1
|
Ducrocq GP, Anselmi L, Ruiz-Velasco V, Kaufman MP. Lactate and hydrogen ions play a predominant role in evoking the exercise pressor reflex during ischaemic contractions but not during freely perfused contractions. J Physiol 2024:10.1113/JP286488. [PMID: 38685758 PMCID: PMC11518877 DOI: 10.1113/jp286488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
We investigated the role played by lactate and hydrogen in evoking the exercise pressor reflex (EPR) in decerebrated rats whose hindlimb muscles were either freely perfused or ischaemic. Production of lactate and hydrogen by the contracting hindlimb muscles was manipulated by knocking out the myophosphorylase gene (pygm). In knockout rats (pygm-/-; n = 13) or wild-type rats (pygm+/+; n = 13), the EPR was evoked by isometrically contracting the triceps surae muscles. Blood pressure, tension, blood flow, renal sympathetic nerve activity and blood lactate concentrations were measured. Intramuscular metabolites and pH changes induced by the contractions were quantified by 31P-magnetic resonance spectroscopy (n = 5). In a subset of pygm-/- rats (n = 5), contractions were evoked with prior infusion of lactate (pH 6.0) in an attempt to restore the effect of lactate and hydrogen ions. Contraction of freely perfused muscles increased blood lactate and decreased muscle pH in pygm+/+ rats only. Despite these differences, the reflex pressor and sympathetic responses to freely perfused contraction did not differ between groups (P = 0.992). During ischaemia, contraction increased muscle lactate and hydrogen ion production in pygm+/+ rats (P < 0.0134), whereas it had no effect in pygm-/- rats (P > 0.783). Likewise, ischaemia exaggerated the reflex pressor, and sympathetic responses to contraction in pygm+/+ but not in pygm-/- rats. This exaggeration was restored when a solution of lactate (pH 6.0) was infused prior to the contraction in pygm-/- rats. We conclude that lactate and hydrogen accumulation in contracting myocytes play a key role in evoking the metabolic component of the EPR during ischaemic but not during freely perfused contractions. KEY POINTS: Conflicting results exist about the role played by lactate and hydrogen ions in evoking the exercise pressor reflex. Using CRISP-Cas9, we rendered the myophosphorylase gene non-functional to block the production of lactate and hydrogen ions. The exercise pressor reflex was evoked in decerebrated rats by statically contracting the triceps surae muscles with or without muscle ischaemia. Static contraction elevated the concentration of lactate and hydrogen ions in pygm+/+ but not in pygm-/- rats. Despite these differences, the exercise pressor reflex was not different between groups. Acute muscle ischaemia exaggerated the concentration of lactate and hydrogen ions in pygm+/+ but not in pygm-/- rats. Likewise, acute muscle ischaemia exaggerated the exercise pressor reflex in pygm+/+ but not in pygm-/- rats. We conclude that lactate and hydrogen play a key role in evoking the exercise pressor reflex during ischaemic but not during freely perfused contractions.
Collapse
Affiliation(s)
- Guillaume P. Ducrocq
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, USA
- Mitochondrial, Oxidative Stress and Muscular Protection Laboratory (UR3072), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Laura Anselmi
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Victor Ruiz-Velasco
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, USA
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA USA
| | - Marc P. Kaufman
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
2
|
Ren B, Guan MX, Zhou T, Cai X, Shan G. Emerging functions of mitochondria-encoded noncoding RNAs. Trends Genet 2023; 39:125-139. [PMID: 36137834 DOI: 10.1016/j.tig.2022.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 01/27/2023]
Abstract
Mitochondria, organelles that harbor their own circular genomes, are critical for energy production and homeostasis maintenance in eukaryotic cells. Recent studies discovered hundreds of mitochondria-encoded noncoding RNAs (mt-ncRNAs), including novel subtypes of mitochondria-encoded circular RNAs (mecciRNAs) and mitochondria-encoded double-stranded RNAs (mt-dsRNAs). Here, we discuss the emerging field of mt-ncRNAs by reviewing their expression patterns, biogenesis, metabolism, regulatory roles, and functional mechanisms. Many mt-ncRNAs have regulatory roles in cellular physiology, and some are associated with, or even act as, causal factors in human diseases. We also highlight developments in technologies and methodologies and further insights into future perspectives and challenges in studying these noncoding RNAs, as well as their potential biomedical applications.
Collapse
Affiliation(s)
- Bingbing Ren
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, China
| | - Xiujun Cai
- Cancer Center, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou 310016, China; Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou 310016, China
| | - Ge Shan
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
3
|
Unraveling the Role of Respiratory Muscle Metaboloreceptors under Inspiratory Training in Patients with Heart Failure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041697. [PMID: 33578776 PMCID: PMC7916511 DOI: 10.3390/ijerph18041697] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/15/2022]
Abstract
Exercise intolerance may be considered a hallmark in patients who suffer from heart failure (HF) syndrome. Currently, there is enough scientific evidence regarding functional and structural deterioration of skeletal musculature in these patients. It is worth noting that muscle weakness appears first in the respiratory muscles and then in the musculature of the limbs, which may be considered one of the main causes of exercise intolerance. Functional deterioration and associated atrophy of these respiratory muscles are related to an increased muscle metaboreflex leading to sympathetic–adrenal system hyperactivity and increased pulmonary ventilation. This issue contributes to increased dyspnea and/or fatigue and decreased aerobic function. Consequently, respiratory muscle weakness produces exercise limitations in these patients. In the present review, the key role that respiratory muscle metaboloreceptors play in exercise intolerance is accurately addressed in patients who suffer from HF. In conclusion, currently available scientific evidence seems to affirm that excessive metaboreflex activity of respiratory musculature under HF is the main cause of exercise intolerance and sympathetic–adrenal system hyperactivity. Inspiratory muscle training seems to be a useful personalized medicine intervention to reduce respiratory muscle metaboreflex in order to increase patients’ exercise tolerance under HF condition.
Collapse
|
4
|
Fernandez-Rubio H, Becerro-de-Bengoa-Vallejo R, Rodríguez-Sanz D, Calvo-Lobo C, Vicente-Campos D, Chicharro JL. Inspiratory Muscle Training in Patients with Heart Failure. J Clin Med 2020; 9:jcm9061710. [PMID: 32498445 PMCID: PMC7356942 DOI: 10.3390/jcm9061710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Prior systematic reviews and meta-analysis addressed that inspiratory muscle training (IMT) improved inspiratory muscle weakness, cardiorespiratory fitness and quality of life similar to conventional exercise training as a first alternative in deconditioned patients with heart failure (HF) lead to a better adaptation to posterior exercise training. The heterogeneity and variability in a wide range of new studies about this topic led to the necessity of an updated and comprehensive narrative review. The present review aimed to analyze and update the most relevant studies about IMT in patients who suffer from HF. Methods: A narrative review was carried out about IMT in HF patients including 26 experimental studies divided into 21 clinical trials and 5 quasi-experimental studies identified through database searching in PubMed, Cochrane and PEDro. Results: There is enough evidence to state that IMT produces improvements in functional capacity of patients with HF. Nevertheless, there is not enough evidence to support that IMT could improve cardiovascular parameters, blood biomarkers or quality of life in these patients. Conclusions: Thus, IMT may be recommended to improve functional capacity in patients who suffer from HF; nevertheless, more evidence is needed regarding cardiovascular parameters, biomarkers and quality of life. Furthermore, mortality or HF hospitalization was not evaluated and most studies were not longer than 3 months. According to IMT protocols and study designs heterogeneity and mid-term follow-up, further investigations through high-quality long-term randomized clinical trials should be performed to achieve systematic reviews and meta-analysis to support strong evidence for IMT in HF patients.
Collapse
Affiliation(s)
- Hugo Fernandez-Rubio
- Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (H.F.-R.); (R.B.-d.-B.-V.); (D.R.-S.)
| | - Ricardo Becerro-de-Bengoa-Vallejo
- Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (H.F.-R.); (R.B.-d.-B.-V.); (D.R.-S.)
| | - David Rodríguez-Sanz
- Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (H.F.-R.); (R.B.-d.-B.-V.); (D.R.-S.)
| | - César Calvo-Lobo
- Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (H.F.-R.); (R.B.-d.-B.-V.); (D.R.-S.)
- Correspondence: ; Tel.: +34-913-941-532
| | - Davinia Vicente-Campos
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - J. L. Chicharro
- Grupo FEBIO, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| |
Collapse
|
5
|
Jeppesen TD. Aerobic Exercise Training in Patients With mtDNA-Related Mitochondrial Myopathy. Front Physiol 2020; 11:349. [PMID: 32508662 PMCID: PMC7253634 DOI: 10.3389/fphys.2020.00349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2020] [Indexed: 01/15/2023] Open
Abstract
In patients with mitochondrial DNA (mtDNA) mutation, a pathogenic mtDNA mutation is heteroplasmically distributed among tissues. The ratio between wild-type and mutated mtDNA copies determines the mtDNA mutation load of the tissue, which correlates inversively with oxidative capacity of the tissue. In patients with mtDNA mutation, the mutation load is often very high in skeletal muscle compared to other tissues. Additionally, skeletal muscle can increase its oxygen demand up to 100-fold from rest to exercise, which is unmatched by any other tissue. Thus, exercise intolerance is the most common symptom in patients with mtDNA mutation. The impaired oxidative capacity in skeletal muscle in patients with mtDNA mutation results in limitation in physical capacity that interferes with daily activities and impairs quality of life. Additionally, patients with mitochondrial disease due to mtDNA mutation often live a sedentary lifestyle, which further impair oxidative capacity and exercise tolerance. Since aerobic exercise training increase mitochondrial function and volume density in healthy individuals, studies have investigated if aerobic training could be used to counteract the progressive exercise intolerance in patients with mtDNA mutation. Overall studies investigating the effect of aerobic training in patients with mtDNA mutation have shown that aerobic training is an efficient way to improve oxidative capacity in this condition, and aerobic training seems to be safe even for patients with high mtDNA mutation in skeletal muscle.
