1
|
Gunturk I, Kuloglu N, Seydel GS, Yazici C, Basaran KE, Yakan B, Karabulut D. Response to chronic sustained hypoxia: increased cytosolic gelsolin and decreased plasma gelsolin levels. J Mol Histol 2024; 55:1009-1019. [PMID: 39172327 DOI: 10.1007/s10735-024-10248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
An actin binding protein, gelsolin (GSN) has two isoforms, plasma (pGSN) and cytosolic (cGSN). Changes in pGSN and/or cGSN levels have been shown to be associated with the pathogenesis of several diseases. The aim of this study was to evaluate changes in intracellular and extracellular GSNlevels with HIF-1 in animals exposed to chronic sustained hypoxia (CSH), in addition to apoptosis and the cellular redox status. The rats in the Sham group were exposed to 21% O2, and the rats in the hypoxia groups were exposed to 13 and 10% O2, respectively. Plasma pGSN, HIF-1α, Total Antioxidant Status (TAS) and Total Oxidant Status (TOS), and lung tissue pGSN, HIF-1α, TAS, TOS, GSN levels, and apoptotic cell numbers were measured. HIF-1α levels were found to increase significantly in the tissue, especially in the group with severe hypoxia, both in biochemical and histological examinations. pGSN levels were also significantly decreased in both plasma and tissue. Significant increases in tissue were observed in cGSN. It was observed that while the antioxidant activity was dominant in the tissue, the oxidant activity was dominant in the plasma. In particular, the response to hypoxia regulated by HIF-1 is very important for cellular survival. The results of this study showed that the increase in cGSN and TAS levels in the lung tissue together with HIF-1α can be considered as the activation of mechanisms for cellular protection.
Collapse
Affiliation(s)
- Inayet Gunturk
- Department of Midwifery, Zubeyde Hanım Faculty of Health Sciences, Nigde Omer Halisdemir University, Nigde, Turkey.
- Niğde Ömer Halisdemir Üniversitesi, Derbent Yerleşkesi, Atatürk Bulvarı, Merkez, Nigde, 51200, Turkey.
| | - Nurhan Kuloglu
- Nigde Omer Halisdemir University, Nigde Zubeyde Hanım Vocational School of Health, Nigde, Turkey
| | - Gonul Seyda Seydel
- Nigde Omer Halisdemir University, Nigde Zubeyde Hanım Vocational School of Health, Nigde, Turkey
| | - Cevat Yazici
- Department of Clinical Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Kemal Erdem Basaran
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Derya Karabulut
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Iwoń Z, Krogulec E, Kierlańczyk A, Wojasiński M, Jastrzębska E. Hypoxia and re-oxygenation effects on human cardiomyocytes cultured on polycaprolactone and polyurethane nanofibrous mats. J Biol Eng 2024; 18:37. [PMID: 38844979 PMCID: PMC11157810 DOI: 10.1186/s13036-024-00432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Heart diseases are caused mainly by chronic oxygen insufficiency (hypoxia), leading to damage and apoptosis of cardiomyocytes. Research into the regeneration of a damaged human heart is limited due to the lack of cellular models that mimic damaged cardiac tissue. Based on the literature, nanofibrous mats affect the cardiomyocyte morphology and stimulate the growth and differentiation of cells cultured on them; therefore, nanofibrous materials can support the production of in vitro models that faithfully mimic the 3D structure of human cardiac tissue. Nanofibrous mats were used as scaffolds for adult primary human cardiomyocytes (HCM) and immature human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). This work focuses on understanding the effects of hypoxia and re-oxygenation on human cardiac cells cultured on polymer nanofibrous mats made of poly(ε-caprolactone) (PCL) and polyurethane (PU). The expression of selected genes and proteins in cardiomyocytes during hypoxia and re-oxygenation were evaluated. In addition, the type of cell death was analyzed. To the best of our knowledge, there are no studies on the effects of hypoxia on cardiomyocyte cells cultured on nanofibrous mats. The present study aimed to use nanofiber mats as scaffolds that structurally could mimic cardiac extracellular matrix. Understanding the impact of 3D structural properties in vitro cardiac models on different human cardiomyocytes is crucial for advancing cardiac tissue engineering and regenerative medicine. Observing how 3D scaffolds affect cardiomyocyte function under hypoxic conditions is necessary to understand the functioning of the entire human heart.
Collapse
Affiliation(s)
- Zuzanna Iwoń
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Ewelina Krogulec
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Aleksandra Kierlańczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Michał Wojasiński
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland.
- Centre for Advanced Materials and Technologies, CEZAMAT Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
3
|
Srivastava A, Singla DK. PTEN-AKT pathway attenuates apoptosis and adverse remodeling in ponatinib-induced skeletal muscle toxicity following BMP-7 treatment. Physiol Rep 2023; 11:e15629. [PMID: 36945866 PMCID: PMC10031244 DOI: 10.14814/phy2.15629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/23/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) including ponatinib are commonly used to treat cancer patients. Unfortunately, TKIs induce cardiac as well as skeletal muscle dysfunction as a side effect. Therefore, detailed mechanistic studies are required to understand its pathogenesis and to develop a therapeutic treatment. The current study was undertaken to examine whether ponatinib induces apoptosis and apoptotic mechanisms both in vitro and in vivo models and furthermore to test the potential of bone morphogenetic protein 7 (BMP-7) as a possible treatment option for its attenuation. Sol8 cells, a mouse myogenic cell line was exposed to ponatinib to generate an apoptotic cell culture model and were subsequently treated with BMP-7 to understand its protective effects. For the in vivo model, C57BL/6J mice were administered with ponatinib to understand apoptosis, cell signaling apoptotic mechanisms, and adverse muscle remodeling and its attenuation with BMP-7. TUNEL staining, immunohistochemistry (IHC), and real-time polymerase chain reaction (RT-PCR) methods were used. Our data show significantly (p < 0.05) increased TUNEL staining, caspase-3, BAX/Bcl2 ratio in the in vitro model. Furthermore, our in vivo muscle data show ponatinib-induced muscle myopathy, and loss in muscle function. The observed muscle myopathy was associated with increased apoptosis, caspase-3 staining, and BAX/Bcl-2 ratio as confirmed with IHC and RT-PCR. Furthermore, our data show a significant (p < 0.05) increase in the involvement of cell signaling apoptotic regulator protein PTEN and a decrease in cell survival protein AKT. These results suggest that increased apoptosis following ponatinib treatment showed an increase in skeletal muscle remodeling, sarcopenia, and fibrosis. Furthermore, BMP-7 treatment significantly (p < 0.05) attenuated ponatinib-induced apoptosis, BAX/Bcl2 ratio, decreased PTEN, and increased cell survival protein AKT, decreased adverse muscle remodeling, and improved muscle function. Overall, we provide evidence that ponatinib-induces apoptosis leading to sarcopenia and muscle myopathy with decreased function which was attenuated by BMP-7.
Collapse
Affiliation(s)
- Ayushi Srivastava
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
4
|
Yang Y, Zhang Y, Yang J, Zhang M, Tian T, Jiang Y, Liu X, Xue G, Li X, Zhang X, Li S, Huang X, Li Z, Guo Y, Zhao L, Bao H, Zhou Z, Song J, Yang G, Xuan L, Shan H, Zhang Z, Lu Y, Yang B, Pan Z. Interdependent Nuclear Co-Trafficking of ASPP1 and p53 Aggravates Cardiac Ischemia/Reperfusion Injury. Circ Res 2023; 132:208-222. [PMID: 36656967 PMCID: PMC9855749 DOI: 10.1161/circresaha.122.321153] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE ASPP1 (apoptosis stimulating of p53 protein 1) is critical in regulating cell apoptosis as a cofactor of p53 to promote its transcriptional activity in the nucleus. However, whether cytoplasmic ASPP1 affects p53 nuclear trafficking and its role in cardiac diseases remains unknown. This study aims to explore the mechanism by which ASPP1 modulates p53 nuclear trafficking and the subsequent contribution to cardiac ischemia/reperfusion (I/R) injury. METHODS AND RESULTS The immunofluorescent staining showed that under normal condition ASPP1 and p53 colocalized in the cytoplasm of neonatal mouse ventricular cardiomyocytes, while they were both upregulated and translocated to the nuclei upon hypoxia/reoxygenation treatment. The nuclear translocation of ASPP1 and p53 was interdependent, as knockdown of either ASPP1 or p53 attenuated nuclear translocation of the other one. Inhibition of importin-β1 resulted in the cytoplasmic sequestration of both p53 and ASPP1 in neonatal mouse ventricular cardiomyocytes with hypoxia/reoxygenation stimulation. Overexpression of ASPP1 potentiated, whereas knockdown of ASPP1 inhibited the expression of Bax (Bcl2-associated X), PUMA (p53 upregulated modulator of apoptosis), and Noxa, direct apoptosis-associated targets of p53. ASPP1 was also increased in the I/R myocardium. Cardiomyocyte-specific transgenic overexpression of ASPP1 aggravated I/R injury as indicated by increased infarct size and impaired cardiac function. Conversely, knockout of ASPP1 mitigated cardiac I/R injury. The same qualitative data were observed in neonatal mouse ventricular cardiomyocytes exposed to hypoxia/reoxygenation injury. Furthermore, inhibition of p53 significantly blunted the proapoptotic activity and detrimental effects of ASPP1 both in vitro and in vivo. CONCLUSIONS Binding of ASPP1 to p53 triggers their nuclear cotranslocation via importin-β1 that eventually exacerbates cardiac I/R injury. The findings imply that interfering the expression of ASPP1 or the interaction between ASPP1 and p53 to block their nuclear trafficking represents an important therapeutic strategy for cardiac I/R injury.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, China (Y.Y.)
| | - Yang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Jiqin Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Manman Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Tao Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Yuan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (Y.J.)
| | - Xuening Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Genlong Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Xingda Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Xiaofang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Shangxuan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Xiang Huang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Zheng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Yang Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Lexin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Hairong Bao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Zhiwen Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Jiahui Song
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Guohui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Lina Xuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, China (H.S.)
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China (Z. Zhang, Z.P.)
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.)
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Heilongjiang, China (Y.Y., Y.Z., J.Y., M.Z., T.T., Y.J., X.L., G.X., X.L., X.Z., S.L., X.H., Z.L., Y.G., L.Z., H.B., Z. Zhou, J.S., G.Y., L.X., H.S., Y.L., B.Y., Z.P.).,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin, Heilongjiang, China (Z.P.).,NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China (Z. Zhang, Z.P.)
| |
Collapse
|
5
|
White D, Yang Q. Genetically Encoded ATP Biosensors for Direct Monitoring of Cellular ATP Dynamics. Cells 2022; 11:1920. [PMID: 35741049 PMCID: PMC9221525 DOI: 10.3390/cells11121920] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/06/2022] Open
Abstract
Adenosine 5'-triphosphate, or ATP, is the primary molecule for storing and transferring energy in cells. ATP is mainly produced via oxidative phosphorylation in mitochondria, and to a lesser extent, via glycolysis in the cytosol. In general, cytosolic glycolysis is the primary ATP producer in proliferative cells or cells subjected to hypoxia. On the other hand, mitochondria produce over 90% of cellular ATP in differentiated cells under normoxic conditions. Under pathological conditions, ATP demand rises to meet the needs of biosynthesis for cellular repair, signaling transduction for stress responses, and biochemical processes. These changes affect how mitochondria and cytosolic glycolysis function and communicate. Mitochondria undergo remodeling to adapt to the imbalanced demand and supply of ATP. Otherwise, a severe ATP deficit will impair cellular function and eventually cause cell death. It is suggested that ATP from different cellular compartments can dynamically communicate and coordinate to adapt to the needs in each cellular compartment. Thus, a better understanding of ATP dynamics is crucial to revealing the differences in cellular metabolic processes across various cell types and conditions. This requires innovative methodologies to record real-time spatiotemporal ATP changes in subcellular regions of living cells. Over the recent decades, numerous methods have been developed and utilized to accomplish this task. However, this is not an easy feat. This review evaluates innovative genetically encoded biosensors available for visualizing ATP in living cells, their potential use in the setting of human disease, and identifies where we could improve and expand our abilities.
