1
|
Song M, Zhuge Y, Tu Y, Liu J, Liu W. The Multifunctional Role of KCNE2: From Cardiac Arrhythmia to Multisystem Disorders. Cells 2024; 13:1409. [PMID: 39272981 PMCID: PMC11393857 DOI: 10.3390/cells13171409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The KCNE2 protein is encoded by the kcne2 gene and is a member of the KCNE protein family, also known as the MinK-related protein 1 (MiRP1). It is mostly present in the epicardium of the heart and gastric mucosa, and it is also found in the thyroid, pancreatic islets, liver and lung, among other locations, to a lesser extent. It is involved in numerous physiological processes because of its ubiquitous expression and partnering promiscuity, including the modulation of voltage-dependent potassium and calcium channels involved in cardiac action potential repolarization, and regulation of secretory processes in multiple epithelia, such as gastric acid secretion, thyroid hormone synthesis, generation and secretion of cerebrospinal fluid. Mutations in the KCNE2 gene or aberrant expression of the protein may play a critical role in cardiovascular, neurological, metabolic and multisystem disorders. This article provides an overview of the advancements made in understanding the physiological functions in organismal homeostasis and the pathophysiological consequences of KCNE2 in multisystem diseases.
Collapse
Affiliation(s)
| | | | | | - Jie Liu
- Department of Pathophysiology, Medical School, Shenzhen University, Shenzhen 518060, China; (M.S.); (Y.Z.); (Y.T.)
| | - Wenjuan Liu
- Department of Pathophysiology, Medical School, Shenzhen University, Shenzhen 518060, China; (M.S.); (Y.Z.); (Y.T.)
| |
Collapse
|
2
|
Li K, Liu P, Liu M, Ye J, Zhu L. Putative causal relations among gut flora, serums metabolites and arrhythmia: a Mendelian randomization study. BMC Cardiovasc Disord 2024; 24:38. [PMID: 38212687 PMCID: PMC10782588 DOI: 10.1186/s12872-023-03703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The pathogenesis of cardiac arrhythmias is multifaceted, encompassing genetic, environmental, hemodynamic, and various causative factors. Emerging evidence underscores a plausible connection between gut flora, serum metabolites, and specific types of arrhythmias. Recognizing the role of host genetics in shaping the microbiota, we employed two-sample Mendelian randomization analyses to investigate potential causal associations between gut flora, serum metabolites, and distinct arrhythmias. METHODS Mendelian randomization methods were deployed to ascertain causal relationships between 211 gut flora, 575 serum metabolites, and various types of arrhythmias. To ensure the reliability of the findings, five complementary Mendelian randomization methods, including inverse variance weighting methods, were employed. The robustness of the results was scrutinized through a battery of sensitivity analyses, incorporating the Cochran Q test, leave-one-out test, and MR-Egger intercept analysis. RESULTS Eighteen gut flora and twenty-six serum metabolites demonstrated associations with the risk of developing atrial fibrillation. Moreover, ten gut flora and fifty-two serum metabolites were linked to the risk of developing supraventricular tachycardia, while eight gut flora and twenty-five serum metabolites were associated with the risk of developing tachycardia. Additionally, six gut flora and twenty-one serum metabolites exhibited associations with the risk of developing bradycardia. CONCLUSION This study revealed the potential causal relationship that may exist between gut flora, serum metabolites and different cardiac arrhythmias and highlights the need for further exploration. This study provides new perspectives to enhance diagnostic and therapeutic strategies in the field of cardiac arrhythmias.
Collapse
Affiliation(s)
- Kaiyuan Li
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
- Department of Cardiovascular Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, No. 399 Hailing South Road, Taizhou, Jiangsu Province, China
| | - Peng Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Miao Liu
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Ye
- Department of Cardiovascular Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, No. 399 Hailing South Road, Taizhou, Jiangsu Province, China
| | - Li Zhu
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China.
- Department of Cardiovascular Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, No. 399 Hailing South Road, Taizhou, Jiangsu Province, China.
| |
Collapse
|
3
|
Dore R, Watson L, Hollidge S, Krause C, Sentis SC, Oelkrug R, Geißler C, Johann K, Pedaran M, Lyons G, Lopez-Alcantara N, Resch J, Sayk F, Iwen KA, Franke A, Boysen TJ, Dalley JW, Lorenz K, Moran C, Rennie KL, Arner A, Kirchner H, Chatterjee K, Mittag J. Resistance to thyroid hormone induced tachycardia in RTHα syndrome. Nat Commun 2023; 14:3312. [PMID: 37286550 DOI: 10.1038/s41467-023-38960-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
Mutations in thyroid hormone receptor α1 (TRα1) cause Resistance to Thyroid Hormone α (RTHα), a disorder characterized by hypothyroidism in TRα1-expressing tissues including the heart. Surprisingly, we report that treatment of RTHα patients with thyroxine to overcome tissue hormone resistance does not elevate their heart rate. Cardiac telemetry in male, TRα1 mutant, mice indicates that such persistent bradycardia is caused by an intrinsic cardiac defect and not due to altered autonomic control. Transcriptomic analyses show preserved, thyroid hormone (T3)-dependent upregulation of pacemaker channels (Hcn2, Hcn4), but irreversibly reduced expression of several ion channel genes controlling heart rate. Exposure of TRα1 mutant male mice to higher maternal T3 concentrations in utero, restores altered expression and DNA methylation of ion channels, including Ryr2. Our findings indicate that target genes other than Hcn2 and Hcn4 mediate T3-induced tachycardia and suggest that treatment of RTHα patients with thyroxine in high dosage without concomitant tachycardia, is possible.