Collapse
Affiliation(s)
- Tina Dysgaard Jeppesen
- Copenhagen Neuromuscular Clinic, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Abstract
Skeletal muscle requires a large increase in its ATP production to meet the energy needs of exercise. Normally, most of this increase in ATP is supplied by the aerobic process of oxidative phosphorylation. The main defects in muscle metabolism that interfere with production of ATP are (1) disorders of glycogenolysis and glycolysis, which prevent both carbohydrate entering the tricarboxylic acid cycle and the production of lactic acid; (2) mitochondrial myopathies where the defect is usually within the electron transport chain, reducing the rate of oxidative phosphorylation; and (3) disorders of lipid metabolism. Gas exchange measurements derived from exhaled gas analysis during cardiopulmonary exercise testing can identify defects in muscle metabolism because [Formula: see text]o2 and [Formula: see text]co2 are abnormal at the level of the muscle. Cardiopulmonary exercise testing may thus suggest a likely diagnosis and guide additional investigation. Defects in glycogenolysis and glycolysis are identified by a low peak [Formula: see text]o2 and absence of excess [Formula: see text]co2 from buffering of lactic acid by bicarbonate. Defects in the electron transport chain also result in low peak [Formula: see text]o2, but because there is an overreliance on anaerobic processes, lactic acid accumulation and excess carbon dioxide from buffering occur early during exercise. Defects in lipid metabolism result in only minor abnormalities during cardiopulmonary exercise testing. In defects of glycogenolysis and glycolysis and in mitochondrial myopathies, other features may include an exaggerated cardiovascular response to exercise, a low oxygen-pulse, and excessive ammonia release.
Collapse
|
7
|
Santalla A, Nogales-Gadea G, Ørtenblad N, Brull A, de Luna N, Pinós T, Lucia A. McArdle disease: a unique study model in sports medicine. Sports Med 2015; 44:1531-44. [PMID: 25028051 DOI: 10.1007/s40279-014-0223-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
McArdle disease is arguably the paradigm of exercise intolerance in humans. This disorder is caused by inherited deficiency of myophosphorylase, the enzyme isoform that initiates glycogen breakdown in skeletal muscles. Because patients are unable to obtain energy from their muscle glycogen stores, this disease provides an interesting model of study for exercise physiologists, allowing insight to be gained into the understanding of glycogen-dependent muscle functions. Of special interest in the field of muscle physiology and sports medicine are also some specific (if not unique) characteristics of this disorder, such as the so-called 'second wind' phenomenon, the frequent exercise-induced rhabdomyolysis and myoglobinuria episodes suffered by patients (with muscle damage also occurring under basal conditions), or the early appearance of fatigue and contractures, among others. In this article we review the main pathophysiological features of this disorder leading to exercise intolerance as well as the currently available therapeutic possibilities. Patients have been traditionally advised by clinicians to refrain from exercise, yet sports medicine and careful exercise prescription are their best allies at present because no effective enzyme replacement therapy is expected to be available in the near future. As of today, although unable to restore myophosphorylase deficiency, the 'simple' use of exercise as therapy seems probably more promising and practical for patients than more 'complex' medical approaches.
Collapse
|
8
|
Katayama K, Itoh Y, Saito M, Koike T, Ishida K. Sympathetic vasomotor outflow and blood pressure increase during exercise with expiratory resistance. Physiol Rep 2015; 3:3/5/e12421. [PMID: 26019293 PMCID: PMC4463841 DOI: 10.14814/phy2.12421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The purpose of the present study was to elucidate the effect of increasing expiratory muscle work on sympathetic vasoconstrictor outflow and arterial blood pressure (BP) during dynamic exercise. We hypothesized that expiratory muscle fatigue would elicit increases in sympathetic vasomotor outflow and BP during submaximal exercise. The subjects performed four submaximal exercise tests; two were maximal expiratory pressure (PEmax) tests and two were muscle sympathetic nerve activity (MSNA) tests. In each test, the subjects performed two 10-min exercises at 40% peak oxygen uptake using a cycle ergometer in a semirecumbent position [spontaneous breathing for 5 min and voluntary hyperpnoea with and without expiratory resistive breathing for 5 min (breathing frequency: 60 breaths/min, inspiratory and expiratory times were set at 0.5 sec)]. PEmax was estimated before and immediately after exercises. MSNA was recorded via microneurography of the right median nerve at the elbow. PEmax decreased following exercise with expiratory resistive breathing, while no change was found without resistance. A progressive increase in MSNA burst frequency (BF) appeared during exercise with expiratory resistance (MSNA BF, without resistance: +22 ± 5%, with resistance: +44 ± 8%, P < 0.05), accompanied by an augmentation of BP (mean BP, without resistance: +5 ± 2%, with resistance: +29 ± 5%, P < 0.05). These results suggest that an enhancement of expiratory muscle activity leads to increases in sympathetic vasomotor outflow and BP during dynamic leg exercise.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yuka Itoh
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Mitsuru Saito
- Faculty of Psychological and Physical Science, Aichigakuin University, Nisshin, Japan
| | - Teruhiko Koike
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
9
|
|
10
|
Quinlivan R, Martinuzzi A, Schoser B. Pharmacological and nutritional treatment for McArdle disease (Glycogen Storage Disease type V). Cochrane Database Syst Rev 2014; 2014:CD003458. [PMID: 25391139 PMCID: PMC7173724 DOI: 10.1002/14651858.cd003458.pub5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background McArdle disease (Glycogen Storage Disease type V) is caused by an absence of muscle phosphorylase leading to exercise intolerance,myoglobinuria rhabdomyolysis and acute renal failure. This is an update of a review first published in 2004.Objectives To review systematically the evidence from randomised controlled trials (RCTs) of pharmacological or nutritional treatments for improving exercise performance and quality of life in McArdle disease.Search methods We searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE and EMBASE on 11 August 2014.Selection criteria We included RCTs (including cross-over studies) and quasi-RCTs. We included unblinded open trials and individual patient studies in the discussion. Interventions included any pharmacological agent or nutritional supplement. Primary outcome measures included any objective assessment of exercise endurance (for example aerobic capacity (VO2) max, walking speed, muscle force or power and fatigability). Secondary outcome measures included metabolic changes (such as reduced plasma creatine kinase and a reduction in the frequency of myoglobinuria), subjective measures (including quality of life scores and indices of disability) and serious adverse events.Data collection and analysis Three review authors checked the titles and abstracts identified by the search and reviewed the manuscripts. Two review authors independently assessed the risk of bias of relevant studies, with comments from a third author. Two authors extracted data onto a specially designed form.Main results We identified 31 studies, and 13 fulfilled the criteria for inclusion. We described trials that were not eligible for the review in the Discussion. The included studies involved a total of 85 participants, but the number in each individual trial was small; the largest treatment trial included 19 participants and the smallest study included only one participant. There was no benefit with: D-ribose,glucagon, verapamil, vitamin B6, branched chain amino acids, dantrolene sodium, and high-dose creatine. Minimal subjective benefit was found with low dose creatine and ramipril only for patients with a polymorphism known as the D/Dangiotens in converting enzyme(ACE) phenotype. A carbohydrate-rich diet resulted in better exercise performance compared with a protein-rich diet. Two studies of oral sucrose given at different times and in different amounts before exercise showed an improvement in exercise performance. Four studies reported adverse effects. Oral ribose caused diarrhoea and symptoms suggestive of hypoglycaemia including light-headedness and hunger. In one study, branched chain amino acids caused a deterioration of functional outcomes. Dantrolene was reported to cause a number of adverse effects including tiredness, somnolence, dizziness and muscle weakness. Low dose creatine (60 mg/kg/day) did not cause side-effects but high-dose creatine (150 mg/kg/day) worsened the symptoms of myalgia.Authors' conclusions Although there was low quality evidence of improvement in some parameters with creatine, oral sucrose, ramipril and a carbohydrate rich diet, none was sufficiently strong to indicate significant clinical benefit.
Collapse
Affiliation(s)
- Rosaline Quinlivan
- UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery and Great Ormond StreetMRC Centre for Neuromuscular Diseases and Dubowitz Neuromuscular CentrePO Box 114LondonUKWC1B 3BN
| | - Andrea Martinuzzi
- Medea Scientific InstituteThe Conegliano‐Pieve Research CentreVia Costa Alta 37ConeglianoItaly31015
| | - Benedikt Schoser
- Friedrich‐Baur Institute Ludwig‐Maximilians University MunichDepartment of NeurologyZiemssenstr. 1aD‐80336 MunichGermany
| | | |
Collapse
|
11
|
Abstract
This paper describes the interactions between ventilation and acid-base balance under a variety of conditions including rest, exercise, altitude, pregnancy, and various muscle, respiratory, cardiac, and renal pathologies. We introduce the physicochemical approach to assessing acid-base status and demonstrate how this approach can be used to quantify the origins of acid-base disorders using examples from the literature. The relationships between chemoreceptor and metaboreceptor control of ventilation and acid-base balance summarized here for adults, youth, and in various pathological conditions. There is a dynamic interplay between disturbances in acid-base balance, that is, exercise, that affect ventilation as well as imposed or pathological disturbances of ventilation that affect acid-base balance. Interactions between ventilation and acid-base balance are highlighted for moderate- to high-intensity exercise, altitude, induced acidosis and alkalosis, pregnancy, obesity, and some pathological conditions. In many situations, complete acid-base data are lacking, indicating a need for further research aimed at elucidating mechanistic bases for relationships between alterations in acid-base state and the ventilatory responses.