Collapse
Affiliation(s)
- Donnell White
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
- Department of Pharmacology and Experimental Therapeutics, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Qinglin Yang
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
- Department of Pharmacology and Experimental Therapeutics, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Acute pH alterations do not impact cardiac mitochondrial respiration in naked mole-rats or mice. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111185. [PMID: 35278722 DOI: 10.1016/j.cbpa.2022.111185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/06/2022] [Accepted: 03/06/2022] [Indexed: 01/04/2023]
Abstract
Energetically demanding conditions such as hypoxia and exercise favour anaerobic metabolism (glycolysis), which leads to acidification of the cellular milieu from ATP hydrolysis and accumulation of the anaerobic end-product, lactate. Cellular acidification may damage mitochondrial proteins and/or alter the H+ gradient across the mitochondrial inner membrane, which may in turn impact mitochondrial respiration and thus aerobic ATP production. Naked mole-rats are among the most hypoxia-tolerant mammals, and putatively experience intermittent environmental and systemic hypoxia while resting and exercising in their underground burrows. Previous studies in naked mole-rat brain, heart, and skeletal muscle mitochondria have demonstrated adaptations that favour improved efficiency in hypoxic conditions; however, the impact of cellular acidification on mitochondrial function has not been explored. We hypothesized that, relative to hypoxia-intolerant mice, naked mole-rat cardiac mitochondrial respiration is less sensitive to cellular pH changes. To test this, we used high-resolution respirometry to measure mitochondrial respiration by permeabilized cardiac muscle fibres from naked mole-rats and mice exposed in vitro to a pH range from 6.6 to 7.6. Surprisingly, we found that acute pH changes do not impact cardiac mitochondrial respiration or compromise mitochondrial integrity in either species. Our results suggest that acute alterations of cellular pH have minimal impact on cardiac mitochondrial respiration.
Collapse
|
7
|
Abstract
ABSTRACT
Hypoxia is one of the strongest environmental drivers of cellular and physiological adaptation. Although most mammals are largely intolerant of hypoxia, some specialized species have evolved mitigative strategies to tolerate hypoxic niches. Among the most hypoxia-tolerant mammals are naked mole-rats (Heterocephalus glaber), a eusocial species of subterranean rodent native to eastern Africa. In hypoxia, naked mole-rats maintain consciousness and remain active despite a robust and rapid suppression of metabolic rate, which is mediated by numerous behavioural, physiological and cellular strategies. Conversely, hypoxia-intolerant mammals and most other hypoxia-tolerant mammals cannot achieve the same degree of metabolic savings while staying active in hypoxia and must also increase oxygen supply to tissues, and/or enter torpor. Intriguingly, recent studies suggest that naked mole-rats share many cellular strategies with non-mammalian vertebrate champions of anoxia tolerance, including the use of alternative metabolic end-products and potent pH buffering mechanisms to mitigate cellular acidification due to upregulation of anaerobic metabolic pathways, rapid mitochondrial remodelling to favour increased respiratory efficiency, and systemic shifts in energy prioritization to maintain brain function over that of other tissues. Herein, I discuss what is known regarding adaptations of naked mole-rats to a hypoxic lifestyle, and contrast strategies employed by this species to those of hypoxia-intolerant mammals, closely related African mole-rats, other well-studied hypoxia-tolerant mammals, and non-mammalian vertebrate champions of anoxia tolerance. I also discuss the neotenic theory of hypoxia tolerance – a leading theory that may explain the evolutionary origins of hypoxia tolerance in mammals – and highlight promising but underexplored avenues of hypoxia-related research in this fascinating model organism.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 9A7. University of Ottawa, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
8
|
Veldhuizen J, Chavan R, Moghadas B, Park JG, Kodibagkar VD, Migrino RQ, Nikkhah M. Cardiac ischemia on-a-chip to investigate cellular and molecular response of myocardial tissue under hypoxia. Biomaterials 2022; 281:121336. [PMID: 35026670 PMCID: PMC10440189 DOI: 10.1016/j.biomaterials.2021.121336] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/31/2022]
Abstract
Tissue engineering has enabled the development of advanced and physiologically relevant models of cardiovascular diseases, with advantages over conventional 2D in vitro assays. We have previously demonstrated development of a heart on-a-chip microfluidic model with mature 3D anisotropic tissue formation that incorporates both stem cell-derived cardiomyocytes and cardiac fibroblasts within a collagen-based hydrogel. Using this platform, we herein present a model of myocardial ischemia on-a-chip, that recapitulates ischemic insult through exposure of mature 3D cardiac tissues to hypoxic environments. We report extensive validation and molecular-level analyses of the model in its ability to recapitulate myocardial ischemia in response to hypoxia, demonstrating the 1) induction of tissue fibrosis through upregulation of contractile fibers, 2) dysregulation in tissue contraction through functional assessment, 3) upregulation of hypoxia-response genes and downregulation of contractile-specific genes through targeted qPCR, and 4) transcriptomic pathway regulation of hypoxic tissues. Further, we investigated the complex response of ischemic myocardial tissues to reperfusion, identifying 5) cell toxicity, 6) sustained contractile irregularities, as well as 7) re-establishment of lactate levels and 8) gene expression, in hypoxic tissues in response to ischemia reperfusion injury.
Collapse
Affiliation(s)
- Jaimeson Veldhuizen
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | - Ramani Chavan
- Center for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Babak Moghadas
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | - Jin G Park
- Center for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Vikram D Kodibagkar
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | - Raymond Q Migrino
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, 85012, USA; University of Arizona College of Medicine, Phoenix, AZ, 85004, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA; Center for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
9
|
Prevention of Ischemic Injury in Cardiac Surgery. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
TRAP1 inhibits MIC60 ubiquitination to mitigate the injury of cardiomyocytes and protect mitochondria in extracellular acidosis. Cell Death Dis 2021; 7:389. [PMID: 34907169 PMCID: PMC8671480 DOI: 10.1038/s41420-021-00786-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
Extracellular acidosis-induced mitochondrial damage of cardiomyocytes leads to cardiac dysfunction, but no detailed mechanism or efficient therapeutic target has been reported. Here we found that the protein levels of MIC60 were decreased in H9C2 cells and heart tissues in extracellular acidosis, which caused mitochondrial damage and cardiac dysfunction. Overexpression of MIC60 maintains H9C2 cells viability, increases ATP production and mitochondrial membrane potential, mitigates the disruptions of mitochondrial structure and cardiac injury. Mechanistically, extracellular acidosis excessively promoted MIC60 ubiquitin-dependent degradation. TRAP1 mitigated acidosis-induced mitochondrial impairments and cardiac injury by directly interacting with MIC60 to decrease its ubiquitin-dependent degradation in extracellular acidosis.
Collapse
|
11
|
Xue S, Zhang T, Wang X, Zhang Q, Huang S, Zhang L, Zhang L, Zhu W, Wang Y, Wu M, Zhao Q, Li P, Wu W. Cu,Zn Dopants Boost Electron Transfer of Carbon Dots for Antioxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102178. [PMID: 34196493 DOI: 10.1002/smll.202102178] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/08/2021] [Indexed: 06/13/2023]
Abstract
Enzyme-mimicking nanomaterials for antioxidative therapy is a promising star to treat more than 200 diseases or control their progressions through scavenging excessive reactive oxygen species (ROS), such as O2•- and H2 O2 . However, they can inversely produce stronger ROS (e.g., •OH) under many disease conditions (e.g., low pH for myocardial ischemia). Herein, a biocompatible -Cu-O-Zn- bimetallic covalent doped carbon dots (CuZn-CDs) processing both catalase (CAT) and superoxide dismutase activities are reported, mainly because of their abundant electrons and the excellent electron transfer abilities. In addition, Cu dopant helps to balance the positive charge at Zn dopant resulting from low pH, enabling CuZn-CDs to still process CAT ability rather than peroxidase ability. Benefiting from it, CuZn-CDs exhibit sufficient in vitro ROS scavenging ability and cardiomyocyte protective effect against ROS-induced damage. In vivo results further demonstrate that CuZn-CDs can protect the heart from ischemia-reperfusion injury. In addition to antioxidative therapy, the rapid renal clearance and low toxicity properties of CuZn-CDs in animal model reveal high biocompatibility which will facilitate clinical use.
Collapse
Affiliation(s)
- Sheng Xue
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Tingwei Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiaokai Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| | - Qinhua Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| | - Siyang Huang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Liwei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Liyu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Wenjie Zhu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| | - Qingshan Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Wenting Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
12
|
Yamasaki Y, Matsuura K, Sasaki D, Shimizu T. Assessment of human bioengineered cardiac tissue function in hypoxic and re-oxygenized environments to understand functional recovery in heart failure. Regen Ther 2021; 18:66-75. [PMID: 33869689 PMCID: PMC8044384 DOI: 10.1016/j.reth.2021.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 01/30/2023] Open
Abstract
Introduction Myocardial recovery is one of the targets for heart failure treatment. A non-negligible number of heart failure with reduced ejection fraction (EF) patients experience myocardial recovery through treatment. Although myocardial hypoxia has been reported to contribute to the progression of heart failure even in non-ischemic cardiomyopathy, the relationship between contractile recovery and re-oxygenation and its underlying mechanisms remain unclear. The present study investigated the effects of hypoxia/re-oxygenation on bioengineered cardiac cell sheets-tissue function and the underlying mechanisms. Methods Bioengineered cardiac cell sheets-tissue was fabricated with human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) using temperature-responsive culture dishes. Cardiac tissue functions in the following conditions were evaluated with a contractile force measurement system: continuous normoxia (20% O2) for 12 days; hypoxia (1% O2) for 4 days followed by normoxia (20% O2) for 8 days; or continuous hypoxia (1% O2) for 8 days. Cell number, sarcomere structure, ATP levels, mRNA expressions and Ca2+ transients of hiPSC-CM in those conditions were also assessed. Results Hypoxia (4 days) elicited progressive decreases in contractile force, maximum contraction velocity, maximum relaxation velocity, Ca2+ transient amplitude and ATP level, but sarcomere structure and cell number were not affected. Re-oxygenation (8 days) after hypoxia (4 days) was associated with progressive increases in contractile force, maximum contraction velocity and relaxation time to the similar extent levels of continuous normoxia group, while maximum relaxation velocity was still significantly low even after re-oxygenation. Ca2+ transient magnitude, cell number, sarcomere structure and ATP level after re-oxygenation were similar to those in the continuous normoxia group. Hypoxia/re-oxygenation up-regulated mRNA expression of PLN. Conclusions Hypoxia and re-oxygenation condition directly affected human bioengineered cardiac tissue function. Further understanding the molecular mechanisms of functional recovery of cardiac tissue after re-oxygenation might provide us the new insight on heart failure with recovered ejection fraction and preserved ejection fraction.
