1
|
Madill E, Galetta K, Opeyemi O, Pua DK, Gandelman S, Chitnis T, Bhattacharyya S. Safety and efficacy of anti-IL-17A use in multiple sclerosis and comorbid rheumatological disease: A multi-center exploratory study. J Clin Neurosci 2025; 136:111211. [PMID: 40174548 DOI: 10.1016/j.jocn.2025.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Anti-IL-17A antibodies are used in rheumatological conditions. While not approved for multiple sclerosis (MS), anti-IL-17As reduce new gadolinium-enhancing lesions. Optimal treatment for those with MS and comorbid rheumatological conditions remains unclear. We report safety and efficacy outcomes for anti-IL-17A treatment with and without concurrent MS disease modifying therapy (DMT). Patients with MS and anti-IL-17A use were identified using electronic medical records. Primary outcomes were severe infections and markers of immunosuppression. Secondary outcomes were MS relapses and new MRI lesions. Six patients (median age: 50.1) without recent MS disease activity had anti-IL-17A monotherapy exposures (17.4 total patient-years); seven (median age: 48.2) had concurrent MS DMT use (8.8 patient-years), including anti-CD20 treatment in three patients. One patient on anti-IL-17A monotherapy had a serious infection. No patients had new or worsening lymphopenia. Four of six patients on anti-IL-17A monotherapy had new MS disease activity. No relapses or new MRI lesions occurred during concurrent MS DMT use. No significant safety concerns were identified with anti-IL-17A and MS DMT combination therapy, although exposure duration was limited. More MS disease activity was seen with anti-IL-17A monotherapy. Dual therapy with an MS DMT may be reasonable for MS patients who require anti-IL-17A treatment.
Collapse
Affiliation(s)
- Evan Madill
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kristin Galetta
- Department of Neurology, Stanford University, Stanford, CA, USA
| | | | - Danielle Kei Pua
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Tanuja Chitnis
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Shamik Bhattacharyya
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Loh L, Orlicky DJ, Spengler A, Domenico J, Klarquist J, Levens C, Celli S, Kofonow JM, Robertson CE, Lantz O, Legoux F, Frank DN, Matsuda J, Norman PJ, Kuhn KA, Onyiah J, Gapin L. MAIT cells exacerbate colonic inflammation in a genetically diverse murine model of spontaneous colitis. Mucosal Immunol 2025:S1933-0219(25)00053-4. [PMID: 40425090 DOI: 10.1016/j.mucimm.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 05/01/2025] [Accepted: 05/21/2025] [Indexed: 05/29/2025]
Abstract
IL-17-producing lymphocytes are involved in both tissue repair and the propagation of inflammation, with their effects highly context-dependent. Mucosal-Associated-Invariant-T-cells (MAIT), a subset of innate-like T cells with features of both Th1 and Th17 lineages, are increasingly recognized for their roles in mucosal immunity. Here, we identified the Collaborative-Cross CC011/Unc strain, which spontaneously develops chronic colitis, as being enriched for MAIT cells. This expansion coincides with an age-related loss of intestinal barrier permeability and colonic inflammation. Microbiota from CC011 mice activated MAIT cells in an MR1-dependent manner and selectively promoted the accumulation of MAIT17 cells in peripheral tissues. Single-cell transcriptomic analyses revealed colon MAIT cells from colitic CC011 mice expressed a pathogenic Th17-like signature, characterized by IL-1 and IL-23 signaling, IL-17A and IFNγ co-expression, and upregulation of IL-23R, features that correlated with inflammatory Ly6Chi monocyte abundance. Genetic deletion of Traj33, essential for MAIT development, significantly reduced colonic inflammation in this model. These findings demonstrate that MAIT cells integrate microbial and cytokine cues to adopt a pathogenic effector phenotype that exacerbates chronic intestinal inflammation.
Collapse
Affiliation(s)
- Liyen Loh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrea Spengler
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joanne Domenico
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jared Klarquist
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cassandra Levens
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sofia Celli
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer M Kofonow
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Charles E Robertson
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Olivier Lantz
- Institut Curie, Paris Sciences et Lettres University, Inserm U932, Immunity and Cancer, Paris, France
| | - Francois Legoux
- INSERM ERL 1305, CNRS UMR6290, Université de Rennes, Institut de Génétique & Développement de Rennes, France
| | - Daniel N Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer Matsuda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA; Mouse Genetics Core, National Jewish Health, Denver, CO, USA
| | - Paul J Norman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristine A Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joseph Onyiah
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
3
|
He L, Gong X, Guo H, Zhou K, Lan Y, Lv M, Liu X, Lin S, Hua Y, Guo J, Fan Z, Li Y. Single cell RNA-sequencing identified CCR7+/RELB+/IRF1+ T cell responding for juvenile idiopathic arthritis pathogenesis. Front Immunol 2025; 16:1528446. [PMID: 40406113 PMCID: PMC12095314 DOI: 10.3389/fimmu.2025.1528446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/21/2025] [Indexed: 05/26/2025] Open
Abstract
Background To further explore the disease heterogeneity of different subtypes of Juvenile idiopathic arthritis (JIA) and analyze their pathogenesis mechanisms. Method The single-cell RNA sequencing (scRNA-seq) analysis of peripheral blood mononuclear cells (PBMCs) was carried out to investigate the disease heterogeneity and molecular mechanisms of immune responses in immune cells in JIA. Result In our study, we provided a immunological landscape of HLA-B27-positive JIA and HLA-B27-negative JIA immune cells at single cell RNA-Seq resolution. We found a higher proportion of CCR7+/RELB+/IRF1+ triple positive T cells in the peripheral blood of patients with JIA, and such T cells were predominantly present in HLA-B27+ JIA patients. Furthermore, we hypothesized that CCR7+/RELB+/IRF1+ triple positive T cells were highly activated T cells capable of promoting the differentiation of osteoclasts by producing IL-17, thus causing damage to cartilage in HLA-B27+ JIA patients. Unlike JIA patients, CCR7+/RELB+/IRF1+ triple positive T cells were not found in the peripheral blood of pSS patients and SLE patients, moreover, T cells from pSS patients and SLE patients were less able to produce IL-17 than those from JIA patients. Conclusion Our study provided evidence of cellular and molecular levels of involvement in JIA pathogenesis and identified the critical roles for T cells in JIA pathogenesis. Furthermore, our results suggested that there were significant differences in T cell composition and gene expression between HLA-B27+ JIA patients and HLA-B27- JIA patients. Our findings indicated that CCR7+/RELB+/IRF1+ positive T cells could damage the cartilage of HLA-B27+ JIA by producing cytokines such as IL-17.
Collapse
Affiliation(s)
- Lewei He
- Key Laboratory of Bioresources and Eco-Environment of MOE, College of Life Sciences, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue Gong
- Key Laboratory of Bioresources and Eco-Environment of MOE, College of Life Sciences, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Guo
- Key Laboratory of Bioresources and Eco-Environment of MOE, College of Life Sciences, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiyu Zhou
- Key Laboratory of Bioresources and Eco-Environment of MOE, College of Life Sciences, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Lan
- Key Laboratory of Bioresources and Eco-Environment of MOE, College of Life Sciences, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingyi Lv
- Key Laboratory of Bioresources and Eco-Environment of MOE, College of Life Sciences, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoliang Liu
- Key Laboratory of Bioresources and Eco-Environment of MOE, College of Life Sciences, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sha Lin
- Key Laboratory of Bioresources and Eco-Environment of MOE, College of Life Sciences, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yimin Hua
- Key Laboratory of Bioresources and Eco-Environment of MOE, College of Life Sciences, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Eco-Environment of MOE, College of Life Sciences, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Key Laboratory of Bioresources and Eco-Environment of MOE, College of Life Sciences, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Beaufrère M, Jacoutot M, Nahal RS, Cosentino G, Hutteau-Hamel T, Clavel G, Malfait AJ, Araujo LM, Breban M, Glatigny S. Interleukin 17-producing C-C motif chemokine receptor 6 + conventional CD4 + T cells are arthritogenic in an animal model of spondyloarthritis. J Autoimmun 2025; 153:103413. [PMID: 40163937 DOI: 10.1016/j.jaut.2025.103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVE Spondyloarthritis (SpA) is a group of chronic inflammatory disorders associated with the human leukocyte antigen (HLA) class I allele HLA-B27. Transgenic rats expressing HLA-B27 and human β2-microglobulin (B27 rats) develop clinical manifestations resembling SpA called rat SpA. IL-17 and TNF are key proinflammatory cytokines implicated in both human and rat SpA. We aimed to determine which T cell subset(s) produce IL-17 and TNF during rat SpA, characterize their tissue distribution and tested their pathogenicity in vivo. METHODS Cytokine production by T cell subsets was evaluated in target tissues and lymphoid organs during rat SpA. Pathogenicity of purified IL-17+ cells was assessed in vivo by cell transfer. Blood samples were used to translate B27 rats findings to SpA patients. RESULTS Conventional CD4+ T cells (Foxp3-; Tconv) and γδ T cells were the main producers of both IL-17 and TNF in B27 rats. IL-17-producing Tconv and γδ T cells were expanded in the colon of premorbid 3-weeks-old B27 rats. C-C motif chemokine receptor 6 (CCR6) allowed the isolation of IL-17+ Tconv (Th17) in rat. Transfer of B27 rat IL-17-producing CCR6+ Tconv but not of γδ T cells into disease-free nude B27 rats induced arthritis, directly demonstrating for the first time the arthritogenic potential of Th17 cells in SpA. Finally, a CCR6+ IL-17+ Tconv expansion enriched for IL-17F production was evidenced in SpA patients. CONCLUSION Our study demonstrates that IL-17+TNF+CCR6+ Th17 cells and IL-17+ γδ T cells are expanded preceding SpA onset in B27 rats and that only IL-17+TNF+CCR6+ Th17 cells can trigger arthritis.
Collapse
Affiliation(s)
- Marie Beaufrère
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France; INFLAMEX, Laboratoire d'Excellence, Université Paris Cité, France; Rheumatology Division, Ambroise Paré Hospital (AP-HP), Boulogne-Billancourt, France
| | - Manon Jacoutot
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France; INFLAMEX, Laboratoire d'Excellence, Université Paris Cité, France
| | - Roula Said Nahal
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France; Rheumatology Division, Ambroise Paré Hospital (AP-HP), Boulogne-Billancourt, France
| | - Gina Cosentino
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France
| | - Tom Hutteau-Hamel
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France
| | - Gaelle Clavel
- Institut National de la Santé et de la Recherche Médicale, UMR 1125, Université Sorbonne Paris Cité, Paris, France
| | - Aude Jobart Malfait
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France; INFLAMEX, Laboratoire d'Excellence, Université Paris Cité, France
| | - Luiza M Araujo
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France; INFLAMEX, Laboratoire d'Excellence, Université Paris Cité, France
| | - Maxime Breban
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France; INFLAMEX, Laboratoire d'Excellence, Université Paris Cité, France; Rheumatology Division, Ambroise Paré Hospital (AP-HP), Boulogne-Billancourt, France.
| | - Simon Glatigny
- UMR1173, Université Paris Saclay, Université de Versailles St Quentin en Yvelines, Inserm, Infection et Inflammation, Montigny le Btx, France; INFLAMEX, Laboratoire d'Excellence, Université Paris Cité, France.
| |
Collapse
|
5
|
Jordan MA, Morschl J, Autenrieth SE. Dendritic cells in multiple myeloma: from immune evasion to therapeutic potential. Front Immunol 2025; 16:1575509. [PMID: 40313957 PMCID: PMC12043573 DOI: 10.3389/fimmu.2025.1575509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/02/2025] [Indexed: 05/03/2025] Open
Abstract
Multiple myeloma (MM) is a type of hematologic cancer characterized by the uncontrolled clonal expansion of plasma cells in the bone marrow (BM). This leads to significant dysfunction and suppression of the immune system in affected patients. Myeloma cells employ sophisticated strategies to manipulate immune and non-immune cells, evading immune surveillance and enhancing their survival. One key factor in this evasion is the disruption of dendritic cell (DC)-mediated immune mechanisms. Extensive evidence indicates that in the presence of myeloma cells, DC numbers are notably reduced, and their phenotype and function are altered, impairing their ability to present antigens and activate robust T-cell responses effectively. Despite rapid advances in MM treatment, with promising strategies such as DC-based vaccines being already achieved, DC dysfunction remains a substantial hurdle, associated with or contributing to poor therapeutic outcomes, disease relapse, and MM's persistence as an incurable disease. To address these challenges, it is essential to understand the intricate mechanisms through which myeloma cells transform DCs into their "accomplices," undermining immune responses. This review comprehensively summarizes the current understanding of the role of DCs in MM. Additionally, it evaluates the potential of DCs in anti-MM immunotherapy, discussing persistent challenges and highlighting emerging perspectives that may lead to promising breakthroughs for improved patient outcomes.