Collapse
Affiliation(s)
- Michael I Lindinger
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
12
|
Bates MGD, Newman JH, Jakovljevic DG, Hollingsworth KG, Alston CL, Zalewski P, Klawe JJ, Blamire AM, MacGowan GA, Keavney BD, Bourke JP, Schaefer A, McFarland R, Newton JL, Turnbull DM, Taylor RW, Trenell MI, Gorman GS. Defining cardiac adaptations and safety of endurance training in patients with m.3243A>G-related mitochondrial disease. Int J Cardiol 2013; 168:3599-608. [PMID: 23742928 PMCID: PMC3819621 DOI: 10.1016/j.ijcard.2013.05.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 05/04/2013] [Indexed: 01/14/2023]
Abstract
Background Cardiac hypertrophic remodelling and systolic dysfunction are common in patients with mitochondrial disease and independent predictors of morbidity and early mortality. Endurance exercise training improves symptoms and skeletal muscle function, yet cardiac adaptations are unknown. Methods and results Before and after 16-weeks of training, exercise capacity, cardiac magnetic resonance imaging and phosphorus-31 spectroscopy, disease burden, fatigue, quality of life, heart rate variability (HRV) and blood pressure variability (BPV) were assessed in 10 adult patients with m.3243A>G-related mitochondrial disease, and compared to age- and gender-matched sedentary control subjects. At baseline, patients had increased left ventricular mass index (LVMI, p < 0.05) and LV mass to end-diastolic volume ratio, and decreased longitudinal shortening and myocardial phosphocreatine/adenosine triphosphate ratio (all p < 0.01). Peak arterial–venous oxygen difference (p < 0.05), oxygen uptake (VO2) and power were decreased in patients (both p < 0.01) with no significant difference in cardiac power output. All patients remained stable and completed ≥ 80% sessions. With training, there were similar proportional increases in peak VO2, anaerobic threshold and work capacity in patients and controls. LVMI increased in both groups (p < 0.01), with no significant effect on myocardial function or bioenergetics. Pre- and post-exercise training, HRV and BPV demonstrated increased low frequency and decreased high frequency components in patients compared to controls (all p < 0.05). Conclusion Patients with mitochondrial disease and controls achieved similar proportional benefits of exercise training, without evidence of disease progression, or deleterious effects on cardiac function. Reduced exercise capacity is largely mediated through skeletal muscle dysfunction at baseline and sympathetic over-activation may be important in pathogenesis.
Collapse
Affiliation(s)
- Matthew G D Bates
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
In this review, we present an overview of the role of exercise in neuromuscular disease (NMD). We demonstrate that despite the different pathologies in NMDs, exercise is beneficial, whether aerobic/endurance or strength/resistive training, and we explore whether this benefit has a similar mechanism to that of healthy subjects. We discuss further areas for study, incorporating imaginative and novel approaches to training and its assessment in NMD. We conclude by suggesting ways to improve future trials by avoiding previous methodological flaws and drawbacks in this field.
Collapse
Affiliation(s)
- Yaacov Anziska
- Department of Neurology, SUNY-Downstate Medical Center, 450 Clarkson Avenue, Box 1213, Brooklyn, New York, 11203, USA.
| | | |
Collapse
|
14
|
Katayama K, Iwamoto E, Ishida K, Koike T, Saito M. Inspiratory muscle fatigue increases sympathetic vasomotor outflow and blood pressure during submaximal exercise. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1167-75. [PMID: 22461178 DOI: 10.1152/ajpregu.00006.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to elucidate the influence of inspiratory muscle fatigue on muscle sympathetic nerve activity (MSNA) and blood pressure (BP) response during submaximal exercise. We hypothesized that inspiratory muscle fatigue would elicit increases in sympathetic vasoconstrictor outflow and BP during dynamic leg exercise. The subjects carried out four submaximal exercise tests: two were maximal inspiratory pressure (PI(max)) tests and two were MSNA tests. In the PI(max) tests, the subjects performed two 10-min exercises at 40% peak oxygen uptake using a cycle ergometer in a semirecumbent position [spontaneous breathing for 5 min and with or without inspiratory resistive breathing for 5 min (breathing frequency: 60 breaths/min, inspiratory and expiratory times were each set at 0.5 s)]. Before and immediately after exercise, PI(max) was estimated. In MSNA tests, the subjects performed two 15-min exercises (spontaneous breathing for 5 min, with or without inspiratory resistive breathing for 5 min, and spontaneous breathing for 5 min). MSNA was recorded via microneurography of the right median nerve at the elbow. PI(max) decreased following exercise with resistive breathing, whereas no change was found without resistance. The time-dependent increase in MSNA burst frequency (BF) appeared during exercise with inspiratory resistive breathing, accompanied by an augmentation of diastolic BP (DBP) (with resistance: MSNA, BF +83.4%; DBP, +23.8%; without resistance: MSNA BF, +19.2%; DBP, -0.4%, from spontaneous breathing during exercise). These results suggest that inspiratory muscle fatigue induces increases in muscle sympathetic vasomotor outflow and BP during dynamic leg exercise at mild intensity.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
15
|
Abstract
BACKGROUND McArdle disease is a rare metabolic myopathy caused by a complete absence of the enzyme muscle glycogen phosphorylase. Affected people experience symptoms of fatigue and cramping within minutes of exercise and are at risk for acute muscle injury (rhabdomyolysis) and acute renal failure. If the first few minutes of exercise are paced, a 'second wind' will occur enabling exercise to continue. This is due to mobilisation and utilisation of alternative fuel substrates. Aerobic training appears to improve work capacity by increasing cardiovascular fitness. OBJECTIVES To assess the effects of aerobic training in people with McArdle disease. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (11 January 2011), CENTRAL (2010, Issue 4), MEDLINE (January 1966 to January 2011) and EMBASE (January 1980 to January 2011). SELECTION CRITERIA All randomised and quasi-randomised controlled studies of aerobic exercise training in people of all ages with McArdle disease. DATA COLLECTION AND ANALYSIS Two authors identified possible studies for inclusion and assessed their methodological quality. Had more than one study of sufficient methodological quality been identified we would have undertaken a meta-analysis. MAIN RESULTS There were no randomised or quasi-randomised controlled trials of aerobic training in people with McArdle disease. However, three open studies using small numbers of participants provided some evidence that aerobic training improves fitness without adverse events in people with McArdle disease. AUTHORS' CONCLUSIONS Evidence from non-randomised studies using small numbers of patients suggest that it would be safe and worthwhile for larger controlled trials of aerobic training to be undertaken in people with McArdle disease.
Collapse
Affiliation(s)
- Rosaline Quinlivan
- MRC Centre for Neuromuscular Diseases and Dubowitz Neuromuscular Centre, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery and Great Ormond Street, PO Box 114, London, UK, WC1B 3BN
| | | | | | | |
Collapse
|
16
|
Murphy MN, Mizuno M, Mitchell JH, Smith SA. Cardiovascular regulation by skeletal muscle reflexes in health and disease. Am J Physiol Heart Circ Physiol 2011; 301:H1191-204. [PMID: 21841019 PMCID: PMC3197431 DOI: 10.1152/ajpheart.00208.2011] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 08/02/2011] [Indexed: 02/07/2023]
Abstract
Heart rate and blood pressure are elevated at the onset and throughout the duration of dynamic or static exercise. These neurally mediated cardiovascular adjustments to physical activity are regulated, in part, by a peripheral reflex originating in contracting skeletal muscle termed the exercise pressor reflex. Mechanically sensitive and metabolically sensitive receptors activating the exercise pressor reflex are located on the unencapsulated nerve terminals of group III and group IV afferent sensory neurons, respectively. Mechanoreceptors are stimulated by the physical distortion of their receptive fields during muscle contraction and can be sensitized by the production of metabolites generated by working skeletal myocytes. The chemical by-products of muscle contraction also stimulate metaboreceptors. Once activated, group III and IV sensory impulses are transmitted to cardiovascular control centers within the brain stem where they are integrated and processed. Activation of the reflex results in an increase in efferent sympathetic nerve activity and a withdrawal of parasympathetic nerve activity. These actions result in the precise alterations in cardiovascular hemodynamics requisite to meet the metabolic demands of working skeletal muscle. Coordinated activity by this reflex is altered after the development of cardiovascular disease, generating exaggerated increases in sympathetic nerve activity, blood pressure, heart rate, and vascular resistance. The basic components and operational characteristics of the reflex, the techniques used in human and animals to study the reflex, and the emerging evidence describing the dysfunction of the reflex with the advent of cardiovascular disease are highlighted in this review.
Collapse
Affiliation(s)
- Megan N Murphy
- Department of Physical Therapy, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9174, USA
| | | | | | | |
Collapse
|
17
|
Quinlivan R, Martinuzzi A, Schoser B. Pharmacological and nutritional treatment for McArdle disease (Glycogen Storage Disease type V). Cochrane Database Syst Rev 2010:CD003458. [PMID: 21154353 DOI: 10.1002/14651858.cd003458.pub4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND McArdle disease (Glycogen Storage Disease type V) is caused by an absence of muscle phosphorylase leading to exercise intolerance, myoglobinuria rhabdomyolysis and acute renal failure. OBJECTIVES To review systematically the evidence from randomized controlled trials of pharmacological or nutritional treatments for improving exercise performance and quality of life in McArdle disease. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Specialised Register (17 May 2010), the Cochrane Central Register of Controlled Trials (Issue 2, 2010 in The Cochrane Library), MEDLINE (January 1966 to May 2010) and EMBASE (January 1980 to May 2010) using the search terms 'McArdle disease', 'Glycogen Storage Disease type V' and 'muscle phosphorylase deficiency'. SELECTION CRITERIA We included randomized controlled trials (including cross-over studies) and quasi-randomised trials. Unblinded open trials and individual patient studies were included in the discussion. Interventions included any pharmacological agent or nutritional supplement. Primary outcome measures included any objective assessment of exercise endurance (for example aerobic capacity (VO(2)) max, walking speed, muscle force or power and fatigability). Secondary outcome measures included metabolic changes (such as reduced plasma creatine kinase and a reduction in the frequency of myoglobinuria), subjective measures (including quality of life scores and indices of disability) and serious adverse events. DATA COLLECTION AND ANALYSIS Three review authors checked the titles and abstracts identified by the search and reviewed the manuscripts. In the first review two authors (RQ and RB) independently assessed methodological quality of relevant studies and extracted data onto a specially designed form. In this update methodological quality of data was assessed by RQ and AM with comments from BS. MAIN RESULTS We identified 31 studies,13 fulfilled the criteria for inclusion. Excluded trials are included in the Discussion. The largest treatment trial included 19 subjects. There was no benefit with: D-ribose, glucagon, verapamil, vitamin B(6), branched chain amino acids, dantrolene sodium, and high dose creatine. Minimal benefit was found with low dose creatine and ramipril only for patients with a polymorphism known as the D/D angiotensin converting enzyme (ACE) phenotype. A carbohydrate-rich diet resulted in better exercise performance compared with a protein-rich diet. Two studies of oral sucrose given at different times and in different amounts before exercise showed an improvement in exercise performance. AUTHORS' CONCLUSIONS Although there was low quality evidence of improvement in some parameters with creatine, oral sucrose, ramipril and a carbohydrate rich diet, none was sufficiently strong to indicate significant clinical benefit.