Collapse
Key Words
- ATP, adenosine triphosphate
- Cardiac cell sheet
- Contractile force
- DMEM, Dulbecco's Modified Eagle Medium
- EF, ejection fraction
- FBS, fetal bovine serum
- HFmrEF, heart failure with midrange EF
- HFpEF, heart failure with preserved EF
- HFrEF, heart failure with reduced EF
- Heart failure
- Human induced pluripotent stem cells
- Hypoxia
- NPPA, natriuretic peptide precursor A
- PLN, phospholamban
- Re-oxygenation
- SERCA, sarco/endoplasmic reticulum Ca2+ ATPase
- cTnT, cardiac troponin T
- hiPSC-CMs, human induced pluripotent stem cell-derived cardiomyocytes
Collapse
Affiliation(s)
- Yu Yamasaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
- Corresponding author. Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Daisuke Sasaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
13
|
Kandilci HB, Richards MA, Fournier M, Şimşek G, Chung YJ, Lakhal-Littleton S, Swietach P. Cardiomyocyte Na +/H + Exchanger-1 Activity Is Reduced in Hypoxia. Front Cardiovasc Med 2021; 7:617038. [PMID: 33585583 PMCID: PMC7873356 DOI: 10.3389/fcvm.2020.617038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/29/2020] [Indexed: 12/30/2022] Open
Abstract
Fully-activated Na+/H+ exchanger-1 (NHE1) generates the cardiomyocyte's largest trans-membrane extrusion of H+ ions for an equimolar influx of Na+ ions. This has the desirable effect of clearing excess intracellular acidity, but comes at a large energetic premium because the exchanged Na+ ions must ultimately be extruded by the sodium pump, a process that consumes the majority of the heart's non-contractile ATP. We hypothesize that the state of NHE1 activation depends on metabolic resources, which become limiting in periods of myocardial hypoxia. To test this functionally, NHE1 activity was measured in response to in vitro and in vivo hypoxic treatments. NHE1 flux was interrogated as a function of intracellular pH by fluorescence imaging of rodent ventricular myocytes loaded with pH-sensitive dyes BCECF or cSNARF1. Anoxic superfusates promptly inhibited NHE1, tracking the time-course of mitochondrial depolarization. Mass spectrometry of NHE1 immuno-precipitated from Langendorff-perfused anoxic hearts identified Tyr-581 dephosphorylation and Tyr-561 phosphorylation. The latter residue is part of the domain that interacts with phosphatidylinositol 4,5-bisphosphate (PIP2), a membrane lipid that becomes depleted under metabolic inhibition. Tyr-561 phosphorylation is expected to electrostatically weaken this activatory interaction. To test if a period of hypoxia produces a persistent inhibition of NHE1, measurements under normoxia were performed on myocytes that had been incubated in 2% O2 for 4 h. NHE1 activity remained inhibited, but the effect was ablated in the presence of Dasatinib, an inhibitor of Abl/Src-family tyrosine kinases. Chronic tissue hypoxia in vivo, attained in a mouse model of anemic hypoxia, also resulted in persistently slower NHE1. In summary, we show that NHE1 responds to oxygen, a physiologically-relevant metabolic regulator, ostensibly to divert ATP for contraction. We describe a novel mechanism of NHE1 inhibition that may be relevant in cardiac disorders featuring altered oxygen metabolism, such as myocardial ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Hilmi Burak Kandilci
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Mark A Richards
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Marjorie Fournier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Gül Şimşek
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Yu Jin Chung
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Samira Lakhal-Littleton
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Pawel Swietach
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Liu J, Wei E, Wei J, Zhou W, Webster KA, Zhang B, Li D, Zhang G, Wei Y, Long Y, Qi X, Zhang Q, Xu D. MiR-126-HMGB1-HIF-1 Axis Regulates Endothelial Cell Inflammation during Exposure to Hypoxia-Acidosis. DISEASE MARKERS 2021; 2021:4933194. [PMID: 34970357 PMCID: PMC8714334 DOI: 10.1155/2021/4933194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/20/2021] [Indexed: 02/05/2023]
Abstract
Crosstalk between molecular regulators miR-126, hypoxia-inducible factor 1-alpha (HIF-1-α), and high-mobility group box-1 (HMGB1) contributes to the regulation of inflammation and angiogenesis in multiple physiological and pathophysiological settings. Here, we present evidence of an overriding role for miR-126 in the regulation of HMGB1 and its downstream proinflammatory effectors in endothelial cells subjected to hypoxia with concurrent acidosis (H/A). Methods. Primary mouse endothelial cells (PMEC) were exposed to hypoxia or H/A to simulate short or chronic low-flow ischemia, respectively. RT-qPCR quantified mRNA transcripts, and proteins were measured by western blot. ROS were quantified by fluorogenic ELISA and luciferase reporter assays employed to confirm an active miR-126 target in the HMGB1 3'UTR. Results. Enhanced expression of miR-126 in PMECs cultured under neutral hypoxia was suppressed under H/A, whereas the HMGB1 expression increased sequentially under both conditions. Enhanced expression of HMGB1 and downstream inflammation markers was blocked by the premiR-126 overexpression and optimized by antagomiR. Compared with neutral hypoxia, H/A suppressed the HIF-1α expression independently of miR-126. The results show that HMGB1 and downstream effectors are optimally induced by H/A relative to neutral hypoxia via crosstalk between hypoxia signaling, miR-126, and HIF-1α, whereas B-cell lymphoma 2(Bcl2), a HIF-1α, and miR-126 regulated gene expressed optimally under neutral hypoxia. Conclusion. Inflammatory responses of ECs to H/A are dynamically regulated by the combined actions of hypoxia, miR-126, and HIF-1α on the master regulator HMGB1. The findings may be relevant to vascular diseases including atherosclerotic occlusion and interiors of plaque where coexisting hypoxia and acidosis promote inflammation as a defining etiology.
Collapse
Affiliation(s)
- Jinxue Liu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Eileen Wei
- Gulliver High School, Miami, FL 33156, USA
| | - Jianqin Wei
- Department of Medicine Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Wei Zhou
- Department of Ophthalmology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Keith A. Webster
- Integene International, LLC, Miami, FL 33137, USA
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
- Everglades Biopharma, LLC, Houston, TX 77030, USA
| | - Bin Zhang
- Department of Cardiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Dong Li
- Department of Intensive Care Unit and Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Gaoxing Zhang
- Department of Cardiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen 529030, China
| | - Yidong Wei
- Department of Surgery, Youjiang Medical University for Nationalities, Chengxiang Rd, Baise, Guangxi 533000, China
| | - Yusheng Long
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
- Department of Cardiology, Guangdong Cardiovascular Institute and Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiuyu Qi
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
- Department of Cardiology, Guangdong Cardiovascular Institute and Shantou University Medical College, Shantou 515041, China
| | - Qianhuan Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Dingli Xu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Dong W, Li R, Yang H, Lu Y, Zhou L, Sun L, Wang D, Duan J. Mesenchymal-endothelial transition-derived cells as a potential new regulatory target for cardiac hypertrophy. Sci Rep 2020; 10:6652. [PMID: 32313043 PMCID: PMC7170918 DOI: 10.1038/s41598-020-63671-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/03/2020] [Indexed: 01/27/2023] Open
Abstract
The role of Mesenchymal-endothelial transition (MEndoT) in cardiac hypertrophy is unclear. To determine the difference between MEndoT-derived and coronary endothelial cells is essential for understanding the revascularizing strategy in cardiac repair. Using lineage tracing we demonstrated that MEndoT-derived cells exhibit highly heterogeneous which were characterized with highly expression of endothelial markers such as vascular endothelial cadherin(VECAD) and occludin but low expression of Tek receptor tyrosine kinase(Tek), isolectin B4, endothelial nitric oxide synthase(eNOS), von Willebrand factor(vWF), and CD31 after cardiac hypertrophy. RNA-sequencing showed altered expression of fibroblast lineage commitment genes in fibroblasts undergoing MEndoT. Compared with fibroblasts, the expression of p53 and most endothelial lineage commitment genes were upregulated in MEndoT-derived cells; however, the further analysis indicated that MEndoT-derived cells may represent an endothelial-like cell sub-population. Loss and gain function study demonstrated that MEndoT-derived cells are substantial sources of neovascularization, which can be manipulated to attenuate cardiac hypertrophy and preserve cardiac function by improving the expression of endothelial markers in MEndoT-derived cells. Moreover, fibroblasts undergoing MEndoT showed significantly upregulated anti-hypertrophic factors and downregulated pro-hypertrophic factors. Therefore MEndoT-derived cells are an endothelial-like cell population that can be regulated to treat cardiac hypertrophy by improving neovascularization and altering the paracrine effect of fibroblasts.
Collapse
Affiliation(s)
- Wenyan Dong
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Ruiqi Li
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Haili Yang
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yan Lu
- Department of Pathology, University of Washington, Seattle, 98109, WA, USA
| | - Longhai Zhou
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Lei Sun
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Dianliang Wang
- Stem Cell and Tissue Engineering Research Laboratory, Department of Pharmacy, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China.
| | - Jinzhu Duan
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
16
|
Billah M, Ridiandries A, Allahwala UK, Mudaliar H, Dona A, Hunyor S, Khachigian LM, Bhindi R. Remote Ischemic Preconditioning induces Cardioprotective Autophagy and Signals through the IL-6-Dependent JAK-STAT Pathway. Int J Mol Sci 2020; 21:ijms21051692. [PMID: 32121587 PMCID: PMC7084188 DOI: 10.3390/ijms21051692] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a cellular process by which mammalian cells degrade and assist in recycling damaged organelles and proteins. This study aimed to ascertain the role of autophagy in remote ischemic preconditioning (RIPC)-induced cardioprotection. Sprague Dawley rats were subjected to RIPC at the hindlimb followed by a 30-min transient blockade of the left coronary artery to simulate ischemia reperfusion (I/R) injury. Hindlimb muscle and the heart were excised 24 h post reperfusion. RIPC prior to I/R upregulated autophagy in the rat heart at 24 h post reperfusion. In vitro, autophagy inhibition or stimulation prior to RIPC, respectively, either ameliorated or stimulated the cardioprotective effect, measured as improved cell viability to mimic the preconditioning effect. Recombinant interleukin-6 (IL-6) treatment prior to I/R increased in vitro autophagy in a dose-dependent manner, activating the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathway without affecting the other kinase pathways, such as p38 mitogen-activated protein kinases (MAPK), and glycogen synthase kinase 3 Beta (GSK-3β) pathways. Prior to I/R, in vitro inhibition of the JAK-STAT pathway reduced autophagy upregulation despite recombinant IL-6 pre-treatment. Autophagy is an essential component of RIPC-induced cardioprotection that may upregulate autophagy through an IL-6/JAK-STAT-dependent mechanism, thus identifying a potentially new therapeutic option for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Muntasir Billah
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; (A.R.); (U.K.A.); (H.M.); (A.D.); (S.H.); (R.B.)
- Sydney Medical School Northern, University of Sydney, Sydney, NSW 2006, Australia
- School of Life Sciences, Independent University Bangladesh, Dhaka 1229, Bangladesh
- Correspondence:
| | - Anisyah Ridiandries
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; (A.R.); (U.K.A.); (H.M.); (A.D.); (S.H.); (R.B.)
- Sydney Medical School Northern, University of Sydney, Sydney, NSW 2006, Australia
| | - Usaid K Allahwala
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; (A.R.); (U.K.A.); (H.M.); (A.D.); (S.H.); (R.B.)
- Sydney Medical School Northern, University of Sydney, Sydney, NSW 2006, Australia
| | - Harshini Mudaliar
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; (A.R.); (U.K.A.); (H.M.); (A.D.); (S.H.); (R.B.)
| | - Anthony Dona
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; (A.R.); (U.K.A.); (H.M.); (A.D.); (S.H.); (R.B.)
| | - Stephen Hunyor
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; (A.R.); (U.K.A.); (H.M.); (A.D.); (S.H.); (R.B.)
| | - Levon M. Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Ravinay Bhindi
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; (A.R.); (U.K.A.); (H.M.); (A.D.); (S.H.); (R.B.)
- Sydney Medical School Northern, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
17
|
Ha H, Yu MR, Choi HN, Cha MK, Kang HS, Kim MH, Lee HB. Effects of Conventional and New Peritoneal Dialysis Solutions on Human Peritoneal Mesothelial Cell Viability and Proliferation. Perit Dial Int 2020. [DOI: 10.1177/089686080002005s03] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ObjectiveTo investigate the biocompatibility of “new” peritoneal dialysis (PD) solutions with bicarbonate/lactate buffer, non glucose osmotic agents (icodextrin or amino acids), neutral pH, and low levels of glucose degradation products (GDPs).DesignUsing M199 culture medium as a control, we compared conventional and new PD solutions with respect to their effects on the viability of human peritoneal mesothelial cells (HPMCs) [using lactate dehydrogenase (LDH) release], on DNA damage in HPMCs [using single-cell gel electrophoresis (Comet assay)], and on HPMC proliferation (using [3H]-thymidine incorporation). The experiments were performed after cell growth was synchronized by incubation with serum-free media for 24 hours. The PD solutions tested included commercial 1.5% glucose and 4.25% glucose solutions with 40 mmol/L lactate (D 1.5 and D 4.25, respectively), 7.5% icodextrin (E), 1.1% amino acid (N), 1.5% glucose solution in a triple-chambered bag (Bio 1.5), 1.5% glucose solution in a dual-chambered bag with neutral pH (Bal 1.5), and 1.5% glucose and 4.25% glucose solution containing 25 mmol/L bicarbonate and 15 mmol/L lactate (P 1.5 and P 4.25, respectively).ResultsWhen HPMCs were continuously exposed to undiluted PD solutions, D 1.5, D 4.25, P 4.25, and E increased LDH release by more than 60% at 24 hours. All PD solutions tested increased LDH release by more than 75% at 96 hours. With 2-fold diluted PD solutions, only D 4.25 significantly increased LDH release at 96 hours, though not at 24 hours. When cells were exposed to undiluted PD solutions for 60 min and allowed to recover in M199 for up to 96 hours, LDH release was significantly higher at 24 – 96 hours in E (55% – 69%) and D 1.5 (48% –72%) as compared with control [M199 (18%)]. Release of LDH was significantly lower with PD solutions containing lower levels of GDPs than those in D 1.5, suggesting that GDPs may have a role in cell viability. The D solutions (D 1.5 and D 4.25) and E solution also induced significant DNA damage. Both LDH release and DNA damage by D and E were significantly attenuated by adjusting the solution pH to 7.4, suggesting that low pH may be implicated in PD solution–induced DNA damage and cell death. When diluted 2-fold, D 1.5, D 4.25, and P 4.25 decreased [3H]-thymidine incorporation to 43%, 34%, and 41% of control, respectively, at 24 hours and to 45%, 26%, and 35% of control, respectively, at 96 hours. When cells were exposed to undiluted PD solutions for 5 minutes and allowed to recover in M199 for up to 96 hours, D 1.5 and P 4.25—but not D 4.25—significantly inhibited cell proliferation at 24 hours. This effect was sustained up to 96 hours.ConclusionsThe present in vitro data demonstrate that PD solutions with low pH, or high levels of GDPs, or both, promote HPMC death and DNA damage, and that PD solutions with high osmolality inhibit cell proliferation. Solutions with neutral pH, amino acids, and “low GDPs” appear to be more biocompatible than conventional PD solutions. These results require confirmation in in vivo animal and clinical studies.