Collapse
Affiliation(s)
- Riccardo Dore
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Laura Watson
- National Institute Health and Care Research Cambridge Clinical Research Facility, Addenbrooke's Hospital, Cambridge, UK
| | - Stefanie Hollidge
- MRC Epidemiology Unit and Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Christin Krause
- Institute for Human Genetics, Department of Epigenetics & Metabolism, Center of Brain Behavior & Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Sarah Christine Sentis
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Rebecca Oelkrug
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Cathleen Geißler
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Kornelia Johann
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Mehdi Pedaran
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Greta Lyons
- Wellcome-MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Nuria Lopez-Alcantara
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Julia Resch
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Friedhelm Sayk
- Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Karl Alexander Iwen
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Teide Jens Boysen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Wuerzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, 44139, Dortmund, Germany
| | - Carla Moran
- Wellcome-MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
- Beacon Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - Kirsten L Rennie
- MRC Epidemiology Unit and Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Anders Arner
- Department of Clinical Sciences, Lund University, c/o Igelösa Life Science AB, Igelösa 373, 225 94, Lund, Sweden
| | - Henriette Kirchner
- Institute for Human Genetics, Department of Epigenetics & Metabolism, Center of Brain Behavior & Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Krishna Chatterjee
- Wellcome-MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Jens Mittag
- Institute for Endocrinology and Diabetes, Center of Brain Behavior & Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
4
|
Engstrom N, Letson HL, Ng K, Dobson GP. Predicting arrhythmias in primary prevention heart failure patients: picking up the fragments. Open Heart 2022. [PMCID: PMC9438052 DOI: 10.1136/openhrt-2022-002075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Identifying patients with high-risk heart failure (HF) who would benefit from an implantable cardioverter-defibrillator (ICD) remains controversial. A potential marker for arrhythmic sudden death is fragmented QRS (fQRS). fQRS is the notching and slurring of the QRS complex in a 12-lead ECG and it indicates abnormal ventricular depolarisation and myocardial scarring and fibrosis. However, before fQRS complex can be included into selection criteria for ICD therapy, more complete reporting is required on their association with malignant arrhythmias, left ventricular remodelling and myocardial scarring/fibrosis in patients with HF. The molecular basis of the fQRS-arrhythmia-fibrosis connection in HF also needs to be explored. It is not widely appreciated that changes in the QRS complex and phases 0 and 1 of the ventricular action potential occur before contraction and predetermine Ca2+ release during contraction and later Ca2+ sparks. It is currently not known whether the different zig-zag patterns of the QRS are associated with aberrant Ca2+ cycling and arrhythmogenic sparks in patients with HF.
Collapse
|
5
|
Corianò M, Tona F. Strategies for Sudden Cardiac Death Prevention. Biomedicines 2022; 10:639. [PMID: 35327441 PMCID: PMC8944952 DOI: 10.3390/biomedicines10030639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/06/2022] [Accepted: 03/06/2022] [Indexed: 12/12/2022] Open
Abstract
Sudden cardiac death (SCD) represents a major challenge in modern medicine. The prevention of SCD orbits on two levels, the general population level and individual level. Much research has been done with the aim to improve risk stratification of SCD, although no radical changes in evidence and in therapeutic strategy have been achieved. Artificial intelligence (AI), and in particular machine learning (ML) models, represent novel technologic tools that promise to improve predictive ability of fatal arrhythmic events. In this review, firstly, we analyzed the electrophysiological basis and the major clues of SCD prevention at population and individual level; secondly, we reviewed the main research where ML models were used for risk stratification in other field of cardiology, suggesting its potentiality in the field of SCD prevention.
Collapse
Affiliation(s)
| | - Francesco Tona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy;
| |
Collapse
|
6
|
Thyroid hormones regulate cardiac repolarization and QT-interval related gene expression in hiPSC cardiomyocytes. Sci Rep 2022; 12:568. [PMID: 35022468 PMCID: PMC8755773 DOI: 10.1038/s41598-021-04659-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
Prolongation of cardiac repolarization (QT interval) represents a dangerous and potentially life-threatening electrical event affecting the heart. Thyroid hormones (THs) are critical for cardiac development and heart function. However, little is known about THs influence on ventricular repolarization and controversial effects on QT prolongation are reported. Human iPSC-derived cardiomyocytes (hiPSC-CMs) and multielectrode array (MEA) systems were used to investigate the influence of 3,3',5-triiodo-L-Thyronine (T3) and 3,3',5,5'-tetraiodo-L-Thyronine (T4) on corrected Field Potential Duration (FPDc), the in vitro analog of QT interval, and on local extracellular Action Potential Duration (APD). Treatment with high THs doses induces a significant prolongation of both FPDc and APD, with the strongest increase reached after 24 h exposure. Preincubation with reverse T3 (rT3), a specific antagonist for nuclear TH receptor binding, significantly reduces T3 effects on FPDc, suggesting a TRs-mediated transcriptional mechanism. RNA-seq analysis showed significant deregulation in genes involved in cardiac repolarization pathways, including several QT-interval related genes. In conclusion, long-time administration of high THs doses induces FPDc prolongation in hiPSC-CMs probably through the modulation of genes linked to QT-interval regulation. These results open the way to investigate new potential diagnostic biomarkers and specific targeted therapies for cardiac repolarization dysfunctions.