Collapse
Affiliation(s)
- Rosaline Quinlivan
- MRC Centre for Neuromuscular Diseases and Dubowitz Neuromuscular Centre, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery and Great Ormond Street, PO Box 114, London, UK, WC1B 3BN
| | | | | |
Collapse
|
18
|
Excessive skeletal muscle recruitment during strenuous exercise in McArdle patients. Eur J Appl Physiol 2010; 110:1047-55. [PMID: 20683610 DOI: 10.1007/s00421-010-1585-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2010] [Indexed: 10/19/2022]
Abstract
We compared the cardiorespiratory response and muscle recruitment [as determined by electromyography (EMG)] of 37 McArdle patients [19 males, 37.4 ± 2.8 years, body mass index (BMI): 25.1 ± 4.7 kg m(-2)] and 33 healthy controls (18 males, 36.4 ± 10.0 years, BMI: 25.7 ± 3.8 kg m(-2)) during cycle-ergometer exercise (an incremental test to exhaustion and a 12-min submaximal constant workload test). We obtained cardiorespiratory [oxygen uptake and heart rate (HR)] and EMG data (rectus femoris and vastus lateralis muscles). During the incremental test, the patients exhibited the expected hyperkinetic cardiovascular response shown by a marked increase in the slope of the HR:Power relationship (p < 0.001). Throughout the incremental test and at the point of fatigue, the patients produced significantly less power than the controls (peak power output: 67 ± 21 vs. 214 ± 56 watts respectively, p < 0.001), yet they demonstrated significantly higher levels of muscle activity for a given absolute power. During the constant workload test, patients displayed higher levels of EMG activity than the controls during the second half of the test, despite a lower power production (34 ± 13 vs. 94 ± 29 watts respectively, p < 0.001). In conclusion, since the McArdle patients required more motor unit recruitment for a given power output, our data suggest that the state of contractility of their muscles is reduced compared with healthy people. Excessive muscle recruitment for a given load could be one of the mechanisms explaining the exercise intolerance of these patients.
Collapse
|
19
|
Chang G, Wang L, Cárdenas-Blanco A, Schweitzer ME, Recht MP, Regatte RR. Biochemical and physiological MR imaging of skeletal muscle at 7 tesla and above. Semin Musculoskelet Radiol 2010; 14:269-78. [PMID: 20486034 DOI: 10.1055/s-0030-1253167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ultra-high field (UHF; >or=7 T) magnetic resonance imaging (MRI), with its greater signal-to-noise ratio, offers the potential for increased spatial resolution, faster scanning, and, above all, improved biochemical and physiological imaging of skeletal muscle. The increased spectral resolution and greater sensitivity to low-gamma nuclei available at UHF should allow techniques such as (1)H MR spectroscopy (MRS), (31)P MRS, and (23)Na MRI to be more easily implemented. Numerous technical challenges exist in the performance of UHF MRI, including changes in relaxation values, increased chemical shift and susceptibility artifact, radiofrequency (RF) coil design/B (1)(+) field inhomogeneity, and greater RF energy deposition. Nevertheless, the possibility of improved functional and metabolic imaging at UHF will likely drive research efforts in the near future to overcome these challenges and allow studies of human skeletal muscle physiology and pathophysiology to be possible at >or=7 T.
Collapse
Affiliation(s)
- Gregory Chang
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, New York, 10016, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Moll W, Gros G. Combined glycolytic production of lactate(-) and ATP(4-) derived protons (= dissociated lactic acid) is the only cause of metabolic acidosis of exercise--a note on the OH(-) absorbing function of lactate (1-) production. J Appl Physiol (1985) 2008; 105:366-7. [PMID: 18680794 DOI: 10.1152/japplphysiol.zdg-8016-pcpcomm.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Hayes SG, McCord JL, Rainier J, Liu Z, Kaufman MP. Role played by acid-sensitive ion channels in evoking the exercise pressor reflex. Am J Physiol Heart Circ Physiol 2008; 295:H1720-5. [PMID: 18723762 DOI: 10.1152/ajpheart.00623.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The exercise pressor reflex arises from contracting skeletal muscle and is believed to play a role in evoking the cardiovascular responses to static exercise, effects that include increases in arterial pressure and heart rate. This reflex is believed to be evoked by the metabolic and mechanical stimulation of thin fiber muscle afferents. Lactic acid is known to be an important metabolic stimulus evoking the reflex. Until recently, the only antagonist for acid-sensitive ion channels (ASICs), the receptors to lactic acid, was amiloride, a substance that is also a potent antagonist for both epithelial sodium channels as well as voltage-gated sodium channels. Recently, a second compound, A-317567, has been shown to be an effective and selective antagonist to ASICs in vitro. Consequently, we measured the pressor responses to the static contraction of the triceps surae muscles in decerebrate cats before and after a popliteal arterial injection of A-317567 (10 mM solution; 0.5 ml). We found that this ASIC antagonist significantly attenuated by half (P<0.05) the pressor responses to both contraction and to lactic acid injection into the popliteal artery. In contrast, A-317567 had no effect on the pressor responses to tendon stretch, a pure mechanical stimulus, and to a popliteal arterial injection of capsaicin, which stimulated transient receptor potential vanilloid type 1 channels. We conclude that ASICs on thin fiber muscle afferents play a substantial role in evoking the metabolic component of the exercise pressor reflex.
Collapse
Affiliation(s)
- Shawn G Hayes
- Heart and Vascular Institute, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
22
|
Quinlivan R, Beynon RJ, Martinuzzi A. Pharmacological and nutritional treatment for McArdle disease (Glycogen Storage Disease type V). Cochrane Database Syst Rev 2008:CD003458. [PMID: 18425888 DOI: 10.1002/14651858.cd003458.pub3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND McArdle disease (Glycogen Storage Disease type V) is caused by the absence of the glycolytic enzyme, muscle phosphorylase. People present with exercise-induced pain, cramps, fatigue, and myoglobinuria, which can result in acute renal failure if it is severe. OBJECTIVES To systematically review the evidence from randomised controlled trials of pharmacological or nutritional treatments in improving exercise performance and quality of life in McArdle disease. SEARCH STRATEGY We updated the review by searching the Cochrane Neuromuscular Disease Group Trials Register (November 2007), MEDLINE (January 1966 to November 2007) and EMBASE (January 1980 to November 2007) using the search terms 'McArdle disease' and its synonym 'Glycogen Storage Disease type V'. SELECTION CRITERIA We included randomised controlled trials (including crossover studies) and quasi-randomised trials. Open trials and individual patient studies with no participant or observer blinding were included in the discussion. Types of interventions included any pharmacological agent or micronutrient or macronutrient supplementation. Primary outcome measures included any objective assessment of exercise endurance (for example aerobic capacity (VO(2)) max, walking speed, muscle force or power and improvement in fatiguability). Secondary outcome measures included metabolic changes (such as reduced plasma creatine kinase activity and a reduction in the frequency of myoglobinuria), subjective measures (including quality of life scores and indices of disability) and serious adverse events. DATA COLLECTION AND ANALYSIS Three review authors checked the titles and abstracts identified by the search and reviewed the manuscripts. Two review authors (RQ and RB) independently assessed methodological quality of the full text of potentially relevant studies and extracted data onto a specially designed form. MAIN RESULTS We reviewed 24 studies. Twelve trials fulfilled the criteria for inclusion, with two being first identified in this update. The 12 excluded trials are included in the discussion. The largest treatment trial included 19 cases. The other trials included fewer than 12 cases. As there were only single trials for a given intervention we were unable to undertake a meta-analysis. AUTHORS' CONCLUSIONS There is no evidence of significant benefit from any specific nutritional or pharmacological treatment in McArdle disease. In one small trial low dose creatine produced slight benefit but high dose creatine caused myalgia. Ingestion of oral sucrose immediately before exercise reduced perceived ratings of exertion and heart rate and improved exercise tolerance. This treatment will not influence sustained or unexpected exercise and may cause significant weight gain. A carbohydrate rich diet did benefit patients. Because of the rarity of McArdle disease, there is a need to develop international multicentre collaboration and standardised assessment protocols for future treatment trials.
Collapse
Affiliation(s)
- R Quinlivan
- Robert Jones and Agnes Hunt District and Orthopaedic Hospital, Wolfson Centre for Inherited Neuromuscular Disease, Gobowen, Oswestry, Shropshire, UK, SY10 7AG.
| | | | | |
Collapse
|
23
|
Quinlivan RM, Beynon RJ. Pharmacological and nutritional treatment trials in McArdle disease. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2007; 26:58-60. [PMID: 17915572 PMCID: PMC2949313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A systematic review of evidence for randomised controlled trials using pharmacologic and nutritional therapies in McArdle disease was undertaken. Primary outcome measures included any objective assessment of exercise endurance. Secondary outcome measures included changes in metabolic parameters, subjective measures such as quality of life scores and adverse outcomes. Ten randomised controlled trials were identified. Two trials low dose creatine (60 mg/kg/day) and oral sucrose 75 g prior to exercise demonstrated a positive effect.