Collapse
Affiliation(s)
- Hunjoo Ha
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | - Mi Ra Yu
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | - Hoo Nam Choi
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | - Mi Kyung Cha
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | - Hyun Seung Kang
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | - Mi Ho Kim
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| | - Hi Bahl Lee
- Hyonam Kidney Laboratory, Soon Chun Hyang University, Seoul, Korea
| |
Collapse
|
18
|
PTEN-mediated mitophagy and APE1 overexpression protects against cardiac hypoxia/reoxygenation injury. In Vitro Cell Dev Biol Anim 2019; 55:741-748. [DOI: 10.1007/s11626-019-00389-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
|
19
|
Li Y, Zhao K, Zong P, Fu H, Zheng Y, Bao D, Yin Y, Chen Q, Lu L, Dai Y, Hou D, Kong X. CD47 deficiency protects cardiomyocytes against hypoxia/reoxygenation injury by rescuing autophagic clearance. Mol Med Rep 2019; 19:5453-5463. [PMID: 31059044 DOI: 10.3892/mmr.2019.10199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/04/2019] [Indexed: 11/06/2022] Open
Abstract
To assess the effect of cluster of differentiation (CD47) downregulation on autophagy in hypoxia/reoxygenation (H/R)‑treated H9c2 cardiomyocytes. H9c2 cells were maintained in normoxic conditions (95% air, 5% CO2, 37˚C) without CD47 antibodies, Si‑CD47 or chloroquine (CQ) treatment; H9c2 cells in the H/R group were subjected to 24 h of hypoxia (1% O2, 94% N2, 5% CO2, 37˚C) followed by 12 h of reoxygenation (95% air, 5% CO2, 37˚C). All assays were controlled, triplicated and repeated on three separately initiated cultures. The biochemical parameters in the medium supernatant were measured to evaluate the oxidative stress in cardiomyocytes. The Annexin V‑fluorescein isothiocyanate assay was used to detect the apoptotic rate in the H9c2 cells. Transmission electron microscope, immunofluorescent staining and western blot analysis were performed to detect the effect of the CD47 antibody on autophagic flux in H/R‑treated H9c2 cardiomyocytes. The cardiomyocytic oxidative stress and apoptotic rate decreased and autophagic clearance increased after CD47 downregulation. H/R triggered cell autophagy, autophagosome accumulation and apoptosis in H9c2 cell lines. However, these effects can be attenuated by CD47 downregulation. This study demonstrates its clinical implications in ischemia/reperfusion injury treatment.
Collapse
Affiliation(s)
- Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Pengyu Zong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Heling Fu
- Key Laboratory of The Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuan Zheng
- Key Laboratory of The Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dan Bao
- Key Laboratory of The Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuan Yin
- Key Laboratory of The Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qin Chen
- Key Laboratory of The Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lu Lu
- Key Laboratory of The Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Youjin Dai
- Key Laboratory of The Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Daorong Hou
- Key Laboratory of The Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
20
|
Zandberga E, Zayakin P, Ābols A, Pūpola D, Trapencieris P, Linē A. Depletion of carbonic anhydrase IX abrogates hypoxia-induced overexpression of stanniocalcin-1 in triple negative breast cancer cells. Cancer Biol Ther 2017; 18:596-605. [PMID: 28665755 DOI: 10.1080/15384047.2017.1345390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Carbonic anhydrase IX (CAIX) is a pH-regulating enzyme that plays a key role in maintaining an alkaline intracellular pH under hypoxic conditions. It is overexpressed in a variety of solid cancers, including breast cancer (BC), and has been implicated in the migration, invasion and stemness of breast cancer cells. Therefore, CAIX recently emerged as a novel therapeutic target for the treatment of BC. To gain an insight into the mechanism of action of CAIX inhibitors, we investigated the impact of CAIX knock-down on the transcriptional response to hypoxia in 2 BC cell lines - MCF7 and MDA-MB-231, by performing a global gene expression analysis. This showed that CAIX knock-down had a relatively minor effect on the global transcriptional response to hypoxia, however it blocked hypoxia-induced upregulation of stanniocalcin-1 (STC1), a secreted glycoprotein that has been shown to promote tumor progression and metastasis in BC. Kaplan-Meier survival analysis showed that high STC1 expression is significantly associated with poor survival in patients with basal-type breast cancer but not luminal A and HER2+ subtypes. Moreover, the association was particularly high in a subgroup of basal-type BC patients with TP53 mutations thus revealing a putative cooperation of STC1 with mutated TP53 in generating highly aggressive BC subgroup. Taken together, these findings show that CAIX inhibitors at least partially act through blocking STC1 induction in BC cells and reveal a subgroup of BC patients, who potentially would benefit most from the treatment with CAIX inhibitors.
Collapse
Affiliation(s)
- Elīna Zandberga
- a Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Pawel Zayakin
- a Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Artūrs Ābols
- a Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Dārta Pūpola
- a Latvian Biomedical Research and Study Centre , Riga , Latvia
| | | | - Aija Linē
- a Latvian Biomedical Research and Study Centre , Riga , Latvia.,c Faculty of Biology, University of Latvia , Riga , Latvia
| |
Collapse
|
21
|
Iyer A, Chew HC, Gao L, Villanueva J, Hicks M, Doyle A, Kumarasinghe G, Jabbour A, Jansz PC, Feneley MP, Harvey RP, Graham RM, Dhital KK, Macdonald PS. Pathophysiological Trends During Withdrawal of Life Support: Implications for Organ Donation After Circulatory Death. Transplantation 2017; 100:2621-2629. [PMID: 27861290 DOI: 10.1097/tp.0000000000001396] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Donation after circulatory death (DCD) provides an alternative pathway to deceased organ transplantation. Although clinical DCD lung, liver, and kidney transplantation are well established, transplantation of hearts retrieved from DCD donors has reached clinical translation only recently. Progress has been limited by concern regarding the viability of DCD hearts. The aim of this study was to document the pathophysiological changes that occur in the heart and circulation during withdrawal of life (WLS) support. METHODS In a porcine asphyxia model, we characterized the hemodynamic, volumetric, metabolic, biochemical, and endocrine changes after WLS for up to 40 minutes. Times to circulatory arrest and electrical asystole were recorded. RESULTS After WLS, there was rapid onset of profound hypoxemia resulting in acute pulmonary hypertension and right ventricular distension. Concurrently, progressive systemic hypotension occurred with a fall in left atrial pressure and little change in left ventricular volume. Mean times to circulatory arrest and electrical asystole were 8 ± 1 and 16 ± 2 minutes, respectively. Hemodynamic changes were accompanied by a rapid fall in pH, and rise in blood lactate, troponin-T, and potassium. Plasma noradrenaline and adrenaline levels rose rapidly with dramatic increases in coronary sinus levels indicative of myocardial release. CONCLUSIONS These findings provide insight into the nature and tempo of the damaging events that occur in the heart and in particular the right ventricle during WLS, and give an indication of the limited timeframe for the implementation of potential postmortem interventions that could be applied to improve organ viability.
Collapse
Affiliation(s)
- Arjun Iyer
- 1 The Victor Chang Cardiac Research Institute, Sydney, Australia. 2 Heart & Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, Australia. 3 Department of Cardiothoracic Surgery, St Vincent's Hospital, Darlinghurst, Australia. 4 Department of Clinical Pharmacology, St Vincent's Hospital, Darlinghurst, Australia. 5 Department of Physiology and Pharmacology, University of New South Wales, Randwick, Australia. 6 Department of Cardiology, St Vincent's Hospital, Darlinghurst, Australia. 7 St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Australia. 8 School of Biotechnology and Biomolecular Science, Faculty of Science, University of New South Wales, Kensington, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Saffron (Crocus sativus) pretreatment confers cardioprotection against ischemia-reperfusion injuries in isolated rabbit heart. J Physiol Biochem 2016; 72:711-719. [PMID: 27507116 DOI: 10.1007/s13105-016-0510-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/29/2016] [Indexed: 01/18/2023]
Abstract
Restoration of blood flow to the ischemic myocardium is imperative to avoid demise of cardiomyocytes, but is paradoxically associated with irreversible damage to cardiac tissues due to the excessive generation of reactive oxygen species (ROS). We have previously reported that saffron, a natural antioxidant, attenuated ischemia-reperfusion (IR) injuries in vitro; however, its role in a meaningful cardiac recovery remains unknown. Here, we show that saffron supplement (oral administration for 6 weeks) reduced myocardial damage and restored cardiac function in an IR model of rabbit hearts. This was evidenced by improved left ventricle pressure, heart rate and coronary flow, and left ventricle end diastolic pressure (LVEDP) in IR hearts (isolated from rabbits pre-exposed to saffron (S/IR)). Electrophysiological recordings revealed a significant decline in both premature ventricle contraction and ventricle tachycardia/fibrillation in S/IR compared to IR hearts. This was paralleled by increased expression of the contractile proteins α-actinin and Troponin C in the myocardium of S/IR hearts. Histological examination combined to biochemical analysis indicated that hearts pre-exposed to saffron exhibited reduced infarct size, lower lipid peroxidation, with increased glutathione peroxidase activity, and oxidation of nitro blue tetrazolium (by reactive oxygen species). Furthermore, in contrast with IR hearts, saffron pretreatment induced restoration of the phosphorylation level of the survival proteins Akt and 4EBP1 and reduced activity of p38. Collectively, our data demonstrate that the natural antioxidant saffron plays a pivotal role in halting IR-associated cardiac injuries and emerges as a novel preventive tool for ischemic heart disease.
Collapse
|
23
|
Habener A, Chowdhury A, Echtermeyer F, Lichtinghagen R, Theilmeier G, Herzog C. MitoNEET Protects HL-1 Cardiomyocytes from Oxidative Stress Mediated Apoptosis in an In Vitro Model of Hypoxia and Reoxygenation. PLoS One 2016; 11:e0156054. [PMID: 27243905 PMCID: PMC4887087 DOI: 10.1371/journal.pone.0156054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/09/2016] [Indexed: 12/03/2022] Open
Abstract
The iron-sulfur cluster containing protein mitoNEET is known to modulate the oxidative capacity of cardiac mitochondria but its function during myocardial reperfusion injury after transient ischemia is unknown. The purpose of this study was to analyze the impact of mitoNEET on oxidative stress induced cell death and its relation to the glutathione-redox system in cardiomyocytes in an in vitro model of hypoxia and reoxygenation (H/R). Our results show that siRNA knockdown (KD) of mitoNEET caused an 1.9-fold increase in H/R induced apoptosis compared to H/R control while overexpression of mitoNEET caused a 53% decrease in apoptosis. Necrosis was not affected. Apoptosis of both, mitoNEET-KD and control cells was diminished to comparable levels by using the antioxidants Tiron and glutathione compound glutathione reduced ethyl ester (GSH-MEE), indicating that mitoNEET-dependent apoptosis is mediated by oxidative stress. The interplay between mitoNEET and glutathione redox system was assessed by treating cardiomyocytes with 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthio-carbonylamino) phenylthiocarbamoylsulfanyl] propionic acid (2-AAPA), known to effectively inhibit glutathione reductase (GSR) and to decrease the GSH/GSSG ratio. Surprisingly, inhibition of GSR-activity to 20% by 2-AAPA decreased apoptosis of control and mitoNEET-KD cells to 23% and 25% respectively, while at the same time mitoNEET-protein was increased 4-fold. This effect on mitoNEET-protein was not accessible by mitoNEET-KD but was reversed by GSH-MEE. In conclusion we show that mitoNEET protects cardiomyocytes from oxidative stress-induced apoptosis during H/R. Inhibition of GSH-recycling, GSR-activity by 2-AAPA increased mitoNEET-protein, accompanied by reduced apoptosis. Addition of GSH reversed these effects suggesting that mitoNEET can in part compensate for imbalances in the antioxidative glutathione-system and therefore could serve as a potential therapeutic approach for the oxidatively stressed myocardium.