Collapse
|
7
|
Angelini M, Pezhouman A, Savalli N, Chang MG, Steccanella F, Scranton K, Calmettes G, Ottolia M, Pantazis A, Karagueuzian HS, Weiss JN, Olcese R. Suppression of ventricular arrhythmias by targeting late L-type Ca2+ current. J Gen Physiol 2021; 153:212725. [PMID: 34698805 PMCID: PMC8552156 DOI: 10.1085/jgp.202012584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Ventricular arrhythmias, a leading cause of sudden cardiac death, can be triggered by cardiomyocyte early afterdepolarizations (EADs). EADs can result from an abnormal late activation of L-type Ca2+ channels (LTCCs). Current LTCC blockers (class IV antiarrhythmics), while effective at suppressing EADs, block both early and late components of ICa,L, compromising inotropy. However, computational studies have recently demonstrated that selective reduction of late ICa,L (Ca2+ influx during late phases of the action potential) is sufficient to potently suppress EADs, suggesting that effective antiarrhythmic action can be achieved without blocking the early peak ICa,L, which is essential for proper excitation–contraction coupling. We tested this new strategy using a purine analogue, roscovitine, which reduces late ICa,L with minimal effect on peak current. Scaling our investigation from a human CaV1.2 channel clone to rabbit ventricular myocytes and rat and rabbit perfused hearts, we demonstrate that (1) roscovitine selectively reduces ICa,L noninactivating component in a human CaV1.2 channel clone and in ventricular myocytes native current, (2) the pharmacological reduction of late ICa,L suppresses EADs and EATs (early after Ca2+ transients) induced by oxidative stress and hypokalemia in isolated myocytes, largely preserving cell shortening and normal Ca2+ transient, and (3) late ICa,L reduction prevents/suppresses ventricular tachycardia/fibrillation in ex vivo rabbit and rat hearts subjected to hypokalemia and/or oxidative stress. These results support the value of an antiarrhythmic strategy based on the selective reduction of late ICa,L to suppress EAD-mediated arrhythmias. Antiarrhythmic therapies based on this idea would modify the gating properties of CaV1.2 channels rather than blocking their pore, largely preserving contractility.
Collapse
Affiliation(s)
- Marina Angelini
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Arash Pezhouman
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Nicoletta Savalli
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Marvin G Chang
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Federica Steccanella
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kyle Scranton
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Guillaume Calmettes
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Michela Ottolia
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,University of California, Los Angeles Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Antonios Pantazis
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Wallenberg Center for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Hrayr S Karagueuzian
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - James N Weiss
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Riccardo Olcese
- Division of Molecular Medicine, Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,University of California, Los Angeles Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
8
|
Papanikolaou M, Crump SM, Abbott GW. The focal adhesion protein Testin modulates KCNE2 potassium channel β subunit activity. Channels (Austin) 2021; 15:229-238. [PMID: 33464998 PMCID: PMC7833772 DOI: 10.1080/19336950.2021.1874119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/25/2022] Open
Abstract
Coronary Artery Disease (CAD) typically kills more people globally each year than any other single cause of death. A better understanding of genetic predisposition to CAD and the underlying mechanisms will help to identify those most at risk and contribute to improved therapeutic approaches. KCNE2 is a functionally versatile, ubiquitously expressed potassium channel β subunit associated with CAD and cardiac arrhythmia susceptibility in humans and mice. Here, to identify novel KCNE2 interaction partners, we employed yeast two-hybrid screening of adult and fetal human heart libraries using the KCNE2 intracellular C-terminal domain as bait. Testin (encoded by TES), an endothelial cell-expressed, CAD-associated, focal adhesion protein, was identified as a high-confidence interaction partner for KCNE2. We confirmed physical association between KCNE2 and Testin in vitro by co-immunoprecipitation. Whole-cell patch clamp electrophysiology revealed that KCNE2 negative-shifts the voltage dependence and increases the rate of activation of the endothelial cell and cardiomyocyte-expressed Kv channel α subunit, Kv1.5 in CHO cells, whereas Testin did not alter Kv1.5 function. However, Testin nullified KCNE2 effects on Kv1.5 voltage dependence and gating kinetics. In contrast, Testin did not prevent KCNE2 regulation of KCNQ1 gating. The data identify a novel role for Testin as a tertiary ion channel regulatory protein. Future studies will address the potential role for KCNE2-Testin interactions in arterial and myocyte physiology and CAD.
Collapse
Affiliation(s)
- Maria Papanikolaou
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Shawn M. Crump
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
9
|
Zhang Q, He Y, Xu H, Li L, Guo Y, Zhang J, Cheng L, Yu H, Dai Y, Yang Q, Yang Z, Li C, Zhang S, Zhu S, Luo B, Gao Y. Modulation of STIM1 by a risk insertion/deletion polymorphism underlying genetics susceptibility to sudden cardiac death originated from coronary artery disease. Forensic Sci Int 2021; 328:111010. [PMID: 34592581 DOI: 10.1016/j.forsciint.2021.111010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022]
Abstract
Stromal interaction molecule 1 (STIM1), as a dynamic calcium signal transducer and key regulator of cardiomyocyte Ca2+ homeostasis, has been implicated in various pathological processes related to sudden cardiac death originated from coronary artery disease (SCD-CAD). In this study, we performed a systematic variant screening on promoter region of STIM1 to filter potential functional genetic variations. Based on the screening results, a 5-bp insertion/deletion (indel) polymorphism (rs3061890) in promoter region of STIM1 was selected as the candidate variant. We investigated the association of rs3061890 with SCD-CAD susceptibility in Chinese Han populations. The homozygote del/del genotype significantly increased risk for SCD-CAD as compared with the ins/ins genotype (odds ratio, 2.86 [95% confidence interval, 1.69-4.29]; P = 2.3 × 10-5). Compared with the common allele, the 5-bp deletion risk allele exhibited lower transcriptional capacity in luciferase assays. Intriguingly, genotype-phenotype correlation studies using human myocardium tissue samples revealed that the expression of STIM1 was associated with the genotype of rs3061890. Computational prediction combined with electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays provided convincing evidence for stronger binding affinity of ELF1 (E74 like ETS transcription factor 1) with the deletion allele promoter. Taken together, our findings implied an allele-specific mechanism of regulating the transcription of STIM1 via ELF1, which contribute to SCD-CAD susceptibility. rs3061890 may thus considered as a candidate genetic marker for SCD-CAD prediction and prevention.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Yan He
- Department of Epidemiology, Medical College of Soochow University, Suzhou, China.
| | - Hongfei Xu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Yadong Guo
- Department of Forensic Sciences, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Jianhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China.
| | - Lei Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Huan Yu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Yunda Dai
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Qi Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Zhenzhen Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China.