Collapse
|
6
|
Lu Z, Xiao P, Liu S, Huang C, Li W, Mao Y, Xu Y, Tian Y. Osteoimmunology: Crosstalk Between T Cells and Osteoclasts in Osteoporosis. Clin Rev Allergy Immunol 2025; 68:41. [PMID: 40208457 DOI: 10.1007/s12016-025-09046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Osteoporosis, a common metabolic condition that affects the bones, increases the risk of fractures, thereby diminishing one's quality of life and, in severe cases, can even result in life-threatening conditions. Osteoporosis is becoming increasingly prevalent worldwide as the population ages. Previous research on osteoporosis has focused on skeletal cellular components such as osteoblasts and osteoclasts. The emerging field of "osteoimmunology" has recently been introduced through new research. The concept highlights the critical impact of bone-immune system interactions on osteoporosis progression. The pathogenesis of osteoporosis is significantly influenced by T cells, particularly cytotoxic and helper T cells, which modulate osteoclast differentiation and activity. A crucial aspect of understanding osteoporosis is how T lymphocytes interact with osteoclasts. However, the precise mechanisms underlying T cell-osteoclast crosstalk remain poorly understood. This review systematically examines T cell and osteoclast involvement in osteoimmunology, with a particular focus on their involvement in osteoporosis. It seeks to elucidate the immune mechanisms driving the progression of osteoporosis and identify key molecules involved in T cell-osteoclast interactions. This aims to discover novel molecular targets and intervention strategies to improve early diagnosis and management of osteoporosis. Furthermore, this article will explore the potential of intervening in T cell-osteoclast interactions using conventional therapies, traditional Chinese medicine, immunomodulatory agents, and nanomaterial-based treatments, providing new perspectives for future osteoporosis management.
Collapse
Affiliation(s)
- Zeyao Lu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peilun Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shijia Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chongjun Huang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weishang Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanheng Mao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Hong Y, Yang M, Xu X, Wang P, Ten Z, Chen H, Fu M, Xiong R, Ouyang J. Gut microbiota, inflammatory proteins and bone mineral density in different age groups: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41875. [PMID: 40193639 PMCID: PMC11977711 DOI: 10.1097/md.0000000000041875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/12/2024] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Several studies have indicated a potential association between gut microbiota and bone density. However, the causal relationship between gut microbiota and bone mineral density across different age groups, as well as the potential role of inflammatory proteins as mediators, remains unclear. Gut microbiota, inflammatory proteins, and bone mineral density (BMD) were identified in various age groups using summary data from large-scale genome-wide association studies. Mendelian randomization was employed to examine the causal connections between gut microbiota, inflammatory proteins, and BMD in different age groups, primarily utilizing inverse variance weighted as the statistical method. Furthermore, the potential role of inflammatory proteins as mediators in the pathway from gut microbiota to BMD was investigated. Eight positive and 19 negative causal relationships between gut microbiota and BMD were observed across various age groups. We also identified 14 positive and 8 negative causal relationships between inflammatory proteins and BMD in different age groups. Inflammatory proteins did not appear to function as mediators in the pathway from gut microbiota to BMD. Gut microbiota and inflammatory proteins were causally linked to BMD; however, inflammatory proteins did not seem to function as mediators in the pathway from gut microbiota to BMD because the effects of intestinal flora on bone density and the effects of inflammatory factors on bone density were in different directions.
Collapse
Affiliation(s)
- Yuechang Hong
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People’s Republic of China
| | - Minghui Yang
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People’s Republic of China
| | - Xin Xu
- Department of Sports Medicine, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, People’s Republic of China
| | - Peng Wang
- Department of Sports Medicine, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, People’s Republic of China
| | - Zixin Ten
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People’s Republic of China
| | - Huang Chen
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People’s Republic of China
| | - Minqiang Fu
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, People’s Republic of China
| | - Renying Xiong
- Department of Medicine, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, People’s Republic of China
| | - Jianjiang Ouyang
- Department of Sports Medicine, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, People’s Republic of China
| |
Collapse
|
8
|
Padhee S, Mohanty D, Mohanty S, Sahoo A, Jena S, Patnaik J, Panda PC, Deb CR, Ray A, Nayak S. Identification of the active constituents and molecular mechanism of Eulophia nuda extract in the treatment of osteoarthritis by network pharmacology, molecular modelling and experimental assays. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2961-2982. [PMID: 39311920 DOI: 10.1007/s00210-024-03459-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/12/2024] [Indexed: 03/19/2025]
Abstract
Osteoarthritis is a degenerative joint disease that worsens over time, often resulting in chronic pain. Eulophia nuda (Orchidaceae), a medicinal herb widely used by folklore and indigenous healers for treating arthritis but the active ingredients and the molecular mechanisms of action are yet to be explored. The present study systematically investigates the underlying anti-osteoarthritic mechanism of ENE through network pharmacology, molecular dynamics simulation and experimental assays. A comprehensive search on IMPPAT, KNApSAcK and Pubchem databases resulted 26 active compounds from E. nuda, of which 23 passed the drug-likeness criteria. A total of 2344 compound targets, 1370 osteoarthritis targets and 81 overlapping compound-disease targets were identified. The compound-disease target network resulted in five active constituents with degree > 23. Topological analysis of the protein-protein interaction network revealed six hub target genes. KEGG analysis revealed IL-17, TNF and AGE-RAGE signalling pathways as the enriched pathways involved in osteoarthritis. Molecular docking showed eulophiol had the good binding energy (>8.0 kcal/mol) with MMP9, JNK1, p38 and NF-kβ. The molecular dynamics simulations and the MMPBSA analysis indicate high stability and greater binding energy of eulophiol with the target proteins. ENE did not show cytotoxicity on SW982 cells up to a concentration of 100 μg/ml. ENE exhibited considerable anti-inflammatory effect by reducing PGE2, IL-6 and IL8 levels as well as reducing the mRNA expression of matrix metalloproteinases (MMP2 and MMP9). Furthermore, ENE effectively inhibited the NF-kβ nuclear translocation and phosphorylation of ERK2, p38 and JNK in SW982 cells. The current study showed that ENE may act as a potential drug candidate for treating osteoarthritis.
Collapse
Affiliation(s)
- Sucheesmita Padhee
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India
| | - Debajani Mohanty
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India
| | - Swagat Mohanty
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India
| | - Jeetendranath Patnaik
- Department of Botany, Sri Krushna Chandra Gajapati Autonomous College, Paralakhemundi, 761200, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India
| | - Chitta Ranjan Deb
- Department of Botany, Nagaland University, Lumami, Nagaland, 798627, India
| | - Asit Ray
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India.
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
9
|
Za P, Papalia GF, Gregori P, Vasta S, Papalia R. Osteonecrosis as a manifestation of Long-COVID Syndrome: a systematic review. Musculoskelet Surg 2025; 109:1-7. [PMID: 39085687 DOI: 10.1007/s12306-024-00854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Purpose SARS-CoV-2 is an RNA virus responsible for COVID-19 pandemic. Some authors described the set of persistent symptoms COVID-related as "Long-COVID Syndrome." Several cases of post-COVID-19 osteonecrosis (ON) are described. Our primary aim was to study the hypothetical correlation between SARS-CoV-2 infection and ON; our secondary aim was to understand if ON can be considered part of Long-COVID. Materials and methods We performed a systematic review following the Preferred Reporting Items for Systematic Reviewers and Meta-analysis (PRISMA) guidelines. Because COVID-19 is a recently described disease, we included all levels of evidence studies. We excluded studies lacking specification regarding the use of corticosteroids (CCS) and studies not related to COVID-19. The variables extracted were age, sex, risk factors, affected joints, signs and symptoms, magnetic resonance imaging (MRI) and X-ray features, histology, treatment of COVID-19, dose and duration of treatment with CCS, treatment of ON, follow-up, and treatment outcome. Results A total of 13 studies were included, involving 95 patients and 159 joints. Time between the diagnosis of COVID-19 and the onset of symptoms related to ON was 16 weeks on average. Time between the onset of symptoms and the MRI was 6 weeks. An average of 926.4 mg of prednisolone equivalent per patient were administered. On average, CCS were administered for 20.6 days. Conclusions Patients with a history of COVID-19 infection developed osteonecrosis prematurely and with a lower dose of CCS than usually reported in the literature. Symptoms of osteonecrosis occur within the interval of the period described as Long-COVID. Surgeons should not underestimate the persistence of arthralgia when a history of SARS-CoV-2 infection and use of CCS is reported.
Collapse
Affiliation(s)
- P Za
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - G F Papalia
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy.
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.
| | - P Gregori
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - S Vasta
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - R Papalia
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
| |
Collapse
|
10
|
Wang H, Li Y, Li H, Yan X, Jiang Z, Feng L, Hu W, Fan Y, Lin S, Li G. T cell related osteoimmunology in fracture healing: Potential targets for augmenting bone regeneration. J Orthop Translat 2025; 51:82-93. [PMID: 39991456 PMCID: PMC11847249 DOI: 10.1016/j.jot.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 02/25/2025] Open
Abstract
UNLABELLED Last decade has witnessed increasing evidence which highlights the roles of immune cells in bone regeneration. Numerous immune cell types, including macrophages, T cells, and neutrophils are involved in fracture healing by orchestrating a series of events that modulate bone formation and remodeling. In this review, the role of T cell immunity in fracture healing has been summarized, and the modulatory effects of T cell immunity in inflammation, bone formation and remodeling have been highlighted. The review also summarizes the specific roles of different T cell subsets, including CD4+ T cells, CD8+ T cells, regulatory T cells, T helper 17 cells, and γδ T cells in modulating fracture healing. The current therapeutics targeting T cell immunity to enhance fracture healing have also been reviewed, aiming to provide insights from a translational standpoint. Overall, this work discusses recent advances and challenges in the interdisciplinary research field of T cell related osteoimmunology and its implications in fracture healing. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Delayed unions or non-unions of bone fractures remain a challenge in clinical practice. Developing a deep understanding of the roles of immune cells, including T cells, in fracture healing will facilitate the advancement of novel therapeutics of fracture nonunion. This review summarizes the current understanding of different T cell subsets involved in various phases of fracture healing, providing insights for targeting T cells as an alternative strategy to enhance bone regeneration.
Collapse
Affiliation(s)
- Haixing Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yashi Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haoxin Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xu Yan
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhaowei Jiang
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lu Feng
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Wenhui Hu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yinuo Fan
- The Third Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Haacke N, Wang H, Yan S, Barovic M, Li X, Nagai K, Botezatu A, Hatzioannou A, Gercken B, Trimaglio G, Shah AU, Wang J, Ye L, Jaykar MT, Rauner M, Wielockx B, Chung KJ, Netea MG, Kalafati L, Hajishengallis G, Chavakis T. Innate immune training of osteoclastogenesis promotes inflammatory bone loss in mice. Dev Cell 2025:S1534-5807(25)00063-2. [PMID: 40020679 PMCID: PMC7617534 DOI: 10.1016/j.devcel.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
We previously demonstrated that long-term trained immunity (TRIM) involves adaptations that imprint innate immune memory in long-lived myelopoiesis precursors and their progeny, monocytes/macrophages and neutrophils, which thereby acquire enhanced responsiveness to future challenges. Here, we show that a distinct component of myeloid biology, osteoclastogenesis, can also undergo innate immune training. Indeed, β-glucan-induced TRIM was associated with an increased osteoclastogenesis bias in the bone marrow and an expansion of monocytes/osteoclast progenitors in the periphery, resulting in aggravated severity of experimental periodontitis and arthritis. In the setting of trained inflammatory osteoclastogenesis, we observed transcriptomic rewiring in synovial myeloid cells of arthritic mice, featuring prominent upregulation of the transcription factor melanogenesis-associated transcription factor (MITF). Adoptive transfer of splenic monocytes from β-glucan-trained mice to naive recipients exacerbated arthritis in the latter in a strictly MITF-dependent manner. Our findings establish trained osteoclastogenesis as a maladaptive component of TRIM and potentially provide therapeutic targets in inflammatory bone loss disorders.
