1
|
Osawa Y, Ichiwata N, Kenmotsu J, Okada T, Masunaga Y, Ogata T, Morioka I, Urakami T. Diabetes mellitus with severe insulin resistance in a young male patient with a heterozygous pathogenic IRS1 frameshift variant. Clin Pediatr Endocrinol 2024; 33:87-93. [PMID: 38572380 PMCID: PMC10985017 DOI: 10.1297/cpe.2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/01/2024] [Indexed: 04/05/2024] Open
Abstract
We present the case of a young male patient (height, 158.1 cm [+3.3 standard deviation (SD)]; weight, 63.7 kg [body mass index, 25.5]) with diabetes mellitus and severe insulin resistance associated with a heterozygous pathogenic insulin receptor substrate 1 (IRS1) frameshift mutation. The patient also had severe acanthosis nigricans. Notably, the patient's father was undergoing treatment with high doses of insulin for diabetes mellitus, and had been experiencing angina pectoris. Laboratory data showed a fasting plasma glucose level of 88 mg/dL, hemoglobin A1C (HbA1c) of 7.4%, fasting insulin level of 43.1 µg/mL, and a homeostasis model assessment-insulin resistance (HOMA-IR) score of 9.36, indicating hyperinsulinism. Oral glucose tolerance test revealed a diabetic pattern and insulin hypersecretion. In addition, the patient had hyperlipidemia. Genetic studies revealed a heterozygous frameshift variant of IRS1 [NM_005544.3:c.1791dupG:p.(His598Alafs*13)] in the patient and his father, which can impair the binding and activation of phosphoinositide 3 (PI-3) kinase and defectively mediate the translocation of glucose transporter type 4 (GLUT4) in adipose tissues, possibly leading to glucose intolerance. Therefore, this variant may be disease causing. After confirming IRS1 mutation, metformin was administered, and physical exercise and dietary management were initiated; metformin was well tolerated, and optimal glycemic control was maintained.
Collapse
Affiliation(s)
- Yamato Osawa
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
- Department of Pediatrics, Kobari General Hospital, Chiba, Japan
| | - Nobutaka Ichiwata
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
- Department of Pediatrics, Kobari General Hospital, Chiba, Japan
| | - Junko Kenmotsu
- Department of Pediatrics, Kobari General Hospital, Chiba, Japan
| | | | - Yohei Masunaga
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Regional Medical Care Support, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Tatsuhiko Urakami
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
- Department of Pediatrics, Kobari General Hospital, Chiba, Japan
| |
Collapse
|
2
|
Algehainy NA, Mohamed EM, Aly HF, Younis EA, Altemani FH, Alanazi MA, Bringmann G, Abdelmohsen UR, Elmaidomy AH. Nutritional Composition and Anti-Type 2 Diabetes Mellitus Potential of Femur Bone Extracts from Bovine, Chicken, Sheep, and Goat: Phytochemical and In Vivo Studies. Nutrients 2023; 15:4037. [PMID: 37764820 PMCID: PMC10534695 DOI: 10.3390/nu15184037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Nutritional deficits in one's diet have been established as the key risk factor for T2DM in recent years. Nutritional therapy has been demonstrated to be useful in treating T2DM. The current study was carried out to assess the nutritional composition of bovine (12 months), chicken (4 months), sheep (13 months), and goat (9 months) femur bone extracts, as well as their potential therapeutic effects on T2DM regression in a Wistar albino rat model (500 mg/kg b.wt.). The proximate composition of the different extracts, their fatty acid composition, their amino acids, and their mineral contents were identified. In vivo data indicated considerably improved T2DM rats, as seen by lower serum levels of TL, TG, TC, ALT, AST, ALP, bilirubin, creatinine, urea, IL-6, TNF-α, sICAM-1, sVCAM-1, and MDA. Low levels of HDL-C, GSH, and total proteins were restored during this study. Histological investigations of liver and pancreatic tissue revealed that the distribution of collagen fibers was nearly normal. The bovine extract, on the other hand, was the most active, followed by the sheep, goat, and finally chicken extract. This research could result in the creation of a simple, noninvasive, low-cost, and reliable method for T2DM control, paving the way for potential early therapeutic applications in T2DM control.
Collapse
Affiliation(s)
- Naseh A. Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (N.A.A.); (F.H.A.); (M.A.A.)
| | - Esraa M. Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Misr University for Science & Technology (MUST), Giza 12566, Egypt;
| | - Hanan F. Aly
- Department of Therapeutic Chemistry, National Research Centre (NRC), El-Bouth St., Cairo 12622, Egypt; (H.F.A.); (E.A.Y.)
| | - Eman A. Younis
- Department of Therapeutic Chemistry, National Research Centre (NRC), El-Bouth St., Cairo 12622, Egypt; (H.F.A.); (E.A.Y.)
| | - Faisal H. Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (N.A.A.); (F.H.A.); (M.A.A.)
| | - Mohammad A. Alanazi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (N.A.A.); (F.H.A.); (M.A.A.)
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Abeer H. Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
| |
Collapse
|
3
|
Spezani R, Marinho TS, Macedo Cardoso LE, Aguila MB, Mandarim-de-Lacerda CA. Pancreatic islet remodeling in cotadutide-treated obese mice. Life Sci 2023; 327:121858. [PMID: 37315839 DOI: 10.1016/j.lfs.2023.121858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) cause morphofunctional alterations in pancreatic islet alpha and beta cells. Therefore, we hypothesize that the new GLP-1/Glucagon receptor dual agonist cotadutide may benefit islet cell arrangement and function. Twelve-week-old C57BL/6 male mice were fed a control diet (C, 10 % kJ fat) or a high-fat diet (HF, 50 % kJ fat) for ten weeks. Then, the animals were divided into four groups for an additional 30 days and daily treated with subcutaneous cotadutide (30 nmol/kg) or vehicle: C, CC (control+cotadutide), HF, and HFC (high-fat+cotadutide). Cotadutide led to weight loss and reduced insulin resistance in the HFC group, increasing insulin receptor substrate 1 and solute carrier family 2 gene expressions in isolated islets. Also, cotadutide enhanced transcriptional factors related to islet cell transdifferentiation, decreasing aristaless-related homeobox and increasing the paired box 4 and 6, pancreatic and duodenal homeobox 1, v-maf musculoaponeurotic fibrosarcoma oncogene family protein A, neurogenin 3, and neurogenic differentiation 1. In addition, cotadutide improved the proliferating cell nuclear antigen, NK6 homeobox 1, B cell leukemia/lymphoma 2, but lessening caspase 3. Furthermore, cotadutide mitigated the endoplasmic reticulum (ER) stress-responsive genes, reducing transcription factor 4, DNA-damage-inducible transcript 3, and growth arrest and DNA-damage-inducible 45. In conclusion, our data demonstrated significant beneficial actions of cotadutide in DIO mice, such as weight loss, glycemic control, and insulin resistance improvement. In addition, cotadutide counteracted the pathological adaptive cellular arrangement of the pancreatic islet in obese mice, improving the markers of the transdifferentiating pathway, proliferation, apoptosis, and ER stress.
Collapse
Affiliation(s)
- Renata Spezani
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thatiany Souza Marinho
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz E Macedo Cardoso
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Phase separation of insulin receptor substrate 1 drives the formation of insulin/IGF-1 signalosomes. Cell Discov 2022; 8:60. [PMID: 35764611 PMCID: PMC9240053 DOI: 10.1038/s41421-022-00426-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
As a critical node for insulin/IGF signaling, insulin receptor substrate 1 (IRS-1) is essential for metabolic regulation. A long and unstructured C-terminal region of IRS-1 recruits downstream effectors for promoting insulin/IGF signals. However, the underlying molecular basis for this remains elusive. Here, we found that the C-terminus of IRS-1 undergoes liquid-liquid phase separation (LLPS). Both electrostatic and hydrophobic interactions were seen to drive IRS-1 LLPS. Self-association of IRS-1, which was mainly mediated by the 301–600 region, drives IRS-1 LLPS to form insulin/IGF-1 signalosomes. Moreover, tyrosine residues of YXXM motifs, which recruit downstream effectors, also contributed to IRS-1 self-association and LLPS. Impairment of IRS-1 LLPS attenuated its positive effects on insulin/IGF-1 signaling. The metabolic disease-associated G972R mutation impaired the self-association and LLPS of IRS-1. Our findings delineate a mechanism in which LLPS of IRS-1-mediated signalosomes serves as an organizing center for insulin/IGF-1 signaling and implicate the role of aberrant IRS-1 LLPS in metabolic diseases.
Collapse
|
5
|
Kaimala S, Kumar CA, Allouh MZ, Ansari SA, Emerald BS. Epigenetic modifications in pancreas development, diabetes, and therapeutics. Med Res Rev 2022; 42:1343-1371. [PMID: 34984701 PMCID: PMC9306699 DOI: 10.1002/med.21878] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 12/26/2022]
Abstract
A recent International Diabetes Federation report suggests that more than 463 million people between 20 and 79 years have diabetes. Of the 20 million women affected by hyperglycemia during pregnancy, 84% have gestational diabetes. In addition, more than 1.1 million children or adolescents are affected by type 1 diabetes. Factors contributing to the increase in diabetes prevalence are complex and include contributions from genetic, environmental, and epigenetic factors. However, molecular regulatory mechanisms influencing the progression of an individual towards increased susceptibility to metabolic diseases such as diabetes are not fully understood. Recent studies suggest that the pathogenesis of diabetes involves epigenetic changes, resulting in a persistently dysregulated metabolic phenotype. This review summarizes the role of epigenetic mechanisms, mainly DNA methylation and histone modifications, in the development of the pancreas, their contribution to the development of diabetes, and the potential employment of epigenetic modulators in diabetes treatment.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Challagandla Anil Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Mohammed Z Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
6
|
Padarti A, Abou-Fadel J, Zhang J. Resurgence of phosphotyrosine binding domains: Structural and functional properties essential for understanding disease pathogenesis. Biochim Biophys Acta Gen Subj 2021; 1865:129977. [PMID: 34391832 DOI: 10.1016/j.bbagen.2021.129977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Phosphotyrosine Binding (PTB) Domains, usually found on scaffold proteins, are pervasive in many cellular signaling pathways. These domains are the second-largest family of phosphotyrosine recognition domains and since their initial discovery, dozens of PTB domains have been structurally determined. SCOPE OF REVIEW Due to its signature sequence flexibility, PTB domains can bind to a large variety of ligands including phospholipids. PTB peptide binding is divided into classical binding (canonical NPXY motifs) and non-classical binding (all other motifs). The first atypical PTB domain was discovered in cerebral cavernous malformation 2 (CCM2) protein, while only one third in size of the typical PTB domain, it remains functionally equivalent. MAJOR CONCLUSIONS PTB domains are involved in numerous signaling processes including embryogenesis, neurogenesis, and angiogenesis, while dysfunction is linked to major disorders including diabetes, hypercholesterolemia, Alzheimer's disease, and strokes. PTB domains may also be essential in infectious processes, currently responsible for the global pandemic in which viral cellular entry is suspected to be mediated through PTB and NPXY interactions. GENERAL SIGNIFICANCE We summarize the structural and functional updates in the PTB domain over the last 20 years in hopes of resurging interest and further analyzing the importance of this versatile domain.