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China.
| | - Shaohua Zhu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| | - Bin Luo
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Isogenic Sets of hiPSC-CMs Harboring Distinct KCNH2 Mutations Differ Functionally and in Susceptibility to Drug-Induced Arrhythmias. Stem Cell Reports 2021; 15:1127-1139. [PMID: 33176122 PMCID: PMC7664051 DOI: 10.1016/j.stemcr.2020.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022] Open
Abstract
Mutations in KCNH2 can lead to long QT syndrome type 2. Variable disease manifestation observed with this channelopathy is associated with the location and type of mutation within the protein, complicating efforts to predict patient risk. Here, we demonstrated phenotypic differences in cardiomyocytes derived from isogenic human induced pluripotent stem cells (hiPSC-CMs) genetically edited to harbor mutations either within the pore or tail region of the ion channel. Electrophysiological analysis confirmed that the mutations prolonged repolarization of the hiPSC-CMs, with differences between the mutations evident in monolayer cultures. Blocking the hERG channel revealed that the pore-loop mutation conferred greater susceptibility to arrhythmic events. These findings showed that subtle phenotypic differences related to KCNH2 mutations could be captured by hiPSC-CMs under genetically matched conditions. Moreover, the results support hiPSC-CMs as strong candidates for evaluating the underlying severity of individual KCNH2 mutations in humans, which could facilitate patient risk stratification. Mutation-specific differences detected in hiPSC-CMs with same genetic background APD and FPD in the hERG pore variant hiPSC-CMs more prolonged than the tail variant The pore variant was also more susceptible to drug-induced arrhythmic events Potential strategy to determine KCNH2 mutation-specific arrhythmic risk
Collapse
|
11
|
Gbotosho OT, Taylor M, Malik P. Cardiac pathophysiology in sickle cell disease. J Thromb Thrombolysis 2021; 52:248-259. [PMID: 33677791 DOI: 10.1007/s11239-021-02414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Oluwabukola Temitope Gbotosho
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Michael Taylor
- Division of Cardiology, Heart Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA. .,Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
| |
Collapse
|
12
|
Liu H, Zhao Y, Xie A, Kim TY, Terentyeva R, Liu M, Shi G, Feng F, Choi BR, Terentyev D, Hamilton S, Dudley SC. Interleukin-1β, Oxidative Stress, and Abnormal Calcium Handling Mediate Diabetic Arrhythmic Risk. ACTA ACUST UNITED AC 2021; 6:42-52. [PMID: 33532665 PMCID: PMC7838050 DOI: 10.1016/j.jacbts.2020.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Diabetes-induced arrhythmic risk involved activation of innate immunity, elevation of IL-1β, mitochondrial oxidative stress, SR calcium release channel oxidation, and QT prolongation. Diabetes-induced arrhythmic risk could be inhibited by IL-1β antagonism, mitoROS scavenging, and SR calcium release stabilization. The relationship of inflammation and arrhythmic risk may account for increased susceptibility of diabetic patients to the effects of COVID-19.
Diabetes mellitus (DM) is associated with increased arrhythmia. Type 2 DM (T2DM) mice showed prolonged QT interval and increased ventricular arrhythmic inducibility, accompanied by elevated cardiac interleukin (IL)-1β, increased mitochondrial reactive oxygen species (mitoROS), and oxidation of the sarcoplasmic reticulum (SR) Ca2+ release channel (ryanodine receptor 2 [RyR2]). Inhibiting IL-1β and mitoROS reduced RyR2 oxidation and the ventricular arrhythmia in DM. Inhibiting SR Ca2+ leak by stabilizing the oxidized RyR2 channel reversed the diabetic arrhythmic risk. In conclusion, cardiac IL-1β mediated the DM-associated arrhythmia through mitoROS generation that enhances SR Ca2+ leak. The mechanistic link between inflammation and arrhythmias provides new therapeutic options.
Collapse
Key Words
- APD, action potential duration
- DM, diabetes mellitus
- EAD, early afterdepolarization
- IL, interleukin
- IL-1RA, interleukin-1 receptor antagonist
- Ito, transient outward potassium current
- RyR2, ryanodine receptor
- SR, sarcoplasmic reticulum
- T1DM, type 1 diabetes mellitus
- T2DM, type 2 diabetes mellitus
- VT, ventricular tachycardia
- calcium handling
- inflammation
- mitoROS, mitochondrial reactive oxygen species
- mitochondria
- oxidation
- sudden cardiac death
Collapse
Affiliation(s)
- Hong Liu
- Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Yang Zhao
- Division of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - An Xie
- Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Tae-Yun Kim
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Radmila Terentyeva
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Man Liu
- Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Guangbin Shi
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Feng Feng
- Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Bum-Rak Choi
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Dmitry Terentyev
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Samuel C Dudley
- Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
13
|
Brewer KR, Kuenze G, Vanoye CG, George AL, Meiler J, Sanders CR. Structures Illuminate Cardiac Ion Channel Functions in Health and in Long QT Syndrome. Front Pharmacol 2020; 11:550. [PMID: 32431610 PMCID: PMC7212895 DOI: 10.3389/fphar.2020.00550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The cardiac action potential is critical to the production of a synchronized heartbeat. This electrical impulse is governed by the intricate activity of cardiac ion channels, among them the cardiac voltage-gated potassium (Kv) channels KCNQ1 and hERG as well as the voltage-gated sodium (Nav) channel encoded by SCN5A. Each channel performs a highly distinct function, despite sharing a common topology and structural components. These three channels are also the primary proteins mutated in congenital long QT syndrome (LQTS), a genetic condition that predisposes to cardiac arrhythmia and sudden cardiac death due to impaired repolarization of the action potential and has a particular proclivity for reentrant ventricular arrhythmias. Recent cryo-electron microscopy structures of human KCNQ1 and hERG, along with the rat homolog of SCN5A and other mammalian sodium channels, provide atomic-level insight into the structure and function of these proteins that advance our understanding of their distinct functions in the cardiac action potential, as well as the molecular basis of LQTS. In this review, the gating, regulation, LQTS mechanisms, and pharmacological properties of KCNQ1, hERG, and SCN5A are discussed in light of these recent structural findings.