Collapse
Affiliation(s)
- Nora Haacke
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Hui Wang
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shu Yan
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany
| | - Marko Barovic
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kosuke Nagai
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Adelina Botezatu
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Giulia Trimaglio
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany
| | - Anisha U Shah
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mangesh T Jaykar
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 XZ Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
12
|
Ramirez GA, Cardamone C, Lettieri S, Fredi M, Mormile I. Clinical and Pathophysiological Tangles Between Allergy and Autoimmunity: Deconstructing an Old Dichotomic Paradigm. Clin Rev Allergy Immunol 2025; 68:13. [PMID: 39932658 PMCID: PMC11814061 DOI: 10.1007/s12016-024-09020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2024] [Indexed: 02/14/2025]
Abstract
Allergic and autoimmune disorders are characterised by dysregulation of the immune responses to otherwise inert environmental substances and autoantigens, leading to inflammation and tissue damage. Their incidence has constantly increased in the last decades, and their co-occurrence defies current standards in patient care. For years, allergy and autoimmunity have been considered opposite conditions, with IgE and Th2 lymphocytes cascade driving canonical allergic manifestations and Th1/Th17-related pathways accounting for autoimmunity. Conversely, growing evidence suggests that these conditions not only share some common inciting triggers but also are subtended by overlapping pathogenic pathways. Permissive genetic backgrounds, along with epithelial barrier damage and changes in the microbiome, are now appreciated as common risk factors for both allergy and autoimmunity. Eosinophils and mast cells, along with autoreactive IgE, are emerging players in triggering and sustaining autoimmunity, while pharmacological modulation of B cells and Th17 responses has provided novel clues to the pathophysiology of allergy. By combining clinical and therapeutic evidence with data from mechanistic studies, this review provides a state-of-the-art update on the complex interplay between allergy and autoimmunity, deconstructing old dichotomic paradigms and offering potential clues for future research.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Cardamone
- Immunorheumatology Unit, University Hospital "San Giovanni Di Dio E Ruggi d'Aragona", Largo Città d'Ippocrate, Via San Leonardo 1, 84131, Salerno, Italy.
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.
| | - Sara Lettieri
- Pulmonology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Ilaria Mormile
- Division of Internal Medicine and Clinical Immunology, Department of Internal Medicine and Clinical Complexity, AOU Federico II, Naples, Italy
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
13
|
Riaz M, Rasool G, Yousaf R, Fatima H, Munir N, Ejaz H. Anti-Rheumatic potential of biological DMARDS and protagonistic role of bio-markers in early detection and management of rheumatoid arthritis. Innate Immun 2025; 31:17534259251324820. [PMID: 40091354 PMCID: PMC11912179 DOI: 10.1177/17534259251324820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that primarily affects the synovial joint linings, resulting in progressive disability, increased mortality, and considerable economic costs. Early treatment with disease-modifying antirheumatic medications (DMARDs) can significantly improve the overall outlook for people with RA. Contemporary pharmaceutical interventions, encompassing standard, biological, and emerging small molecule disease- modifying anti-rheumatic medications continue to be the cornerstone of RA management, with substantial advancements made in the pursuit of achieving remission from the disease and preventing joint deformities. Nevertheless, a substantial segment of individuals with RA do not experience a satisfactory response to existing treatments, underscoring the pressing need for novel therapeutic options. Biologic DMARDs are among the therapy choices. Non-tumor necrosis factor inhibitors (Non-TNFi) such as abatacept, rituximab, tocilizumab, and sarilumab are examples, as are anti-tumor necrosis factor (TNF) medications such as infliximab, adalimumab, etanercept, golimumab, and certolizumab pegol. More recent biomarkers have emerged and showed usefulness in the early detection of RA. These biomarkers, often referred to simply as "biomarkers", are quantifiable indicators of normal or pathologic processes, and they can also gauge treatment response. The assessment of RA treatment response typically combines patient-reported outcomes, physical evaluations, and laboratory findings, as there isn't a single biomarker that has proven sufficient for measuring disease activity. This review explores the usage of biologic DMARDs as a therapeutic approach for RA, as well as the biomarkers typically used for RA early diagnosis, prognosis prediction, and disease activity evaluation.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Pakistan
| | - Ghulam Rasool
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Pakistan
| | - Ruhamah Yousaf
- Department of Health Professional Technologies, The University of Lahore, Lahore, Pakistan
| | - Hina Fatima
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Naveed Munir
- Department of Biomedical Lab Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
14
|
Christopher ZK, Braathen D, Blackburn BE, Anderson LA, Gililland JM, Pelt CE, Archibeck MJ. Analysis of Synovial Fluid Aspirations in Aseptic Loosening and Instability After Total Knee Arthroplasty. J Arthroplasty 2024:S0883-5403(24)01319-6. [PMID: 39706353 DOI: 10.1016/j.arth.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Aseptic total knee arthroplasty (TKA) complications can be challenging to diagnose. Many studies have defined periprosthetic joint infection (PJI) using synovial aspirations, but few studies have described aspiration characteristics in aseptic TKA problems. The aim of this study was to determine the synovial fluid characteristics of patients who had TKA failure caused by two common aseptic diagnoses: aseptic loosening and instability. We sought to compare the characteristics between these groups in addition to the failure caused by PJI. METHODS A retrospective study was performed in which consecutive patients who had a preoperative knee aspiration and underwent TKA revision for one of three diagnoses (PJI, aseptic loosening, or instability) were evaluated. Clinical notes were used to obtain demographics, comorbidity data, aspiration cell count, and differential to compare among the groups. There were 399 patients included: 240 PJI, 103 aseptic loosening, and 56 instability. RESULTS There were significant differences between mean white blood cell (WBC) count and polymorphonuclear, lymphocyte, and monocyte percentages between all groups. Findings consistent with a diagnosis of aseptic loosening included a mean WBC count of 1,021.9 cells/μL with 29.7% polymorphonuclear (PMNs), 32.7% lymphocytes, and 44.6% monocytes, and relatively elevated PMN/lymphocyte (2.1) and PMN/monocyte (3.5) ratios. Findings consistent with a diagnosis of instability included a mean WBC count of 1,261.2 cells/μL with 23.5% PMNs, 35.6% lymphocytes, and 50.0% monocytes, and a relatively lower PMN/lymphocyte (1.1) and PMN/monocyte (1.5) ratios compared to aseptic loosening. In both aseptic loosening and instability, there were significantly more lymphocytes and monocytes than in PJI. In addition, instability cases had a higher mean red blood cell count of 405,996.9 cells/μL (P = 0.012). CONCLUSIONS Differentiating between instability and aseptic loosening in TKA remains a diagnostic challenge. This study provides insight into the cellular pathophysiology of aseptic TKA complications and can be used to aid in clarifying the diagnosis of aseptic loosening versus instability.
Collapse
Affiliation(s)
- Zachary K Christopher
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA; Department of Orthopaedic Surgery, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Dalton Braathen
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| | - Brenna E Blackburn
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| | - Lucas A Anderson
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| | - Jeremy M Gililland
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| | - Christopher E Pelt
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| | - Michael J Archibeck
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
15
|
Sapra L, Srivastava RK. Immunotherapy in the management of inflammatory bone loss in osteoporosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 144:461-491. [PMID: 39978975 DOI: 10.1016/bs.apcsb.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Osteoporosis, a progressive skeletal disorder characterized by decreased bone mass and increased fracture risk, has traditionally been treated with pharmacological agents targeting bone remodeling. However, emerging research highlights the critical role of immune system in regulating bone metabolism, introducing the concept of Osteoimmunology. Chronic low-grade inflammation is now recognized as a significant contributor to osteoporosis, particularly in postmenopausal women and the elderly. Immune cells, such as T cells and B cells, and their secreted cytokines directly influence bone resorption and formation, tipping the balance toward net bone loss in inflammatory environments. Immunotherapy, a treatment modality traditionally associated with cancer and autoimmune diseases, is now gaining attention in the management of osteoporosis. By targeting immune dysregulation and reducing inflammatory bone loss, immunotherapies offer a novel approach to treating osteoporosis that goes beyond merely inhibiting bone resorption or promoting bone formation. This therapeutic strategy includes monoclonal antibodies targeting inflammatory cytokines, cell-based therapies to enhance the function of regulatory T and B cells, and interventions aimed at modulating immune pathways linked to bone health. This chapter reviews the emerging role of immunotherapy in addressing inflammatory bone loss in osteoporosis. Present chapter also explores the underlying immune mechanisms contributing to bone degradation, current immunotherapeutic strategies under investigation, and the potential of these approaches to revolutionize the management of osteoporosis.
Collapse
Affiliation(s)
- Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
16
|
Liang Q, He L, Wang J, Tang D, Wu C, Peng W. Targeting IL-17 and its receptors: A feasible way for natural herbal medicines to modulate fibroblast-like synoviocytes in rheumatoid arthritis. Biochem Pharmacol 2024; 230:116598. [PMID: 39481657 DOI: 10.1016/j.bcp.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Rheumatoid arthritis (RA) is characterized by processive synovial hyperplasia and abnormal proliferation of fibroblast-like synoviocytes (FLSs), and can eventually lead to progressive joint destruction. Increasing evidence has demonstrated that cytokines play pivotal roles in the pathogenesis of RA. In particular, the production of interleukin (IL)-17 by T helper 17 (Th17) cells is closely associated with the development of RA, and inhibition of IL-17/IL-17R could regulate the production of inflammatory factors by FLSs, which may be a feasible way to reduce inflammation and bone destruction in RA. Currently, accumulating evidence suggests that the utilization of natural herbal medicines is advantageous in the management of RA. In our present paper, a comprehensive reference search was conducted of the classic Materia Medica books, literature, online databases, academic search engines, and MS. or Ph. D theses. In conclusion, natural herbal medicines with antirheumatic activities that modulate FLSs by targeting IL-17/IL-17R were summarized. Furthermore, we also discuss the limitations and potential research directions for the future development of natural herbal medicines as candidate drugs for RA management in the clinic.
Collapse
Affiliation(s)
- Qi Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Lin He
- MIIT Public Service Platforms for Industrial Technological Base, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu 611731, PR China
| | - Jingwen Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Dandan Tang
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang 621000, PR China
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
17
|
Smolinska V, Klimova D, Danisovic L, Harsanyi S. Synovial Fluid Markers and Extracellular Vesicles in Rheumatoid Arthritis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1945. [PMID: 39768826 PMCID: PMC11678482 DOI: 10.3390/medicina60121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
In recent years, numerous potential prognostic biomarkers for rheumatoid arthritis (RA) have been investigated. Despite these advancements, clinical practice primarily relies on autoantibody tests-for rheumatoid factor (RF) and anti-citrullinated protein antibody (anti-CCP)-alongside inflammatory markers, such as the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). Expanding the repertoire of diagnostic and therapeutic biomarkers is critical for improving clinical outcomes in RA. Emerging evidence highlights the significance of synovial fluid biomarkers, including aggrecan, matrix metalloproteinases, glucosyl-galactosyl-pyridinoline, hyaluronic acid, S100 proteins, calprotectin, and various cytokines, as well as immunological markers. Additionally, specific components of extracellular vesicles, such as non-coding RNAs, heat shock proteins, and lipids, are gaining attention. This review focuses on molecular markers found in synovial fluid and extracellular vesicles, excluding clinical and imaging biomarkers, and explores their potential applications in the diagnosis and management of RA.
Collapse
Affiliation(s)
- Veronika Smolinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| | - Daniela Klimova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (V.S.); (D.K.); (L.D.)
| |
Collapse
|
18
|
Hosein-Woodley R, Hirani R, Issani A, Hussaini AS, Stala O, Smiley A, Etienne M, Tiwari RK. Beyond the Surface: Uncovering Secondary Causes of Osteoporosis for Optimal Management. Biomedicines 2024; 12:2558. [PMID: 39595124 PMCID: PMC11592080 DOI: 10.3390/biomedicines12112558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoporosis (OP), a condition marked by reduced bone mineral density and increased fracture risk, can arise either as a primary disorder or secondary to other diseases and medications. While primary OP typically relates to age-related or postmenopausal changes, secondary OP results from underlying conditions or drug exposures, complicating diagnosis and management. This review explores the pathophysiology, prevalence, and treatment approaches for secondary OP arising from endocrine, renal, gastrointestinal, hematological, and autoimmune disorders, as well as medication side effects. The findings highlight that secondary OP is frequently undiagnosed, particularly in premenopausal women and men, with conditions such as chronic kidney disease, glucocorticoid use, and diabetes among the primary contributors. Management strategies must be tailored to address the underlying conditions to effectively reduce fracture risk and improve outcomes. Ultimately, this review underscores the necessity for increased clinical awareness and more targeted interventions for optimal management of secondary OP.
Collapse
Affiliation(s)
| | - Rahim Hirani
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (R.H.)
- Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY 10595, USA
| | - Ali Issani
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Anum S. Hussaini
- Department of Global Health and Population, Harvard T.H Chan School of Public Health, Boston, MA 02115, USA
| | - Olivia Stala
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (R.H.)
| | - Abbas Smiley
- School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Mill Etienne
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (R.H.)
| | - Raj K. Tiwari
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (R.H.)
- Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
19
|
Yu C, Zhang Z, Xiao L, Ai M, Qing Y, Zhang Z, Xu L, Yu OY, Cao Y, Liu Y, Song K. IRE1α pathway: A potential bone metabolism mediator. Cell Prolif 2024; 57:e13654. [PMID: 38736291 PMCID: PMC11471397 DOI: 10.1111/cpr.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/07/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Osteoblasts and osteoclasts collaborate in bone metabolism, facilitating bone development, maintaining normal bone density and strength, and aiding in the repair of pathological damage. Endoplasmic reticulum stress (ERS) can disrupt the intracellular equilibrium between osteoclast and osteoblast, resulting in dysfunctional bone metabolism. The inositol-requiring enzyme-1α (IRE1α) pathway-the most conservative unfolded protein response pathway activated by ERS-is crucial in regulating cell metabolism. This involvement encompasses functions such as inflammation, autophagy, and apoptosis. Many studies have highlighted the potential roles of the IRE1α pathway in osteoblasts, chondrocytes, and osteoclasts and its implication in certain bone-related diseases. These findings suggest that it may serve as a mediator for bone metabolism. However, relevant reviews on the role of the IRE1α pathway in bone metabolism remain unavailable. Therefore, this review aims to explore recent research that elucidated the intricate roles of the IRE1α pathway in bone metabolism, specifically in osteogenesis, chondrogenesis, osteoclastogenesis, and osteo-immunology. The findings may provide novel insights into regulating bone metabolism and treating bone-related diseases.
Collapse
Affiliation(s)
- Chengbo Yu
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Zhixiang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Li Xiao
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Mi Ai
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Ying Qing
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Zhixing Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Lianyi Xu
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Ollie Yiru Yu
- Faculty of DentistryThe University of Hong KongHong Kong SARChina
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, and the Institute for Advanced StudiesWuhan UniversityWuhanHubeiChina
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhanChina
| |
Collapse
|
20
|
Murayama M, Chow SK, Lee ML, Young B, Ergul YS, Shinohara I, Susuki Y, Toya M, Gao Q, Goodman SB. The interactions of macrophages, lymphocytes, and mesenchymal stem cells during bone regeneration. Bone Joint Res 2024; 13:462-473. [PMID: 39237112 PMCID: PMC11377107 DOI: 10.1302/2046-3758.139.bjr-2024-0122.r1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes - the main cellular components in BMAC - interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes.
Collapse
Affiliation(s)
- Masatoshi Murayama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Simon K. Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Max L. Lee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Bill Young
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yasemin S. Ergul
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yosuke Susuki
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
21
|
Toussirot E, Felten R. IL-17 inhibitors in axial spondyloarthritis. An overview. Expert Opin Biol Ther 2024; 24:917-932. [PMID: 39153184 DOI: 10.1080/14712598.2024.2394472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/07/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION The therapeutic armamentarium for spondyloarthritis has expanded considerably in recent years, and there is growing evidence to support the increasing use of IL-17 inhibitors (IL-17i) in axial spondyloarthritis (axSpA). AREAS COVERED This literature review provides an update on the role of IL-17 in the pathogenesis of axSpA, efficacy and safety from clinical trials and real-life studies on the use of IL17i in axSpA. We also review the impact of extra-musculoskeletal manifestations on the decision to treat with IL17i and the efficacy of IL17i on structural progression. EXPERT OPINION There are still some unanswered questions concerning the use of IL-17i in axSpA in clinical practice such as their respective place in the management of axSpA compared to TNFα inhibitors (TNFi). Their main differences rely on their specific efficacy in extra-articular manifestations such as psoriasis, uveitis, and inflammatory bowel diseases leading to the choice of the best treatment in a given patient. Regarding their real impact on structural progression, the rate of progression under IL-17i appears to be low and presumably similar to TNFi. One final question is the advantage of blocking the two IL-17 isoforms A and F compared to the single inhibition of IL-17A.
Collapse
Affiliation(s)
- Eric Toussirot
- Département Universitaire de Thérapeutique, CHU de Besançon, INSERM CIC-1431, Rhumatologie, INSERM UMR 1098 Right, Université de Franche-Comté, Besançon, France
| | - Renaud Felten
- Centre d'Investigation Clinique, INSERM CIC-1434, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Service de Rhumatologie, Centre National de Référence des Maladies Autoimmunes (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Département Universitaire de Pharmacologie-Addictologie, Toxicologie et Thérapeutique, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
22
|
Altaca M, Cebesoy EI, Kocak-Oztug NA, Bingül I, Cifcibasi E. Interleukin-6, -17, and -35 levels in association with clinical status in stage III and stage IV periodontitis: a cross-sectional study. BMC Oral Health 2024; 24:1015. [PMID: 39215253 PMCID: PMC11363592 DOI: 10.1186/s12903-024-04751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study compared the concentrations of interleukin (IL)-6, IL-17, and IL-35 in the gingival crevicular fluid of periodontally healthy participants with individuals who had stage III and IV periodontitis. METHODS In total, 60 participants with stage III grade B-C (n = 12)-stage IV grade C (n = 18) periodontitis and 30 healthy controls were included in this cross-sectional study. Full-mouth clinical periodontal measurements were performed. Concentrations of IL-6, IL-17, and IL-35 were determined using enzyme-linked immunosorbent assays. Parametric/nonparametric methods, Pearson's/Spearman's correlation, and logistic regression methods were used for data analyses. RESULTS The periodontitis group exhibited significantly higher levels of IL-6, IL-17, and IL-35 compared with the healthy group (p < 0.001). IL-17 levels had a positive correlation with pocket depth (PD) (r = 0.395; p = 0.031) in the periodontitis group. IL-6, IL-17, and IL-35 levels were associated with periodontitis (odds ratio [OR] = 1.344, 95% confidence interval [CI] = 1.159-1.56; OR = 1.063, 95% CI = 1.025-1.102; OR = 1.261, 95% CI = 1.110-1.434, respectively) (p < 0.001, p = 0.001, p < 0.001, respectively). Full-mouth and sampling sites PD and clinical attachment loss (CAL) values were significantly higher in the periodontitis group than in the healthy group (p < 0.001). CONCLUSIONS This study revealed upregulated levels of IL-6, IL-17, and IL-35 in periodontitis patients compared to healthy individuals. IL-17 shows a correlation with increased PD. These findings suggest a potential association between these cytokines and severe and advanced periodontitis. TRIAL REGISTRATION The trial was registered in ClinicalTrials.gov with this identifier NCT05306860 on 24/01/2022.
Collapse
Affiliation(s)
- Müge Altaca
- Faculty of Dentistry, Department of Periodontology, Istanbul University, Istanbul, 34116, Turkey
- Institute of Graduate Studies in Health Sciences, Department of Periodontology, Istanbul University, Istanbul, 34126, Turkey
| | - Elif Ilke Cebesoy
- Faculty of Dentistry, Department of Periodontology, Istanbul University, Istanbul, 34116, Turkey
- Institute of Graduate Studies in Health Sciences, Department of Periodontology, Istanbul University, Istanbul, 34126, Turkey
| | - Necla Asli Kocak-Oztug
- Faculty of Dentistry, Department of Periodontology, Istanbul University, Istanbul, 34116, Turkey
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, 4006, Australia
| | - Ilknur Bingül
- Faculty of Medicine, Department of Medical Biochemistry, Istanbul University, Istanbul, Turkey
| | - Emine Cifcibasi
- Faculty of Dentistry, Department of Periodontology, Istanbul University, Istanbul, 34116, Turkey.
| |
Collapse
|
23
|
McGrath S, Grimstad K, Thorarinsdottir K, Forslind K, Glinatsi D, Leu Agelii M, Aranburu A, Sundell T, Jonsson CA, Camponeschi A, Hultgård Ekwall AK, Tilevik A, Gjertsson I, Mårtensson IL. Correlation of Professional Antigen-Presenting Tbet +CD11c + B Cells With Bone Destruction in Untreated Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:1263-1277. [PMID: 38570939 DOI: 10.1002/art.42857] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE Subsets of CD21-/low memory B cells (MBCs), including double-negative (DN, CD27-IgD-) and Tbet+CD11c+ cells, are expanded in chronic inflammatory diseases. In rheumatoid arthritis (RA), CD21-/low MBCs correlate with joint destruction. However, whether this is due to the Tbet+CD11c+ subset, its function and pathogenic contribution to RA are unknown. This study aims to investigate the association between CD21-/lowTbet+CD11c+ MBCs and joint destruction as well as other clinical parameters and to elucidate their functional properties in patients with untreated RA (uRA). METHODS Clinical observations were combined with flow cytometry (n = 36) and single-cell RNA sequencing (scRNA-seq) and V(D)J sequencing (n = 4) of peripheral blood (PB) MBCs from patients with uRA. The transcriptome of circulating Tbet+CD11c+ MBCs was compared with scRNA-seq data of synovial B cells. In vitro coculture of Tbet+CD11c+ B cells with T cells was used to assess costimulatory capacity. RESULTS CD21-/lowTbet+CD11c+ MBCs in PB correlated with bone destruction but no other clinical parameters analyzed. The Tbet+CD11c+ MBCs have undergone clonal expansion and express somatically mutated V genes. Gene expression analysis of these cells identified a unique signature of more than 150 up-regulated genes associated with antigen presentation functions, including B cell receptor activation and clathrin-mediated antigen internalization; regulation of actin filaments, endosomes, and lysosomes; antigen processing, loading, presentation, and costimulation; a transcriptome mirrored in their synovial tissue counterparts. In vitro, Tbet+CD11c+ B cells induced retinoic acid receptor-related orphan nuclear receptor γT expression in CD4+ T cells, thereby polarizing to Th17 cells, a T cell subset critical for osteoclastogenesis and associated with bone destruction. CONCLUSION This study suggests that Tbet+CD11c+ MBCs contribute to the pathogenesis of RA by promoting bone destruction through antigen presentation, T cell activation, and Th17 polarization.
Collapse
Affiliation(s)
- Sarah McGrath
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Grimstad
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and School of Bioscience, University of Skövde, Skövde, Sweden
| | - Katrin Thorarinsdottir
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Forslind
- Lund University, Lund, Sweden, and Spenshult Research and Development Centre, Halmstad, Sweden
| | | | - Monica Leu Agelii
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alaitz Aranburu
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Timothy Sundell
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Charlotte A Jonsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alessandro Camponeschi
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Karin Hultgård Ekwall
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Inger Gjertsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Frazão DR, Né YGDS, Ferreira MKM, Fagundes NCF, Marañón-Vásquez G, Maia LC, Pithon MM, Lima RR. Changes in biomarkers levels from gingival crevicular fluid in pre- and postmenopausal women undergoing orthodontic treatment : A systematic review. J Orofac Orthop 2024; 85:223-232. [PMID: 38451263 DOI: 10.1007/s00056-024-00519-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/29/2023] [Indexed: 03/08/2024]
Abstract
PURPOSE This study aimed to verify whether there is a difference in biomarker levels in the gingival crevicular fluid between premenopausal and postmenopausal women undergoing orthodontic treatment. METHODS As eligibility criteria, prospective or retrospective observational studies evaluating women undergoing orthodontic treatment (P), comparing postmenopausal (E) and premenopausal (C) women, and analyzing differences in gingival crevicular fluid biomarkers (O) were included. An electronic search was conducted in seven databases (PubMed, Scopus, Web of Science, LILACS, The Cochrane Library, Embase, and EBSCO: Dentistry & Oral Science) and one grey literature source (Google Scholar). All databases were searched from September 2022 to March 2023. After duplicate exclusion and data extraction, the Newcastle-Ottawa scale was applied to assess the quality and risk of bias, and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool was used to verify the certainty of evidence. RESULTS Three case-control studies that analyzed receptor activator of nuclear factor kappa‑B ligand (RANKL), osteopontin (OPN), and interleukin (IL)-17A levels were included. One study reported a significant difference for RANKL and another for OPN levels. A third study reported that there was a higher expression of IL17‑A in the postmenopausal group. However, the small number of articles limits our systematic review. The heterogeneity and imprecision in the study results cast doubt on the findings' internal validity. CONCLUSION The studies reported alterations in biomarker levels but differed in their conclusions. Therefore, further studies must include other types of bone and inflammatory biomarkers in female patients who are pre- or postmenopausal and undergoing orthodontic treatment. REGISTRATION The review was registered at the Open Science Framework ( https://doi.org/10.17605/OSF.IO/Q9YZ8 ).