Collapse
Affiliation(s)
- Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, USA.
| |
Collapse
|
7
|
Bappy HJA, Goswami A, Huda N, Hosen MI, Nabi AN. Gender specific association of missense variant rs1805097 of IRS-2 and noncoding variant rs841853 of GLUT-1 genes with susceptibility to type 2 diabetes in Bangladeshi population. GENE REPORTS 2020; 21:100866. [DOI: 10.1016/j.genrep.2020.100866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Hribal ML, Mancuso E, Arcidiacono GP, Greco A, Musca D, Procopio T, Ruffo M, Sesti G. The Phosphatase PHLPP2 Plays a Key Role in the Regulation of Pancreatic Beta-Cell Survival. Int J Endocrinol 2020; 2020:1027386. [PMID: 32411219 PMCID: PMC7199632 DOI: 10.1155/2020/1027386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/03/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Currently available antidiabetic treatments fail to halt, and may even exacerbate, pancreatic β-cell exhaustion, a key feature of type 2 diabetes pathogenesis; thus, strategies to prevent, or reverse, β-cell failure should be actively sought. The serine threonine kinase Akt has a key role in the regulation of β-cell homeostasis; among Akt modulators, a central role is played by pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) family. Here, taking advantage of an in vitro model of chronic exposure to high glucose, we demonstrated that PHLPPs, particularly the second family member called PHLPP2, are implicated in the ability of pancreatic β cells to deal with glucose toxicity. We observed that INS-1 rat pancreatic β cell line maintained for 12-15 passages at high (30 mM) glucose concentrations (INS-1 HG) showed increased expression of PHLPP2 and PHLPP1 both at mRNA and protein level as compared to INS-1 maintained for the same number of passages in the presence of normal glucose levels (INS-1 NG). These changes were paralleled by decreased phosphorylation of Akt and by increased expression of apoptotic and autophagic markers. To investigate if PHLPPs had a casual role in the alteration of INS-1 homeostasis observed upon chronic exposure to high glucose concentrations, we took advantage of shRNA technology to specifically knock-down PHLPPs. We obtained proof-of-concept evidence that modulating PHLPPs expression may help to restore a healthy β cell mass, as the reduced expression of PHLPP2/1 was accompanied by a recovered balance between pro- and antiapoptotic factor levels. In conclusion, our data provide initial support for future studies aimed to identify pharmacological PHLPPs modulator to treat beta-cell survival impairment. They also contribute to shed some light on β-cell dysfunction, a complex and unsatisfactorily characterized phenomenon that has a central causative role in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Gaetano Paride Arcidiacono
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
- Department of Medicine, University of Padua, Padua, Italy
| | - Annalisa Greco
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Donatella Musca
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Teresa Procopio
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Mariafrancesca Ruffo
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
- Department of Medicine, Ausl of Bologna, Bologna, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
- Department of Clinical and Molecular Medicine, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
9
|
Mannino GC, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev 2019; 35:e3109. [PMID: 30515958 PMCID: PMC6590177 DOI: 10.1002/dmrr.3109] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease that has reached the levels of a global epidemic. In order to achieve optimal glucose control, it is often necessary to rely on combination therapy of multiple drugs or insulin because uncontrolled glucose levels result in T2DM progression and enhanced risk of complications and mortality. Several antihyperglycemic agents have been developed over time, and T2DM pharmacotherapy should be prescribed based on suitability for the individual patient's characteristics. Pharmacogenetics is the branch of genetics that investigates how our genome influences individual responses to drugs, therapeutic outcomes, and incidence of adverse effects. In this review, we evaluated the pharmacogenetic evidences currently available in the literature, and we identified the top informative genetic variants associated with response to the most common anti-diabetic drugs: metformin, DPP-4 inhibitors/GLP1R agonists, thiazolidinediones, and sulfonylureas/meglitinides. Overall, we found 40 polymorphisms for each drug class in a total of 71 loci, and we examined the possibility of encouraging genetic screening of these variants/loci in order to critically implement decision-making about the therapeutic approach through precision medicine strategies. It is possible then to anticipate that when the clinical practice will take advantage of the genetic information of the diabetic patients, this will provide a useful resource for the prevention of T2DM progression, enabling the identification of the precise drug that is most likely to be effective and safe for each patient and the reduction of the economic impact on a global scale.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | - Francesco Andreozzi
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | - Giorgio Sesti
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| |
Collapse
|
10
|
Xu W, Ni Z, Zhang M, Chen J, Zhang L, Wu S, Liang C. The Role of Polymorphisms in Genes of PI3K/Akt Signaling Pathway on Prostate. J Cancer 2019; 10:1023-1031. [PMID: 30854108 PMCID: PMC6400800 DOI: 10.7150/jca.26472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
Background and Objective: Increasing evidence suggested that polymorphisms in genes of PI3K/Akt pathway were closely related to prostate cancer (PCa) risk. Nevertheless, these results are controversial and inconclusive. Here, we conducted a comprehensive updated meta-analysis and systematic review to precisely illustrate the association between polymorphisms in genes of PI3K/Akt signaling pathway and PCa risk. Materials and Methods: The gene set of PI3K/Akt pathway was referenced from the Kyoto Encyclopedia of Genes and Genomes (KEGG) website. Relevant studies were identified by the systematically researching on PubMed, Web of Science and Google Scholar databases up to October 1, 2017. The odds ratios (ORs) with a corresponding 95% confidential intervals (95%CIs) were applied to test their associations. All the analyses were conducted by using Stata 12.0 (Stata Corporation, USA). Results: Finally, 38 articles comprising 62 case-control studies were enrolled for 13 polymorphisms in genes of PI3K/Akt pathway. However, overall results failed to present a positive association between polymorphisms in genes of PI3K/Akt pathway and PCa risk. Nevertheless, in the subgroup analysis by ethnicity, we identified that IL-6-rs1800795 polymorphism was associated with an increased risk of PCa for Caucasian individuals in dominant model (MM + MW vs. WW: OR = 1.245, 95%CI = 1.176-1.318, P < 0.001). Conclusion: Our work suggests that polymorphisms in genes of PI3K/Akt Signaling Pathway are not risk factor for PCa. Further well-designed studies with larger samples and precise designs are demanded to corroborate our findings.
Collapse
Affiliation(s)
- Wei Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.,Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Zhihao Ni
- Trauma Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230000, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, NO.87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Song Wu
- Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, 518000, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| |
Collapse
|
11
|
Ijaz A, Babar S, Sarwar S, Shahid SU. The combined role of allelic variants of IRS-1 and IRS-2 genes in susceptibility to type2 diabetes in the Punjabi Pakistani subjects. Diabetol Metab Syndr 2019; 11:64. [PMID: 31404179 PMCID: PMC6683393 DOI: 10.1186/s13098-019-0459-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/19/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetes mellitus is a multifactorial disorder characterized by a high level of glucose in the blood. Both genetic and environmental factors interact to cause diabetes. Insulin receptor substrate (IRS) proteins have a significant part in insulin signaling pathways. We aimed to investigate the relationship of type 2 diabetes with a Gly972Arg (G972R) variant of the IRS-1 gene and Gly1057Asp (G1057D) polymorphism of IRS-2 gene in the population of Punjab, Pakistan. METHODS We collected 926 samples, 500 healthy controls (fasting blood sugar < 99 mg/dL, random blood sugar < 126 mg/dL) and 426 cases with diabetes (fasting blood sugar > 99 mg/dL, random blood sugar > 126 mg/dL). Several anthropometric measurements were measured. Statistical analysis was performed by using SPSS to determine the allele group/genotype frequency of the selected variants in the study population. RESULTS The genotyping results of G972R by RLFP-PCR showed the allelic frequency of G = 0.68 and R = 0.32 in controls while G = 0.71 and R = 0.29 in the cases. The minor R allele had a slightly higher frequency in the cases than the controls (OR = 0.86, CI 0.706-1.052, p = 0.17). The genotyping results of G1057D showed allelic frequency G = 0.74 and D = 0.26 in the controls while G = 0.961 and D = 0.29 in the cases. The minor D allele appeared to be a risk allele for this SNP although the difference in the allele frequencies was not statistically significant (OR = 1.55, CI 0.961-1.41, p = 0.108). The combined genotype analysis showed that the difference in the allele and genotype frequencies reached statistical difference between the cases and the controls as well as the odds ratio substantially increased when the R allele (G972R) was present together with D allele (G1057D) in any combination. When the association of single variants with the lipid traits was observed, only D allele (G1057D) showed significant association with TG, HDL and LDL, however when the analysis was repeated for combined genotypes using general linear model, many more significant associations between the genotype where D allele and R allele are together, were seen with many lipid traits. CONCLUSION In conclusion, the single nucleotide polymorphisms with low-modest effect size may not affect the phenotype individually but when in combination, the effect becomes stronger and more visible, therefore, for the SNP association studies, the more the number of SNPs included in the analysis, the more meaningful the results.
Collapse
Affiliation(s)
- Anam Ijaz
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Sana Babar
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Sumbal Sarwar
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Saleem Ullah Shahid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
12
|
|
13
|
Shirakawa J, Fernandez M, Takatani T, El Ouaamari A, Jungtrakoon P, Okawa ER, Zhang W, Yi P, Doria A, Kulkarni RN. Insulin Signaling Regulates the FoxM1/PLK1/CENP-A Pathway to Promote Adaptive Pancreatic β Cell Proliferation. Cell Metab 2017; 25:868-882.e5. [PMID: 28286049 PMCID: PMC5382039 DOI: 10.1016/j.cmet.2017.02.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/09/2017] [Accepted: 02/08/2017] [Indexed: 12/01/2022]
Abstract
Investigation of cell-cycle kinetics in mammalian pancreatic β cells has mostly focused on transition from the quiescent (G0) to G1 phase. Here, we report that centromere protein A (CENP-A), which is required for chromosome segregation during the M-phase, is necessary for adaptive β cell proliferation. Receptor-mediated insulin signaling promotes DNA-binding activity of FoxM1 to regulate expression of CENP-A and polo-like kinase-1 (PLK1) by modulating cyclin-dependent kinase-1/2. CENP-A deposition at the centromere is augmented by PLK1 to promote mitosis, while knocking down CENP-A limits β cell proliferation and survival. CENP-A deficiency in β cells leads to impaired adaptive proliferation in response to pregnancy, acute and chronic insulin resistance, and aging in mice. Insulin-stimulated CENP-A/PLK1 protein expression is blunted in islets from patients with type 2 diabetes. These data implicate the insulin-FoxM1/PLK1/CENP-A pathway-regulated mitotic cell-cycle progression as an essential component in the β cell adaptation to delay and/or prevent progression to diabetes.
Collapse
Affiliation(s)
- Jun Shirakawa
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Megan Fernandez
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Tomozumi Takatani
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Abdelfattah El Ouaamari
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Prapaporn Jungtrakoon
- Section on Genetics and Epidemiology, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Erin R Okawa
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Wei Zhang
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Peng Yi
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Alessandro Doria
- Section on Genetics and Epidemiology, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA.
| |
Collapse
|
14
|
Kaul K, Apostolopoulou M, Roden M. Insulin resistance in type 1 diabetes mellitus. Metabolism 2015; 64:1629-39. [PMID: 26455399 DOI: 10.1016/j.metabol.2015.09.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022]
Abstract
For long the presence of insulin resistance in type 1 diabetes has been questioned. Detailed metabolic analyses revealed 12%-61% and up to 20% lower whole-body (skeletal muscle) and hepatic insulin sensitivity in type 1 diabetes, depending on the population studied. Type 1 diabetes patients feature impaired muscle adenosine triphosphate (ATP) synthesis and enhanced oxidative stress, predominantly relating to hyperglycemia. They may also exhibit abnormal fasting and postprandial glycogen metabolism in liver, while the role of hepatic energy metabolism for insulin resistance remains uncertain. Recent rodent studies point to tissue-specific differences in the mechanisms underlying insulin resistance. In non-obese diabetic mice, increased lipid availability contributes to muscle insulin resistance via diacylglycerol/protein kinase C isoforms. Furthermore, humans with type 1 diabetes respond to lifestyle modifications or metformin by 20%-60% increased whole-body insulin sensitivity, likely through improvement in both glycemic control and oxidative phosphorylation. Intensive insulin treatment and islet transplantation also increase but fail to completely restore whole-body and hepatic insulin sensitivity. In conclusion, insulin resistance is a feature of type 1 diabetes, but more controlled trials are needed to address its contribution to disease progression, which might help to optimize treatment and reduce comorbidities.