Collapse
Affiliation(s)
- Kathryn R. Brewer
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Carlos G. Vanoye
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alfred L. George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Charles R. Sanders
- Center for Structural Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
14
|
Hu Z, Liu J, Zhou L, Tian X, Abbott GW. AKT and ERK1/2 activation via remote ischemic preconditioning prevents Kcne2-dependent sudden cardiac death. Physiol Rep 2020; 7:e13957. [PMID: 30737904 PMCID: PMC6368489 DOI: 10.14814/phy2.13957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 02/05/2023] Open
Abstract
Sudden cardiac death (SCD) is the leading global cause of mortality. SCD often arises from cardiac ischemia reperfusion (IR) injury, pathologic sequence variants within ion channel genes, or a combination of the two. Alternative approaches are needed to prevent or ameliorate ventricular arrhythmias linked to SCD. Here, we investigated the efficacy of remote ischemic preconditioning (RIPC) of the limb versus the liver in reducing ventricular arrhythmias in a mouse model of SCD. Mice lacking the Kcne2 gene, which encodes a potassium channel β subunit associated with acquired Long QT syndrome were exposed to IR injury via coronary ligation. This resulted in ventricular arrhythmias in all mice (15/15) and SCD in 5/15 mice during reperfusion. Strikingly, prior RIPC (limb or liver) greatly reduced the incidence and severity of all ventricular arrhythmias and completely prevented SCD. Biochemical and pharmacological analysis demonstrated that RIPC cardioprotection required ERK1/2 and/or AKT phosphorylation. A lack of alteration in GSK‐3β phosphorylation suggested against conventional reperfusion injury salvage kinase (RISK) signaling pathway protection. If replicated in human studies, limb RIPC could represent a noninvasive, nonpharmacological approach to limit dangerous ventricular arrhythmias associated with ischemia and/or channelopathy‐linked SCD.
Collapse
Affiliation(s)
- Zhaoyang Hu
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Leng Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Tian
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
15
|
Vanoye CG, Desai RR, Fabre KL, Gallagher SL, Potet F, DeKeyser JM, Macaya D, Meiler J, Sanders CR, George AL. High-Throughput Functional Evaluation of KCNQ1 Decrypts Variants of Unknown Significance. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002345. [PMID: 30571187 DOI: 10.1161/circgen.118.002345] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The explosive growth in known human gene variation presents enormous challenges to current approaches for variant classification that have implications for diagnosis and treatment of many genetic diseases. For disorders caused by mutations in cardiac ion channels as in congenital arrhythmia syndromes, in vitro electrophysiological evidence has high value in discriminating pathogenic from benign variants, but these data are often lacking because assays are cost, time, and labor intensive. METHODS We implemented a strategy for performing high-throughput functional evaluations of ion channel variants that repurposed an automated electrophysiological recording platform developed previously for drug discovery. RESULTS We demonstrated the success of this approach by evaluating 78 variants in KCNQ1, a major gene involved in genetic disorders of cardiac arrhythmia susceptibility. We benchmarked our results with traditional electrophysiological approaches and observed a high level of concordance. This strategy also enabled studies of dominant-negative behavior of variants exhibiting severe loss-of-function. Overall, our results provided functional data useful for reclassifying >65% of the studied KCNQ1 variants. CONCLUSIONS Our results illustrate an efficient and high-throughput paradigm linking genotype to function for a human cardiac ion channel that will enable data-driven classification of large numbers of variants and create new opportunities for precision medicine.
Collapse
Affiliation(s)
- Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., R.R.D., K.L.F., S.L.G., F.P., J.-M.D., A.L.G.)
| | - Reshma R Desai
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., R.R.D., K.L.F., S.L.G., F.P., J.-M.D., A.L.G.)
| | - Katarina L Fabre
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., R.R.D., K.L.F., S.L.G., F.P., J.-M.D., A.L.G.)
| | - Shannon L Gallagher
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., R.R.D., K.L.F., S.L.G., F.P., J.-M.D., A.L.G.)
| | - Franck Potet
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., R.R.D., K.L.F., S.L.G., F.P., J.-M.D., A.L.G.)
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., R.R.D., K.L.F., S.L.G., F.P., J.-M.D., A.L.G.)
| | | | - Jens Meiler
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, TN (J.M.).,the Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN (J.M.,C.R.S.)
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN (C.R.S.).,the Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN (J.M.,C.R.S.)
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (C.G.V., R.R.D., K.L.F., S.L.G., F.P., J.-M.D., A.L.G.)
| |
Collapse
|
16
|
Machine learning to differentiate diseased cardiomyocytes from healthy control cells. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
17
|
Schwartz PJ, Crotti L, George AL. Modifier genes for sudden cardiac death. Eur Heart J 2018; 39:3925-3931. [PMID: 30215713 PMCID: PMC6247660 DOI: 10.1093/eurheartj/ehy502] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/28/2018] [Indexed: 01/07/2023] Open
Abstract
Genetic conditions, even those associated with identical gene mutations, can present with variable clinical manifestations. One widely accepted explanation for this phenomenon is the existence of genetic factors capable of modifying the consequences of disease-causing mutations (modifier genes). Here, we address the concepts and principles by which genetic factors may be involved in modifying risk for cardiac arrhythmia, then discuss the current knowledge and interpretation of their contribution to clinical heterogeneity. We illustrate these concepts in the context of two important clinical conditions associated with risk for sudden cardiac death including a monogenic disorder (congenital long QT syndrome) in which the impact of modifier genes has been established, and a complex trait (life-threatening arrhythmias in acute myocardial infarction) for which the search for genetic modifiers of arrhythmic risk is more challenging. Advances in understanding the contribution of modifier genes to a higher or lower propensity towards sudden death should improve patient-specific risk stratification and be a major step towards precision medicine.