Collapse
Affiliation(s)
- R M Quinlivan
- The Wolfson Centre for Inherited Neuromuscular Diseases (CIND), Robert Jones and Agnes Hunt, NHS Trust, Oswestry, UK.
| | | |
Collapse
|
24
|
Hayes SG, Kindig AE, Kaufman MP. Blockade of acid sensing ion channels attenuates the exercise pressor reflex in cats. J Physiol 2007; 581:1271-82. [PMID: 17395635 PMCID: PMC2170826 DOI: 10.1113/jphysiol.2007.129197] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although thin fibre muscle afferents possess acid sensing ion channels (ASICs), their contribution to the exercise pressor reflex is not known. This lack of information is partly attributable to the fact that there is no known selective in vivo antagonist for ASICs. Although amiloride has been shown to antagonize ASICs, it also has been shown to antagonize voltage-gated sodium channels, thereby impairing impulse conduction in sensory nerves. Our aim was to test the hypothesis that lactic acid accumulation in exercising muscle acted on ASICs located on thin fibre muscle afferents to evoke the metabolic component of the exercise pressor reflex. To test this hypothesis, we determined in decerebrate cats if amiloride attenuated the pressor and cardioaccelerator responses to static contraction, to tendon stretch and to arterial injections of lactic acid and capsaicin. We found a dose of amiloride (0.5 microg kg(-1); i.a.) that attenuated the pressor and cardioaccelerator responses to both contraction and lactic acid injection, but had no effect on the responses to stretch and capsaicin. A higher dose of amiloride (5 microg kg(-1), i.a.) not only blocked the pressor and cardioaccelerator responses to lactic acid and contraction, but also attenuated the responses to stretch and to capsaicin, manoeuvers in which ASICs probably play no significant role. In addition, we found that the low dose of amiloride (0.5 microg kg(-1)) had no effect on the responses of muscle spindles to tendon stretch and to succinylcholine, whereas the high dose (5 microg kg(-1)) attenuated the responses to both. Our data suggest the low dose of amiloride used in our experiments selectively blocked ASICs, whereas the high dose blocked ASICs and impulse conduction in muscle afferents. We conclude that ASICs play a role in the metabolic component of the exercise pressor reflex.
Collapse
Affiliation(s)
- Shawn G Hayes
- Division of Cardiovascular Medicine, University of California, Davis 95616, USA.
| | | | | |
Collapse
|
25
|
Abstract
Magnetic resonance spectroscopy (MRS) of skeletal muscle has been successfully applied by physiologists over several decades, particularly for studies of high-energy phosphates (by (31)P-MRS) and glycogen (by (13)C-MRS). Unfortunately, the observation of these heteronuclei requires equipment that is typically not available on clinical MR scanners, such as broadband capability and a second channel for decoupling and nuclear Overhauser enhancement (NOE). On the other hand, (1)H-MR spectra of skeletal muscle can be acquired on many routine MR systems and also provide a wealth of physiological information. In particular, studies of intramyocellular lipids (IMCL) attract physiologists and endocrinologists because IMCL levels are related to insulin resistance and thus can lead to a better understanding of major health problems in industrial countries. The combination of (1)H-, (13)C-, and (31)P-MRS gives access to the major long- and short-term energy sources of skeletal muscle. This review summarizes the technical aspects and unique MR-methodological features of the different nuclei. It reviews clinical studies that employed MRS of one or more nuclei, or combinations of MRS with other MR modalities. It also illustrates that MR spectra contain additional physiological information that is not yet used in routine clinical applications.
Collapse
Affiliation(s)
- Chris Boesch
- Department of Clinical Research, MR-Spectroscopy and Methodology, University of Bern, Bern, Switzerland.
| |
Collapse
|
26
|
Mano T, Iwase S, Toma S. Microneurography as a tool in clinical neurophysiology to investigate peripheral neural traffic in humans. Clin Neurophysiol 2006; 117:2357-84. [PMID: 16904937 DOI: 10.1016/j.clinph.2006.06.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 05/31/2006] [Accepted: 06/02/2006] [Indexed: 11/17/2022]
Abstract
Microneurography is a method using metal microelectrodes to investigate directly identified neural traffic in myelinated as well as unmyelinated efferent and afferent nerves leading to and coming from muscle and skin in human peripheral nerves in situ. The present paper reviews how this technique has been used in clinical neurophysiology to elucidate the neural mechanisms of autonomic regulation, motor control and sensory functions in humans under physiological and pathological conditions. Microneurography is particularly important to investigate efferent and afferent neural traffic in unmyelinated C fibers. The recording of efferent discharges in postganglionic sympathetic C efferent fibers innervating muscle and skin (muscle sympathetic nerve activity; MSNA and skin sympathetic nerve activity; SSNA) provides direct information about neural control of autonomic effector organs including blood vessels and sweat glands. Sympathetic microneurography has become a potent tool to reveal neural functions and dysfunctions concerning blood pressure control and thermoregulation. This recording has been used not only in wake conditions but also in sleep to investigate changes in sympathetic neural traffic during sleep and sleep-related events such as sleep apnea. The same recording was also successfully carried out by astronauts during spaceflight. Recordings of afferent discharges from muscle mechanoreceptors have been used to understand the mechanisms of motor control. Muscle spindle afferent information is particularly important for the control of fine precise movements. It may also play important roles to predict behavior outcomes during learning of a motor task. Recordings of discharges in myelinated afferent fibers from skin mechanoreceptors have provided not only objective information about mechanoreceptive cutaneous sensation but also the roles of these signals in fine motor control. Unmyelinated mechanoreceptive afferent discharges from hairy skin seem to be important to convey cutaneous sensation to the central structures related to emotion. Recordings of afferent discharges in thin myelinated and unmyelinated fibers from nociceptors in muscle and skin have been used to provide information concerning pain. Recordings of afferent discharges of different types of cutaneous C-nociceptors identified by marking method have become an important tool to reveal the neural mechanisms of cutaneous sensations such as an itch. No direct microneurographic evidence has been so far proved regarding the effects of sympathoexcitation on sensitization of muscle and skin sensory receptors at least in healthy humans.
Collapse
Affiliation(s)
- Tadaaki Mano
- Gifu University of Medical Science, 795-1 Nagamine Ichihiraga, Seki, Gifu 501-3892, Japan.
| | | | | |
Collapse
|
27
|
Tupling R. Lactic acid accumulation is an advantage/disadvantage during muscle activity. J Appl Physiol (1985) 2006; 100:2101-2. [PMID: 16767814 DOI: 10.1152/japplphysiol.00213.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Sinoway LI, Li J. A perspective on the muscle reflex: implications for congestive heart failure. J Appl Physiol (1985) 2005; 99:5-22. [PMID: 16036901 DOI: 10.1152/japplphysiol.01405.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review we examine the exercise pressor reflex in health and disease. The role of metabolic and mechanical stimulation of thin fiber muscle afferents is discussed. The role ATP and lactic acid play in stimulating and sensitizing these afferents is examined. The role played by purinergic receptors subdivision 2, subtype X, vanilloid receptor subtype 1, and acid-sensing ion channels in mediating the effects of ATP and H+ are discussed. Muscle reflex activation in heart failure is then examined. Data supporting the concept that the metaboreflex is attenuated and that the mechanoreflex is accentuated are presented. The role the muscle mechanoreflex plays in evoking renal vasoconstriction is also described.
Collapse
Affiliation(s)
- Lawrence I Sinoway
- Division of Cardiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| | | |
Collapse
|
29
|
Böning D, Strobel G, Beneke R, Maassen N. Lactic Acid Still Remains the Real Cause of Exercise-Induced Metabolic Acidosis. Am J Physiol Regul Integr Comp Physiol 2005; 289:R902-3; author reply R904-910. [PMID: 16105825 DOI: 10.1152/ajpregu.00069.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Quinlivan R, Beynon RJ. Pharmacological and nutritional treatment for McArdle's disease (Glycogen Storage Disease type V). Cochrane Database Syst Rev 2004:CD003458. [PMID: 15266486 DOI: 10.1002/14651858.cd003458.pub2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND McArdle's disease (Glycogen Storage Disease type V) is caused by the absence of the glycolytic enzyme, muscle phosphorylase. Patients present with exercise-induced pain, cramps, fatigue, myoglobinuria and acute renal failure, which can ensue if the myoglobinuria is severe. OBJECTIVES To systematically review the evidence from randomised controlled trials of pharmacological or nutritional treatments in improving exercise performance and quality of life in McArdle's disease. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group register (searched December 2001 and updated in December 2003), MEDLINE (January 1966 to December 2003) and EMBASE (January 1980 to December 2003) using the search term 'McArdle's disease and it's synonym 'Glycogen Storage Disease type V'. SELECTION CRITERIA We included randomised controlled trials (including crossover studies) and quasi-randomised trials. Open trials and individual patient studies with no patient or observer blinding were included in the discussion but not the review. Types of interventions included any pharmacological agent or micronutrient or macronutrient supplementation. Primary outcome measures included any objective assessment of exercise endurance (for example VO2 max, walking speed, muscle force/power and improvement in fatiguability). Secondary outcome measures included metabolic changes (such as reduced plasma creatine kinase activity and a reduction in the frequency of myoglobinuria); subjective measures (including quality of life scores and indices of disability); and serious adverse events. DATA COLLECTION AND ANALYSIS Two reviewers checked the titles and abstracts identified by the search, independently assessed methodological quality of the full text of potentially relevant studies and extracted data onto a specially designed form. MAIN RESULTS We reviewed 20 trials. Ten trials fulfilled the criteria for inclusion and ten trials were included in the discussion. The largest treatment trial included 19 cases, the other trials included fewer than 12 cases. As there were only single trials for a given intervention we were unable to undertake a meta-analysis. REVIEWERS' CONCLUSIONS It is not yet possible to recommend any specific treatment for McArdle's disease. Low dose creatine supplementation was shown to demonstrate a statistically significant benefit, albeit modest, in ischaemic exercise in a small number of patients. Ingestion of oral sucrose immediately prior to exercise reduces perceived ratings of exertion and heart rate and improves exercise tolerance. This treatment will not influence sustained or unexpected exercise and may cause significant weight gain. Because of the rarity of McArdle's disease, there is a need to develop multicentre collaboration and standardised assessment protocols for future treatment trials.