Collapse
Affiliation(s)
- Kirti Kaul
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Germany; German Center of Diabetes Research Partner, Düsseldorf, Germany
| | - Maria Apostolopoulou
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Germany; German Center of Diabetes Research Partner, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Germany; German Center of Diabetes Research Partner, Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
15
|
Huang C, Li G, Dong H, Sun S, Chen H, Luo D, Sun L, Li X, Chen Z, Yang H, Wei S, Zhou Y. Arg⁹⁷² insulin receptor substrate-1 inhibits endothelial nitric oxide synthase expression in human endothelial cells by upregulating microRNA-155. Int J Mol Med 2015; 36:239-48. [PMID: 25902041 DOI: 10.3892/ijmm.2015.2192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/20/2015] [Indexed: 11/06/2022] Open
Abstract
The dysregulation of nitric oxide (NO) synthesis attributable to the abnormal expression/activity of endothelial NO synthase (eNOS) is considered to be a major characteristic of insulin-resistant states, as well as an essential contributor to the pathogenesis of cardiovascular diseases. The Arg972 insulin receptor substrate-1 (IRS-1) is associated with insulin resistance. In the present study, we investigated the association between Arg972 IRS-1 and eNOS expression/activity in human subjects and in primary cultures of human endothelial cells. Data from 832 human subjects revealed that heterozygous and homozygous Arg972 IRS-1 carriers had significantly lower levels of plasma eNOS and nitrite/nitrate than the homozygous wild-type (WT) IRS-1 carriers. Human umbilical vein endothelial cells (HUVECs) established from delivering mothers expressing heterozygous Arg972 IRS-1 had significantly lower eNOS expression/activity and higher miR-155 levels than those expressing WT homozygous IRS-1. The overexpression of IRS-1 and Arg972 IRS-1 in the HUVECs, respectively, decreased and increased the miR-155 expression level. In addition, the overexpression of IRS-1 in the HUVECs significantly increased eNOS expression; this effect was reversed by transfection with mature miR-155 mimic or treatment with the selective phosphatidylinositol-3 kinase (PI3K) inhibitor, BKM120. On the other hand, the overexpression of Arg972 IRS-1 markedly decreased eNOS expression and this effect was reversed by transfection with antagomir-155. On the whole, our in vivo data demonstrate that Arg972 IRS-1 is associated with decreased plasma eNOS and nitrite/nitrate levels in human subjects. Our in vitro data demonstrate that Arg972 IRS-1 inhibits eNOS expression in human endothelial cells by upregulating miR-155 expression through the impairment of PI3K signaling. The present study provides new insight into the pathophysiological role of Arg972 IRS-1 in cardiovascular diseases.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Intensive Care Medicine, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Guang Li
- Department of Intensive Care Medicine, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Haojian Dong
- Department of Intensive Care Medicine, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Shuo Sun
- Department of Intensive Care Medicine, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Haimin Chen
- Department of Intensive Care Medicine, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Demou Luo
- Department of Intensive Care Medicine, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Ling Sun
- Department of Intensive Care Medicine, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Xida Li
- Department of Intensive Care Medicine, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Zhujun Chen
- Department of Intensive Care Medicine, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Huijian Yang
- Department of Intensive Care Medicine, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Shuisheng Wei
- Department of Intensive Care Medicine, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Yingling Zhou
- Department of Intensive Care Medicine, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
16
|
You Y, Liu S, Peng L, Long M, Deng H, Zhao H. Arg972 insulin receptor substrate-1 enhances tumor necrosis factor-α-induced apoptosis in osteoblasts. Mol Med Rep 2015; 12:255-60. [PMID: 25760103 DOI: 10.3892/mmr.2015.3457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 12/02/2014] [Indexed: 11/05/2022] Open
Abstract
The presence of Arg972 insulin receptor substrate-1 (IRS-1) is associated with impaired insulin/IRS-1 signaling to activate phosphatidylinositol-3 kinase (PI3K). Tumor necrosis factor-α (TNF-α), an inflammatory cytokine with a central role in the pathogenesis of rheumatoid arthritis (RA), induces apoptosis in osteoblasts, which are the principal cell type responsible for bone loss in RA. In our previous study, an association between Arg972 IRS-1 and a high risk and severity of RA was identified. In the present study, the effects of Arg972 IRS-1 and IRS-1 on TNF-α-induced apoptosis in human osteoblasts were examined. Normal and RA osteoblasts were stably transfected with Arg972 IRS-1 and IRS-1. In addition, cells were stably transduced with IRS-1-shRNA to knock down IRS1. Following stimulation with 10 nM insulin for 30 min, the stable overexpression of Arg972 IRS-1 and knock down of IRS-1 significantly decreased IRS-1-associated PI3K activity and Akt activation/phosphorylation at serine 473 (ser473) and enhanced TNF-α-induced apoptosis in normal and in RA osteoblasts. By contrast, the stable overexpression of IRS-1 significantly increased the levels of IRS-1-associated PI3K activity and Akt phosphorylation (ser473) and inhibited TNF-α-induced apoptosis, which was eliminated by pretreatment with 50 µn BJM120, a selective PI3K inhibitor, for 30 min. In conclusion, the present study provided the first evidence, to the best of our knowledge, that insulin stimulation of Arg972 IRS-1 and IRS-1 enhanced and inhibited TNF-α-induced apoptosis, respectively in normal and RA osteoblasts by a PI3K‑dependent mechanism. These findings suggest that insulin/IRS-1 signaling is important in the pathogenesis of RA.
Collapse
Affiliation(s)
- Yunhui You
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shiqing Liu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lijuan Peng
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mei Long
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongxiang Deng
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongjun Zhao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
17
|
Gelaleti RB, Damasceno DC, Salvadori DMF, Marcondes JPC, Lima PHO, Morceli G, Calderon IMP, Rudge MVC. IRS-1 gene polymorphism and DNA damage in pregnant women with diabetes or mild gestational hyperglycemia. Diabetol Metab Syndr 2015; 7:30. [PMID: 25859280 PMCID: PMC4391297 DOI: 10.1186/s13098-015-0026-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pregnant women with mild gestational hyperglycemia present a high risk for hypertension and obesity, and appear to reproduce the model of metabolic syndrome in pregnancy, including hyperinsulinemia and insulin resistance. Diabetic patients have a higher frequency of the IRS-1 Gly972Arg variant and this polymorphism is directly related to insulin resistance and subsequent hyperglycemia. In diabetes, hyperglycemia and other associated factors generate reactive oxygen species that increase DNA damage. The aims of this study were to evaluate the presence of the IRS-1 Arg972 polymorphism in pregnant women with diabetes or mild gestational hyperglycemia, and in their newborns. Additionally, we evaluated the level of primary DNA damage in lymphocytes of Brazilian pregnant women and the relationship between the amount of genetic damage and presence of the polymorphism. METHODS A based on the oral glucose tolerance test (OGTT) results and on glycemic profiles (GP), as follows: non-diabetic group, mild gestational hyperglycemia (MGH) and diabetic group. Eighty-five newborns were included in the study. Maternal peripheral blood samples and umbilical cord blood samples (5-10 mL) were collected for genotyping by PCR-RFLP and for comet assays. RESULTS The prevalence of genotype Gly/Arg in pregnant women groups was not statistically significant. In newborns, the frequency of Gly/Arg was significantly higher in the MGH and diabetic groups than in the non-diabetic group. Taken together, groups IIA and IIB (IIA + IIB; diabetes) presented lower amounts of DNA damage than the non-diabetic group (p = 0.064). No significant association was detected between genetic damage and the presence of the Arg972 genotype in pregnant women. CONCLUSION The polymorphism was more prevalent in newborns of diabetic and MGH women. We believe that it is necessary to increase the number of subjects to be examined in order to better determine the biological role of the Arg972 polymorphism in these patients. Despite being classified as low-risk, pregnant women with mild gestational hyperglycemia characterize a population of maternal and perinatal adverse outcomes, and that, together with their newborns, require better monitoring by professionals and health services.
Collapse
Affiliation(s)
- Rafael B Gelaleti
- />Department of Gynecology and Obstetrics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Laboratory of Experimental Research in Gynecology and Obstetrics, Distrito de Rubião Júnior s/n, CEP. 18618.000, Botucatu, São Paulo Brazil
| | - Débora C Damasceno
- />Department of Gynecology and Obstetrics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Laboratory of Experimental Research in Gynecology and Obstetrics, Distrito de Rubião Júnior s/n, CEP. 18618.000, Botucatu, São Paulo Brazil
| | - Daisy M F Salvadori
- />Department of Pathology, Laboratory of Toxigenomics and Nutrigenomics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Botucatu, Brazil
| | - João Paulo C Marcondes
- />Department of Pathology, Laboratory of Toxigenomics and Nutrigenomics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Botucatu, Brazil
| | - Paula H O Lima
- />Department of Gynecology and Obstetrics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Laboratory of Experimental Research in Gynecology and Obstetrics, Distrito de Rubião Júnior s/n, CEP. 18618.000, Botucatu, São Paulo Brazil
| | - Glilciane Morceli
- />Department of Gynecology and Obstetrics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Laboratory of Experimental Research in Gynecology and Obstetrics, Distrito de Rubião Júnior s/n, CEP. 18618.000, Botucatu, São Paulo Brazil
| | - Iracema M P Calderon
- />Department of Gynecology and Obstetrics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Laboratory of Experimental Research in Gynecology and Obstetrics, Distrito de Rubião Júnior s/n, CEP. 18618.000, Botucatu, São Paulo Brazil
| | - Marilza V C Rudge
- />Department of Gynecology and Obstetrics, Botucatu Medical School, Unesp_Univ Estadual Paulista, Laboratory of Experimental Research in Gynecology and Obstetrics, Distrito de Rubião Júnior s/n, CEP. 18618.000, Botucatu, São Paulo Brazil
| |
Collapse
|
18
|
Menzaghi C, Fontana A, Copetti M, Rizza S, Spoto B, Buranasupkajorn P, Tripepi G, Marucci A, Bailetti D, Hastings T, Testa A, Mendonca C, Mallamaci F, De Cosmo S, Bacci S, Federici M, Doria A, Zoccali C, Trischitta V. Joint effect of insulin signaling genes on all-cause mortality. Atherosclerosis 2014; 237:639-44. [PMID: 25463099 PMCID: PMC4294190 DOI: 10.1016/j.atherosclerosis.2014.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We have previously reported the combined effect of SNPs perturbing insulin signaling (ENPP1 K121Q, rs1044498; IRS1 G972R, rs1801278; TRIB3 Q84R, rs2295490) on insulin resistance (IR), type 2 diabetes (T2D) and cardiovascular events. We here investigated whether such a combined effect affects also all-cause mortality in a sample of 1851 Whites of European ancestry. METHODS We investigated a first sample of 721 patients, 232 deaths, 3389 person-years (py). Replication was assessed in two samples of patients with T2D: the Gargano Mortality Study (GMS) of 714 patients, 127 deaths, 5426 py and the Joslin Kidney Study (JKS) comprising 416 patients, 214 deaths, 5325 py. RESULTS In the first sample, individuals carrying 1 or ≥ 2 risk alleles had 33% (p = 0.06) and 51% (p = 0.02) increased risk of mortality, as compared with individuals with no risk alleles. A similar, though not significant, trend was obtained in the two replication samples only for subject carrying ≥ 2 risk alleles. In a pooled analysis, individuals carrying ≥ 2 risk alleles had higher mortality rate as compared to those carrying 0 risk alleles (HR = 1.34, 95%CI = 1.08-1.67; p = 0.008), and as compared to those carrying only one risk allele (HR = 1.41, 95%CI = 1.13-1.75; p = 0.002). This association was independent from several possible confounders including sex, age, BMI, hypertension and diabetes status. CONCLUSION Our data suggest that variants affecting insulin signaling exert a joint effect on all-cause mortality and is consistent with a role of abnormal insulin signaling on mortality risk.