Collapse
Affiliation(s)
- Deborah Ribeiro Frazão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n°1, Campus do Guamá, 66075-900, Belém, Pará, Brazil
| | - Yago Gecy de Souza Né
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n°1, Campus do Guamá, 66075-900, Belém, Pará, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n°1, Campus do Guamá, 66075-900, Belém, Pará, Brazil
| | - Nathália Carolina Fernandes Fagundes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n°1, Campus do Guamá, 66075-900, Belém, Pará, Brazil
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Guido Marañón-Vásquez
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Melo Pithon
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Orthodontics, State University of the Southwest of Bahia, Jéquie, Bahia, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n°1, Campus do Guamá, 66075-900, Belém, Pará, Brazil.
| |
Collapse
|
25
|
Jeong YJ, Park SA, Park YH, Kim LK, Lee HR, Kim HJ, Heo TH. Anti-inflammatory effect of the combined treatment of LMT-28 and kaempferol in a collagen-induced arthritis mouse model. PLoS One 2024; 19:e0302119. [PMID: 39083495 PMCID: PMC11290667 DOI: 10.1371/journal.pone.0302119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by joint inflammation and swelling. Several studies have demonstrated that RA fibroblast-like synovial cells (RA-FLS) play an important role in RA pathogenesis. Activated RA-FLS contribute to synovial inflammation by secreting inflammatory cytokines including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. LMT-28 is derivative of oxazolidone and exerts anti-inflammatory effects on RA via IL-6 signaling pathway regulation. LMT-28 also regulates T cell differentiation in RA condition. However, the effect of LMT-28 on the migration and invasion of RA-FLS remains unknown. Kaempferol has been reported to have pharmacological effects on various diseases, such as inflammatory diseases, autoimmune diseases, and cancer. Additionally, kaempferol has been reported to inhibit RA-FLS migration and invasion, but it is not known about the therapeutic mechanism including molecular mechanism such as receptor. The present study aimed to investigate the synergistic effects of the combined treatment of LMT-28 and kaempferol on RA-FLS activation and RA pathogenesis in mouse model. LMT-28 and kaempferol co-administration inhibited RA disease severity and histological collapse in the joint tissues of CIA mice, as well as downregulated the levels of pro-inflammatory cytokines in mouse serum. Additionally, the combined treatment inhibited excessive differentiation of T helper 17 cells and osteoclasts. Furthermore, compared with single treatments, combined treatment showed enhanced inhibitory effects on the hyperactivation of IL-6-induced signaling pathway in RA-FLS. Combined treatment also inhibited RA-FLS cell proliferation, migration, and invasion and suppressed the expression of matrix metalloproteinase in RA-FLS. Furthermore, we confirmed that the combined treatment inhibited chondrocyte proliferation, migration, and invasion. In conclusion, our results suggest that the combined treatment of LMT-28 and kaempferol exerts a synergistic effect on the RA development via the regulation of IL-6-induced hyperactivation of RA-FLS. Furthermore, this study suggests that combination therapies can be an effective therapeutic option for arthritis.
Collapse
Affiliation(s)
- Young-Jin Jeong
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Sun-Ae Park
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Yeon-Hwa Park
- Biowave, Anyangcheon-ro, Yangcheon-gu, Seoul, Republic of Korea
| | - Lee Kyung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Hae-Ri Lee
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Hee Jung Kim
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmacoimmunology, Integrated Research Institute of Pharmaceutical Sciences and BK21 FOUR Team for Advanced Program for Smart Pharma Leaders, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
26
|
Lee SY, Kim SJ, Park KH, Lee G, Oh Y, Ryu JH, Huh YH. Differential but complementary roles of HIF-1α and HIF-2α in the regulation of bone homeostasis. Commun Biol 2024; 7:892. [PMID: 39039245 PMCID: PMC11263705 DOI: 10.1038/s42003-024-06581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Bone is a highly dynamic tissue undergoing continuous formation and resorption. Here, we investigated differential but complementary roles of hypoxia-inducible factor (HIF)-1α and HIF-2α in regulating bone remodeling. Using RNA-seq analysis, we identified that specific genes involved in regulating osteoblast differentiation were similarly but slightly differently governed by HIF-1α and HIF-2α. We found that increased HIF-1α expression inhibited osteoblast differentiation via inhibiting RUNX2 function by upregulation of Twist2, confirmed using Hif1a conditional knockout (KO) mouse. Ectopic expression of HIF-1α via adenovirus transduction resulted in the increased expression and activity of RANKL, while knockdown of Hif1a expression via siRNA or osteoblast-specific depletion of Hif1a in conditional KO mice had no discernible effect on osteoblast-mediated osteoclast activation. The unexpected outcome was elucidated by the upregulation of HIF-2α upon Hif1a overexpression, providing evidence that Hif2a is a transcriptional target of HIF-1α in regulating RANKL expression, verified through an experiment of HIF-2α knockdown after HIF-1α overexpression. The above results were validated in an ovariectomized- and aging-induced osteoporosis model using Hif1a conditional KO mice. Our findings conclude that HIF-1α plays an important role in regulating bone homeostasis by controlling osteoblast differentiation, and in influencing osteoclast formation through the regulation of RANKL secretion via HIF-2α modulation.
Collapse
Affiliation(s)
- Sun Young Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Su-Jin Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ka Hyon Park
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Gyuseok Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Youngsoo Oh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Je-Hwang Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Yun Hyun Huh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
27
|
Hu Y, Liu J, Qi Y, Zhou Q, Li Y, Cong C, Chen Y. Integrating clinical data mining, network analysis and experimental validation reveal the anti-inflammatory mechanism of Huangqin Qingre Chubi Capsule in rheumatoid arthritis treatment. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118077. [PMID: 38556141 DOI: 10.1016/j.jep.2024.118077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqin Qingre Chubi Capsule (HQC) is a Chinese medicinal compound used for the treatment of damp-heat pattern rheumatism, guided by the traditional Chinese medicine syndrome differentiation practice. HQC has been used in the clinical treatment of rheumatic diseases for more than 20 years with remarkable efficacy. HQC has been experimentally shown to exert anti-arthritic effects via the Wnt signaling pathway. AIM OF THE STUDY This study used clinical data mining, network analysis, and in vitro and in vivo tests to investigate the anti-arthritic and possible anti-inflammatory mechanism of HQC. Specifically, emphasis was placed on the function of the hsa_circ_0091,685/EIF4A3/IL-17 axis in the anti-inflammatory process. MATERIALS AND METHODS A random walk model was used to evaluate the effects of HQC on clinical immune inflammatory marker function in patients with RA. Network analysis was used to predict the potential target genes and pathways of HQC. Hematoxylin & eosin, safranin O-fast green and toluidine blue staining, immunohistochemistry, and transmission electron microscopy were performed to evaluate the anti-arthritic effects of HQC in rat models. Cell Counting Kit-8 assay, quantitative real-time polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay, and RNA pull-down were used to study the anti-proliferation and anti-inflammatory mechanisms of HQC. RESULTS Patients with RA who underwent HQC treatment showed a significant reduction in inflammatory response levels, according to retrospective clinical study. Network analysis revealed that HQC potentially targeted genes and pathways related to inflammation, especially IL-6, IL-17, TNF-α, IL-23, and IL-17 signaling pathway. Animal experiments showed that HQC inhibits inflammation through the IL-17 signaling pathway in rat models. Cellular experiments showed that HQC-containing serum inhibited the inflammatory response in patients with RA-FLS or RA by blocking hsa_circ_0091,685 and EIF4A3 expression. CONCLUSION In RA patients, HQC reduces the inflammatory response. The antiproliferative and anti-inflammatory qualities of HQC are responsible for its therapeutic impact. The suppression of the hsa_circ_0091,685/EIF4A3/IL-17 axis was linked to these favorable outcomes.
Collapse
Affiliation(s)
- Yuedi Hu
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, No.117, Meishan Road, Hefei, Anhui, China; College of Chinese Medicine, Anhui University of Traditional Chinese Medicine, No.350, Longzihu Road, Hefei, Anhui, China.
| | - Jian Liu
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, No.117, Meishan Road, Hefei, Anhui, China; Institute of Rheumatology, Anhui University of Traditional Chinese Medicine, No.350, Longzihu Road, Hefei, Anhui, China.
| | - Yajun Qi
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, No.117, Meishan Road, Hefei, Anhui, China.
| | - Qiao Zhou
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, No.117, Meishan Road, Hefei, Anhui, China.
| | - Yang Li
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, No.117, Meishan Road, Hefei, Anhui, China.
| | - Chengzhi Cong
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, No.117, Meishan Road, Hefei, Anhui, China.
| | - Yiming Chen
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, No.117, Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
28
|
Li Z, Zhang Q, Gao Y, Wan F, Wang Y, Hou B, Cui W, Wang Y, Feng W, Hou Y. Luobitong Potentiates MTX's Anti-Rheumatoid Arthritis Activity via Targeting Multiple Inflammatory Pathways. J Inflamm Res 2024; 17:4389-4403. [PMID: 38994468 PMCID: PMC11236762 DOI: 10.2147/jir.s461093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Background The LuoBiTong (LBT) capsule, a novel traditional Chinese medicine formulation, is currently in Phase III clinical trials. Preliminary preclinical and Phase II clinical studies suggest its efficacy and safety in treating rheumatoid arthritis (RA). However, the underlying mechanisms of its action remain to be elucidated.This research aims to explore the effects and mechanisms of LBT in conjunction with a maintenance dose of methotrexate (M-MTX) on RA. Methods A Collagen-Induced Arthritis (CIA) mouse model was used to evaluate the anti-RA effects of LBT combined with M-MTX. Assessments included foot swelling, arthritis scoring, serum inflammatory factor analysis, and histopathological examination of the foot. These effects were compared with those of high-dose MTX (H-MTX). Network pharmacology was employed to construct a compound-target network for RA, based on drug composition, to predict its potential mechanism of action. Flow cytometry, Western Blot, and immunohistochemical analyses in animal models identified multiple inflammatory pathways targeted by LBT to augment the anti-RA effects of MTX. Results The study revealed that LBT combined with M-MTX significantly alleviated CIA-induced arthritis without adverse effects. The combination of LBT and M-MTX showed similar or superior efficacy in regulating macrophage polarization, NF-κB, MAPK signaling pathways, and in the suppression of TH-17 expression in proinflammatory cells. These findings suggest that LBT may exert a multi-pathway therapeutic effect in RA treatment. The predicted pharmacological targets and mechanisms align well with this hypothesis. Conclusion LBT, when combined with MTX, enhances the anti-RA effect by targeting multiple inflammatory pathways, demonstrating significant therapeutic potential.
Collapse
Affiliation(s)
- Ziyu Li
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, People’s Republic of China
| | - Qiuyan Zhang
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, People’s Republic of China
| | - Yuhe Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Fang Wan
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Bin Hou
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, People’s Republic of China
| | - Wenwen Cui
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, People’s Republic of China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral VesselCollateral Disease), Shijiazhuang, People’s Republic of China
| | - Yanan Wang
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, People’s Republic of China
| | - Wei Feng
- New Drug Evaluation Center, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, People’s Republic of China
| | - Yunlong Hou
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, People’s Republic of China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral VesselCollateral Disease), Shijiazhuang, People’s Republic of China
| |
Collapse
|
29
|
Pan P, Wang Y, Nyirenda MH, Saiyed Z, Karimian Azari E, Sunderman A, Milling S, Harnett MM, Pineda M. Undenatured type II collagen protects against collagen-induced arthritis by restoring gut-joint homeostasis and immunity. Commun Biol 2024; 7:804. [PMID: 38961129 PMCID: PMC11222443 DOI: 10.1038/s42003-024-06476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
Oral administration of harmless antigens can induce suppression of reactive immune responses, a process that capitalises on the ability of the gastrointestinal tract to tolerate exposure to food and commensal microbiome without triggering inflammatory responses. Repeating exposure to type II collagen induces oral tolerance and inhibits induction of arthritis, a chronic inflammatory joint condition. Although some mechanisms underlying oral tolerance are described, how dysregulation of gut immune networks impacts on inflammation of distant tissues like the joints is unclear. We used undenatured type II collagen in a prophylactic regime -7.33 mg/kg three times/week- to describe the mechanisms associated with protective oral immune-therapy (OIT) in gut and joint during experimental Collagen-Induced Arthritis (CIA). OIT reduced disease incidence to 50%, with reduced expression of IL-17 and IL-22 in the joints of asymptomatic mice. Moreover, whilst the gut tissue of arthritic mice shows substantial damage and activation of tissue-specific immune networks, oral administration of undenatured type II collagen protects against gut pathology in all mice, symptomatic and asymptomatic, rewiring IL-17/IL-22 networks. Furthermore, gut fucosylation and microbiome composition were also modulated. These results corroborate the relevance of the gut-joint axis in arthritis, showing novel regulatory mechanisms linked to therapeutic OIT in joint disease.