Collapse
Affiliation(s)
- R Quinlivan
- Muscle Clinic, Robert Jones and Agnes Hunt District and Orthopaedic Hospital, Gobowen, Oswestry, Shropshire, UK, SY10 7AG
| | | |
Collapse
|
31
|
Abstract
BACKGROUND Energy metabolism in muscles relies predominantly on the breakdown of glycogen early in exercise. In patients with McArdle's disease, blocked glycogenolysis in muscles results in low exercise tolerance and can lead to muscle injury, particularly in the first minutes of exercise. We hypothesized that ingesting sucrose before exercise would increase the availability of glucose and would therefore improve exercise tolerance in patients with McArdle's disease. METHODS In a single-blind, randomized, placebo-controlled crossover study, 12 patients with McArdle's disease drank 660 ml of a beverage that had been sweetened with artificial sweeteners (placebo) or with 75 g of sucrose after an overnight fast. Thirty to 40 minutes later, the patients rode a stationary bicycle at a constant workload for 15 minutes while the heart rate, level of perceived exertion, and venous blood glucose levels were monitored. RESULTS Supplemental sucrose increased the mean plasma glucose level by more than 36 mg per deciliter (2.0 mmol per liter) and resulted in a marked improvement in exercise tolerance in all patients. The mean (+/-SE) heart rate dropped by a maximum of 34+/-3 beats per minute (P<0.001), and the level of perceived exertion fell dramatically when the patients ingested glucose as compared with when they received the placebo. CONCLUSIONS This study suggests that the ingestion of sucrose before exercise can markedly improve exercise tolerance in patients with McArdle's disease. The treatment takes effect during the time when muscle injury commonly develops in these patients. In addition to increasing the patients' exercise capacity and sense of well-being, the treatment may protect against exercise-induced rhabdomyolysis.
Collapse
Affiliation(s)
- John Vissing
- Department of Neurology and the Copenhagen Muscle Research Center, National University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | |
Collapse
|
32
|
Affiliation(s)
- Marc P Kaufman
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
33
|
Fadel PJ, Wang Z, Tuncel M, Watanabe H, Abbas A, Arbique D, Vongpatanasin W, Haley RW, Victor RG, Thomas GD. Reflex sympathetic activation during static exercise is severely impaired in patients with myophosphorylase deficiency. J Physiol 2003; 548:983-93. [PMID: 12640006 PMCID: PMC2342887 DOI: 10.1113/jphysiol.2003.039347] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During static exercise, metabolites accumulate in the muscle interstitium where they stimulate chemosensitive afferent nerves that reflexly increase efferent muscle sympathetic nerve activity (MSNA) and blood pressure. In experimental animals, lactic acid potently stimulates the muscle metaboreflex, but its role in humans is more controversial. To determine if lactic acid is a critical mediator of metaboreflex activation in humans, we performed microelectrode recordings of MSNA in eight patients with myophosphorylase deficiency (McArdle's disease) who cannot metabolize intramuscular glycogen and do not generate lactic acid in exercising muscles. Each patient was matched with three healthy control subjects to maximize statistical power. In controls, 2 min of static handgrip performed at 33 % or 45 % of maximal voluntary contraction (MVC) produced intensity-dependent increases in MSNA (171 +/- 22 % and 379 +/- 95 %, respectively). In the patients, MSNA responses to static handgrip were markedly attenuated (33 +/- 14 % at 33 % MVC; 32 +/- 19 % at 45 % MVC; P < 0.05 vs. controls). Likewise, when static handgrip (30 % MVC) was performed to fatigue, MSNA increased by 366 +/- 73 % in controls but only by 51 +/- 14 % in patients (P < 0.05). Pressor responses to static handgrip were also attenuated in patients compared to controls, whereas heart rate responses were identical. In contrast to exercise, the MSNA responses to other reflex stimuli (the cold pressor test or Valsalva's manoeuvre) were similar in patients and controls. Together these data indicate that appropriate activation of glycogenolytic pathways is obligatory for normal metaboreflex-mediated sympathoexcitation during static exercise in humans.
Collapse
Affiliation(s)
- Paul J Fadel
- Department of Internal Medicine, Division of Hypertension, University of Texas Southwestern Medical Center, Dallas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Marc P. Kaufman
- Division of Cardiovascular Medicine, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
35
|
Derchak PA, Sheel AW, Morgan BJ, Dempsey JA. Effects of expiratory muscle work on muscle sympathetic nerve activity. J Appl Physiol (1985) 2002; 92:1539-52. [PMID: 11896021 DOI: 10.1152/japplphysiol.00790.2001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that contractions of the expiratory muscles carried out to the point of task failure would cause an increase in muscle sympathetic nerve activity (MSNA). We measured MSNA directly in six healthy men during resisted expiration (60% maximal expiratory pressure) leading to task failure with long [breathing frequency (f(b)) = 15 breaths/min; expiratory time (TE)/total respiratory cycle duration (TT) = 0.7] and short (f(b) = 30 breaths/min; TE/TT = 0.4) TE. Both of these types of expiratory muscle contractions elicited time-dependent increases in MSNA burst frequency that averaged +139 and +239%, respectively, above baseline at end exercise. The increased MSNA coincided with increases in mean arterial pressure (MAP) for both the long-TE (+28 +/- 6 mmHg) and short-TE (+22 +/- 14 mmHg) trials. Neither MSNA nor MAP changed when the breathing patterns and increased tidal volume of the task failure trials were mimicked without resistance or task failure. Furthermore, very high levels of expiratory motor output (95% maximal expiratory pressure; f(b) = 12 breaths/min; TE/TT = 0.35) and high rates of expiratory flow and expiratory muscle shortening without task failure (no resistance; f(b) = 45 breaths/min; TE/TT = 0.4; tidal volume = 1.9 x eupnea) had no effect on MSNA or MAP. Within-breath analysis of the short-expiration trials showed augmented MSNA at the onset of and throughout expiration that was consistent with an influence of high levels of central expiratory motor output. Thus high-intensity contractions of expiratory muscles to the point of task failure caused a time-dependent sympathoexcitation; these effects on MSNA were similar in their time dependency to those caused by high-intensity rhythmic contractions of the diaphragm and forearm muscles taken to the point of task failure. The evidence suggests that these effects are mediated primarily via a muscle metaboreflex with a minor, variable contribution from augmented central expiratory motor output.
Collapse
Affiliation(s)
- P Alexander Derchak
- John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | |
Collapse
|
36
|
Dempsey JA, Sheel AW, St Croix CM, Morgan BJ. Respiratory influences on sympathetic vasomotor outflow in humans. Respir Physiol Neurobiol 2002; 130:3-20. [PMID: 12380012 DOI: 10.1016/s0034-5687(01)00327-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have attempted to synthesize findings dealing with four types of respiratory system influences on sympathetic outflow in the human. First, a powerful lung volume-dependent modulation of muscle sympathetic nerve activity (MSNA) occurs within each respiratory cycle showing late-inspiratory inhibition and late-expiratory excitation. Secondly, in the intact human, neither reductions in spontaneous respiratory motor output nor voluntary near-maximum increases in central respiratory motor output and inspiratory effort, per sec, influence MSNA modulation within a breath, MSNA total activity or limb vascular conductance. Thirdly, carotid chemoreceptor stimuli markedly increase total MSNA; but most of the MSNA response to chemoreceptor activation appears to be mediated independently of increased central respiratory motor output. Fourthly, repeated fatiguing contractions of the diaphragm or expiratory muscles in the human show a metaboreflex mediated time-dependent increase in MSNA and reduced vascular conductance and blood flow in the resting limb. Recent evidence suggests that these respiratory influences contribute significantly to sympathetic vasomotor outflow and to the distribution of systemic vascular conductances and blood flow in the exercising human.
Collapse
Affiliation(s)
- Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin, 504 N. Walnut Street, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
37
|
Vissing J, MacLean DA, Vissing SF, Sander M, Saltin B, Haller RG. The exercise metaboreflex is maintained in the absence of muscle acidosis: insights from muscle microdialysis in humans with McArdle's disease. J Physiol 2001; 537:641-9. [PMID: 11731594 PMCID: PMC2278977 DOI: 10.1111/j.1469-7793.2001.00641.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. In McArdle's disease, muscle glycogenolysis is blocked, which results in absent lactate and enhanced ammonia production in working muscle. Using McArdle patients as an experimental model, we studied whether lactate and ammonia could be mediators of the exercise pressor reflex. 2. Changes in muscle interstitial ammonia and lactate were compared with changes in blood pressure and muscle sympathetic nerve activity (MSNA) during static arm flexor exercise at 30% of maximal contraction force. Muscle interstitial changes in lactate and ammonia were assessed by microdialysis of the biceps muscle, and MSNA by peroneal nerve microneurography, in six McArdle patients and 11 healthy, matched controls. One McArdle patient also had myoadenylate deaminase deficiency, a condition associated with abolished ammonia production in exercise. 3. Exercise-induced increases were higher in McArdle patients vs. controls for MSNA (change of 164 +/- 71 vs. 59 +/- 19%) and blood pressure (change of 47 +/- 7 vs. 38 +/- 4 mmHg). Interstitial lactate increased in controls (peak change 1.3 +/- 0.2 mmol x l(-1)) and decreased in McArdle patients (peak change -0.5 +/- 0.1 mmol x l(-1)) during and after exercise. Interstitial ammonia did not change during exercise in either group, but was higher post-exercise in McArdle patients, except in the patient with myoadenylate deaminase deficiency who had a flat ammonia response. This patient had an increase in MSNA and blood pressure comparable to other patients. MSNA and blood pressure responses were maintained during post-exercise ischaemia in both groups, indicating that sympathetic activation was caused, at least partly, by a metaboreflex. 4. In conclusion, changes in muscle interstitial lactate and ammonia concentrations during and after exercise are temporally dissociated from changes in MSNA and blood pressure in both patients with McArdle's disease and healthy control subjects. This suggests that muscle acidification and changes in interstitial ammonia concentration are not mediators of sympathetic activation during exercise.