Collapse
Affiliation(s)
- Anika Habener
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany.,Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Arpita Chowdhury
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany.,Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Frank Echtermeyer
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Ralf Lichtinghagen
- Institute for Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Gregor Theilmeier
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany.,Department of Health Services Sciences, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Christine Herzog
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Boden J, Lassance-Soares RM, Wang H, Wei Y, Spiga MG, Adi J, Layman H, Yu H, Vazquez-Padron RI, Andreopoulos F, Webster KA. Vascular Regeneration in Ischemic Hindlimb by Adeno-Associated Virus Expressing Conditionally Silenced Vascular Endothelial Growth Factor. J Am Heart Assoc 2016; 5:e001815. [PMID: 27231018 PMCID: PMC4937238 DOI: 10.1161/jaha.115.001815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Critical limb ischemia (CLI) is the extreme manifestation of peripheral artery disease, a major unmet clinical need for which lower limb amputation is the only option for many patients. After 2 decades in development, therapeutic angiogenesis has been tested clinically via intramuscular delivery of proangiogenic proteins, genes, and stem cells. Efficacy has been modest to absent, and the largest phase 3 trial of gene therapy for CLI reported a worsening trend of plasmid fibroblast growth factor. In all clinical trials to date, gene therapy has used unregulated vectors with limited duration of expression. Only unregulated extended expression vectors such as adeno-associated virus (AAV) and lentivirus have been tested in preclinical models. METHODS AND RESULTS We present preclinical results of ischemia (hypoxia)-regulated conditionally silenced (CS) AAV-human vascular endothelial growth factor (hVEGF) gene delivery that shows efficacy and safety in a setting where other strategies fail. In a BALB/c mouse model of CLI, we show that gene therapy with AAV-CS-hVEGF, but not unregulated AAV or plasmid, vectors conferred limb salvage, protection from necrosis, and vascular regeneration when delivered via intramuscular or intra-arterial routes. All vector treatments conferred increased capillary density, but organized longitudinal arteries were selectively generated by AAV-CS-hVEGF. AAV-CS-hVEGF therapy reversibly activated angiogenic and vasculogenic genes, including Notch, SDF1, Angiopoietin, and Ephrin-B2. Reoxygenation extinguished VEGF expression and inactivated the program with no apparent adverse side effects. CONCLUSIONS Restriction of angiogenic growth factor expression to regions of ischemia supports the safe and stable reperfusion of hindlimbs in a clinically relevant murine model of CLI.
Collapse
Affiliation(s)
- Jeffrey Boden
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Roberta Marques Lassance-Soares
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Huilan Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Yuntao Wei
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Maria-Grazia Spiga
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| | - Jennipher Adi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| | - Hans Layman
- Department of Bioengineering, University of Miami Miller School of Medicine, Miami, FL
| | - Hong Yu
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Roberto I Vazquez-Padron
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Fotios Andreopoulos
- Department of Bioengineering, University of Miami Miller School of Medicine, Miami, FL
| | - Keith A Webster
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Tanaka Y, Inagaki T, Poole DC, Kano Y. pH buffering of single rat skeletal muscle fibers in the in vivo environment. Am J Physiol Regul Integr Comp Physiol 2016; 310:R926-33. [PMID: 26984893 DOI: 10.1152/ajpregu.00501.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/09/2016] [Indexed: 01/12/2023]
Abstract
Homeostasis of intracellular pH (pHi) has a crucial role for the maintenance of cellular function. Several membrane transporters such as lactate/H(+) cotransporter (MCT), Na(+)/H(+) exchange transporter (NHE), and Na(+)/HCO3 (-) cotransporter (NBC) are thought to contribute to pHi regulation. However, the relative importance of each of these membrane transporters to the in vivo recovery from the low pHi condition is unknown. Using an in vivo bioimaging model, we pharmacologically inhibited each transporter separately and all transporters together and then evaluated the pHi recovery profiles following imposition of a discrete H(+) challenge loaded into single muscle fibers by microinjection. The intact spinotrapezius muscle of adult male Wistar rats (n = 72) was exteriorized and loaded with the fluorescent probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-acetoxymethyl ester (10 μM). A single muscle fiber was then loaded with low-pH solution [piperazine-N,N'-bis(2-ethanesulfonic acid) buffer, pH 6.5, ∼2.33 × 10(-3) μl] by microinjection over 3 s. The rats were divided into groups for the following treatments: 1) no inhibitor (CONT), 2) MCT inhibition (by α-Cyano-4-hydroxyciannamic acid; 4 mM), 3) NHE inhibition (by ethylisopropyl amiloride; 0.5 mM), 4) NBC inhibition (by DIDS; 1 mM), and 5) MCT, NHE, and NBC inhibition (All blockade). The fluorescence ratio (F500 nm/F445 nm) was determined from images captured during 1 min (60 images/min) and at 5, 10, 15, and 20 min after injection. The pHi at 1-2 s after injection significantly decreased from resting pHi (ΔpHi = -0.73 ± 0.03) in CONT. The recovery response profile was biphasic, with an initial rapid and close-to-exponential pHi increase (time constant, τ: 60.0 ± 7.9 s). This initial rapid profile was not affected by any pharmacological blockade but was significantly delayed by carbonic anhydrase inhibition. In contrast, the secondary, more gradual, return toward baseline that restored CONT pHi to 84.2% of baseline was unimpeded by MCT, NHE, and NBC blockade separately but abolished by All blockade (ΔpHi = -0.60 ± 0.07, 72.8% initial pHi, P < 0.05 vs. CONT). After injection of H(+) into, or superfusion onto, an adjacent fiber pHi of the surrounding fibers decreased progressively for the 20-min observation period (∼7.0, P < 0.05 vs. preinjection/superfusion). In conclusion, these results support that, after an imposed H(+) load, the MCT, NHE, and NBC transporters are not involved in the initial rapid phase of pHi recovery. In contrast, the gradual recovery phase was abolished by inhibiting all three membrane transporter systems simultaneously. The alteration of pHi in surrounding fibers suggest that H(+) uptake by neighboring fibers can help alleviate the pH consequences of myocyte H(+) exudation.
Collapse
Affiliation(s)
- Yoshinori Tanaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan
| | - Tadakatsu Inagaki
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan; Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; and
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan;
| |
Collapse
|
26
|
Fliefel R, Popov C, Tröltzsch M, Kühnisch J, Ehrenfeld M, Otto S. Mesenchymal stem cell proliferation and mineralization but not osteogenic differentiation are strongly affected by extracellular pH. J Craniomaxillofac Surg 2016; 44:715-24. [PMID: 27085985 DOI: 10.1016/j.jcms.2016.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/19/2016] [Accepted: 03/11/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Osteomyelitis is a serious complication in oral and maxillofacial surgery affecting bone healing. Bone remodeling is not only controlled by cellular components but also by ionic and molecular composition of the extracellular fluids in which calcium phosphate salts are precipitated in a pH dependent manner. OBJECTIVE To determine the effect of pH on self-renewal, osteogenic differentiation and matrix mineralization of mesenchymal stem cells (MSCs). METHODS We selected three different pH values; acidic (6.3, 6.7), physiological (7.0-8.0) and severe alkaline (8.5). MSCs were cultured at different pH ranges, cell viability measured by WST-1, apoptosis detected by JC-1, senescence was analyzed by β-galactosidase whereas mineralization was detected by Alizarin Red and osteogenic differentiation analyzed by Real-time PCR. RESULTS Self-renewal was affected by pH as well as matrix mineralization in which pH other than physiologic inhibited the deposition of extracellular matrix but did not affect MSCs differentiation as osteoblast markers were upregulated. The expression of osteocalcin and alkaline phosphatase activity was upregulated whereas osteopontin was downregulated under acidic pH. CONCLUSION pH affected MSCs self-renewal and mineralization without influencing osteogenic differentiation. Thus, future therapies, based on shifting acid-base balance toward the alkaline direction might be beneficial for prevention or treatment of osteomyelitis.
Collapse
Affiliation(s)
- Riham Fliefel
- Experimental Surgery and Regenerative Medicine, Ludwig-Maximilians-University, Munich, Germany; Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University, Munich, Germany; Department of Oral and Maxillofacial Surgery, Alexandria-University, Alexandria, Egypt.
| | - Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Tröltzsch
- Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Jan Kühnisch
- Department of Conservative Dentistry and Periodontology, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Ehrenfeld
- Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
27
|
Graham RM, Thompson JW, Webster KA. BNIP3 promotes calcium and calpain-dependent cell death. Life Sci 2015; 142:26-35. [PMID: 26471219 DOI: 10.1016/j.lfs.2015.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/24/2015] [Accepted: 10/09/2015] [Indexed: 11/15/2022]
Abstract
AIMS Loss of cardiac muscle by programmed cell death contributes to the progression of ischemic heart disease. Hypoxia, metabolite waste buildup and energy depletion are components of ischemia which may initiate caspase dependent and independent cell death pathways. Previous work from our laboratory has shown that combined hypoxia with acidosis, a hallmark of ischemia promotes cardiac myocyte injury with increasing severity as the pH declines. Hypoxia-acidosis was demonstrated to activate the pro-apoptotic Bcl-2 protein BNIP3 which initiated opening of the mitochondrial permeability transition pore and cell death in the absence of caspase activation. Because calpains are known to contribute to ischemic myocardial damage in some models, we hypothesized that they are intermediates in the BNIP3-mediated death caused by hypoxia-acidosis. MAIN METHODS Neonatal rat cardiac myocytes were subjected to hypoxia with and without acidosis and the contribution of calpains to hypoxia-acidosis cell death determined. KEY FINDINGS Here we report that the death pathway activated by hypoxia-acidosis is driven by a combination of calcium-activated calpains and pro-death factors (DNases) secreted by the mitochondria. Cytochrome c accumulated in the cytoplasm during hypoxia-acidosis but caspase activity was repressed through a calpain-dependent process that prevents the cleavage of procaspase 3. Calpain inhibitors provide vigorous protection against hypoxia-acidosis-induced programmed death. Knockdown of BNIP3 with siRNA prevented calpain activation confirming a central role of BNIP3 in this pathway. SIGNIFICANCE The results implicate BNIP3 and calpain as dependent components of cardiac myocyte death caused by hypoxia-acidosis.
Collapse
Affiliation(s)
- Regina M Graham
- Department of Molecular and Cellular Pharmacology, Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - John W Thompson
- Department of Molecular and Cellular Pharmacology, Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Keith A Webster
- Department of Molecular and Cellular Pharmacology, Vascular Biology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
28
|
Bnip3 Binds and Activates p300: Possible Role in Cardiac Transcription and Myocyte Morphology. PLoS One 2015; 10:e0136847. [PMID: 26317696 PMCID: PMC4552727 DOI: 10.1371/journal.pone.0136847] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 07/17/2015] [Indexed: 12/04/2022] Open
Abstract
Bnip3 is a hypoxia-regulated member of the Bcl-2 family of proteins that is implicated in apoptosis, programmed necrosis, autophagy and mitophagy. Mitochondria are thought to be the primary targets of Bnip3 although its activities may extend to the ER, cytoplasm, and nucleus. Bnip3 is induced in the heart by ischemia and pressure-overload, and may contribute to cardiomyopathy and heart failure. Only mitochondrial-dependent programmed death actions have been described for Bnip3 in the heart. Here we describe a novel activity of Bnip3 in cultured cardiac myocytes and transgenic mice overexpressing Bnip3 in the heart (Bnip3-TG). In cultured myocytes Bnip3 bound and activated the acetyltransferase p300, increased acetylation of histones and the transcription factor GATA4, and conferred p300 and GATA4-sensitive cellular morphological changes. In intact Bnip3-TG hearts Bnip3 also bound p300 and GATA4 and conferred enhanced GATA4 acetylation. Bnip3-TG mice underwent age-dependent ventricular dilation and heart failure that was partially prevented by p300 inhibition with curcumin. The results suggest that Bnip3 regulates cardiac gene expression and perhaps myocyte morphology by activating nuclear p300 acetyltransferase activity and hyperacetylating histones and p300-selective transcription factors.
Collapse
|
29
|
Taati M, Moghadasi M, Dezfoulian O, Asadian P, Zendehdel M. Effects of Ghrelin on germ cell apoptosis and proinflammatory cytokines production in Ischemia-reperfusion of the rat testis. IRANIAN JOURNAL OF REPRODUCTIVE MEDICINE 2015; 13:85-92. [PMID: 25999997 PMCID: PMC4426145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/28/2014] [Accepted: 09/30/2014] [Indexed: 10/27/2022]
Abstract
BACKGROUND Testicular torsion is a medical emergency that requires surgical intervention to reperfuse the affected testis. Ischemia reperfusion injury is usually associated with proinflammatory cytokine generation and apoptosis of germ cells in the testes. OBJECTIVE In this study we investigate the effect of ghrelin on the proinflammatory cytokines levels and germ cell apoptosis in testicular ischemia reperfusion. MATERIALS AND METHODS 45 male rats were selected for the study and randomly divided into 3 groups, each containing 15 rats. Animals in the testicular torsion and ghrelin treated groups were subjected to unilateral 720 counterclockwise testicular torsion for 1 hr and then reperfusion was allowed after detorsion for 4 hr, 1 and 7 days. The ghrelin-treated group received intraperitoneal injection of ghrelin 15min before detorsion. The expression levels of bcl-2-associated X protein and proliferating cell nuclear antigen in testicular tissue in the different groups were detected by immunohistochemical assay and tissue cytokines interleukin-1β, tumor necroses factor-α and interleukin-6 were measured using enzyme-linked immunosorbent assay. RESULTS After being treated by ghrelin, the population of immunoreactive cells against BAX in the spermatocytes on day 7 after reperfusion significantly decreased when compared to tortion/ detortion-saline animals (p=0.024). In contrast, PCNA expression in the spermatocytes and spermatogonia were not significantly different between tortion/ detortion-ghrelin and tortion/ detortion-saline groups on both experimental days. Administration of ghrelin significantly attenuated the testicular tumor necroses factor-α and interleukin-6 levels compared with the untreated animals, but had no significant effect on the level of interleukin-1β. CONCLUSION Ghrelin offers remarkable anti-inflammatory and anti-apoptotic effects in testicular ischemia reperfusion injury.