Collapse
Affiliation(s)
- Piaopiao Pan
- Centre for the Cellular Microenvironment, School of Molecular Biology, University of Glasgow, Glasgow, UK
| | - Yilin Wang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, China
| | - Mukanthu H Nyirenda
- Institute of Infection and Immunity, University of Glasgow, Glasgow, UK
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zainulabedin Saiyed
- Research and Development, Lonza Greenwood LLC, North Emerald Road, Greenwood, SC, USA
| | - Elnaz Karimian Azari
- Research and Development, Lonza Greenwood LLC, North Emerald Road, Greenwood, SC, USA
| | - Amy Sunderman
- Research and Development, Lonza Greenwood LLC, North Emerald Road, Greenwood, SC, USA
| | - Simon Milling
- Institute of Infection and Immunity, University of Glasgow, Glasgow, UK
| | | | - Miguel Pineda
- Centre for the Cellular Microenvironment, School of Molecular Biology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
30
|
Byravan S, Samarasinghe H, Yuan JSJ, Tahir SH, Moorthy A, Tahir H. From bench to bedside - is there a role of IL-17 drugs in rheumatoid arthritis? Expert Opin Investig Drugs 2024; 33:591-600. [PMID: 38696223 DOI: 10.1080/13543784.2024.2351505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION IL-17 has been described as a pro-inflammatory cytokine that is relevant in the seronegative spondylarthritides with IL-17 targeted therapies being licensed for their treatment.There is evidence to demonstrate that IL-17 is found in RA joints and contributes to the pro-inflammatory cascade. This results in synovial hyperplasia and osteoclastogenesis thus causing joint destruction and bony erosions. AREAS COVERED This review article summarizes trials that have studied the use of IL-17 targeted therapies in RA patients who have failed conventional synthetic disease-modifying therapy (C-DMARDS) and biologic DMARDS. EXPERT OPINION The trials that have studied IL-17 inhibitors in RA patients have only shown a modest improvement in disease activity. In several trials, the primary endpoint was not achieved whilst in others, when comparing with existing licensed biologics for RA, did not demonstrate any superiority.Tissue Necrosis Factor-alpha (TNF-α) likely plays more of a pivotal role in the pathogenesis of RA with IL-17 having a synergistic effect. Therefore, in our opinion, IL-17 inhibitors as an independent therapy for RA are less likely to provide a cost-effective benefit. There may be scope to potentially combine it with TNF-α-inhibitors (TNF-i), but this requires further research especially with the potential concerns related to increased immunosuppression.
Collapse
Affiliation(s)
- Swetha Byravan
- Department of Rheumatology, University Hospitals of Birmingham, Birmingham, UK
| | | | | | | | - Arumugam Moorthy
- Department of Rheumatology, University Hospitals of Leicester NHS Trust, Leicester, UK
- College of Life Sciences, University of Leicester, Leicester, UK
| | - Hasan Tahir
- Department of Rheumatology, Royal Free London NHS Foundation Trust, London, UK
- Division of Medicine, University College London, London, UK
| |
Collapse
|
31
|
Hong J, Luo F, Du X, Xian F, Li X. The immune cells in modulating osteoclast formation and bone metabolism. Int Immunopharmacol 2024; 133:112151. [PMID: 38685175 DOI: 10.1016/j.intimp.2024.112151] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Osteoclasts are pivotal in regulating bone metabolism, with immune cells significantly influencing both physiological and pathological processes by modulating osteoclast functions. This is particularly evident in conditions of inflammatory bone resorption, such as rheumatoid arthritis and periodontitis. This review summarizes and comprehensively analyzes the research progress on the regulation of osteoclast formation by immune cells, aiming to unveil the underlying mechanisms and pathways through which diseases, such as rheumatoid arthritis and periodontitis, impact bone metabolism.
Collapse
Affiliation(s)
- Jiale Hong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xingyue Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Fa Xian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
32
|
Hu P, Li B, Yin Z, Peng P, Cao J, Xie W, Liu L, Cao F, Zhang B. Multi-omics characterization of macrophage polarization-related features in osteoarthritis based on a machine learning computational framework. Heliyon 2024; 10:e30335. [PMID: 38774079 PMCID: PMC11106839 DOI: 10.1016/j.heliyon.2024.e30335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
Background OA imposes a heavy burden on patients and society in that its mechanism is still unclear, and there is a lack of effective targeted therapy other than surgery. Methods The osteoarthritis dataset GSE55235 was downloaded from the GEO database and analyzed for differential genes by limma package, followed by analysis of immune-related modules by xcell immune infiltration combined with the WGCNA method, and macrophage polarization-related genes were downloaded according to the Genecard database, and VennDiagram was used to determine their intersection. These genes were also subjected to gene ontology (GO), disease ontology (DO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Using machine learning, the key osteoarthritis genes were finally screened. Using single gene GSEA and GSVA, we examined the significance of these key gene functions in immune cell and macrophage pathways. Next, we confirmed the correctness of the hub gene expression profile using the GSE55457 dataset and the ROC curve. Finally, we projected TF, miRNA, and possible therapeutic drugs using the miRNet, TargetScanHuman, ENCOR, and NetworkAnalyst databases, as well as Enrichr. Results VennDiagram obtained 71 crossover genes for DEGs, WGCNA-immune modules, and Genecards; functional enrichment demonstrated NF-κB, IL-17 signaling pathway play an important role in osteoarthritis-macrophage polarization genes; machine learning finally identified CSF1R, CX3CR1, CEBPB, and TLR7 as hub genes; GSVA analysis showed that CSF1R, CEBPB play essential roles in immune infiltration and macrophage pathway; validation dataset GSE55457 analyzed hub genes were statistically different between osteoarthritis and healthy controls, and the AUC values of ROC for CSF1R, CX3CR1, CEBPB and TLR7 were more outstanding than 0.65. Conclusions CSF1R, CEBPB, CX3CR1, and TLR7 are potential diagnostic biomarkers for osteoarthritis, and CSF1R and CEBPB play an important role in regulating macrophage polarization in osteoarthritis progression and are expected to be new drug targets.
Collapse
Affiliation(s)
- Ping Hu
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Beining Li
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Peng
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiangang Cao
- Department of Sports Injury and Arthroscopy, Tianjin Hospital of Tianjin University, China
| | - Wanyu Xie
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Liang Liu
- Orthopaedic Center of Beijing Luhe Hospital, Capital Medical University, China
| | - Fujiang Cao
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhang
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
33
|
Chen L, Zhao Y, Qiu J, Lin X. Analysis and validation of biomarkers of immune cell-related genes in postmenopausal osteoporosis: An observational study. Medicine (Baltimore) 2024; 103:e38042. [PMID: 38728482 PMCID: PMC11081595 DOI: 10.1097/md.0000000000038042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a common metabolic inflammatory disease. In conditions of estrogen deficiency, chronic activation of the immune system leads to a hypo-inflammatory phenotype and alterations in its cytokine and immune cell profile, although immune cells play an important role in the pathology of osteoporosis, studies on this have been rare. Therefore, it is important to investigate the role of immune cell-related genes in PMOP. PMOP-related datasets were downloaded from the Gene Expression Omnibus database. Immune cells scores between high bone mineral density (BMD) and low BMD samples were assessed based on the single sample gene set enrichment analysis method. Subsequently, weighted gene co-expression network analysis was performed to identify modules highly associated with immune cells and obtain module genes. Differential analysis between high BMD and low BMD was also performed to obtain differentially expressed genes. Module genes are intersected with differentially expressed genes to obtain candidate genes, and functional enrichment analysis was performed. Machine learning methods were used to filter out the signature genes. The receiver operating characteristic (ROC) curves of the signature genes and the nomogram were plotted to determine whether the signature genes can be used as a molecular marker. Gene set enrichment analysis was also performed to explore the potential mechanism of the signature genes. Finally, RNA expression of signature genes was validated in blood samples from PMOP patients and normal control by real-time quantitative polymerase chain reaction. Our study of PMOP patients identified differences in immune cells (activated dendritic cell, CD56 bright natural killer cell, Central memory CD4 T cell, Effector memory CD4 T cell, Mast cell, Natural killer T cell, T follicular helper cell, Type 1 T-helper cell, and Type 17 T-helper cell) between high and low BMD patients. We obtained a total of 73 candidate genes based on modular genes and differential genes, and obtained 5 signature genes by least absolute shrinkage and selection operator and random forest model screening. ROC, principal component analysis, and t-distributed stochastic neighbor embedding down scaling analysis revealed that the 5 signature genes had good discriminatory ability between high and low BMD samples. A logistic regression model was constructed based on 5 signature genes, and both ROC and column line plots indicated that the model accuracy and applicability were good. Five signature genes were found to be associated with proteasome, mitochondria, and lysosome by gene set enrichment analysis. The real-time quantitative polymerase chain reaction results showed that the expression of the signature genes was significantly different between the 2 groups. HIST1H2AG, PYGM, NCKAP1, POMP, and LYPLA1 might play key roles in PMOP and be served as the biomarkers of PMOP.
Collapse
Affiliation(s)
- Lihua Chen
- Rehabilitation Department, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
- Osteoporosis Department, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, PR China
- Postgraduate college, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yu Zhao
- Osteoporosis Department, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, PR China
- Postgraduate college, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jingjing Qiu
- Rehabilitation Department, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
- Postgraduate college, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Xiaosheng Lin
- Osteoporosis Department, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, PR China
| |
Collapse
|
34
|
Wang J, Wang Z, Zhao Y, Bai L, Wei Y, Huang T, Xu Y, Zhou X. Molecular mechanism of quercetin in treating RA-ILD based on network pharmacology, molecular docking, and experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3077-3092. [PMID: 37878048 DOI: 10.1007/s00210-023-02772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that is associated with systemic complications. Interstitial lung disease (ILD) is the most common pulmonary complication and second leading cause of death in patients with RA. In this study, we used network pharmacology and experimental validation to identify the targets and pathways of quercetin (Que) in the treatment of RA-associated ILD (RA-ILD). A total of 32 potential targets of Que for RA-ILD treatment were screened from six databases, and 10 core targets were screened using protein-protein interaction network analysis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and molecular docking were employed to explore the potential mechanisms of Que in RA-ILD treatment. The results suggested the IL-17 signaling pathway as an important pathway through which Que alleviates RA-ILD. Subsequently, LPS (1 µg/ml) was used to establish an inflammation model on RAW 264.7 cells, and different concentrations of Que (25, 50, and 100 µM) were used for intervention. Que significantly reduced the expression levels of IL-17, TNF-α, IL-6, and IL-1β in RAW 264.7 cells. Our findings suggest that Que alleviates RA-ILD by regulating the IL-17 signaling pathway and reducing inflammation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital Of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, 210023, China
| | - Zhichao Wang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital Of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Yang Zhao
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, 210023, China
| | - Le Bai
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital Of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, 210023, China
| | - Yun Wei
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital Of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, 210023, China
| | - Tongxing Huang
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital Of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
- First School of Clinical Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, 210023, China
| | - Yong Xu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, 210023, China.
| | - Xianmei Zhou
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital Of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
35
|
Zhou F, Wang Z, Zhang G, Wu Y, Xiong Y. Immunosenescence and inflammaging: Conspiracies against alveolar bone turnover. Oral Dis 2024; 30:1806-1817. [PMID: 37288702 DOI: 10.1111/odi.14642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/11/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Inflammaging and immunosenescence are characteristics of senescent immune system alterations. This review provides insights into inflammaging and immunosenescence in periodontitis and focuses on the innerlink of inflammaging and immunosenescence in alveolar bone turnover from a perspective of cell-cell interaction. METHODS This review is conducted by a narrative approach to discuss the effect of inflammaging and immunosenescence in aging-related alveolar bone loss. A comprehensive literature research in PubMed and Google was applied to identify reports in English. RESULTS Inflammaging is concerned with abnormal M1 polarization and increasing circulating inflammatory cytokines, while immunosenescence involves reduced infection and vaccine responses, depressed antimicrobial function, and infiltration of aged B cells and memory T cells. TLR-mediated inflammaging and altered adaptive immunity significantly affect alveolar bone turnover and aggravate aging-related alveolar bone loss. Besides, energy consumption also plays a vital role in aged immune and skeletal system of periodontitis. CONCLUSIONS Senescent immune system exerts a significant function in aging-related alveolar bone loss. Inflammaging and immunosenescence interact functionally and mechanistically, which affects alveolar bone turnover. Therefore, further clinical treatment strategies targeting alveolar bone loss could be based on the specific molecular mechanism connecting inflammaging, immunosenescence, and alveolar bone turnover.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Cook CV, Lighty AM, Smith BJ, Ford Versypt AN. A review of mathematical modeling of bone remodeling from a systems biology perspective. FRONTIERS IN SYSTEMS BIOLOGY 2024; 4:1368555. [PMID: 40012834 PMCID: PMC11864782 DOI: 10.3389/fsysb.2024.1368555] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Bone remodeling is an essential, delicately balanced physiological process of coordinated activity of bone cells that remove and deposit new bone tissue in the adult skeleton. Due to the complex nature of this process, many mathematical models of bone remodeling have been developed. Each of these models has unique features, but they have underlying patterns. In this review, the authors highlight the important aspects frequently found in mathematical models for bone remodeling and discuss how and why these aspects are included when considering the physiology of the bone basic multicellular unit, which is the term used for the collection of cells responsible for bone remodeling. The review also emphasizes the view of bone remodeling from a systems biology perspective. Understanding the systemic mechanisms involved in remodeling will help provide information on bone pathology associated with aging, endocrine disorders, cancers, and inflammatory conditions and enhance systems pharmacology. Furthermore, some features of the bone remodeling cycle and interactions with other organ systems that have not yet been modeled mathematically are discussed as promising future directions in the field.