Collapse
Affiliation(s)
- Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo, 22, Milan, Italy
- Corresponding author. Tel: +39 02 55000408, Fax: +39 02 55000411, ;
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo, 22, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore, 48, Monza, Italy
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Piazzale Brescia 20, Milan, Italy
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Searle 8-510, East Superior Street, Chicago, IL, USA
| |
Collapse
|
18
|
Kcne4 deletion sex-specifically predisposes to cardiac arrhythmia via testosterone-dependent impairment of RISK/SAFE pathway induction in aged mice. Sci Rep 2018; 8:8258. [PMID: 29844497 PMCID: PMC5974354 DOI: 10.1038/s41598-018-26599-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/15/2018] [Indexed: 02/05/2023] Open
Abstract
Sudden cardiac death (SCD) is associated with both electrical and ischemic substrates, and is a major cause of ischemic heart disease mortality worldwide. Male sex predisposes to SCD but the underlying mechanisms are incompletely understood. KCNE4, a cardiac arrhythmia-associated potassium channel β-subunit, is upregulated by 5α-dihydrotestosterone (DHT). Thus, ventricular Kcne4 expression is low in young adult female mice, but high in males and postmenopausal (12+ months) females. Despite causing a sex-independent electrical substrate at 13 months of age (22% QT prolongation in both males and females; P < 0.01), Kcne4 deletion preferentially predisposed aged male mice to ischemia/reperfusion (IR)-provoked ventricular tachyarrhythmias. Interestingly, Kcne4 deletion caused baseline induction of cardioprotective RISK and SAFE pathways in 13-m-old female, but not male, mice. IR-invoked RISK/SAFE induction was also deficient in male but not female Kcne4-/- mice. Pharmacological inhibition of RISK/SAFE pathways in Kcne4-/- females eliminated sex-specific differences in IR-invoked tachyarrhythmia predisposition. Furthermore, castration of Kcne4-/- males eliminated sex-specific differences in both baseline and post-IR RISK/SAFE pathway induction, and tachyarrhythmia predisposition. Our results demonstrate for the first time that male sex can predispose in aged mice to dangerous ventricular tachyarrhythmias despite sex-independent electrical and ischemic substrates, because of testosterone-dependent impairment of RISK/SAFE pathway induction.
Collapse
|
19
|
Kanner SA, Jain A, Colecraft HM. Development of a High-Throughput Flow Cytometry Assay to Monitor Defective Trafficking and Rescue of Long QT2 Mutant hERG Channels. Front Physiol 2018; 9:397. [PMID: 29725305 PMCID: PMC5917007 DOI: 10.3389/fphys.2018.00397] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/04/2018] [Indexed: 11/24/2022] Open
Abstract
Long QT Syndrome (LQTS) is an acquired or inherited disorder characterized by prolonged QT interval, exertion-triggered arrhythmias, and sudden cardiac death. One of the most prevalent hereditary LQTS subtypes, LQT2, results from loss-of-function mutations in the hERG channel, which conducts IKr, the rapid component of the delayed rectifier K+ current, critical for cardiac repolarization. The majority of LQT2 mutations result in Class 2 deficits characterized by impaired maturation and trafficking of hERG channels. Here, we have developed a high-throughput flow cytometric assay to analyze the surface and total expression of wild-type (WT) and mutant hERG channels with single-cell resolution. To test our method, we focused on 16 LQT2 mutations in the hERG Per-Arnt-Sim (PAS) domain that were previously studied via a widely used biochemical approach that compares levels of 135-kDa immature and 155-kDa fully glycosylated hERG protein to infer surface expression. We confirmed that LQT2 mutants expressed in HEK293 cells displayed a decreased surface density compared to WT hERG, and were differentially rescued by low temperature. However, we also uncovered some notable differences from the findings obtained via the biochemical approach. In particular, three mutations (N33T, R56Q, and A57P) with apparent WT-like hERG glycosylation patterns displayed up to 50% decreased surface expression. Furthermore, despite WT-like levels of complex glycosylation, these mutants have impaired forward trafficking, and exhibit varying half-lives at the cell surface. The results highlight utility of the surface labeling/flow cytometry approach to quantitatively assess trafficking deficiencies associated with LQT2 mutations, to discern underlying mechanisms, and to report on interventions that rescue deficits in hERG surface expression.