Collapse
Affiliation(s)
- Majid Taati
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Mehrnoush Moghadasi
- Department of Physiology, Faculty of Medicine, Lorestan University of Medical Sciences, Khoramabad, Iran.
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Payman Asadian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Morteza Zendehdel
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
30
|
Co-expression of POU4F2/Brn-3b with p53 may be important for controlling expression of pro-apoptotic genes in cardiomyocytes following ischaemic/hypoxic insults. Cell Death Dis 2014; 5:e1503. [PMID: 25356872 PMCID: PMC4649532 DOI: 10.1038/cddis.2014.452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 02/06/2023]
Abstract
Cardiomyocyte death following ischaemic/hypoxic injury causes irreversible damage to cardiac function and contributes to chronic diseases such as heart failure. Understanding the mechanisms associated with myocyte loss under these conditions can help to identify strategies to minimise/abrogate such detrimental effects. The p53 protein can induce apoptosis or cell cycle arrest, but effects on cell fate depend on interactions with other regulators such as POU4F2/Brn-3b (Brn-3b), which co-operates with p53 to increase the expression of pro-apoptotic genes. In contrast, the related POU4F1/Brn-3a (Brn-3a) blocks p53-mediated apoptosis but co-operates with p53 to enhance cell cycle arrest. In this study, we showed that permanent coronary artery ligation in mouse hearts, which induced apoptotic markers, activated caspase-3 and -8 and necroptosis markers; RIP-1 and -3 also increased Brn-3b and Brn-3a expression. However, Brn-3a was only detected in uninjured myocardium but not at the site of injury, whereas Brn-3b showed generalised increase, including within the infarct zone. Conversely, p53 was detected in the infarct zone and in some cells adjacent to the site of injury but not in uninjured myocardium. Co-localisation studies showed Brn-3a co-expression with p53 in cardiomyocytes adjacent to the infarct zone, whereas Brn-3b was co-localised with p53 in the infarct zone only. Increased Brn-3b and p53 correlated with elevated expression of pro-apoptotic target genes, Bax, Noxa and PUMA, whereas cleaved caspase-3 confirmed the presence of apoptotic cells within this region of the injured heart. Similarly, simulated ischaemia/reoxygenation (sI/R) injury in neonatal rat ventricular cardiomyocytes (NRVM) and heart derived H9c2 myoblasts increased Brn-3b, p53 as well as apoptotic genes, and this was associated with enhanced apoptosis. Furthermore, targeted reduction of Brn-3b using shRNA caused reduction in pro-apoptotic Bax and Noxa proteins, even though p53 expression remained intact, suggesting that Brn-3b is important for controlling the fate of the myocardium in the injured heart.
Collapse
|
31
|
Mesenchymal-endothelial transition contributes to cardiac neovascularization. Nature 2014; 514:585-90. [PMID: 25317562 PMCID: PMC4214889 DOI: 10.1038/nature13839] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/04/2014] [Indexed: 12/17/2022]
Abstract
Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-mesenchymal-transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial cell like phenotype after acute ischemic cardiac injury. Fibroblast derived endothelial cells exhibit anatomical and functional characteristics of native endothelial cells. We show that the transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac fibroblasts severely decreases the formation of fibroblast derived endothelial cells, reduces post infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway in cardiac fibroblasts augments mesenchymal to endothelial transition, enhances vascularity and improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial-transition contributes to neovascularization of the injured heart and represents a potential therapeutic target for enhancing cardiac repair.
Collapse
|
32
|
Duarte FV, Palmeira CM, Rolo AP. The Role of microRNAs in Mitochondria: Small Players Acting Wide. Genes (Basel) 2014; 5:865-86. [PMID: 25264560 PMCID: PMC4276918 DOI: 10.3390/genes5040865] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) are short, single-stranded, non-coding RNA molecules that act as post-transcriptional gene regulators. They can inhibit target protein-coding genes, through repressing messenger RNA (mRNA) translation or promoting their degradation. miRNAs were initially found to be originated from nuclear genome and exported to cytosol; where they exerted most of their actions. More recently, miRNAs were found to be present specifically in mitochondria; even originated there from mitochondrial DNA, regulating in a direct manner genes coding for mitochondrial proteins, and consequently mitochondrial function. Since miRNAs are recognized as major players in several biological processes, they are being considered as a key to better understand, explain, and probably prevent/cure not only the pathogenesis of multifactorial diseases but also mitochondrial dysfunction and associated diseases. Here we review some of the molecular mechanisms purported for miRNA actions in several biological processes, particularly the miRNAs acting in mitochondria or in mitochondria-related mechanisms.
Collapse
Affiliation(s)
- Filipe V Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Carlos M Palmeira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| | - Anabela P Rolo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
33
|
Salameh AI, Ruffin VA, Boron WF. Effects of metabolic acidosis on intracellular pH responses in multiple cell types. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1413-27. [PMID: 25209413 DOI: 10.1152/ajpregu.00154.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic acidosis (MAc), a decrease in extracellular pH (pHo) caused by a decrease in [HCO3 (-)]o at a fixed [CO2]o, is a common clinical condition and causes intracellular pH (pHi) to fall. Although previous work has suggested that MAc-induced decreases in pHi (ΔpHi) differ among cell types, what is not clear is the extent to which these differences are the result of the wide variety of methodologies employed by various investigators. In the present study, we evaluated the effects of two sequential MAc challenges (MAc1 and MAc2) on pHi in 10 cell types/lines: primary-cultured hippocampal (HCN) neurons and astrocytes (HCA), primary-cultured medullary raphé (MRN) neurons, and astrocytes (MRA), CT26 colon cancer, the C2C12 skeletal muscles, primary-cultured bone marrow-derived macrophages (BMDM) and dendritic cells (BMDC), Ink4a/ARF-null melanocytes, and XB-2 keratinocytes. We monitor pHi using ratiometric fluorescence imaging of 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein while imposing MAc: lowering (pHo) from 7.4 to 7.2 by decreasing [HCO3 (-)]o from 22 to 14 mM at 5% CO2 for 7 min. After MAc1, we return cells to the control solution for 10 min and impose MAc2. Using our definition of MAc resistance [(ΔpHi/ΔpHo) ≤ 40%], during MAc1, ∼70% of CT26 and ∼50% of C2C12 are MAc-resistant, whereas the other cell types are predominantly MAc-sensitive. During MAc2, some cells adapt [(ΔpHi/ΔpHo)2 < (ΔpHi/ΔpHo)1], particularly HCA, C2C12, and BMDC. Most maintain consistent responses [(ΔpHi/ΔpHo)2 ≅ (ΔpHi/ΔpHo)1], and a few decompensate [(ΔpHi/ΔpHo)2>(ΔpHi/ΔpHo)1], particularly HCN, C2C12, and XB-2. Thus, responses to twin MAc challenges depend both on the individual cell and cell type.
Collapse
Affiliation(s)
- Ahlam Ibrahim Salameh
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Vernon A Ruffin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
34
|
Role of soluble adenylyl cyclase in cell death and growth. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2646-55. [PMID: 25010002 DOI: 10.1016/j.bbadis.2014.06.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
cAMP signaling is an evolutionarily conserved intracellular communication system controlling numerous cellular functions. Until recently, transmembrane adenylyl cyclase (tmAC) was considered the major source for cAMP in the cell, and the role of cAMP signaling was therefore attributed exclusively to the activity of this family of enzymes. However, increasing evidence demonstrates the role of an alternative, intracellular source of cAMP produced by type 10 soluble adenylyl cyclase (sAC). In contrast to tmAC, sAC produces cAMP in various intracellular microdomains close to specific cAMP targets, e.g., in nucleus and mitochondria. Ongoing research demonstrates involvement of sAC in diverse physiological and pathological processes. The present review is focused on the role of cAMP signaling, particularly that of sAC, in cell death and growth. Although the contributions of sAC to the regulation of these cellular functions have only recently been discovered, current data suggest that sAC plays key roles in mitochondrial bioenergetics and the mitochondrial apoptosis pathway, as well as cell proliferation and development. Furthermore, recent reports suggest the importance of sAC in several pathologies associated with apoptosis as well as in oncogenesis. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
|
35
|
Lin X, Lee D, Wu D. Sabiporide improves cardiovascular function and attenuates organ injury from severe sepsis. J Surg Res 2014; 188:231-7. [DOI: 10.1016/j.jss.2013.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
|
36
|
Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis. Mol Cell Biol 2014; 34:1788-99. [PMID: 24615014 DOI: 10.1128/mcb.00774-13] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that mediate posttranscriptional gene silencing. Mitochondrial fission participates in the induction of apoptosis. It remains largely unknown whether miRNAs can regulate mitochondrial fission. Reactive oxygen species and doxorubicin could induce mitochondrial fission and apoptosis in cardiomyocytes. Concomitantly, mitofusin 1 (Mfn1) was downregulated, whereas miRNA 140 (miR-140) was upregulated upon apoptotic stimulation. We investigated whether Mfn1 and miR-140 play a functional role in mitochondrial fission and apoptosis. Ectopic expression of Mfn1 attenuated mitochondrial fission and apoptosis. Knockdown of miR-140 inhibited mitochondrial fission. Our results further revealed that knockdown of miR-140 was able to reduce myocardial infarct sizes in an animal model. We observed that miR-140 could suppress the expression of Mfn1, and it exerted its effect on mitochondrial fission and apoptosis through targeting Mfn1. Our data revealed that mitochondrial fission occurs in cardiomyocytes and can be counteracted by Mfn1. However, the function of Mfn1 is negatively regulated by miR-140. Our present work suggests that Mfn1 and miR-140 are integrated into the program of cardiomyocyte apoptosis.
Collapse
|
37
|
Xu K, Mao X, Mehta M, Cui J, Zhang C, Mao F, Xu Y. Elucidation of how cancer cells avoid acidosis through comparative transcriptomic data analysis. PLoS One 2013; 8:e71177. [PMID: 23967163 PMCID: PMC3743895 DOI: 10.1371/journal.pone.0071177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 06/27/2013] [Indexed: 12/31/2022] Open
Abstract
The rapid growth of cancer cells fueled by glycolysis produces large amounts of protons in cancer cells, which tri mechanisms to transport them out, hence leading to increased acidity in their extracellular environments. It has been well established that the increased acidity will induce cell death of normal cells but not cancer cells. The main question we address here is: how cancer cells deal with the increased acidity to avoid the activation of apoptosis. We have carried out a comparative analysis of transcriptomic data of six solid cancer types, breast, colon, liver, two lung (adenocarcinoma, squamous cell carcinoma) and prostate cancers, and proposed a model of how cancer cells utilize a few mechanisms to keep the protons outside of the cells. The model consists of a number of previously, well or partially, studied mechanisms for transporting out the excess protons, such as through the monocarboxylate transporters, V-ATPases, NHEs and the one facilitated by carbonic anhydrases. In addition we propose a new mechanism that neutralizes protons through the conversion of glutamate to γ-aminobutyrate, which consumes one proton per reaction. We hypothesize that these processes are regulated by cancer related conditions such as hypoxia and growth factors and by the pH levels, making these encoded processes not available to normal cells under acidic conditions.