Collapse
Affiliation(s)
- Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | - Andrea Fontana
- Unit of Biostatistics IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimiliano Copetti
- Unit of Biostatistics IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Stefano Rizza
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Belinda Spoto
- CNR-IBIM, Research Unit of Clinical Epidemiology and Physiopathology of Renal Disease and Hypertension, Reggio Calabria, Italy
| | - Patinut Buranasupkajorn
- Research Division, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Giovanni Tripepi
- CNR-IBIM, Research Unit of Clinical Epidemiology and Physiopathology of Renal Disease and Hypertension, Reggio Calabria, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Diego Bailetti
- IRCSS Casa Sollievo della Sofferenza-Mendel Laboratory, Rome, Italy; Department of Experimental Medicine, Sapienza University of Rome, Italy
| | | | - Alessandra Testa
- CNR-IBIM, Research Unit of Clinical Epidemiology and Physiopathology of Renal Disease and Hypertension, Reggio Calabria, Italy
| | | | - Francesca Mallamaci
- CNR-IBIM, Research Unit of Clinical Epidemiology and Physiopathology of Renal Disease and Hypertension, Reggio Calabria, Italy
| | - Salvatore De Cosmo
- Unit of Endocrinology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Simonetta Bacci
- Unit of Endocrinology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Federici
- Department of Internal Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Carmine Zoccali
- CNR-IBIM, Research Unit of Clinical Epidemiology and Physiopathology of Renal Disease and Hypertension, Reggio Calabria, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Department of Experimental Medicine, Sapienza University of Rome, Italy.
| |
Collapse
|
19
|
Liu W, Zhou X, Yu F, Hu J, Hu W. Arg972 Insulin receptor substrate-1 is associated with decreased serum angiotensin-converting enzyme 2 levels in acute myocardial infarction patients: in vivo and in vitro evidence. Cardiovasc Diabetol 2013; 12:151. [PMID: 24134599 PMCID: PMC4015180 DOI: 10.1186/1475-2840-12-151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/02/2013] [Indexed: 12/17/2022] Open
Abstract
Background Activation of the renin-angiotensin system (RAS) plays a critical role in the pathophysiology of myocardial infarction (MI) and the development of heart failure. Both angiotensin-converting enzyme 2 (ACE2) and insulin/insulin receptor substrate-1 (IRS-1) show cardioprotective effects after acute MI. The Arg972 IRS-1 polymorphism is associated with diminished activity of insulin. In the present study, we explored the association among Arg972 IRS-1, acute MI, and serum levels of ACE2. Methods A total of 711 subjects, including 351 subjects with first-time acute MI and 360 subjects without a history of MI were genotyped for Arg972 IRS-1 polymorphism. Serum levels of ACE2 and MI severity scores were determined. Primary human cardiomyocytes with overexpression of wild type IRS-1 or Arg972 IRS-1 or knockdown of endogenous IRS-1 were exposed to normoxia and hypoxia, and the expression levels of ACE2 were determined. Results The serum ACE2 level was significantly increased in acute MI patients compared with that of non-MI controls. Compared with wild type IRS-1 carriers, Arg972 IRS-1 carriers exhibited decreased serum ACE2 levels and increased MI severity scores after MI. Our in vitro data demonstrate that impairment of insulin/IRS-1/PI3K signaling by overexpression of Arg972-IRS-1, knockdown of endogenous IRS-1, or PI3K inhibitor can abolish hypoxia-induced IRS-1-associated PI3K activity and ACE2 expression in human cardiomyocytes, which suggests a causal relationship between Arg972-IRS-1 and decreased serum ACE2 levels in acute MI patients. Our in vitro data also indicate that insulin/IRS-1/PI3K signaling is required for ACE2 expression in cardiomyocytes, and that hypoxia can enhance the induction effect of insulin/IRS-1/PI3K signaling on ACE2 expression in cardiomyocytes. Conclusions This study provides the first evidence of crosstalk between insulin/IRS-1/PI3K signaling and RAS after acute MI, thereby adding fresh insights into the pathophysiology and treatment of acute MI.
Collapse
Affiliation(s)
| | | | | | | | - Wen Hu
- Department of Thoracic and Cardiovascular Surgery, Second Xiangya Hospital, Central South University, 138 Renmin Road, Changsha, Hunan 410011, P,R, China.
| |
Collapse
|
20
|
Zhang M, Zhu Y, Mu K, Li L, Lu J, Zhao J, Huang X, Wang C, Jia W. Loss of β-arrestin2 mediates pancreatic-islet dysfunction in mice. Biochem Biophys Res Commun 2013; 435:345-9. [DOI: 10.1016/j.bbrc.2013.04.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 11/26/2022]
|
21
|
Zhang H, Wang A, Ma H, Xu Y. Association between insulin receptor substrate 1 Gly972Arg polymorphism and cancer risk. Tumour Biol 2013; 34:2929-36. [PMID: 23708959 DOI: 10.1007/s13277-013-0855-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies investigating the association between the insulin receptor substrate 1 (IRS1) gene Gly972Arg (rs1801278) polymorphism and various carcinomas risk reported conflicting results. Thus, a systemic review and meta-analysis of published studies were performed to assess the possible association. A comprehensive search was conducted to identify all eligible studies of IRS1 Gly972Arg polymorphism and cancer risk. Odds ratios (ORs) and 95 % confidence intervals (CIs) were used to assess the strength of the associations. A total of 16 independent studies, including 11,776 cases and 11,654 controls, were identified. When all studies were pooled, we found a significant association between IRS1 Gly972Arg polymorphism and increased cancer risk under dominant model (OR = 1.16, 95 %CI = 1.04-1.30, P = 0.007) and allelic model (OR = 1.16, 95 %CI = 1.02-1.30, P = 0.02). In subgroup analysis based on cancer type, increased cancer risk was found in ovarian cancer (dominant: OR = 1.55, 95 %CI = 1.17-2.05, P = 0.002; allelic: OR = 1.55, 95 %CI = 1.19-2.01, P = 0.001), breast cancer (allelic: OR = 1.12, 95 %CI = 1.00-1.26, P = 0.05), and other cancers (allelic: OR = 1.31, 95 %CI = 1.00-1.71, P = 0.05). When stratified by study types, significant associations were observed in both cohort studies (dominant: OR = 1.25, 95 %CI = 1.06-1.47, P = 0.007; allelic: OR = 1.25, 95 %CI = 1.07-1.46, P = 0.005) and case-control studies (dominant: OR = 1.15, 95 %CI = 1.01-1.31, P = 0.04). In the subgroup analyses by ethnicity, significantly increased cancer risk was suggested among both Caucasians (dominant: OR = 1.13, 95 %CI = 1.02-1.26, P = 0.02; allelic: OR = 1.13, 95 %CI = 1.03-1.25, P = 0.01) and mixed population (dominant: OR = 1.22, 95 %CI = 1.01-1.46, P = 0.04). Our investigations demonstrate that IRS1 Gly972Arg polymorphism was associated with an increased risk of cancer, and additional well-designed studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Hongtuan Zhang
- National Key Clinical Specialty of Urology, Tianjin Key Lab of Urology, Second Affiliated Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, 300211, Tianjin, China
| | | | | | | |
Collapse
|
22
|
Mannino GC, Sesti G. Individualized therapy for type 2 diabetes: clinical implications of pharmacogenetic data. Mol Diagn Ther 2013; 16:285-302. [PMID: 23018631 DOI: 10.1007/s40291-012-0002-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance, abnormally elevated hepatic glucose production, and reduced glucose-stimulated insulin secretion. Treatment with antihyperglycemic agents is initially successful in type 2 diabetes, but it is often associated with a high secondary failure rate, and the addition of insulin is eventually necessary for many patients, in order to restore acceptable glycemic control and to reduce the risk of development and progression of disease complications. Notably, even patients who appear to have similar requirements of antidiabetic regimens show great variability in drug disposition, glycemic response, tolerability, and incidence of adverse effects during treatment. Pharmacogenomics is a promising area of investigation and involves the search for genetic polymorphisms that may explain the interindividual variability in antidiabetic therapy response. The initial positive results portend that genomic efforts will be able to shed important light on variability in pharmacologic traits. In this review, we summarize the current understanding of genetic polymorphisms that may affect the responses of subjects with T2DM to antidiabetic treatment. These genes belong to three major classes: genes involved in drug metabolism and transporters that influence pharmacokinetics (including the cytochrome P450 [CYP] superfamily, the organic anion transporting polypeptide [OATP] family, and the polyspecific organic cation transporter [OCT] family); genes encoding drug targets and receptors (including peroxisome proliferator-activated receptor gamma [PPARG], the adenosine triphosphate [ATP]-sensitive potassium channel [K(ATP)], and incretin receptors); and genes involved in the causal pathway of T2DM that are able to modify the effects of drugs (including adipokines, transcription factor 7-like 2 (T cell specific, HMG-box) [TCF7L2], insulin receptor substrate 1 [IRS1], nitric oxide synthase 1 (neuronal) adaptor protein [NOS1AP], and solute carrier family 30 (zinc transporter), member 8 [SLC30A8]). In addition to these three major classes, we also review the available evidence on novel genes (CDK5 regulatory subunit associated protein 1-like 1 [CDKAL1], insulin-like growth factor 2 mRNA binding protein 2 [IGF2BP2], potassium voltage-gated channel, KQT-like subfamily, member 1 [KCNQ1], paired box 4 [PAX4] and neuronal differentiation 1 [NEUROD1] transcription factors, ataxia telangiectasia mutated [ATM], and serine racemase [SRR]) that have recently been proposed as possible modulators of therapeutic response in subjects with T2DM.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | |
Collapse
|
23
|
Arg(972) insulin receptor substrate-1 is associated with elevated plasma endothelin-1 level in hypertensives. J Hypertens 2012; 30:1751-7. [PMID: 22759779 DOI: 10.1097/hjh.0b013e3283561400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To explore the association among Arg(972) insulin receptor substrate-1 (IRS-1), hypertension, insulin resistance, and plasma levels of endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1). METHODS A total of 1030 patients, including 521 healthy controls, 142 patients with both primary hypertension and insulin resistance, 184 patients with primary hypertension but no insulin resistance, and 183 patients with insulin resistance but no hypertension were genotyped for the Arg(972) IRS-1 polymorphism. Serum levels of ET-1 and eNOS were determined by ELISA. Shear stress was applied to human umbilical vein endothelial cells (HUVECs) overexpressing wild type IRS-1 or Arg(972) IRS-1, and the mRNA and secreted protein levels of ET-1 were measured by real-time RT-PCR and ELISA, respectively. RESULTS There was no significant difference in allelic frequency between patients with and without primary hypertension or insulin resistance, in the hypertensives, heterozygous Arg(972) IRS-1 carriers had significantly higher plasma ET-1 levels and blood pressure (BP) than the homozygous carriers. Although shear stress decreased ET-1 expression in control HUVECs as well as cells transfected with wild type Arg(972) IRS-1, it increased the mRNA dose-dependently and secreted protein levels of ET-1 in cells transfected with Arg(972) IRS-1. CONCLUSIONS Based on both in-vivo and in-vitro data, we have shown a potential causal association between Arg(972) IRS-1 and elevated plasma ET-1 level in hypertensives, which may account for the aggravated hypertension observed in hypertensives with heterozygous Arg(972) IRS-1. This study for the first time provides insights into the role of Arg(972) IRS-1 in hypertension.