Collapse
Affiliation(s)
- Scott A Kanner
- Doctoral Program in Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Ananya Jain
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Henry M Colecraft
- Doctoral Program in Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, NY, United States.,Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY, United States.,Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
20
|
Napier MD, Franceschini N, Gondalia R, Stewart JD, Méndez-Giráldez R, Sitlani CM, Seyerle AA, Highland HM, Li Y, Wilhelmsen KC, Yan S, Duan Q, Roach J, Yao J, Guo X, Taylor KD, Heckbert SR, Rotter JI, North KE, Reiner AP, Zhang ZM, Tinker LF, Liao D, Laurie CC, Gogarten SM, Lin HJ, Brody JA, Bartz TM, Psaty BM, Sotoodehnia N, Soliman EZ, Avery CL, Whitsel EA. Genome-wide association study and meta-analysis identify loci associated with ventricular and supraventricular ectopy. Sci Rep 2018; 8:5675. [PMID: 29618737 PMCID: PMC5884864 DOI: 10.1038/s41598-018-23843-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/09/2018] [Indexed: 01/03/2023] Open
Abstract
The genetic basis of supraventricular and ventricular ectopy (SVE, VE) remains largely uncharacterized, despite established genetic mechanisms of arrhythmogenesis. To identify novel genetic variants associated with SVE/VE in ancestrally diverse human populations, we conducted a genome-wide association study of electrocardiographically identified SVE and VE in five cohorts including approximately 43,000 participants of African, European and Hispanic/Latino ancestry. In thirteen ancestry-stratified subgroups, we tested multivariable-adjusted associations of SVE and VE with single nucleotide polymorphism (SNP) dosage. We combined subgroup-specific association estimates in inverse variance-weighted, fixed-effects and Bayesian meta-analyses. We also combined fixed-effects meta-analytic t-test statistics for SVE and VE in multi-trait SNP association analyses. No loci reached genome-wide significance in trans-ethnic meta-analyses. However, we found genome-wide significant SNPs intronic to an apoptosis-enhancing gene previously associated with QRS interval duration (FAF1; lead SNP rs7545860; effect allele frequency = 0.02; P = 2.0 × 10−8) in multi-trait analysis among European ancestry participants and near a locus encoding calcium-dependent glycoproteins (DSC3; lead SNP rs8086068; effect allele frequency = 0.17) in meta-analysis of SVE (P = 4.0 × 10−8) and multi-trait analysis (P = 2.9 × 10−9) among African ancestry participants. The novel findings suggest several mechanisms by which genetic variation may predispose to ectopy in humans and highlight the potential value of leveraging pleiotropy in future studies of ectopy-related phenotypes.
Collapse
Affiliation(s)
- Melanie D Napier
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rahul Gondalia
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA.,Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Raúl Méndez-Giráldez
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Colleen M Sitlani
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Amanda A Seyerle
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Heather M Highland
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA.,Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Kirk C Wilhelmsen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Song Yan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Qing Duan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffrey Roach
- Research Computing Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Genomic Outcomes, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Genomic Outcomes, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Genomic Outcomes, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit and the Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Genomic Outcomes, Departments of Pediatrics and Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Kari E North
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA.,Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Alexander P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Zhu-Ming Zhang
- Epidemiological Cardiology Research Center, Department of Epidemiology and Prevention, Wake Forest University, Winston-Salem, NC, USA
| | - Lesley F Tinker
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Duanping Liao
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Henry J Lin
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA.,Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jennifer A Brody
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine, University of Washington, Seattle, WA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA.,Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Nona Sotoodehnia
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA.,Cardiovascular Health Research Unit and the Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Elsayed Z Soliman
- Department of Epidemiology, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Christy L Avery
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA.,Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA. .,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Chai S, Wan X, Ramirez-Navarro A, Tesar PJ, Kaufman ES, Ficker E, George AL, Deschênes I. Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. J Clin Invest 2018; 128:1043-1056. [PMID: 29431731 DOI: 10.1172/jci94996] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Congenital long QT syndrome (LQTS) is an inherited channelopathy associated with life-threatening arrhythmias. LQTS type 2 (LQT2) is caused by mutations in KCNH2, which encodes the potassium channel hERG. We hypothesized that modifier genes are partly responsible for the variable phenotype severity observed in some LQT2 families. Here, we identified contributors to variable expressivity in an LQT2 family by using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and whole exome sequencing in a synergistic manner. We found that iPSC-CMs recapitulated the clinical genotype-phenotype discordance in vitro. Importantly, iPSC-CMs derived from the severely affected LQT2 patients displayed prolonged action potentials compared with cells from mildly affected first-degree relatives. The iPSC-CMs derived from all patients with hERG R752W mutation displayed lower IKr amplitude. Interestingly, iPSC-CMs from severely affected mutation-positive individuals exhibited greater L-type Ca2+ current. Whole exome sequencing identified variants of KCNK17 and the GTP-binding protein REM2, providing biologically plausible explanations for this variable expressivity. Genome editing to correct a REM2 variant reversed the enhanced L-type Ca2+ current and prolonged action potential observed in iPSC-CMs from severely affected individuals. Thus, our findings showcase the power of combining complementary physiological and genomic analyses to identify genetic modifiers and potential therapeutic targets of a monogenic disorder. Furthermore, we propose that this strategy can be deployed to unravel myriad confounding pathologies displaying variable expressivity.
Collapse
Affiliation(s)
- Sam Chai
- Department of Physiology and Biophysics.,Heart and Vascular Research Center, Department of Medicine, and
| | - Xiaoping Wan
- Heart and Vascular Research Center, Department of Medicine, and
| | | | - Paul J Tesar
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Eckhard Ficker
- Heart and Vascular Research Center, Department of Medicine, and
| | - Alfred L George
- Department of Pharmacology, Northwestern University, Chicago, Illinois, USA
| | - Isabelle Deschênes
- Department of Physiology and Biophysics.,Heart and Vascular Research Center, Department of Medicine, and
| |
Collapse
|
22
|
Hu Z, Chen M, Zhang P, Liu J, Abbott GW. Remote ischemic preconditioning differentially attenuates post-ischemic cardiac arrhythmia in streptozotocin-induced diabetic versus nondiabetic rats. Cardiovasc Diabetol 2017; 16:57. [PMID: 28446231 PMCID: PMC5406986 DOI: 10.1186/s12933-017-0537-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/19/2017] [Indexed: 02/05/2023] Open
Abstract
Background Sudden cardiac death (SCD), a leading cause of global mortality, most commonly arises from a substrate of cardiac ischemia, but requires an additional trigger. Diabetes mellitus (DM) predisposes to SCD even after adjusting for other DM-linked cardiovascular pathology such as coronary artery disease. We previously showed that remote liver ischemia preconditioning (RLIPC) is highly protective against cardiac ischemia reperfusion injury (IRI) linked ventricular arrhythmias and myocardial infarction, via induction of the cardioprotective RISK pathway, and specifically, inhibitory phosphorylation of GSK-3β (Ser 9). Methods We evaluated the impact of acute streptozotocin-induced DM on coronary artery ligation IRI-linked ventricular arrhythmogenesis and RLIPC therapy in rats. Results Post-IRI arrhythmia induction was similar in nondiabetic and DM rats, but, unexpectedly, DM rats exhibited lower incidence of SCD during reperfusion (41 vs. 100%), suggesting uncontrolled hyperglycemia does not acutely predispose to SCD. RLIPC was highly effective in both nondiabetic and DM rats at reducing incidence and duration of, and increasing latency to, all classes of ventricular tachyarrhythmias. In contrast, atrioventricular block (AVB) was highly responsive to RLIPC in nondiabetic rats (incidence reduced from 72 to 18%) but unresponsive in DM rats. RISK pathway induction was similar in nondiabetic and DM rats, thus not explaining the DM-specific resistance of AVB to therapy. Conclusions Our findings uncover important acute DM-specific differences in responsiveness to remote preconditioning for ventricular tachyarrhythmias versus AVB, which may have clinical significance given that AVB is a malignant arrhythmia twofold more common in human diabetics than nondiabetics, and correlated to plasma glucose levels >10 mmol/L.