Collapse
Affiliation(s)
- Kun Xu
- Computational Systems Biology Lab, University of Georgia, Athens, Georgia, United States of America
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - Xizeng Mao
- Computational Systems Biology Lab, University of Georgia, Athens, Georgia, United States of America
| | - Minesh Mehta
- Computational Systems Biology Lab, University of Georgia, Athens, Georgia, United States of America
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Juan Cui
- Computational Systems Biology Lab, University of Georgia, Athens, Georgia, United States of America
| | - Chi Zhang
- Computational Systems Biology Lab, University of Georgia, Athens, Georgia, United States of America
| | - Fenglou Mao
- Computational Systems Biology Lab, University of Georgia, Athens, Georgia, United States of America
| | - Ying Xu
- Computational Systems Biology Lab, University of Georgia, Athens, Georgia, United States of America
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
38
|
Wang EY, Gang H, Aviv Y, Dhingra R, Margulets V, Kirshenbaum LA. p53 mediates autophagy and cell death by a mechanism contingent on Bnip3. Hypertension 2013; 62:70-7. [PMID: 23648705 DOI: 10.1161/hypertensionaha.113.01028] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Myocardial ischemia and angiotensin II activate the tumor suppressor p53 protein, which promotes cell death. Previously, we showed that the Bcl-2 death gene Bnip3 is highly induced during ischemia, where it triggers mitochondrial perturbations resulting in autophagy and cell death. However, whether p53 regulates Bnip3 and autophagy is unknown. Herein, we provide new compelling evidence for a novel signaling axis that commonly links p53 and Bnip3 for autophagy and cell death. p53 overexpression increased endogenous Bnip3 mRNA and protein levels resulting in mitochondrial defects leading to loss of mitochondrial ΔΨ(m). This was accompanied by an increase in autophagic flux and cell death. Notably, genetic loss of function studies, such as Atg7 knock-down or pharmacological inhibition of autophagy with 3-methyl adenine, suppressed cell death induced by p53--indicating that p53 induces maladaptive autophagy. Our previous work demonstrated that Bnip3 induces mitochondrial defects and autophagic cell death. Conversely, loss of function of Bnip3 in cardiac myocytes or Bnip3(-/-) mouse embryonic fibroblasts prevented mitochondrial targeting of p53, autophagy, and cell death. To our knowledge, these data provide the first evidence for the dual regulation of autophagy and cell death of cardiac myocytes by p53 that is mutually dependent on and obligatorily linked to Bnip3 gene activation. Hence, our findings may explain more fundamentally, how, autophagy and cell death are dually regulated during cardiac stress conditions where p53 is activated.
Collapse
Affiliation(s)
- Erika Yan Wang
- Department of Physiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Olea FD, De Lorenzi A, Cortés C, Cuniberti L, Fazzi L, Flamenco MDP, Locatelli P, Cabeza Meckert P, Bercovich A, Laguens R, Crottogini A. Combined VEGF gene transfer and erythropoietin in ovine reperfused myocardial infarction. Int J Cardiol 2013; 165:291-8. [DOI: 10.1016/j.ijcard.2011.08.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 08/17/2011] [Accepted: 08/20/2011] [Indexed: 11/29/2022]
|
40
|
Hypothermia may attenuate ischemia/reperfusion-induced cardiomyocyte death by reducing autophagy. Int J Cardiol 2013; 168:2064-9. [PMID: 23453869 DOI: 10.1016/j.ijcard.2013.01.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 01/03/2013] [Accepted: 01/13/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVE We sought to assess the effect of therapeutic hypothermia on the autophagy that occurred in ischemia-reperfused (IR) H9c2 cardiomyocytes. METHODS In control studies, the H9c2 cells at a density of 1 × 10(5) per culture dish in six-well plate were exposed to normoxic culture medium at 37 °C for 12h. All assays contained appropriate controls and were performed in triplicate and repeated on three separately initiated cultures. In hypothermia-treated group, the ischemic and hypoxic cells were maintained in a 32 °C incubation. The trypan blue exclusion method was used to assess the cell viability. Autophagy was evaluated by determining both the microtubule-associated protein 1 light chain 3 [LC3] levels and punctuate distribution of the autophagic vesicle associated form [LC3-II]. RESULTS The results were mean ± standard error of mean of triplicates. The viable cell percentage for control group, IR group, and IR group treated with hypothermia at the start of ischemia, or reperfusion were 100% ± 9%, 20% ± 1%, 32% ± 3%, and 41% ± 3%, respectively. The cell death in I/R H9c2 cells was positively associated with increased LC3 levels and punctuate distribution of (LC3-II). Mild hypothermia adopted at the start of ischemia or reperfusion significantly reduced both the cell death and the autophagy in H9c2 cells. CONCLUSION Our data indicate that in H9c2, IR stimulates cell autophagy and causes cell death, which can be attenuated by mild hypothermia. Our results, if further confirmed in vivo, may have important clinical implications during IR injury.
Collapse
|
41
|
Portal L, Martin V, Assaly R, d'Anglemont de Tassigny A, Michineau S, Berdeaux A, Ghaleh B, Pons S. A Model of Hypoxia-Reoxygenation on Isolated Adult Mouse Cardiomyocytes. J Cardiovasc Pharmacol Ther 2013; 18:367-75. [DOI: 10.1177/1074248412475158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The use of in vitro experimental models of hypoxia-reoxygenation (H/R) that mimic in vivo ischemia-reperfusion represents a powerful tool to investigate cardioprotective strategies against myocardial infarction. Most in vitro studies are performed using neonatal cardiac cells or immortalized embryonic cardiac cell lines which may limit the extrapolation of the results. We developed an H/R model using adult cardiomyocytes freshly isolated from mice and compared its characteristics to the in vivo ischemia-reperfusion conditions. First, cell death was assessed at different values of pH medium during hypoxia (6.2 vs 7.4) to simulate extracellular pH during in vivo ischemia. Cardiomyocyte mortality was aggravated with hypoxia under acidic pH. We next evaluated the relationship between the duration of hypoxia and cell death. Hypoxia time-dependently reduced myocyte viability (−24%, −36%, −53%, and −74% with 1, 1.5, 2, and 3 hours of hypoxia followed by 17 hours of reoxygenation, respectively). We then focused on the duration of reoxygenation as cardioprotective strategies have been reported to have different effects with short and long durations of reperfusion. We observed that cardiomyocyte mortality was increased when the duration of reoxygenation was increased from 2 h to 17 hours. Finally, we used our characterized model to investigate the cardioprotective effect of regular treadmill exercise. Myocyte viability was significantly greater in exercised when compared to sedentary mice (44% and 26%, respectively). Similarly, mice submitted to in vivo ischemia-reperfusion elicited infarct sizes reaching 27%, 43%, and 55% with 20, 30, and 45 minutes of coronary artery occlusion. In addition, infarct size was significantly reduced by exercise. In conclusion, this H/R model of cardiomyocytes freshly isolated from adult mice shows similar characteristics to the in vivo ischemia-reperfusion conditions. The comparison of in vivo and in vitro settings represents a powerful approach to investigate cardioprotective strategies and to distinguish between direct and indirect cardiomyocyte-dependent mechanisms.
Collapse
Affiliation(s)
- Lolita Portal
- INSERM, Unité U 955, Equipe 03, Créteil, France
- Université Paris-Est, Faculté de Médecine, Créteil, France
- Université Paris Est, Ecole Nationale Vétérinaire d’Alfort, Maisons Alfort, France
| | - Valérie Martin
- INSERM, Unité U 955, Equipe 03, Créteil, France
- Université Paris-Est, Faculté de Médecine, Créteil, France
- Université Paris Est, Ecole Nationale Vétérinaire d’Alfort, Maisons Alfort, France
| | - Rana Assaly
- INSERM, Unité U 955, Equipe 03, Créteil, France
- Université Paris-Est, Faculté de Médecine, Créteil, France
- Université Paris Est, Ecole Nationale Vétérinaire d’Alfort, Maisons Alfort, France
| | - Alexandra d'Anglemont de Tassigny
- INSERM, Unité U 955, Equipe 03, Créteil, France
- Université Paris-Est, Faculté de Médecine, Créteil, France
- Université Paris Est, Ecole Nationale Vétérinaire d’Alfort, Maisons Alfort, France
| | - Stéphanie Michineau
- INSERM, Unité U 955, Equipe 03, Créteil, France
- Université Paris-Est, Faculté de Médecine, Créteil, France
- Université Paris Est, Ecole Nationale Vétérinaire d’Alfort, Maisons Alfort, France
| | - Alain Berdeaux
- INSERM, Unité U 955, Equipe 03, Créteil, France
- Université Paris-Est, Faculté de Médecine, Créteil, France
- Université Paris Est, Ecole Nationale Vétérinaire d’Alfort, Maisons Alfort, France
- AP-HP, Hôpital H. Mondor - A. Chenevier, Fédération de Cardiologie, Créteil, France
| | - Bijan Ghaleh
- INSERM, Unité U 955, Equipe 03, Créteil, France
- Université Paris-Est, Faculté de Médecine, Créteil, France
- Université Paris Est, Ecole Nationale Vétérinaire d’Alfort, Maisons Alfort, France
| | - Sandrine Pons
- INSERM, Unité U 955, Equipe 03, Créteil, France
- Université Paris-Est, Faculté de Médecine, Créteil, France
- Université Paris Est, Ecole Nationale Vétérinaire d’Alfort, Maisons Alfort, France
| |
Collapse
|
42
|
Fang Z, Yang Q, Luo W, Li GH, Xiao J, Li F, Xiong W. Differentiation of GFP-Bcl-2-engineered mesenchymal stem cells towards a nucleus pulposus-like phenotype under hypoxia in vitro. Biochem Biophys Res Commun 2013; 432:444-50. [PMID: 23416353 DOI: 10.1016/j.bbrc.2013.01.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 01/29/2013] [Indexed: 01/08/2023]
Abstract
Differentiation of bone marrow-derived mesenchymal stem cells (MSCs) into a nucleus pulposus-like phenotype under hypoxia has been proposed as a potential therapeutic approach for intervertebral disc degeneration. However, limited cell viability under hypoxic conditions has restricted MSC differentiation capacity and thus restricted its clinical application. In this study, we genetically modified MSCs with an anti-apoptotic GFP-Bcl-2 gene and evaluated cell survival and functional improvement under hypoxia in vitro. Rat bone marrow MSCs were transfected by lentiviral vectors with the GFP-Bcl-2 gene (GFP-Bcl-2-MSCs). Cell proliferation and apoptosis were assessed, and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was carried out to evaluate phenotypic and biosynthetic activities. In addition, Alcian blue staining was used to detect the formation of sulfated glycosaminoglycans (GAGs) in the differentiated cells. We found that the Bcl-2 gene protected MSCs against apoptosis. We also observed that Bcl-2 over-expression reduced apoptosis by 40.61% in non-transfected MSCs and 38.43% in vector-MSCs to 18.33% in Bcl-2-MSCs. At 3days, the number of viable Bcl-2-MSCs was approximately two times higher than the number of MSCs or vector-MSCs under hypoxic conditions. RT-PCR showed higher expression of chondrocyte-related genes (Sox-9, aggrecan and type II collagen) in GFP-Bcl-2-MSCs cultured under hypoxia. The accumulation of proteoglycans in the pellet was 86% higher in GFP-Bcl-2-MSCs than in the control groups. Furthermore, the ratio of proteoglycans/collagen II in GFP-Bcl-2-MSCs was 6.2-fold higher compared to the MSC and vector-MSC groups, which denoted a nucleus pulposus-like differentiation phenotype. Our findings support the hypothesis that anti-apoptotic gene-modified MSCs can differentiate into cells with a nucleus pulposus-like phenotype in vitro, which may have value for the regeneration of intervertebral discs using cell transplantation therapy.
Collapse
Affiliation(s)
- Zhong Fang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | | | | | | | | | | | | |
Collapse
|
43
|
Lu D, Liu J, Jiao J, Long B, Li Q, Tan W, Li P. Transcription factor Foxo3a prevents apoptosis by regulating calcium through the apoptosis repressor with caspase recruitment domain. J Biol Chem 2013; 288:8491-8504. [PMID: 23382383 DOI: 10.1074/jbc.m112.442061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apoptosis can occur in the myocardium under a variety of pathological conditions, including myocardial infarction and heart failure. The forkhead family of transcription factor Foxo3a plays a pivotal role in apoptosis; however, its role in regulating cardiac apoptosis remains to be fully elucidated. We showed that enforced expression of Foxo3a inhibits cardiomyocyte apoptosis, whereas knockdown of endogenous Foxo3a sensitizes cardiomyocytes to undergo apoptosis. The apoptosis repressor with caspase recruitment domain (ARC) is a potent anti-apoptotic protein. Here, we demonstrate that it attenuates the release of calcium from the sarcoplasmic reticulum and inhibits calcium elevations in the cytoplasm and mitochondria provoked by oxidative stress in cardiomyocytes. Furthermore, Foxo3a is shown to maintain cytoplasmic and mitochondrial calcium homeostasis through ARC. We observed that Foxo3a knock-out mice exhibited enlarged myocardial infarction sizes upon ischemia/reperfusion, and ARC transgenic mice demonstrated reduced myocardial infarction and balanced calcium levels in mitochondria and sarcoplasmic reticulum. Moreover, we showed that Foxo3a activates ARC expression by directly binding to its promoter. This study reveals that Foxo3a maintains calcium homeostasis and inhibits cardiac apoptosis through trans-activation of the ARC promoter. These findings provided novel evidence that Foxo3a and ARC constitute an anti-apoptotic pathway that regulates calcium homeostasis in the heart.