Collapse
Affiliation(s)
- Carley V. Cook
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Ariel M. Lighty
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Brenda J. Smith
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, United States
- Department of Obstetrics and Gynecology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Ashlee N. Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
37
|
Carmona-Rivera C, Kaplan MJ, O'Neil LJ. Neutrophils in Inflammatory Bone Diseases. Curr Osteoporos Rep 2024; 22:280-289. [PMID: 38418800 PMCID: PMC11061041 DOI: 10.1007/s11914-024-00865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW In this review, we summarize the current evidence that suggests that neutrophils play a key role in facilitating damage to local bone structures. RECENT FINDINGS Neutrophil infiltration is a hallmark of inflammatory bone diseases such as rheumatoid arthritis (RA) and periodontitis disease (PD). Both of these human diseases are marked by an imbalance in bone homeostasis, favoring the degradation of local bone which ultimately leads to erosions. Osteoclasts, a multinucleated resident bone cell, are responsible for facilitating the turnover of bone and the bone damage observed in these diseases. The involvement of neutrophils and neutrophil extracellular trap formation have recently been implicated in exacerbating osteoclast function through direct and indirect mechanisms. We highlight a recent finding that NET proteins such as histones and elastase can generate non-canonical, inflammatory osteoclasts, and this process is mediated by post-translational modifications such as citrullination and carbamylation, both of which act as autoantigens in RA. It appears that NETs, autoantibodies, modified proteins, cytokines, and osteoclasts all ultimately contribute to local and permanent bone damage in RA and PD. However, more studies are needed to fully understand the role of neutrophils in inflammatory bone diseases.
Collapse
Affiliation(s)
- Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liam J O'Neil
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
38
|
Nam B, Kim TH. The role of ixekizumab in the treatment of nonradiographic axial spondyloarthritis. Immunotherapy 2024; 16:569-580. [PMID: 38511247 PMCID: PMC11290369 DOI: 10.2217/imt-2023-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Nonradiographic axial spondyloarthritis (nr-axSpA) is a subtype of SpA with undeveloped definite radiographic sacroiliitis. Tumor necrosis factor inhibitors have demonstrated effectiveness in nr-axSpA patients who do not respond to first-line therapy. More recently, accumulated data from genetic, experimental, and clinical studies revealed that IL-17 is a key player in the pathogenesis of SpA, leading to development of new biologics directly inhibiting IL-17. Among them, ixekizumab is a high-affinity monoclonal antibody that selectively targets IL-17A and has exhibited significant efficacy and acceptable safety profiles in the treatment of nr-axSpA. The aim of this paper is to narratively review the recent insights of IL-17 in the pathogenesis of axSpA and discuss the effectiveness and safety of ixekizumab in treatment of nr-axSpA.
Collapse
Affiliation(s)
- Bora Nam
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, South Korea
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research (HYIRR), Seoul, South Korea
| |
Collapse
|
39
|
Moutusy SI, Ohsako S. Gut Microbiome-Related Anti-Inflammatory Effects of Aryl Hydrocarbon Receptor Activation on Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:3372. [PMID: 38542367 PMCID: PMC10970487 DOI: 10.3390/ijms25063372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 01/05/2025] Open
Abstract
Inflammatory bowel disease (IBD) is one of the most prevalent chronic inflammations of the gastrointestinal tract (GIT). The gut microbial population, the cytokine milieu, the aryl hydrocarbon receptor (AHR) expressed by immune and nonimmune cells and the intrinsic pathway of Th-cell differentiation are implicated in the immunopathology of IBD. AHR activation requires a delicate balance between regulatory and effector T-cells; loss of this balance can cause local gut microbial dysbiosis and intestinal inflammation. Thus, the study of the gut microbiome in association with AHR provides critical insights into IBD pathogenesis and interventions. This review will focus on the recent advancements to form conceptional frameworks on the benefits of AHR activation by commensal gut bacteria in IBD.
Collapse
Affiliation(s)
- Salvinaz Islam Moutusy
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA 94305, USA
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| |
Collapse
|
40
|
Xu J, Yu L, Ye S, Ye Z, Yang L, Xu X. Oral microbiota-host interaction: the chief culprit of alveolar bone resorption. Front Immunol 2024; 15:1254516. [PMID: 38455060 PMCID: PMC10918469 DOI: 10.3389/fimmu.2024.1254516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
41
|
Koh CH, Kim BS, Kang CY, Chung Y, Seo H. IL-17 and IL-21: Their Immunobiology and Therapeutic Potentials. Immune Netw 2024; 24:e2. [PMID: 38455465 PMCID: PMC10917578 DOI: 10.4110/in.2024.24.e2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 03/09/2024] Open
Abstract
Studies over the last 2 decades have identified IL-17 and IL-21 as key cytokines in the modulation of a wide range of immune responses. IL-17 serves as a critical defender against bacterial and fungal pathogens, while maintaining symbiotic relationships with commensal microbiota. However, alterations in its levels can lead to chronic inflammation and autoimmunity. IL-21, on the other hand, bridges the adaptive and innate immune responses, and its imbalance is implicated in autoimmune diseases and cancer, highlighting its important role in both health and disease. Delving into the intricacies of these cytokines not only opens new avenues for understanding the immune system, but also promises innovative advances in the development of therapeutic strategies for numerous diseases. In this review, we will discuss an updated view of the immunobiology and therapeutic potential of IL-17 and IL-21.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Chang-Yuil Kang
- Research & Development Center, Cellid Co., Ltd., Seoul 08826, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyungseok Seo
- Laboratory of Cell & Gene Therapy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
42
|
Odo A, Kunimatsu R, Abe T, Sakata S, Nakatani A, Rikitake K, Koizumi Y, Tanabe I, Okimura N, Yoshimi Y, Tanimoto K. Stem cells derived from human exfoliated deciduous teeth-based media in a rat root resorption model. Arch Oral Biol 2024; 158:105854. [PMID: 38056228 DOI: 10.1016/j.archoralbio.2023.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Root resorption may occur during orthodontic treatment. Herein, we investigated the effect of a culture supernatant of stem cells derived from human exfoliated deciduous teeth on root resorption. DESIGN Twelve 8-week-old male Sprague-Dawley rats were used, and their maxillary first molars were pulled with excessive orthodontic force to induce root resorption. On days 1 and 7 after traction initiation, stem cells derived from human exfoliated deciduous teeth and alpha minimum essential medium (control group) were administered. After 14 days, the maxillary bone was evaluated for tooth movement. The expression of osteoprotegerin, receptor activator of nuclear factor κB ligand, tumor necrosis factor α, interleukin 1β, interleukin 6, and interleukin 17 was evaluated on the compression side and tension side. RESULTS No significant difference in tooth movement was observed between the two groups. Root resorption decreased in the group administered the culture supernatant compared with in the control. Immunohistochemical staining revealed increased osteoprotegerin expression and decreased receptor activators for nuclear factor κB ligand, tumor necrosis factor α, interleukin 1β, interleukin 6, and interleukin 17 on the compression side and tension side. CONCLUSIONS Administration of stem cells derived from human exfoliated deciduous teeth affected the expression of osteoprotegerin, receptor activator of nuclear factor κB ligand, tumor necrosis factor α, interleukin 1β, interleukin 6 and interleukin 17; hence, these stem cells may inhibit root resorption by regulating their expression.
Collapse
Affiliation(s)
- Ayaka Odo
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| | - Takaharu Abe
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Shuzo Sakata
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Ayaka Nakatani
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Kodai Rikitake
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Yuma Koizumi
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Izumi Tanabe
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Naonobu Okimura
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yuki Yoshimi
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| |
Collapse
|
43
|
Nakamura A, Towheed T. Pathogenesis, assessment, and management of bone loss in axial spondyloarthritis. Semin Arthritis Rheum 2024; 64:152345. [PMID: 38103486 DOI: 10.1016/j.semarthrit.2023.152345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Axial spondyloarthritis (axSpA) presents a complex scenario where both new bone formation in entheseal tissues and significant trabecular bone loss coexist, emphasizing the intricate nature of bone dynamics in this context. METHODS A search of the literature was conducted to compose a narrative review exploring the pathogenesis, possible assessment methods, and potential management options for axSpA. RESULTS While chronic systemic and local inflammation contribute to bone loss, the mechanisms behind axSpA-associated bone loss exhibit distinct characteristics influenced by factors like mechanical stress and the gut microbiome. These factors directly or indirectly stimulate osteoclast differentiation and activation through the RANK-RANKL axis, while simultaneously impeding osteoblast differentiation via negative regulation of bone anabolic pathways, including the Wnt signaling pathway. This disruption in the balance between bone-resorbing osteoclasts and bone-forming osteoblasts contributes to overall bone loss in axSpA. Early evaluation at diagnosis is prudent for detecting bone changes. While traditional dual x-ray absorptiometry (DXA) has limitations due to potential overestimation from spinal new bone formation, alternative methods like trabecular bone score (TBS), quantitative CT (QCT), and quantitative ultrasound (QUS) show promise. However, their integration into routine clinical practice remains limited. In addition to approved anti-inflammatory drugs, lifestyle adjustments like regular exercise play a key role in preserving bone health. Tailoring interventions based on individual risk profiles holds potential for mitigating bone loss progression. CONCLUSION Recognizing the pivotal role of bone loss in axSpA underscores the importance of integrating regular assessments and effective management strategies into clinical practice. Given the multifaceted contributors to bone loss in axSpA, a multidisciplinary approach is essential.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, Ontario, Canada; Translational Institute of Medicine, School of Medicine, Queen's University, Ontario, Canada; Kingston Health Science Centre, Kingston, Ontario, Canada.
| | - Tanveer Towheed
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, Ontario, Canada; Translational Institute of Medicine, School of Medicine, Queen's University, Ontario, Canada; Kingston Health Science Centre, Kingston, Ontario, Canada.
| |
Collapse
|
44
|
Landuzzi L, Ruzzi F, Pellegrini E, Lollini PL, Scotlandi K, Manara MC. IL-1 Family Members in Bone Sarcomas. Cells 2024; 13:233. [PMID: 38334625 PMCID: PMC10854900 DOI: 10.3390/cells13030233] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
IL-1 family members have multiple pleiotropic functions affecting various tissues and cells, including the regulation of the immune response, hematopoietic homeostasis, bone remodeling, neuronal physiology, and synaptic plasticity. Many of these activities are involved in various pathological processes and immunological disorders, including tumor initiation and progression. Indeed, IL-1 family members have been described to contribute to shaping the tumor microenvironment (TME), determining immune evasion and drug resistance, and to sustain tumor aggressiveness and metastasis. This review addresses the role of IL-1 family members in bone sarcomas, particularly the highly metastatic osteosarcoma (OS) and Ewing sarcoma (EWS), and discusses the IL-1-family-related mechanisms that play a role in bone metastasis development. We also consider the therapeutic implications of targeting IL-1 family members, which have been proposed as (i) relevant targets for anti-tumor and anti-metastatic drugs; (ii) immune checkpoints for immune suppression; and (iii) potential antigens for immunotherapy.
Collapse
Affiliation(s)
- Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (K.S.); (M.C.M.)
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Evelin Pellegrini
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (K.S.); (M.C.M.)