Collapse
|
24
|
Changes in food intake, metabolic parameters and insulin resistance are induced by an isoenergetic, medium-chain fatty acid diet and are associated with modifications in insulin signalling in isolated rat pancreatic islets. Br J Nutr 2012. [PMID: 23182275 DOI: 10.1017/s0007114512004576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Long-chain fatty acids are capable of inducing alterations in the homoeostasis of glucose-stimulated insulin secretion (GSIS), but the effect of medium-chain fatty acids (MCFA) is poorly elucidated. In the present study, we fed a normoenergetic MCFA diet to male rats from the age of 1 month to the age of 4 months in order to analyse the effect of MCFA on body growth, insulin sensitivity and GSIS. The 45% MCFA substitution of whole fatty acids in the normoenergetic diet impaired whole body growth and resulted in increased body adiposity and hyperinsulinaemia, and reduced insulin-mediated glucose uptake in skeletal muscle. In addition, the isolated pancreatic islets from the MCFA-fed rats showed impaired GSIS and reduced protein kinase Ba (AKT1) protein expression and extracellular signal-related kinase isoforms 1 and 2 (ERK(1/2)) phosphorylation, which were accompanied by increased cellular death. Furthermore, there was a mildly increased cholinergic sensitivity to GSIS. We discuss these findings in further detail, and advocate that they might have a role in the mechanistic pathway leading to the compensatory hyperinsulinaemic status found in this animal model.
Collapse
|
25
|
Haghani K, Bakhtiyari S. The Study on the Relationship Between IRS-1 Gly972Arg and IRS-2 Gly1057Asp Polymorphisms and Type 2 Diabetes in the Kurdish Ethnic Group in West Iran. Genet Test Mol Biomarkers 2012; 16:1270-6. [DOI: 10.1089/gtmb.2012.0160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Karimeh Haghani
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Islamic Republic of Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Islamic Republic of Iran
| |
Collapse
|
26
|
Goldfine AB, Kulkarni RN. Modulation of β-cell function: a translational journey from the bench to the bedside. Diabetes Obes Metab 2012; 14 Suppl 3:152-60. [PMID: 22928576 DOI: 10.1111/j.1463-1326.2012.01647.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Both decreased insulin secretion and action contribute to the pathogenesis of type 2 diabetes (T2D) in humans. The insulin receptor and insulin signalling proteins are present in the rodent and human β-cell and modulate cell growth and function. Insulin receptors and insulin signalling proteins in β-cells are critical for compensatory islet growth in response to insulin resistance. Rodents with tissue-specific knockout of the insulin receptor in the β-cell (βIRKO) show reduced first-phase glucose-stimulated insulin secretion (GSIS) and with aging develop glucose intolerance and diabetes, phenotypically similar to the process seen in human T2D. Expression of multiple insulin signalling proteins is reduced in islets of patients with T2D. Insulin potentiates GSIS in isolated human β-cells. Recent studies in humans in vivo show that pre-exposure to insulin increases GSIS, and this effect is diminished in persons with insulin resistance or T2D. β-Cell function correlates to whole-body insulin sensitivity. Together, these findings suggest that pancreatic β-cell dysfunction could be caused by a defect in insulin signalling within β-cell, and β-cell insulin resistance may lead to a loss of β-cell function and/or mass, contributing to the pathophysiology of T2D.
Collapse
Affiliation(s)
- A B Goldfine
- Section of Clinical Research, Joslin Diabetes Center, Boston, MA 02215, USA.
| | | |
Collapse
|
27
|
Thameem F, Puppala S, Schneider J, Bhandari B, Arya R, Arar NH, Vasylyeva TL, Farook VS, Fowler S, Almasy L, Blangero J, Duggirala R, Abboud HE. The Gly(972)Arg variant of human IRS1 gene is associated with variation in glomerular filtration rate likely through impaired insulin receptor signaling. Diabetes 2012; 61:2385-93. [PMID: 22617042 PMCID: PMC3425400 DOI: 10.2337/db11-1078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objective of this study is to identify and characterize the genetic variants related to the glomerular filtration rate (GFR) linkage on 2q37. Of the positional candidate genes, we selected IRS1 and resequenced its 2-kb promoter region and exons for sequence variants in 32 subjects. A total of 11 single nucleotide polymorphisms (SNPs) were identified. To comprehensively cover the 59-kb-long intron-1, eight additional tagging SNPs were selected from the HapMap. All the 19 SNPs were genotyped by TaqMan Assay in the entire data set (N = 670; 39 families). Association analyses between the SNPs and GFR and type 2 diabetes-related traits were performed using the measured genotype approach. Of the SNPs examined for association, only the Gly(972)Arg variant of IRS1 exhibited a significant association with GFR (P = 0.0006) and serum triglycerides levels (P = 0.003), after accounting for trait-specific covariate effects. Carriers of Arg972 had significantly decreased GFR values. Gly(972)Arg contributed to 26% of the linkage signal on 2q. Expression of IRS1 mutant Arg972 in human mesangial cells significantly reduced the insulin-stimulated phosphorylation of IRS1 and Akt kinase. Taken together, the data provide the first evidence that genetic variation in IRS1 may influence variation in GFR probably through impaired insulin receptor signaling.
Collapse
Affiliation(s)
- Farook Thameem
- Division of Nephrology, The University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Prudente S, Sesti G, Pandolfi A, Andreozzi F, Consoli A, Trischitta V. The mammalian tribbles homolog TRIB3, glucose homeostasis, and cardiovascular diseases. Endocr Rev 2012; 33:526-46. [PMID: 22577090 PMCID: PMC3410226 DOI: 10.1210/er.2011-1042] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin signaling plays a physiological role in traditional insulin target tissues controlling glucose homeostasis as well as in pancreatic β-cells and in the endothelium. Insulin signaling abnormalities may, therefore, be pathogenic for insulin resistance, impaired insulin secretion, endothelial dysfunction, and eventually, type 2 diabetes mellitus (T2DM) and cardiovascular disease. Tribbles homolog 3 (TRIB3) is a 45-kDa pseudokinase binding to and inhibiting Akt, a key mediator of insulin signaling. Akt-mediated effects of TRIB3 in the liver, pancreatic β-cells, and skeletal muscle result in impaired glucose homeostasis. TRIB3 effects are also modulated by its direct interaction with other signaling molecules. In humans, TRIB3 overactivity, due to TRIB3 overexpression or to Q84R genetic polymorphism, with R84 being a gain-of-function variant, may be involved in shaping the risk of insulin resistance, T2DM, and cardiovascular disease. TRIB3 overexpression has been observed in the liver, adipose tissue, skeletal muscle, and pancreatic β-cells of individuals with insulin resistance and/or T2DM. The R84 variant has also proved to be associated with insulin resistance, T2DM, and cardiovascular disease. TRIB3 direct effects on the endothelium might also play a role in increasing the risk of atherosclerosis, as indicated by studies on human endothelial cells carrying the R84 variant that are dysfunctional in terms of Akt activation, NO production, and other proatherogenic changes. In conclusion, studies on TRIB3 have unraveled new molecular mechanisms underlying metabolic and cardiovascular abnormalities. Additional investigations are needed to verify whether such acquired knowledge will be relevant for improving care delivery to patients with metabolic and cardiovascular alterations.
Collapse
Affiliation(s)
- Sabrina Prudente
- Instituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, Mendel Laboratory, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Lopez X, Cypess A, Manning R, O'Shea S, Kulkarni RN, Goldfine AB. Exogenous insulin enhances glucose-stimulated insulin response in healthy humans independent of changes in free fatty acids. J Clin Endocrinol Metab 2011; 96:3811-21. [PMID: 21956413 PMCID: PMC3232618 DOI: 10.1210/jc.2011-0627] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Islet β-cells express both insulin receptors and insulin signaling proteins. Recent studies suggest insulin signaling is physiologically important for glucose sensing. OBJECTIVE Preexposure to insulin enhances glucose-stimulated insulin secretion (GSIS) in healthy humans. We evaluated whether the effect of insulin to potentiate GSIS is modulated through regulation of free fatty acids (FFA). DESIGN AND SETTING Subjects were studied on three occasions in this single-site study at an academic institution clinical research center. PATIENTS Subjects included nine healthy volunteers. INTERVENTIONS Glucose-induced insulin response was assessed on three occasions after 4 h saline (low insulin/sham) or isoglycemic-hyperinsulinemic (high insulin) clamps with or without intralipid and heparin infusion, using B28 Asp-insulin that could be distinguished from endogenous insulin immunologically. During the last 80 min of all three clamps, additional glucose was administered to stimulate insulin secretion (GSIS) with glucose concentrations maintained at similar concentrations during all studies. MAIN OUTCOME MEASURE β-Cell response to glucose stimulation was assessed. RESULTS Preexposure to exogenous insulin increased the endogenous insulin-secretory response to glucose by 32% compared with sham clamp (P = 0.001). This was accompanied by a drop in FFA during hyperinsulinemic clamp compared with the sham clamp (0.06 ± 0.02 vs. 0.60 ± 0.09 mEq/liter, respectively), which was prevented during the hyperinsulinemic clamp with intralipid/heparin infusion (1.27 ± 0.17 mEq/liter). After preexposure to insulin with intralipid/heparin infusion to maintain FFA concentration, GSIS was 21% higher compared with sham clamp (P < 0.04) and similar to preexposure to insulin without intralipid/heparin (P = 0.2). CONCLUSIONS Insulin potentiates glucose-stimulated insulin response independent of FFA concentrations in healthy humans.