Collapse
Affiliation(s)
- Daoyuan Lu
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinping Liu
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianqin Jiao
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Long
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Li
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Tan
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peifeng Li
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612.
| |
Collapse
|
44
|
Wu D, Kraut JA, Abraham WM. Sabiporide improves cardiovascular function, decreases the inflammatory response and reduces mortality in acute metabolic acidosis in pigs. PLoS One 2013; 8:e53932. [PMID: 23326542 PMCID: PMC3542271 DOI: 10.1371/journal.pone.0053932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/07/2012] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Acute metabolic acidosis impairs cardiovascular function and increases the mortality of critically ill patients. However, the precise mechanism(s) underlying these effects remain unclear. We hypothesized that targeting pH-regulatory protein, Na(+)/H(+) exchanger (NHE1) could be a novel approach for the treatment of acute metabolic acidosis. The aim of the present study was to examine the impact of a novel NHE1 inhibitor, sabiporide, on cardiovascular function, blood oxygen transportation, and inflammatory response in an experimental model of metabolic acidosis produced by hemorrhage-induced hypovolemia followed by an infusion of lactic acid. METHODS AND RESULTS Anesthetized pigs were subjected to hypovolemia for 30 minutes. The animals then received a bolus infusion of sabiporide (3 mg/kg) or vehicle, followed by an infusion of lactic acid for 2 hours. The animals were continuously monitored for additional 3 hours. Hypovolemia followed by a lactic acid infusion resulted in a severe metabolic acidosis with blood pH falling to 6.8. In association with production of the acidemia, there was an excessive increase in pulmonary artery pressure (PAP) and pulmonary vascular resistance (PVR). Treatment with sabiporide significantly attenuated the increase in PAP by 38% and PVR by 67%, as well as significantly improved cardiac output by 51%. Sabiporide treatment also improved mixed venous blood oxygen saturation (55% in sabiporide group vs. 28% in control group), and improved systemic blood oxygen delivery by 36%. In addition, sabiporide treatment reduced plasma levels of TNF-α (by 33%), IL-6 (by 63%), troponin-I (by 54%), ALT (by 34%), AST (by 35%), and urea (by 40%). CONCLUSION These findings support the possible beneficial effects of sabiporide in the treatment of acute metabolic acidosis and could have implications for the treatment of metabolic acidosis in man.
Collapse
Affiliation(s)
- Dongmei Wu
- Department of Research, Division of Neonatology, Mount Sinai Medical Center, Miami Beach, Florida, United States of America.
| | | | | |
Collapse
|
45
|
Matsuura K, Wada M, Konishi K, Sato M, Iwamoto U, Sato Y, Tachibana A, Kikuchi T, Iwamiya T, Shimizu T, Yamashita JK, Yamato M, Hagiwara N, Okano T. Fabrication of mouse embryonic stem cell-derived layered cardiac cell sheets using a bioreactor culture system. PLoS One 2012; 7:e52176. [PMID: 23284924 PMCID: PMC3527435 DOI: 10.1371/journal.pone.0052176] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 11/14/2012] [Indexed: 01/20/2023] Open
Abstract
Bioengineered functional cardiac tissue is expected to contribute to the repair of injured heart tissue. We previously developed cardiac cell sheets using mouse embryonic stem (mES) cell-derived cardiomyocytes, a system to generate an appropriate number of cardiomyocytes derived from ES cells and the underlying mechanisms remain elusive. In the present study, we established a cultivation system with suitable conditions for expansion and cardiac differentiation of mES cells by embryoid body formation using a three-dimensional bioreactor. Daily conventional medium exchanges failed to prevent lactate accumulation and pH decreases in the medium, which led to insufficient cell expansion and cardiac differentiation. Conversely, a continuous perfusion system maintained the lactate concentration and pH stability as well as increased the cell number by up to 300-fold of the seeding cell number and promoted cardiac differentiation after 10 days of differentiation. After a further 8 days of cultivation together with a purification step, around 1 × 10(8) cardiomyocytes were collected in a 1-L bioreactor culture, and additional treatment with noggin and granulocyte colony stimulating factor increased the number of cardiomyocytes to around 5.5 × 10(8). Co-culture of mES cell-derived cardiomyocytes with an appropriate number of primary cultured fibroblasts on temperature-responsive culture dishes enabled the formation of cardiac cell sheets and created layered-dense cardiac tissue. These findings suggest that this bioreactor system with appropriate medium might be capable of preparing cardiomyocytes for cell sheet-based cardiac tissue.
Collapse
Affiliation(s)
- Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
- Department of Cardiology, Tokyo Women’s Medical University, Tokyo, Japan
| | | | | | | | | | | | | | - Tetsutaro Kikuchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
- CellSeed Inc., Tokyo, Japan
| | - Takahiro Iwamiya
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Jun K. Yamashita
- Laboratory of Stem Cell Differentiation, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Nobuhisa Hagiwara
- Department of Cardiology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
46
|
Shi H, Chen L, Wang H, Zhu S, Dong C, Webster KA, Wei J. Synergistic induction of miR-126 by hypoxia and HDAC inhibitors in cardiac myocytes. Biochem Biophys Res Commun 2012. [PMID: 23201405 DOI: 10.1016/j.bbrc.2012.11.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HDAC inhibitors are under clinical development for the treatment of hypertrophic cardiomyopathy and heart failure although the mechanisms of protection are incompletely understood. Micro-RNA 126, an endothelium-specific miR has been assigned essential developmental roles in the heart by activating survival kinases ERK1/2 and Akt and increasing pro-angiogenic signaling. Here we provide the first evidence that hypoxia and HDAC inhibitors selectively and synergistically stimulate expression of miR-126 in cardiac myocytes. MiR-126 expression was increased 1.7-fold (p<0.05) after 1h of hypoxic exposure and this was further enhanced to 3.0-fold (p<0.01) by simultaneously blocking HDAC with the pan-HDAC inhibitor Tricostatin A (TSA). TSA alone did not increase miR-126. In parallel, hypoxia and TSA synergistically increased p-ERK and p-Akt without effecting VEGF-A level. Knockdown of miR-126 with si-RNA eliminated inductions of p-ERK and p-Akt by hypoxia, whereas miR-126 overexpression mimicked hypoxia and amplified p-ERK and p-Akt in parallel with miR-126. The results suggest that miR-126 is a hypoxia-inducible target of HAT/HDAC and its activation in cardiac myocytes may contribute to cardioprotection by activating cell survival and pro-angiogenic pathways selectively during ischemia.
Collapse
Affiliation(s)
- Huaping Shi
- Hangzhou Red Cross Hospital, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Enhanced cell survival and diminished apoptotic response to simulated ischemia–reperfusion in H9c2 cells by magnetic field preconditioning. Apoptosis 2012; 17:1182-96. [DOI: 10.1007/s10495-012-0747-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Chu W, Wan L, Zhao D, Qu X, Cai F, Huo R, Wang N, Zhu J, Zhang C, Zheng F, Cai R, Dong D, Lu Y, Yang B. Mild hypoxia-induced cardiomyocyte hypertrophy via up-regulation of HIF-1α-mediated TRPC signalling. J Cell Mol Med 2012; 16:2022-34. [PMID: 22129453 PMCID: PMC3822973 DOI: 10.1111/j.1582-4934.2011.01497.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/23/2011] [Indexed: 11/30/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is a central transcriptional regulator of hypoxic response. The present study was designed to investigate the role of HIF-1α in mild hypoxia-induced cardiomyocytes hypertrophy and its underlying mechanism. Mild hypoxia (MH, 10% O(2)) caused hypertrophy in cultured neonatal rat cardiac myocytes, which was accompanied with increase of HIF-1α mRNA and accumulation of HIF-1α protein in nuclei. Transient receptor potential canonical (TRPC) channels including TRPC3 and TRPC6, except for TRPC1, were increased, and Ca(2+)-calcineurin signals were also enhanced in a time-dependent manner under MH condition. MH-induced cardiomyocytes hypertrophy, TRPC up-regulation and enhanced Ca(2+)-calcineurin signals were inhibited by an HIF-1α specific blocker, SC205346 (30 μM), whereas promoted by HIF-1α overexpression. Electrophysiological voltage-clamp demonstrated that DAG analogue, OAG (30 μM), induced TRPC current by as much as 170% in neonatal rat cardiomyocytes overexpressing HIF-1α compared to negative control. These results implicate that HIF-1α plays a key role in development of cardiac hypertrophy in responses to hypoxic stress. Its mechanism is associated with up-regulating TRPC3, TRPC6 expression, activating TRPC current and subsequently leading to enhanced Ca(2+)-calcineurin signals.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Calcineurin/genetics
- Calcineurin/metabolism
- Cardiomegaly/genetics
- Cardiomegaly/pathology
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cells, Cultured
- Cloning, Molecular
- Fluorescent Antibody Technique
- Humans
- Hypertrophy
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Rats
- Rats, Wistar
- Sequence Analysis, DNA
- Signal Transduction/genetics
- TRPC Cation Channels/genetics
- TRPC Cation Channels/metabolism
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Wenfeng Chu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Lin Wan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Dan Zhao
- Department of Pharmacy, the 2nd Affiliated Hospital, Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Xuefeng Qu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Fulai Cai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Rong Huo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Ning Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Jiuxin Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Chun Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Fangfang Zheng
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Ruijun Cai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Deli Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Yanjie Lu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Baofeng Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| |
Collapse
|
49
|
Yang J, Zhang H, Zhao L, Chen Y, Liu H, Zhang T. Human adipose tissue-derived stem cells protect impaired cardiomyocytes from hypoxia/reoxygenation injury through hypoxia-induced paracrine mechanism. Cell Biochem Funct 2012; 30:505-14. [PMID: 22610511 DOI: 10.1002/cbf.2829] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/03/2012] [Accepted: 03/14/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Junjie Yang
- Department of Cardiology; Chinese PLA General Hospital; Beijing; China
| | - Huaxin Zhang
- Department of Clinical Laboratory, Division of South Building; Chinese PLA General Hospital; Beijing; China
| | - Liang Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; China
| | - Yundai Chen
- Department of Cardiology; Chinese PLA General Hospital; Beijing; China
| | - Hongbin Liu
- Department of Cardiology; Chinese PLA General Hospital; Beijing; China
| | - Tao Zhang
- Department of Cardiology; Chinese PLA General Hospital; Beijing; China
| |
Collapse
|
50
|
Thompson JW, Graham RM, Webster KA. DNase activation by hypoxia-acidosis parallels but is independent of programmed cell death. Life Sci 2012; 91:223-9. [PMID: 22525374 DOI: 10.1016/j.lfs.2012.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/24/2012] [Accepted: 03/21/2012] [Indexed: 12/13/2022]
Abstract
AIMS Hypoxia, acidosis and programmed cell death are each hallmarks of acute myocardial infarction (AMI). We previously described a death pathway of cardiac myocytes mediated by hypoxia-acidosis that was characterized by activation of the Bcl2-family protein Bnip3 and programmed necrosis. The pathway included extensive DNA fragmentation that was sensitive to inhibition of the mitochondrial permeability transition pore (mPTP) and calpain inhibitors, but not caspase inhibitors. We did not identify the DNases responsible for DNA cleavage. MAIN METHODS Neonatal rat cardiomyocytes were subjected to hypoxia with and without concurrent acidosis, and the cellular localization of apoptosis-inducing factor (AIF), DNase II and caspase-dependent DNase (CAD) were determined. KEY FINDINGS Here we report the occurrence of biphasic pH-dependent translocations of AIF and DNase II but no change in CAD or its inhibitor ICAD. AIF co-localized with the mitochondria under aerobic and hypoxia-neutral conditions but translocated to the nucleus at pH ~6.7 coincident with a decrease of the mitochondrial membrane potential. DNase II co-localized with lysosomes under normoxia and hypoxia-neutral conditions, and translocated to the nucleus at pH ~6.1 coincident with the appearance of single strand DNA cuts. Inhibition of the mPTP pore with BH4-TAT peptide, calpain inhibition with PD150606, or knockdown (KD) of Bnip3 failed to prevent nuclear translocation of these DNase although Bnip3 KD blocked mitochondrial fission. SIGNIFICANCE These results suggest that caspase-independent DNA fragmentation is precisely regulated and occurs in parallel but independently from programmed necrosis mediated by hypoxia-acidosis.
Collapse
Affiliation(s)
- John W Thompson
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|