Collapse
Affiliation(s)
- J Vissing
- Copenhagen Muscle Research Centre, National University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
38
|
Sheel AW, Derchak PA, Morgan BJ, Pegelow DF, Jacques AJ, Dempsey JA. Fatiguing inspiratory muscle work causes reflex reduction in resting leg blood flow in humans. J Physiol 2001; 537:277-89. [PMID: 11711580 PMCID: PMC2278925 DOI: 10.1111/j.1469-7793.2001.0277k.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. We recently showed that fatigue of the inspiratory muscles via voluntary efforts caused a time-dependent increase in limb muscle sympathetic nerve activity (MSNA) (St Croix et al. 2000). We now asked whether limb muscle vasoconstriction and reduction in limb blood flow also accompany inspiratory muscle fatigue. 2. In six healthy human subjects at rest, we measured leg blood flow (.Q(L)) in the femoral artery with Doppler ultrasound techniques and calculated limb vascular resistance (LVR) while subjects performed two types of fatiguing inspiratory work to the point of task failure (3-10 min). Subjects inspired primarily with their diaphragm through a resistor, generating (i) 60 % maximal inspiratory mouth pressure (P(M)) and a prolonged duty cycle (T(I)/T(TOT) = 0.7); and (ii) 60 % maximal P(M) and a T(I)/T(TOT) of 0.4. The first type of exercise caused prolonged ischaemia of the diaphragm during each inspiration. The second type fatigued the diaphragm with briefer periods of ischaemia using a shorter duty cycle and a higher frequency of contraction. End-tidal P(CO2) was maintained by increasing the inspired CO(2) fraction (F(I,CO2)) as needed. Both trials caused a 25-40 % reduction in diaphragm force production in response to bilateral phrenic nerve stimulation. 3. .Q(L) and LVR were unchanged during the first minute of the fatigue trials in most subjects; however, .Q(L) subsequently decreased (-30 %) and LVR increased (50-60 %) relative to control in a time-dependent manner. This effect was present by 2 min in all subjects. During recovery, the observed changes dissipated quickly (< 30 s). Mean arterial pressure (MAP; +4-13 mmHg) and heart rate (+16-20 beats min(-1)) increased during fatiguing diaphragm contractions. 4. When central inspiratory motor output was increased for 2 min without diaphragm fatigue by increasing either inspiratory force output (95 % of maximal inspiratory pressure (MIP)) or inspiratory flow rate (5 x eupnoea), .Q(L), MAP and LVR were unchanged; although continuing the high force output trials for 3 min did cause a relatively small but significant increase in LVR and a reduction in .Q(L). 5. When the breathing pattern of the fatiguing trials was mimicked with no added resistance, LVR was reduced and .Q(L) increased significantly; these changes were attributed to the negative feedback effects on MSNA from augmented tidal volume. 6. Voluntary increases in inspiratory effort, in the absence of diaphragm fatigue, had no effect on .Q(L) and LVR, whereas the two types of diaphragm-fatiguing trials elicited decreases in .Q(L) and increases in LVR. We attribute these changes to a metaboreflex originating in the diaphragm. Diaphragm and forearm muscle fatigue showed very similar time-dependent effects on LVR and .Q(L).
Collapse
Affiliation(s)
- A W Sheel
- Department of Population Health Sciences, John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Vissing J, Gansted U, Quistorff B. Exercise intolerance in mitochondrial myopathy is not related to lactic acidosis. Ann Neurol 2001. [DOI: 10.1002/ana.1026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
St Croix CM, Morgan BJ, Wetter TJ, Dempsey JA. Fatiguing inspiratory muscle work causes reflex sympathetic activation in humans. J Physiol 2000; 529 Pt 2:493-504. [PMID: 11101657 PMCID: PMC2270191 DOI: 10.1111/j.1469-7793.2000.00493.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We tested the hypothesis that reflexes arising from working respiratory muscle can elicit increases in sympathetic vasoconstrictor outflow to limb skeletal muscle, in seven healthy human subjects at rest. We measured muscle sympathetic nerve activity (MSNA) with intraneural electrodes in the peroneal nerve while the subject inspired (primarily with the diaphragm) against resistance, with mouth pressure (PM) equal to 60 % of maximal, a prolonged duty cycle (TI/TTot) of 0.70, breathing frequency (fb) of 15 breaths min-1 and tidal volume (VT) equivalent to twice eupnoea. This protocol was known to reduce diaphragm blood flow and cause fatigue. MSNA was unchanged during the first 1-2 min but then increased over time, to 77 +/- 51 % (s.d.) greater than control at exhaustion (mean time, 7 +/- 3 min). Mean arterial blood pressure (+12 mmHg) and heart rate (+27 beats min-1) also increased. When the VT, fb and TI/TTot of these trials were mimicked with no added resistance, neither MSNA nor arterial blood pressure increased. MSNA and arterial blood pressure also did not change in response to two types of increased central respiratory motor output that did not produce fatigue: (a) high inspiratory flow rate and fb without added resistance; or (b) high inspiratory effort against resistance with PM of 95 % maximal, TI/TTot of 0.35 and fb of 12 breaths min-1. The heart rate increased by 5-16 beats min-1 during these trials. Thus, in the absence of any effect of increased central respiratory motor output per se on limb MSNA, we attributed the time-dependent increase in MSNA during high resistance, prolonged duty cycle breathing to a reflex arising from a diaphragm that was accumulating metabolic end products in the face of high force output plus compromised blood flow.
Collapse
Affiliation(s)
- C M St Croix
- John Rankin Laboratory of Pulmonary Medicine, Departments of Preventive Medicine and Surgery, University of Wisconsin, Madison, WI 53705, USA. cls13+@pitt.edu
| | | | | | | |
Collapse
|
41
|
Saito M. Exercise-induced sympathetic activation is correlated with cerebral hemisphere laterality, but not handedness. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 170:111-8. [PMID: 11114948 DOI: 10.1046/j.1365-201x.2000.00764.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate whether sympathetic responses are correlated with central laterality or handedness, muscle sympathetic nerve activity (MSNA), heart rate (HR) and blood pressure (BP) were compared between right (RA) and left arm (LA) grip exercise with volitional maximum effort (MVHG) for 2 min and post-exercise arterial occlusion (PEAO) in right- and left-handed volunteers. MVHG and PEAO led to a greater increase in MSNA in RA than in LA exercise (180 vs. 150%, P=0.004; 140 vs. 85%, P=0.005). MVHG elevated HR to a significantly lesser extent in RA than in LA (35 vs. 46%, P=0.030), and the difference was maintained during PEAO. The BP rise during MVHG and PEAO was the same in RA and in LA. Muscle sympathetic nerve activity, HR and BP responses during MVHG and PEAO showed no difference between the dominant and non-dominant arm. These results suggested that the effects of central motor command and metaboreflex on sympathetic outflow to the vasculature and the heart may be selectively modulated partly by hemispherical laterality.
Collapse
Affiliation(s)
- M Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya 468-8511, Japan
| |
Collapse
|
42
|
O'Sullivan SE, Bell C. The effects of exercise and training on human cardiovascular reflex control. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 81:16-24. [PMID: 10869695 DOI: 10.1016/s0165-1838(00)00148-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During physical activity, there is a graded withdrawal of vagal cardiac tone and a graded increase in sympathetic cardiac and vasomotor tone, initiated through both central command from the somatic motor cortex and muscle chemoreceptive and mechanoreceptive inputs. In parallel, there is an upward resetting of the operating point of the arterial baroreflex, with preserved reflex sensitivity. In contrast to the traditional interpretation that blood flow through exercising muscle is independent of vasomotor neural influences because of the dominance of local dilator metabolites, recent evidence suggests that both constrictor and dilator sympathetic neural influences may be involved in determining absolute levels of perfusion. Post-exercise, there is a period of relative hypotension that is associated with decreased peripheral resistance. Some, but not all, evidence indicates a causal role for reduced sympathetic drive. Chronic exercise training appears to reduce resting sympathetic activity, with parallel changes in the gain of a variety of cardiovascular autonomic reflexes initiated from cardiovascular sites. These changes may be attributable at least partly to masking of arterial baroreflexes by the impact of elevated blood volume on low-pressure baroreceptors. The reductions in sympathetic drive that follow training are more pronounced in patients with essential hypertension than in normotensive individuals and are likely to underlie the anti-hypertensive effect of exercise.
Collapse
Affiliation(s)
- S E O'Sullivan
- Department of Physiology, Trinity College Dublin, 2, Dublin, Ireland.
| | | |
Collapse
|
43
|
Ng AV, Dao HT, Miller RG, Gelinas DF, Kent-Braun JA. Blunted pressor and intramuscular metabolic responses to voluntary isometric exercise in multiple sclerosis. J Appl Physiol (1985) 2000; 88:871-80. [PMID: 10710381 DOI: 10.1152/jappl.2000.88.3.871] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To test the hypothesis that a lower mean arterial pressure (MAP) response during voluntary isometric exercise in multiple sclerosis (MS) is related to a dampened muscle metabolic signal, 9 MS and 11 control subjects performed an isometric dorsiflexor contraction at 30% maximal voluntary contraction until target failure (endurance time). We made continuous and noninvasive measurements of heart rate and MAP (Finapres) and of intramuscular pH and P(i) (phosphorus magnetic resonance spectroscopy) in a subset of 6 MS and 10 control subjects. Endurance times and change in heart rate were similar in MS and control subjects. The decrease in pH and increase in P(i) were less throughout exercise in MS compared with control subjects, as was the change in MAP response. Differences in muscle strength accounted for some of the difference in MAP response between groups. Cardiovascular responses during Valsalva and cold pressor tests were similar in MS and control subjects, suggesting that the blunted MAP response during exercise in MS was not due to a generalized dysautonomia. The dampened metabolic response in MS subjects was not explained by inadequate central muscle activation. These data suggest that the blunted pressor response to exercise in MS subjects may be largely appropriate to a blunted muscle metabolic response and differences in contracting muscle mass.