Collapse
Affiliation(s)
- Ximena Lopez
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
30
|
Folli F, Okada T, Perego C, Gunton J, Liew CW, Akiyama M, D'Amico A, La Rosa S, Placidi C, Lupi R, Marchetti P, Sesti G, Hellerstein M, Perego L, Kulkarni RN. Altered insulin receptor signalling and β-cell cycle dynamics in type 2 diabetes mellitus. PLoS One 2011; 6:e28050. [PMID: 22140505 PMCID: PMC3227614 DOI: 10.1371/journal.pone.0028050] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 10/31/2011] [Indexed: 12/31/2022] Open
Abstract
Insulin resistance, reduced β-cell mass, and hyperglucagonemia are consistent features in type 2 diabetes mellitus (T2DM). We used pancreas and islets from humans with T2DM to examine the regulation of insulin signaling and cell-cycle control of islet cells. We observed reduced β-cell mass and increased α-cell mass in the Type 2 diabetic pancreas. Confocal microscopy, real-time PCR and western blotting analyses revealed increased expression of PCNA and down-regulation of p27-Kip1 and altered expression of insulin receptors, insulin receptor substrate-2 and phosphorylated BAD. To investigate the mechanisms underlying these findings, we examined a mouse model of insulin resistance in β-cells – which also exhibits reduced β-cell mass, the β-cell-specific insulin receptor knockout (βIRKO). Freshly isolated islets and β-cell lines derived from βIRKO mice exhibited poor cell-cycle progression, nuclear restriction of FoxO1 and reduced expression of cell-cycle proteins favoring growth arrest. Re-expression of insulin receptors in βIRKO β-cells reversed the defects and promoted cell cycle progression and proliferation implying a role for insulin-signaling in β-cell growth. These data provide evidence that human β- and α-cells can enter the cell-cycle, but proliferation of β-cells in T2DM fails due to G1-to-S phase arrest secondary to defective insulin signaling. Activation of insulin signaling, FoxO1 and proteins in β-cell-cycle progression are attractive therapeutic targets to enhance β-cell regeneration in the treatment of T2DM.
Collapse
Affiliation(s)
- Franco Folli
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail: (RNK); (FF)
| | - Terumasa Okada
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carla Perego
- Department of Molecular Science Applied to Biosystems, Università degli Studi di Milano, Milan, Italy
| | - Jenny Gunton
- Garvan Institute of Medical Research, Sydney, Australia
| | - Chong Wee Liew
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Masaru Akiyama
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anna D'Amico
- Department of Molecular Science Applied to Biosystems, Università degli Studi di Milano, Milan, Italy
| | - Stefano La Rosa
- Department of Pathology, Ospedale di Circolo and Department of Human Morphology, University of Insubria, Varese, Italy
| | - Claudia Placidi
- Department of Pathology, Ospedale di Circolo and Department of Human Morphology, University of Insubria, Varese, Italy
| | - Roberto Lupi
- Division of Endocrinology, University of Pisa, Pisa, Italy
| | | | - Giorgio Sesti
- Department of Clinical and Experimental Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marc Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Lucia Perego
- Department of Molecular Science Applied to Biosystems, Università degli Studi di Milano, Milan, Italy
| | - Rohit N. Kulkarni
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (RNK); (FF)
| |
Collapse
|
31
|
El-sisi AE, Hegazy SK, Metwally SS, Wafa AM, Dawood NA. Effect of genetic polymorphisms on the development of secondary failure to sulfonylurea in egyptian patients with type 2 diabetes. Ther Adv Endocrinol Metab 2011; 2:155-64. [PMID: 23148181 PMCID: PMC3474636 DOI: 10.1177/2042018811415985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE This study investigated the possibility that genetic factors, such as polymorphism of K inward rectifier subunit (Kir6.2), E23K, and Arg(972) polymorphism of insulin receptor sub-strate-1 (IRS-1), may predispose patients to sulfonylurea failure. METHODS A total of 100 unrelated Egyptian patients with type 2 diabetes were recruited. They were divided into two equal groups: group I consisted of patients with secondary failure to sulfonylurea (hemoglobin A(1c) ≥ 8% despite sulfonylurea therapy) while group II consisted of patients whose condition was controlled with oral therapy. RESULTS Of all the patients, 45% and 14% were carriers of the K allele and Arg(972) variants respectively. The frequency of the K allele was 34% among patients with diabetes that was controlled with oral therapy and 56% among patients with secondary failure to sulfonylurea. The frequency of the Arg(972) IRS-1 variant was 6% among patients with diabetes controlled with oral therapy and 22% among patients with secondary failure. CONCLUSION The E23K variant of the Kir6.2 gene and Arg(972) IRS-1 variants are associated with increased risk for secondary failure to sulfonylurea.
Collapse
Affiliation(s)
| | | | | | | | - Naglaa A. Dawood
- Specialized Internal Medicine Hospital, Mansoura University, Lecturer in clinical pharmacy dept., Pharmacy collage, King Khalid University, KSA
| |
Collapse
|
32
|
Di Paola R, Caporarello N, Marucci A, Dimatteo C, Iadicicco C, Del Guerra S, Prudente S, Sudano D, Miele C, Parrino C, Piro S, Beguinot F, Marchetti P, Trischitta V, Frittitta L. ENPP1 affects insulin action and secretion: evidences from in vitro studies. PLoS One 2011; 6:e19462. [PMID: 21573217 PMCID: PMC3088669 DOI: 10.1371/journal.pone.0019462] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/30/2011] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to deeper investigate the mechanisms through which
ENPP1, a negative modulator of insulin receptor (IR) activation, plays a role on
insulin signaling, insulin secretion and eventually glucose metabolism. ENPP1
cDNA (carrying either K121 or Q121 variant) was transfected in HepG2 liver-, L6
skeletal muscle- and INS1E beta-cells. Insulin-induced IR-autophosphorylation
(HepG2, L6, INS1E), Akt-Ser473,
ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9
phosphorylation (HepG2, L6), PEPCK mRNA levels (HepG2) and
2-deoxy-D-glucose uptake (L6) was studied. GLUT 4 mRNA
(L6), insulin secretion and caspase-3 activation (INS1E) were also investigated.
Insulin-induced IR-autophosphorylation was decreased in HepG2-K, L6-K, INS1E-K
(20%, 52% and 11% reduction vs. untransfected cells) and
twice as much in HepG2-Q, L6-Q, INS1E-Q (44%, 92% and 30%).
Similar data were obtained with Akt-Ser473,
ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 in
HepG2 and L6. Insulin-induced reduction of PEPCK mRNA was progressively lower in
untransfected, HepG2-K and HepG2-Q cells (65%, 54%, 23%).
Insulin-induced glucose uptake in untransfected L6 (60% increase over
basal), was totally abolished in L6-K and L6-Q cells. GLUT 4 mRNA was slightly
reduced in L6-K and twice as much in L6-Q (13% and 25% reduction
vs. untransfected cells). Glucose-induced insulin secretion was 60%
reduced in INS1E-K and almost abolished in INS1E-Q. Serum deficiency activated
caspase-3 by two, three and four folds in untransfected INS1E, INS1E-K and
INS1E-Q. Glyburide-induced insulin secretion was reduced by 50% in
isolated human islets from homozygous QQ donors as compared to those from KK and
KQ individuals. Our data clearly indicate that ENPP1, especially when the Q121
variant is operating, affects insulin signaling and glucose metabolism in
skeletal muscle- and liver-cells and both function and survival of insulin
secreting beta-cells, thus representing a strong pathogenic factor predisposing
to insulin resistance, defective insulin secretion and glucose metabolism
abnormalities.
Collapse
Affiliation(s)
- Rosa Di Paola
- Research Unit of Diabetes and Endocrine
Diseases, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni
Rotondo, Italy
- * E-mail: (RDP); (VT); (LF)
| | - Nunzia Caporarello
- Unit of Endocrinology, Department of Clinical
and Molecular Biomedicine, University of Catania Medical School, Garibaldi
Hospital, Catania, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine
Diseases, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni
Rotondo, Italy
| | - Claudia Dimatteo
- Research Unit of Diabetes and Endocrine
Diseases, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni
Rotondo, Italy
| | - Claudia Iadicicco
- Dipartimento di Biologia e Patologia Cellulare
e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del CNR,
Università degli Studi di Napoli Federico II, Naples, Italy
| | - Silvia Del Guerra
- Department of Endocrinology and Metabolism,
University of Pisa, Pisa, Italy
| | - Sabrina Prudente
- IRCCS “Casa Sollievo della Sofferenza,
Mendel Laboratory”, San Giovanni Rotondo, Italy
| | - Dora Sudano
- Unit of Endocrinology, Department of Clinical
and Molecular Biomedicine, University of Catania Medical School, Garibaldi
Hospital, Catania, Italy
| | - Claudia Miele
- Dipartimento di Biologia e Patologia Cellulare
e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del CNR,
Università degli Studi di Napoli Federico II, Naples, Italy
| | - Cristina Parrino
- Unit of Endocrinology, Department of Clinical
and Molecular Biomedicine, University of Catania Medical School, Garibaldi
Hospital, Catania, Italy
| | - Salvatore Piro
- Unit of Internal Medicine, Department of
Clinical and Molecular Biomedicine, University of Catania Medical School,
Garibaldi Hospital, Catania, Italy
| | - Francesco Beguinot
- Dipartimento di Biologia e Patologia Cellulare
e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del CNR,
Università degli Studi di Napoli Federico II, Naples, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism,
University of Pisa, Pisa, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine
Diseases, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni
Rotondo, Italy
- IRCCS “Casa Sollievo della Sofferenza,
Mendel Laboratory”, San Giovanni Rotondo, Italy
- Department of Experimental Medicine, Sapienza
University, Rome, Italy
- * E-mail: (RDP); (VT); (LF)
| | - Lucia Frittitta
- Unit of Endocrinology, Department of Clinical
and Molecular Biomedicine, University of Catania Medical School, Garibaldi
Hospital, Catania, Italy
- * E-mail: (RDP); (VT); (LF)
| |
Collapse
|
33
|
Beguinot F. Tribbles homologue 3 (TRIB3) and the insulin-resistance genes in type 2 diabetes. Diabetologia 2010; 53:1831-4. [PMID: 20567803 DOI: 10.1007/s00125-010-1824-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 11/24/2022]
Affiliation(s)
- F Beguinot
- Department of Cellular and Molecular Biology and Pathology, University of Naples Federico II, via Sergio Pansini, 5, Naples, Italy.
| |
Collapse
|
34
|
Dong X, Javle M, Hess KR, Shroff R, Abbruzzese JL, Li D. Insulin-like growth factor axis gene polymorphisms and clinical outcomes in pancreatic cancer. Gastroenterology 2010; 139:464-73, 473.e1-3. [PMID: 20416304 PMCID: PMC2910789 DOI: 10.1053/j.gastro.2010.04.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/15/2010] [Accepted: 04/12/2010] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Insulin-like growth factor (IGF)-axis mediated signaling pathways play an important role in pancreatic cancer development and progression. We examined whether IGF-axis gene variants are associated with clinical outcomes in pancreatic cancer. METHODS We retrospectively genotyped 41 single-nucleotide polymorphisms from 10 IGF-axis genes in 333 patients with localized pancreatic adenocarcinoma and validated the findings in 373 patients with advanced disease. Associations between genotype and overall survival (OS) were evaluated using multivariable Cox proportional hazard regression models. RESULTS IGF1 *8470T>C, IGF1R IVS2+46329T>C, IGFBP3 A32G, IRS1 G972R in patients with localized disease; IGF1R IVS20-3431A>G, IGF1R T766T, IGFBP3-202A>C, IRS1 IVS1+4315C>G, IRS1 G972R in patients with advanced disease; and IGF1R T766T, IGF2R L252V, IGFBP3 -202A>C, IRS1 IVS1+4315C>G, IRS1 G972R, IRS2 IVS1+5687T>C in all patients were significantly associated with OS (P<or=.007). Two haplotypes containing the variant allele of either IRS1 G972R or IVS1-10949G>A, and an IRS2 haplotype predicted worse OS (P<or=.002). A significant correlation between increased number of unfavorable genotypes and decreased OS was observed; patients with 0-1 (n=247), 2 (n=237), 3 (n=145), 4 (n=60), and 5-8 (n=17) unfavorable genotypes had median survival time of 24.2, 16.4, 14.4, 9.6, and 7.4 months, respectively (P<.001). Several single-nucleotide polymorphisms of IGF1R, IGF2R, and IRS1 gene were significantly associated with tumor response to therapy and disease stage. CONCLUSIONS These data suggest that individual genetic variations in the IGF axis pathway may predict worse survival in patients with pancreatic cancer. This information may identify population subgroups that could benefit from IGF(1)R-targeted agents.
