content along with improvements in nesting behavior but without a change in the severe cognitive deficits exhibited by these mice. At euthanasia, there was in Pahenu2/enu2 brain a significant reduction in the protein abundance and maximally stimulated activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase 2 (TPH2), the rate limiting enzymes catalyzing neuronal dopamine and serotonin synthesis respectively, in comparison to levels seen in wild type brain. Phenylalanine-reducing treatments initiated during adulthood did not affect brain TH or TPH2 content or maximal activity. Despite this apparent fixed deficit in striatal TH and TPH2 activities, initiation of phenylalanine-reducing treatments yielded substantial correction of brain monoamine neurotransmitter content, suggesting that phenylalanine-mediated competitive inhibition of already constitutively reduced TH and TPH2 activities is the primary cause of brain monoamine deficiency in Pahenu2 mouse brain. We propose that CNS monoamine deficiency may be the cause of the partially reversible adverse behavioral effects associated with chronic HPA in Pahenu2 mice, but that phenylalanine-reducing treatments initiated during adulthood are unable to correct the neuropathology and attendant cognitive deficits that develop during juvenile life in late-treated Pahenu2/enu2 mice.
Collapse
Affiliation(s)
- Shelley R Winn
- Department of Medical and Molecular Genetics, Oregon Health & Science University, Mailstop L-103, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Tanja Scherer
- Department of Pediatrics, University of Zurich, Steinweissstrasse 75, Zurich CH-8032, Switzerland
| | - Beat Thöny
- Department of Pediatrics, University of Zurich, Steinweissstrasse 75, Zurich CH-8032, Switzerland
| | - Ming Ying
- Department of Biomedicine, KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5009 Bergen, Norway
| | - Aurora Martinez
- Department of Biomedicine, KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5009 Bergen, Norway
| | - Sydney Weber
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA; Department of Neurology, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA; Department of Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA
| | - Cary O Harding
- Department of Medical and Molecular Genetics, Oregon Health & Science University, Mailstop L-103, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA.
| |
Collapse
|