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (K.S.); (M.C.M.)
| | - Maria Cristina Manara
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (K.S.); (M.C.M.)
| |
Collapse
|
45
|
Chandra V, Li L, Le Roux O, Zhang Y, Howell RM, Rupani DN, Baydogan S, Miller HD, Riquelme E, Petrosino J, Kim MP, Bhat KPL, White JR, Kolls JK, Pylayeva-Gupta Y, McAllister F. Gut epithelial Interleukin-17 receptor A signaling can modulate distant tumors growth through microbial regulation. Cancer Cell 2024; 42:85-100.e6. [PMID: 38157865 PMCID: PMC11238637 DOI: 10.1016/j.ccell.2023.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 04/05/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Microbes influence cancer initiation, progression and therapy responsiveness. IL-17 signaling contributes to gut barrier immunity by regulating microbes but also drives tumor growth. A knowledge gap remains regarding the influence of enteric IL-17-IL-17RA signaling and their microbial regulation on the behavior of distant tumors. We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors. Microbial dependent IL-17 signaling increases DUOX2 signaling in tumor cells. Inefficacy of pharmacological inhibition of IL-17RA is overcome with targeted microbial ablation that blocks the compensatory loop. These findings demonstrate the complexities of IL-17-IL-17RA signaling in different compartments and the relevance for accounting for its homeostatic host defense function during cancer therapy.
Collapse
Affiliation(s)
- Vidhi Chandra
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Le Li
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olivereen Le Roux
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Zhang
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rian M Howell
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhwani N Rupani
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyda Baydogan
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haiyan D Miller
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erick Riquelme
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Respiratory Diseases, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Michael P Kim
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jay K Kolls
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
46
|
Wang C, Hu Y, Liang F. Text Mining and Drug Discovery Analysis: A Comprehensive Approach to Investigate Diabetes-Induced Osteoporosis. Int J Med Sci 2024; 21:464-473. [PMID: 38250601 PMCID: PMC10797669 DOI: 10.7150/ijms.90829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose: Osteoporosis (OP) and diabetes are prevalent diseases in orthopedic and endocrinology departments, with OP potentially arising as a complication of diabetes. However, the mechanism underlying diabetes-induced osteoporosis (DOP) remains enigmatic, and drug discovery in this domain is restricted, hindering research into the DOP's etiology and treatment. With the ultimate goal of preventing OP in diabetic patients, the objective of this study is to mine the genes and pathways linked to DOP using bioinformatics and databases. Method: The present study employed text mining as the initial approach to retrieve genes commonly associated with diabetes and OP. Subsequently, functional annotation was conducted to investigate the roles and functionalities. In order to explore the interactions between proteins relevant to DOP, we constructed protein-protein interaction (PPI) networks. Furthermore, to obtain key genes and candidate drugs for DOP treatment, we conducted drug-gene interaction (DGI) analysis, complemented by a thorough examination of transcriptional factors (TFs)-miRNA co-regulation. Results: The results through text mining revealed 110 genes that are commonly associated with both diabetes and OP. Subsequent enrichment analysis narrowed down the list to 95 symbols that were involved in PPI analysis. After DGI analysis, we identified 7 genes targeted by 11 drugs, which represent candidates for treating DOP. Conclusion: This study unveils ANDECALIXIMAB, SILTUXIMAB, OLOKIZUMAB, SECUKINUMAB, and IXEKIZUMAB as promising potential drugs for DOP treatment, demonstrating the significance of utilizing text mining and pathway analysis to investigate disease mechanisms and explore existing therapeutic options.
Collapse
Affiliation(s)
| | - Yihe Hu
- ✉ Corresponding author: Feng Liang, . Yihe Hu,
| | - Feng Liang
- ✉ Corresponding author: Feng Liang, . Yihe Hu,
| |
Collapse
|
47
|
Tang X, Huang Y, Fang X, Tong X, Yu Q, Zheng W, Fu F. Cornus officinalis: a potential herb for treatment of osteoporosis. Front Med (Lausanne) 2023; 10:1289144. [PMID: 38111697 PMCID: PMC10725965 DOI: 10.3389/fmed.2023.1289144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disorder characterized by a decline in bone mass, bone mineral density, and deterioration of bone microstructure. It is prevalent among the elderly, particularly postmenopausal women, and poses a substantial burden to patients and society due to the high incidence of fragility fractures. Kidney-tonifying Traditional Chinese medicine (TCM) has long been utilized for OP prevention and treatment. In contrast to conventional approaches such as hormone replacement therapy, TCM offers distinct advantages such as minimal side effects, low toxicity, excellent tolerability, and suitability for long-term administration. Extensive experimental evidence supports the efficacy of kidney-tonifying TCM, exemplified by formulations based on the renowned herb Cornus officinalis and its bioactive constituents, including morroniside, sweroside, flavonol kaempferol, Cornuside I, in OP treatment. In this review, we provide a comprehensive elucidation of the underlying pathological principles governing OP, with particular emphasis on bone marrow mesenchymal stem cells, the homeostasis of osteogenic and osteoclastic, and the regulation of vascular and immune systems, all of which critically influence bone homeostasis. Furthermore, the therapeutic mechanisms of Cornus officinalis-based TCM formulations and Cornus officinalis-derived active constituents are discussed. In conclusion, this review aims to enhance understanding of the pharmacological mechanisms responsible for the anti-OP effects of kidney-tonifying TCM, specifically focusing on Cornus officinalis, and seeks to explore more efficacious and safer treatment strategies for OP.
Collapse
Affiliation(s)
- Xinyun Tang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yuxin Huang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuliang Fang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xuanying Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Qian Yu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China
| | - Wenbiao Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
48
|
Loh L, Orlicky D, Spengler A, Levens C, Celli S, Domenico J, Klarquist J, Onyiah J, Matsuda J, Kuhn K, Gapin L. MAIT cells drive chronic inflammation in a genetically diverse murine model of spontaneous colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569225. [PMID: 38076996 PMCID: PMC10705467 DOI: 10.1101/2023.11.29.569225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Background & aims Lymphocytes that produce IL-17 can confer protective immunity during infections by pathogens, yet their involvement in inflammatory diseases is a subject of debate. Although these cells may perpetuate inflammation, resulting in tissue damage, they are also capable of contributing directly or indirectly to tissue repair, thus necessitating more detailed investigation. Mucosal-Associated-Invariant-T (MAIT) cells are innate-like T cells, acquiring a type III phenotype in the thymus. Here, we dissected the role of MAIT cells in vivo using a spontaneous colitis model in a genetically diverse mouse strain. Methods Multiparameter spectral flow cytometry and scRNAseq were used to characterize MAIT and immune cell dynamics and transcriptomic signatures respectively, in the collaborative-cross strain, CC011/Unc and CC011/Unc- Traj33 -/- . Results In contrast to many conventional mouse laboratory strains, the CC011 strain harbors a high baseline population of MAIT cells. We observed an age-related increase in colonic MAIT cells, Th17 cells, regulatory T cells, and neutrophils, which paralleled the development of spontaneous colitis. This progression manifested histological traits reminiscent of human IBD. The transcriptomic analysis of colonic MAIT cells from CC011 revealed an activation profile consistent with an inflammatory milieu, marked by an enhanced type-III response. Notably, IL-17A was abundantly secreted by MAIT cells in the colons of afflicted mice. Conversely, in the MAIT cell-deficient CC011-Traj33-/- mice, there was a notable absence of significant colonic histopathology. Furthermore, myeloperoxidase staining indicated a substantial decrease in colonic neutrophils. Conclusions Our findings suggest that MAIT cells play a pivotal role in modulating the severity of intestinal pathology, potentially orchestrating the inflammatory process by driving the accumulation of neutrophils within the colonic environment.
Collapse
|
49
|
Elam RE, Bůžková P, Delaney JAC, Fink HA, Barzilay JI, Carbone LD, Saha R, Robbins JA, Mukamal KJ, Valderrábano RJ, Psaty BM, Tracy RP, Olson NC, Huber SA, Doyle MF, Landay AL, Cauley JA. Association of Immune Cell Subsets with Incident Hip Fracture: The Cardiovascular Health Study. Calcif Tissue Int 2023; 113:581-590. [PMID: 37650930 PMCID: PMC11229516 DOI: 10.1007/s00223-023-01126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
In this study, we aimed to evaluate the association of innate and adaptive immune cell subsets in peripheral blood mononuclear cells (PBMCs) with hip fracture. To conduct this study, we used data from the Cardiovascular Health Study (CHS), a U.S. multicenter observational cohort of community-dwelling men and women aged ≥ 65 years. Twenty-five immune cell phenotypes were measured by flow cytometry from cryopreserved PBMCs of CHS participants collected in 1998-1999. The natural killer (NK), γδ T, T helper 17 (Th17), and differentiated/senescent CD4+CD28- T cell subsets were pre-specified as primary subsets of interest. Hip fracture incidence was assessed prospectively by review of hospitalization records. Multivariable Cox hazard models evaluated associations of immune cell phenotypes with incident hip fracture in sex-stratified and combined analyses. Among 1928 persons, 259 hip fractures occurred over a median 9.7 years of follow-up. In women, NK cells were inversely associated with hip fracture [hazard ratio (HR) 0.77, 95% confidence interval (CI) 0.60-0.99 per one standard deviation higher value] and Th17 cells were positively associated with hip fracture [HR 1.18, 95% CI 1.01-1.39]. In men, γδ T cells were inversely associated with hip fracture [HR 0.60, 95% CI 0.37-0.98]. None of the measured immune cell phenotypes were significantly associated with hip fracture incidence in combined analyses. In this large prospective cohort of older adults, potentially important sex differences in the associations of immune cell phenotypes and hip fracture were identified. However, immune cell phenotypes had no association with hip fracture in analyses combining men and women.
Collapse
Affiliation(s)
- Rachel E Elam
- Division of Rheumatology, Department of Medicine, Augusta University, Augusta, GA, USA.
- Charlie Norwood Veterans Affairs Medical Center, Veterans Affairs Health Care System, Augusta, GA, USA.
| | - Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Joseph A C Delaney
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
| | - Howard A Fink
- Geriatric Research Education and Clinical Center, Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Joshua I Barzilay
- Division of Endocrinology, Kaiser Permanente of Georgia, Emory University School of Medicine, Atlanta, GA, USA
| | - Laura D Carbone
- Division of Rheumatology, Department of Medicine, Augusta University, Augusta, GA, USA
- Charlie Norwood Veterans Affairs Medical Center, Veterans Affairs Health Care System, Augusta, GA, USA
| | - Rick Saha
- Department of Internal Medicine, New York University Langone, New York, NY, USA
| | - John A Robbins
- Department of Medicine, University of California Davis, Davis, CA, USA
| | - Kenneth J Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Brookline, MA, USA
| | - Rodrigo J Valderrábano
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Biochemistry, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | - Nels C Olson
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | - Sally A Huber
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | - Margaret F Doyle
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Jane A Cauley
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Yamazaki S, Hayashi R, Mutoh N, Ohshima H, Tani-Ishii N. Effects of Rheumatoid Arthritis on the Progression of Pulpitis and Apical Periodontitis in SKG Mice. J Endod 2023; 49:1501-1507. [PMID: 37595682 DOI: 10.1016/j.joen.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune disease that involves joint inflammation. Although periodontal disease reportedly contributes to RA onset, the associations of RA with pulpitis and apical periodontitis have not been described. The purpose of this study was to examine the effects of immune response disruption of RA for pulpitis and apical periodontitis with SKG mice. METHODS SKG and BALB/c (control) mice were used to establish models of pulp infection. Histologic studies of pulp and apical periodontal tissue were performed at 3, 5, 7, 14, and 28 days; odontoblast dynamics were analyzed by antinestin staining, and apoptotic cells were examined by TdT-mediated digoxygenin (biotin)-dUTP nick end labeling staining. RESULTS Inflammatory cell infiltration into the exposed pulp was observed at 3 days in the SKG and control group groups; the infiltration extended to the apical pulp area at 14 days after surgery. Inflammatory cell infiltration and bone resorption in the apical pulp area were observed from 14-28 days in the SKG and control groups; there were significant increases in inflammatory cell infiltration and bone resorption in the control group at 28 days. The numbers of apoptotic cells in pulp and apical periodontal tissue were higher in the SKG group than in the control group at 14 and 28 days. The number of odontoblasts decreased in the SKG and control groups until 14 days and then disappeared in the SKG and control groups at 28 days. CONCLUSIONS This study suggested that immune response disruption in RA is involved in prolonging the inflammatory state of pulpitis and apical periodontitis.
Collapse
Affiliation(s)
- Shiori Yamazaki
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, Kanagawa, Japan
| | - Reona Hayashi
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, Kanagawa, Japan
| | - Noriko Mutoh
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, Kanagawa, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nobuyuki Tani-Ishii
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental University, Kanagawa, Japan.
| |
Collapse
|