Collapse
|
35
|
Abstract
A variety of treatment modalities exist for individuals with type 2 diabetes mellitus (T2D). In addition to dietary and physical activity interventions, T2D is also treated pharmacologically with nine major classes of approved drugs. These medications include insulin and its analogues, sulfonylureas, biguanides, thiazolidinediones (TZDs), meglitinides, α-glucosidase inhibitors, amylin analogues, incretin hormone mimetics, and dipeptidyl peptidase 4 (DPP4) inhibitors. Pharmacological treatment strategies for T2D are typically based on efficacy, yet favorable responses to such therapeutics are oftentimes variable and difficult to predict. Characterization of drug response is expected to substantially enhance our ability to provide patients with the most effective treatment strategy given their individual backgrounds, yet pharmacogenetic study of diabetes medications is still in its infancy. To date, major pharmacogenetic studies have focused on response to sulfonylureas, biguanides, and TZDs. Here, we provide a comprehensive review of pharmacogenetics investigations of these specific anti-diabetes medications. We focus not only on the results of these studies, but also on how experimental design, study sample issues, and definition of 'response' can significantly impact our interpretation of findings. Understanding the pharmacogenetics of anti-diabetes medications will provide critical baseline information for the development and implementation of genetic screening into therapeutic decision making, and lay the foundation for "individualized medicine" for patients with T2D.
Collapse
Affiliation(s)
- Johanna K. DiStefano
- Metabolic Diseases Division, Translational Genomics Research Institute, 445 N. 5th Street, Phoenix, AZ 85004, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-602-343-8812; Fax: +1-602-343-8844
| | - Richard M. Watanabe
- Departments of Preventive Medicine and Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; E-Mail: (R.M.W.)
| |
Collapse
|
36
|
Aquilante CL. Sulfonylurea pharmacogenomics in Type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert Rev Cardiovasc Ther 2010; 8:359-72. [PMID: 20222815 DOI: 10.1586/erc.09.154] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The sulfonylureas stimulate insulin release from pancreatic beta cells, and have been a cornerstone of Type 2 diabetes pharmacotherapy for over 50 years. Although sulfonylureas are effective antihyperglycemic agents, interindividual variability exists in drug response (i.e., pharmacodynamics), disposition (i.e., pharmacokinetics) and adverse effects. The field of pharmacogenomics has been applied to sulfonylurea clinical studies in order to elucidate the genetic underpinnings of this response variability. Historically, most studies have sought to determine the influence of polymorphisms in drug-metabolizing enzyme genes on sulfonylurea pharmacokinetics in humans. More recently, polymorphisms in sulfonylurea drug target genes and diabetes risk genes have been implicated as important determinants of sulfonylurea pharmacodynamics in patients with Type 2 diabetes. As such, the purpose of this review is to discuss sulfonylurea pharmacogenomics in the setting of Type 2 diabetes, specifically focusing on polymorphisms in drug target and diabetes risk genes, and their relationship with interindividual variability in sulfonylurea response and adverse effects.
Collapse
Affiliation(s)
- Christina L Aquilante
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Colorado-Denver, 12700 East 19th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
37
|
Insulin enhances glucose-stimulated insulin secretion in healthy humans. Proc Natl Acad Sci U S A 2010; 107:4770-5. [PMID: 20176932 DOI: 10.1073/pnas.1000002107] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Islet beta-cells express both insulin receptors and insulin-signaling proteins. Recent evidence from rodents in vivo and from islets isolated from rodents or humans suggests that the insulin signaling pathway is physiologically important for glucose sensing. We evaluated whether insulin regulates beta-cell function in healthy humans in vivo. Glucose-induced insulin secretion was assessed in healthy humans following 4-h saline (low insulin/sham clamp) or isoglycemic-hyperinsulinemic (high insulin) clamps using B28-Asp insulin that could be immunologically distinguished from endogenous insulin. Insulin and C-peptide clearance were evaluated to understand the impact of hyperinsulinemia on estimates of beta-cell function. Preexposure to exogenous insulin increased the endogenous insulin secretory response to glucose by approximately 40%. C-peptide response also increased, although not to the level predicted by insulin. Insulin clearance was not saturated at hyperinsulinemia, but metabolic clearance of C-peptide, assessed by infusion of stable isotope-labeled C-peptide, increased modestly during hyperinsulinemic clamp. These studies demonstrate that insulin potentiates glucose-stimulated insulin secretion in vivo in healthy humans. In addition, hyperinsulinemia increases C-peptide clearance, which may lead to modest underestimation of beta-cell secretory response when using these methods during prolonged dynamic testing.
Collapse
|
38
|
Burguete-Garcia AI, Cruz-Lopez M, Madrid-Marina V, Lopez-Ridaura R, Hernández-Avila M, Cortina B, Gómez RE, Velasco-Mondragón E. Association of Gly972Arg polymorphism of IRS1 gene with type 2 diabetes mellitus in lean participants of a national health survey in Mexico: a candidate gene study. Metabolism 2010; 59:38-45. [PMID: 19716569 DOI: 10.1016/j.metabol.2009.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 06/30/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
Abstract
Type 2 diabetes mellitus (T2D) is a main public health problem in the Mexican population. It is characterized by insulin resistance in peripheral tissues and a relative deficiency in the pancreatic beta-cell functions. Diverse single nucleotide polymorphisms (SNPs) of the IRS1 gene have been associated with insulin resistance and T2D risk. The aim of this study was to identify the association between known IRS1 polymorphisms (Pro512Ala, Asn1137Asp, Gly972Arg, and Arg158Pro) in a sample of diabetic patients compared with healthy controls selected from Mexico's 2000 National Health Survey, both with normal body mass index (BMI). We identified 444 diabetes cases that were age matched with the same number of controls. Genotypic and allelic frequencies were evaluated, and conditional logistic regression was used to evaluate the association between the SNPs and diabetes risk. Of the 4 SNPs studied, only Gly972Arg showed significant differences between cases and controls, with allele frequency of 2.6% in controls as compared with 7.9% in cases. Subjects with at least 1 copy of the Gly972Arg polymorphism of the IRS1 gene showed a greater risk for diabetes, with a crude odds ratio of 3.26 (95% confidence interval, 2.00-5.33); after adjusting for BMI, age, family history of T2D, and sex, the odds ratio was 2.91 (95% confidence interval, 1.73-4.90). Our results suggest the participation of Gly972Arg polymorphism of IRS1 in the genetic susceptibility to TD2 in Mexican population. The restriction of including only participants with normal BMI might increase the power to detect genetic determinants of T2D.
Collapse
|
39
|
Prudente S, Morini E, Trischitta V. Insulin signaling regulating genes: effect on T2DM and cardiovascular risk. Nat Rev Endocrinol 2009; 5:682-93. [PMID: 19924153 DOI: 10.1038/nrendo.2009.215] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disorder that has a heterogeneous genetic and environmental background. In this Review, we discuss the role of relatively infrequent polymorphisms of genes that regulate insulin signaling (including the K121Q polymorphism of ENPP1, the G972R polymorphism of IRS1 and the Q84R polymorphism of TRIB3) in T2DM and other conditions related to insulin resistance. The biological relevance of these three polymorphisms has been very thoroughly characterized both in vitro and in vivo and the available data indicate that they all affect insulin signaling and action as well as insulin secretion. They also affect insulin-mediated regulation of endothelial cell function. In addition, several reports indicate that the effects of all three polymorphisms on the risk of T2DM and cardiovascular diseases related to insulin resistance depend on the clinical features of the individual, including their body weight and age at disease onset. Thus, these polymorphisms might be used to demonstrate how difficult it is to ascertain the contribution of relatively infrequent genetic variants with heterogeneous effects on disease susceptibility. Unraveling the role of such variants might be facilitated by improving disease definition and focusing on specific subsets of patients.
Collapse
Affiliation(s)
- Sabrina Prudente
- IRCCS Casa Sollievo della Sofferenza, Mendel Institute, Rome, Italy
| | | | | |
Collapse
|
40
|
Rafacho A, Giozzet V, Boschero A, Abrantes J, Cestari T, Carneiro E, Bosqueiro J. Reduced pancreatic β-cell mass is associated with decreased FoxO1 and Erk1/2 protein phosphorylation in low-protein malnourished rats. Braz J Med Biol Res 2009; 42:935-41. [DOI: 10.1590/s0100-879x2009001000010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 08/10/2009] [Indexed: 02/01/2023] Open
|
41
|
Abstract
The appropriate function of insulin-producing pancreatic beta-cells is crucial for the regulation of glucose homeostasis, and its impairment leads to diabetes mellitus, the most common metabolic disorder in man. In addition to glucose, the major nutrient factor, inputs from the nervous system, humoral components, and cell-cell communication within the islet of Langerhans act together to guarantee the release of appropriate amounts of insulin in response to changes in blood glucose levels. Data obtained within the past decade in several laboratories have revitalized controversy over the autocrine feedback action of secreted insulin on beta-cell function. Although insulin historically has been suggested to exert a negative effect on beta-cells, recent data provide evidence for a positive role of insulin in transcription, translation, ion flux, insulin secretion, proliferation, and beta-cell survival. Current insights on the role of insulin on pancreatic beta-cell function are discussed.
Collapse
Affiliation(s)
- Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
42
|
Fall K, Stark JR, Mucci LA, Chan J, Stampfer MJ, Kurth T, Febbo PG, Kantoff P, Ma J. No association between a polymorphic variant of the IRS-1 gene and prostate cancer risk. Prostate 2008; 68:1416-20. [PMID: 18615538 PMCID: PMC2958090 DOI: 10.1002/pros.20797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Insulin receptor substrate-1 (IRS-1) acts as a docking protein between the insulin-like growth factor-1 (IGF-1) receptor and intracellular signaling molecules in the IGF-1 signaling pathway. Accumulating data support a role of IGF-1 in prostate carcinogenesis. We assessed the influence of the most common IRS-1 gene polymorphism (Gly972Arg) on prostate cancer risk, alone and in combination with IGF-1 and other components in the IGF-1 signaling pathway. MATERIALS AND METHODS In a nested case-control study within the Physicians' Health Study, the IRS-1 polymorphism was assayed from prospectively collected samples from 564 incident prostate cancer cases and 758 controls matched on age and smoking. We calculated relative risks (RR) and 95% confidence intervals (CI) using conditional logistic regression. RESULTS Among the controls, 0.8% were homozygous (AA) and 12% were heterozygous (GA) for the polymorphic allele. There was no association between carriage of the A allele and total prostate cancer risk (RR = 1.1 95% CI = 0.8-1.5), advanced disease (stage C or D or lethal prostate cancer, RR = 1.3 95% CI = 0.8-2.3), or plasma IGF-1 levels. We explored possible interactions with body mass index and components in the IGF-1 pathway including IGFBP3, PI3k, and PTEN but none of these factors influenced the relation between IRS-1 genotype and prostate cancer risk. CONCLUSIONS Our data do not support an association between carriage of the variant IRS-1 gene and prostate cancer risk.