Collapse
Affiliation(s)
- A V Ng
- Department of Radiology, University of California, San Francisco, California 94121, USA.
| | | | | | | | | |
Collapse
|
44
|
MacLean DA, Imadojemu VA, Sinoway LI. Interstitial pH, K(+), lactate, and phosphate determined with MSNA during exercise in humans. Am J Physiol Regul Integr Comp Physiol 2000; 278:R563-71. [PMID: 10712273 DOI: 10.1152/ajpregu.2000.278.3.r563] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to use the microdialysis technique to simultaneously measure the interstitial concentrations of several putative stimulators of the exercise pressor reflex during 5 min of intermittent static quadriceps exercise in humans (n = 7). Exercise resulted in approximately a threefold (P < 0.05) increase in muscle sympathetic nerve activity (MSNA) and 13 +/- 3 beats/min (P < 0.05) and 20 +/- 2 mmHg (P < 0.05) increases in heart rate and blood pressure, respectively. During recovery, all reflex responses quickly returned to baseline. Interstitial lactate levels were increased (P < 0.05) from rest (1.1 +/- 0.1 mM) to exercise (1. 6 +/- 0.2 mM) and were further increased (P < 0.05) during recovery (2.0 +/- 0.2 mM). Dialysate phosphate concentrations were 0.55 +/- 0. 04, 0.71 +/- 0.05, and 0.48 +/- 0.03 mM during rest, exercise, and recovery, respectively, and were significantly elevated during exercise. At the onset of exercise, dialysate K(+) levels rose rapidly above resting values (4.2 +/- 0.1 meq/l) and continued to increase during the exercise bout. After 5 min of contractions, dialysate K(+) levels had peaked with an increase (P < 0.05) of 0.6 +/- 0.1 meq/l and subsequently decreased during recovery, not being different from rest after 3 min. In contrast, H(+) concentrations rapidly decreased (P < 0.05) from resting levels (69.4 +/- 3.7 nM) during quadriceps exercise and continued to decrease with a mean decline (P < 0.05) of 16.7 +/- 3.8 nM being achieved after 5 min. During recovery, H(+) concentrations rapidly increased and were not significantly different from baseline after 1 min. This study represents the first time that skeletal muscle interstitial pH, K(+), lactate, and phosphate have been measured in conjunction with MSNA, heart rate, and blood pressure during intermittent static quadriceps exercise in humans. These data suggest that interstitial K(+) and phosphate, but not lactate and H(+), may contribute to the stimulation of the exercise pressor reflex.
Collapse
Affiliation(s)
- D A MacLean
- Department of Medicine, Section of Cardiology, Allergy and Critical Care, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
45
|
Siciliano G, Renna M, Manca ML, Prontera C, Zucchelli G, Ferrannini E, Murri L. The relationship of plasma catecholamine and lactate during anaerobic threshold exercise in mitochondrial myopathies. Neuromuscul Disord 1999; 9:411-6. [PMID: 10545046 DOI: 10.1016/s0960-8966(99)00047-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sympathetic system activation is considered one of the main factors influencing lactate production during exercise in normal individuals. In order to assess the role of such activation in mitochondrial myopathies, we compared blood catecholamine levels to those of lactate during an intermittent exercise performed at workloads near anaerobic lactate threshold. Following an initial increment, the patients (n = 10) exhibited a steady-state blood lactate shifted right relative to controls (n = 7), the peaks being respectively 665 +/- 29% and 322 +/- 11% of baseline. Plasma catecholamine increase in mitochondrial myopathies was 272 +/- 21% for norepinephrine and 261 +/- 18% for epinephrine, not statistically different from controls. Lactate/norepinephrine and lactate/epinephrine area ratios were significantly higher in the subjects than in controls (2.36 versus 1.48 and 2.40 versus 1.57, respectively). The study shows that the abnormal lactate production in mitochondrial myopathies is independent of the catecholaminergic response at the transition from aerobic to anaerobic exercise.
Collapse
Affiliation(s)
- G Siciliano
- Department of Neurosciences, Neurological Clinics, University of Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Magnetic resonance imaging (MRI) is a well known diagnostic tool in radiology that produces unsurpassed images of the human body, in particular of soft tissue. However, the medical community is often not aware that MRI is an important yet limited segment of magnetic resonance (MR) or nuclear magnetic resonance (NMR) as this method is called in basic science. The tremendous morphological information of MR images sometimes conceal the fact that MR signals in general contain much more information, especially on processes on the molecular level. NMR is successfully used in physics, chemistry, and biology to explore and characterize chemical reactions, molecular conformations, biochemical pathways, solid state material, and many other applications that elucidate invisible characteristics of matter and tissue. In medical applications, knowledge of the molecular background of MRI and in particular MR spectroscopy (MRS) is an inevitable basis to understand molecular phenomenon leading to macroscopic effects visible in diagnostic images or spectra. This review shall provide the necessary background to comprehend molecular aspects of magnetic resonance applications in medicine. An introduction into the physical basics aims at an understanding of some of the molecular mechanisms without extended mathematical treatment. The MR typical terminology is explained such that reading of original MR publications could be facilitated for non-MR experts. Applications in MRI and MRS are intended to illustrate the consequences of molecular effects on images and spectra.
Collapse
Affiliation(s)
- C Boesch
- Department of Clinical Research, University of Bern, Switzerland
| |
Collapse
|
47
|
Pritzlaff CJ, Wideman L, Weltman JY, Abbott RD, Gutgesell ME, Hartman ML, Veldhuis JD, Weltman A. Impact of acute exercise intensity on pulsatile growth hormone release in men. J Appl Physiol (1985) 1999; 87:498-504. [PMID: 10444604 DOI: 10.1152/jappl.1999.87.2.498] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the effects of exercise intensity on growth hormone (GH) release, 10 male subjects were tested on 6 randomly ordered occasions [1 control condition (C), 5 exercise conditions (Ex)]. Serum GH concentrations were measured in samples obtained at 10-min intervals between 0700 and 0900 (baseline) and 0900 and 1300 (exercise+ recovery). Integrated GH concentrations (IGHC) were calculated by trapezoidal reconstruction. During Ex subjects exercised for 30 min (0900-0930) at one of the following intensities [normalized to the lactate threshold (LT)]: 25 and 75% of the difference between LT and rest (0.25LT and 0.75LT, respectively), at LT, and at 25 and 75% of the difference between LT and peak (1.25LT and 1.75LT, respectively). No differences were observed among conditions for baseline IGHC. Exercise+recovery IGHC (mean +/- SE: C = 250 +/- 60; 0.25LT = 203 +/- 69; 0.75LT = 448 +/- 125; LT = 452 +/- 119; 1.25LT = 512 +/- 121; 1.75LT = 713 +/- 115 microg x l(-1) x min(-1)) increased linearly with increasing exercise intensity (P < 0.05). Deconvolution analysis revealed that increasing exercise intensity resulted in a linear increase in the mass of GH secreted per pulse and GH production rate [production rate increased from 16. 5 +/- 4.5 (C) to 32.1 +/- 5.2 microg x distribution volume(-1) x min(-1) (1.75LT), P < 0.05], with no changes in GH pulse frequency or half-life of elimination. We conclude that the GH secretory response to exercise is related to exercise intensity in a linear dose-response pattern in young men.
Collapse
Affiliation(s)
- C J Pritzlaff
- Department of Human Services, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
MacLean DA, LaNoue KF, Gray KS, Sinoway LI. Effects of hindlimb contraction on pressor and muscle interstitial metabolite responses in the cat. J Appl Physiol (1985) 1998; 85:1583-92. [PMID: 9760357 DOI: 10.1152/jappl.1998.85.4.1583] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used the microdialysis technique to measure the interstitial concentration of several putative metabolic stimulants of the exercise pressor reflex during 3- and 5-Hz twitch contractions in the decerebrate cat. The peak increases in heart rate and mean arterial pressure during contraction were 20 +/- 5 beats/min and 21 +/- 8 mmHg and 27 +/- 9 beats/min and 37 +/- 12 mmHg for the 3- and 5-Hz stimulation protocols, respectively. All variables returned to baseline after 10 min of recovery. Interstitial lactate rose (P < 0. 05) by 0.41 +/- 0.15 and 0.56 +/- 0.16 mM for the 3- and 5-Hz stimulation protocols, respectively, and were not statistically different from one another. Interstitial lactate levels remained above (P < 0.05) baseline during recovery in the 5-Hz group. Dialysate phosphate concentrations (corrected for shifts in probe recovery) rose with stimulation (P < 0.05) by 0.19 +/- 0.08 and 0.11 +/- 0.03 mM for the 3- and 5-Hz protocols. There were no differences between groups. The resting dialysate K+ concentrations for the 3- and 5-Hz conditions were 4.0 +/- 0.1 and 3.9 +/- 0.1 meq/l, respectively. During stimulation the dialysate K+ concentrations rose steadily for both conditions, and the increase from rest to stimulation (P < 0.05) was 0.57 +/- 0.19 and 0.81 +/- 0.06 meq/l for the 3- and 5-Hz conditions, respectively, with no differences between groups. Resting dialysate pH was 6.915 +/- 0.055 and 6.981 +/- 0.032 and rose to 7.013 (P < 0.05) and 7.053 (P < 0.05) for the 3- and 5-Hz conditions, respectively, and then became acidotic (6. 905, P < 0.05) during recovery (5 Hz only). This study represents the first time simultaneous measurements of multiple skeletal muscle interstitial metabolites and pressor responses to twitch contractions have been made in the cat. These data suggest that interstitial K+ and phosphate, but not lactate and H+, may contribute to the stimulation of thin fiber muscle afferents during contraction.
Collapse
Affiliation(s)
- D A MacLean
- Section of Cardiology, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey 17033, Pennsylvania, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Ten specific enzyme defects of glycogen metabolism affect skeletal muscle alone or in combination with other tissues. The newest addition to this group of disorders is the defect of aldolase A (glycogenosis type XII), a block in terminal glycolysis associated with myopathy and a hemolytic trait. The muscle glycogenoses cause two major syndromes, one characterized by exercise intolerance, cramps, and myoglobinuria, and the other dominated by fixed, often progressive weakness. This review considers sequentially recent advances in the following: clinical features or clinical variants, including a brief description of glycogenosis type XII; animal models, both spontaneous and genetically engineered; physiopathologic mechanisms, especially of the exercise intolerance and myoglobinuria; biochemical and molecular features--molecular defects are just beginning to be discovered for some glycogenoses (e.g. phosphorylase-b-kinase deficiency or branching enzyme deficiency), whereas they form long lists for others, such as acid maltase deficiency and myophosphorylase deficiency; and therapeutic approaches, including enzyme replacement and gene therapy.
Collapse
Affiliation(s)
- S DiMauro
- H. Houston Merritt Clinical Research Center for Muscular Dystrophy and Related Diseases, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|