Collapse
Affiliation(s)
- K Fall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Francini F, Gagliardino JJ, Borelli MI. Decreased islet sensitivity to insulin in hamsters with dietary-induced insulin resistance. Life Sci 2008; 82:817-22. [DOI: 10.1016/j.lfs.2008.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/21/2007] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
|
44
|
Hribal ML, Tornei F, Pujol A, Menghini R, Barcaroli D, Lauro D, Amoruso R, Lauro R, Bosch F, Sesti G, Federici M. Transgenic mice overexpressing human G972R IRS-1 show impaired insulin action and insulin secretion. J Cell Mol Med 2008; 12:2096-106. [PMID: 18208559 PMCID: PMC4506174 DOI: 10.1111/j.1582-4934.2008.00246.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Molecular scanning of human insulin receptor substrate (Irs) genes revealed a single lrs1 prevalent variant, a glycine to arginine change at codon 972 (G972R); previous in vitro studies had demonstrated that the presence of this variant results in an impaired activation of the insulin signalling pathway, while human studies gave controversial results regarding its role in the pathogenesis of insulin resistance and related diseases. To address in vivo impact of this IRS-1 variant on whole body glucose homeostasis and insulin signalling, we have generated transgenic mice overexpressing it (Tg972) and evaluated insulin action in the liver, skeletal muscle and adipose tissue and assessed glucose homeostasis both under a normal diet and a high-fat diet. We found that Tg972 mice developed age-related glucose and insulin intolerance and hyperglycaemia, with insulin levels comparatively low. Glucose utilization and insulin signalling were impaired in all key insulin target tissues in Tg972 mice. There were no differences in pancreatic morphology between Tg972 and wild-type mice, however when insulin secretion was evaluated in isolated islets, it was significantly reduced in Tg972 mice islets at any glucose concentration tested. Under a high-fat diet, Tg972 mice had increased body and adipose tissue weight, and were more prone to develop diet-induced glucose and insulin intolerance. So, we believe that Tg972 mice may represent a useful model to elucidate the interaction between genetic and environmental factors in insulin resistance pathogenesis. Furthermore, they may become an important tool to test novel tailored therapies.
Collapse
Affiliation(s)
- Marta L Hribal
- Department of Clinical and Experimental Medicine, University ofCatanzaro Magna Graecia, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Caratù G, Allegra D, Bimonte M, Schiattarella GG, D'Ambrosio C, Scaloni A, Napolitano M, Russo T, Zambrano N. Identification of the Ligands of Protein Interaction Domains through a Functional Approach. Mol Cell Proteomics 2007; 6:333-45. [PMID: 17124247 DOI: 10.1074/mcp.m600289-mcp200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identification of protein-protein interaction networks has often given important information about the functions of specific proteins and on the cross-talk among metabolic and regulatory pathways. The availability of entire genome sequences has rendered feasible the systematic screening of collections of proteins, often of unknown function, aimed to find the cognate ligands. Once identified by genetic and/or biochemical approaches, the interaction between two proteins should be validated in the physiologic environment. Herein we describe an experimental strategy to screen collections of protein-protein interaction domains to find and validate candidate interactors. The approach is based on the assumption that the overexpression in cultured cells of protein-protein interaction domains, isolated from the context of the whole protein, could titrate the endogenous ligand and, in turn, exert a dominant negative effect. The identification of the ligand could provide us with a tool to check the relevance of the interaction because the contemporary overexpression of the isolated domain and of its ligand could rescue the dominant negative phenotype. We explored this approach by analyzing the possible dominant negative effects on the cell cycle progression of a collection of phosphotyrosine binding (PTB) domains of human proteins. Of 47 PTB domains, we found that the overexpression of 10 of them significantly interfered with the cell cycle progression of NIH3T3 cells. Four of them were used as baits to identify the cognate interactors. Among these proteins, CARM1, interacting with the PTB domain of RabGAP1, and EF1alpha, interacting with RGS12, were able to rescue the block of the cell cycle induced by the isolated PTB domain of the partner protein, thus confirming in vivo the relevance of the interaction. These results suggest that the described approach can be used for the systematic screening of the ligands of various protein-protein interaction domains also by using different biological assays.
Collapse
Affiliation(s)
- Ginevra Caratù
- CEINGE Biotecnologie Avanzate, Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fan J, McKean-Cowdin R, Bernstein L, Stanczyk FZ, Li AX, Ballard-Barbash R, McTiernan A, Baumgartner R, Gilliland F. An association between a common variant (G972R) in the IRS-1 gene and sex hormone levels in post-menopausal breast cancer survivors. Breast Cancer Res Treat 2006; 99:323-31. [PMID: 16752222 PMCID: PMC3063148 DOI: 10.1007/s10549-006-9211-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 02/18/2006] [Indexed: 12/13/2022]
Abstract
Insulin receptor substrate-1 (IRS-1) is a key downstream signaling molecule common to both the insulin and IGF signaling pathways that can interact with the estrogen pathway to regulate breast cell growth. We investigated whether a putative functional variant for IRS-1 (G972R) influences circulating levels of sex hormones, sex hormone binding globulin (SHBG), C-peptide, and insulin-like growth factor 1 (IGF-1) levels among post-menopausal African-American and non-Hispanic white breast cancer patients enrolled in the Health, Eating, Activity, and Lifestyle (HEAL) Study. Circulating levels of sex hormones and growth factors can influence breast cancer recurrence and survival. Serum estrone, estradiol, testosterone, SHBG, IGF-1 and C-peptide were measured in 468 patients at 30+ months post diagnosis. Non-protein bound hormone levels (free estradiol, free testosterone) were calculated. In African-American patients, the IRS-1 variant was associated with increased serum levels of estrone (p = 0.02), free estradiol (p = 0.04), total testosterone (p = 0.04), free testosterone (p = 0.006) and decreased levels of sex hormone-binding globulin (p = 0.02). No association was present for white patients. Our findings provide suggestive evidence that IRS-1 G972R variant may be associated with circulating levels of sex hormones and SHBG in African American breast cancer survivors.
Collapse
Affiliation(s)
- Jing Fan
- Integrated Substance Abuse Programs, Neuropsychiatric Institute, University of California, Los Angeles. 1640 S. Sepulveda Boulevard, Suite 200, Los Angeles, CA 90025
| | - Roberta McKean-Cowdin
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, 1540 Alcazar Street, CHP 236, Los Angeles, California 90033
| | - Leslie Bernstein
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, 1540 Alcazar Street, CHP 236, Los Angeles, California 90033
| | - Frank Z. Stanczyk
- Department of Obstetrics/Gynecology, University of Southern California, Keck School of Medicine, 1240 N. Mission Road, WCH 1M2, Los Angeles, California 90033
| | - Arthur Xuejun Li
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, 1540 Alcazar Street, CHP 236, Los Angeles, California 90033
| | - Rachel Ballard-Barbash
- Applied Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland 20892
| | - Anne McTiernan
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109
| | - Richard Baumgartner
- Department of Epidemiology and Clinical Investigation Science, University of Louisville, Louisville, KY 40202
| | - Frank Gilliland
- Department of Preventive Medicine, University of Southern California, Keck School of Medicine, 1540 Alcazar Street, CHP 236, Los Angeles, California 90033
| |
Collapse
|
47
|
Abstract
Our understanding of metabolism is undergoing a dramatic shift. Indeed, the efforts made towards elucidating the mechanisms controlling the major regulatory pathways are now being rewarded. At the molecular level, the crucial role of transcription factors is particularly well-illustrated by the link between alterations of their functions and the occurrence of major metabolic diseases. In addition, the possibility of manipulating the ligand-dependent activity of some of these transcription factors makes them attractive as therapeutic targets. The aim of this review is to summarize recent knowledge on the transcriptional control of metabolic homeostasis. We first review data on the transcriptional regulation of the intermediary metabolism, i.e., glucose, amino acid, lipid, and cholesterol metabolism. Then, we analyze how transcription factors integrate signals from various pathways to ensure homeostasis. One example of this coordination is the daily adaptation to the circadian fasting and feeding rhythm. This section also discusses the dysregulations causing the metabolic syndrome, which reveals the intricate nature of glucose and lipid metabolism and the role of the transcription factor PPARgamma in orchestrating this association. Finally, we discuss the molecular mechanisms underlying metabolic regulations, which provide new opportunities for treating complex metabolic disorders.
Collapse
Affiliation(s)
- Béatrice Desvergne
- Center for Integrative Genomics, National Centre of Competence in Research Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
48
|
Thirone ACP, Huang C, Klip A. Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrinol Metab 2006; 17:72-8. [PMID: 16458527 DOI: 10.1016/j.tem.2006.01.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 11/08/2005] [Accepted: 01/19/2006] [Indexed: 02/06/2023]
Abstract
In type 2-diabetes and impaired glucose tolerance, the muscle, fat and liver become resistant to insulin, and recent developments place dysregulation of insulin receptor substrate (IRS) expression and activation at the center of such defects. IRS1 and IRS2 are the major insulin receptor substrates leading to glucose homeostasis, and have distinct and overlapping roles in diverse organs. The majority of the published literature in this field suggests that IRS1 is the major substrate leading to stimulation of glucose transport in muscle and adipose tissues, whereas in liver, IRS1 and IRS2 have complementary roles in insulin signaling and metabolism.
Collapse
Affiliation(s)
- Ana C P Thirone
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
49
|
Abstract
Insulin resistance accounts for glucotoxicity observed in diabetes and atherosclerotic disease. Glucotoxicity depends from the shift of glucose metabolism from the glycolytic pathway to minor forms of glucose metabolism, including sorbitol, hexosamine and AGE pathways. These pathways increase oxidative stress and/or block insulin signalling so leading to a further decline of insulin action. A genetic defect of insulin action (the g972R Insulin Receptor Substrate 1 variant) may sustain endothelial dysfunction, the first defect of vascular homeostasis in the road to atherosclerosis. Furthermore, hyperglycemia even in the absence of insulin resistance, activates the hexosamine pathway in endothelial cells, affects the production of nitric oxide, increases the production and activity of metalloproteinase 2 and 9 and activates endothelium thus provoking endothelial dysfunction. Oxidative stress and inflammation through activtion of IKK-beta could determine insulin resistance impairing IRS-1 ability to activate the metabolic branch of insulin signalling. Furthermore, increased oxidative stress may be speculated to affect glucose metabolism in a proportion of patients with coronary artery disease. In conclusion, type 2 diabetes and atherosclerosis share vascular homeostasis and glucose metabolism and insulin resistance might be the common road where diabetes and atherosclerosis run together.
Collapse
Affiliation(s)
- M Federici
- Department of Internal Medicine, Center for Atherosclerosis and Laboratory of Molecular Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
50
|
Abstract
In the last years type 2 diabetes has reached almost epidemic proportions. More than 170 million individuals are affected worldwide, about 6 million in Germany. Manifestation of type 2 diabetes is determined by both environmental factors such as lack of physical exercise and overeating and a genetic predisposition. Despite enormous efforts in medical research to identify susceptibility loci and high risk alleles, the genetics of common type 2 diabetes (non-MODY) remain unknown. To date, only a few susceptibility genes have been identified (such as PPARG, KCNJ11, CAPN10). However, replication of initial studies is often difficult. This can be explained by both locus and allelic heterogeneity as well as ethnic differences between different populations. Studies in genetically isolated populations such as the Pima Indians are advantageous to identify susceptibility alleles. Despite some recent advances, it is not possible to predict an individual's risk of type 2 diabetes based on the presence of a certain disease-risk allele.
Collapse
Affiliation(s)
- Y Böttcher
- Medizinische Klinik III, Universitätsklinikum Leipzig
| | | | | | | |
Collapse
|