Collapse
Affiliation(s)
- Zhaoyang Hu
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Mou Chen
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Zhang
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Dept. of Pharmacology and Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
23
|
Wang S, Li L, Tao R, Gao Y. Ion channelopathies associated genetic variants as the culprit for sudden unexplained death. Forensic Sci Int 2017; 275:128-137. [PMID: 28363160 DOI: 10.1016/j.forsciint.2017.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/23/2017] [Accepted: 03/13/2017] [Indexed: 11/29/2022]
Abstract
Forensic identification of sudden unexplained death (SUD) has always been a ticklish issue because it used to be defined as sudden death without a conclusive diagnosis after autopsy. However, benefiting from the developments in genome research, a growing body of evidence points to the importance of ion channelopathies associated genetic variants in the pathogenesis of SUD. Genetic diagnosis of the deceased is also a new trend in epidemiological studies, for it enables the undertaking for preventive approach in individuals with high risks. In this review, we briefly discuss the molecular structure of ion channels and the role of genetic variants in regulating their functions as well as the diverse mechanisms underlying the ion channelopathies at gene level.
Collapse
Affiliation(s)
- Shouyu Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Ruiyang Tao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
24
|
Kulkarni K, Lee SW, Tolkacheva EG. Pro-arrhythmic effect of heart rate variability during periodic pacing. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:149-152. [PMID: 28268301 DOI: 10.1109/embc.2016.7590662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clinically, healthy hearts have been associated with a high ventricular heart rate variability (HRV) while diseased hearts have been known to exhibit low ventricular HRV. Hence, low HRV is suggested to be a marker of cardiac ventricular arrhythmias. Over the past few years, there has been considerable amount of interest in incorporating HRV in pacing to emulate healthy heart conditions and re-stabilize the electrical activity in diseased hearts. Recently, we used single cell numerical simulations to demonstrate that HRV incorporated into periodic pacing promotes alternans formation and thus, can be pro-arrhythmic. Here, we performed high-resolution optical mapping experiments on Langendorff perfused, healthy whole mice hearts to validate our numerical findings. Our results indeed demonstrate that HRV promoted the onset of cardiac alternans, which is believed to be a precursor of fatal cardiac rhythms. Hence, our present study suggests that incorporating HRV into periodic pacing while addressing several clinical needs may not be safe. There is a pressing need to better understand paced cardiac dynamics and develop anti-arrhythmic pacing techniques that would prevent cardiac arrhythmias.
Collapse
|
25
|
Al Masri S, Kattanek M, Richardson KC, Hafez HM, Plendl J, Hünigen H. Comparative Quantitative Studies on the Microvasculature of the Heart of a Highly Selected Meat-Type and a Wild-Type Turkey Line. PLoS One 2017; 12:e0170858. [PMID: 28118415 PMCID: PMC5261739 DOI: 10.1371/journal.pone.0170858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/11/2017] [Indexed: 11/18/2022] Open
Abstract
In this study the macroscopic and microscopic structure of the heart of a fast growing, meat-type turkey line (British United turkeys BUT Big 6) and a wild-type turkey line (Canadian Wild turkey) were compared. At 8 and 16 weeks of age, 10 birds of each genotype and sex were sampled. The body mass and heart mass of the meat-type turkey both increased at a faster rate than those of the wild-type turkey. However in both turkey lines, the relative heart mass decreased slightly with age, the decrease was statistically significant only in the male turkeys. Furthermore meat-type turkeys had a significantly (p < 0.01) lower relative heart mass and relative thickness of the left ventricle compared to the wild-type turkeys of the same age. The wild-type turkeys showed no significant change in the size of cardiomyocytes (cross sectional area and diameter) from 8 weeks to 16 weeks. In contrast, the size of cardiomyocytes increased significantly (p < 0.001) with age in the meat-type turkeys. The number of capillaries in the left ventricular wall increased significantly (p < 0.001) in wild-type turkeys from 2351 per mm2 at the age of 8 weeks to 2843 per mm2 at 16 weeks. However, in the meat-type turkeys there were no significant changes, capillary numbers being 2989 per mm2 at age 8 weeks and 2915 per mm2 at age 16 weeks. Correspondingly the area occupied by capillaries in the myocardium increased in wild-type turkeys from 8.59% at the age of 8 weeks to 9.15% at 16 weeks, whereas in meat-type turkeys this area decreased from 10.4% at 8 weeks to 9.95% at 16 weeks. Our results indicate a mismatch in development between body mass and heart mass and a compromised cardiac capillary density and architecture in the meat-type turkeys in comparison to the wild-type turkeys.
Collapse
Affiliation(s)
- Salah Al Masri
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Maria Kattanek
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Kenneth C. Richardson
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
| | - Hafez Mohamed Hafez
- Institute of Poultry Diseases, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Johanna Plendl
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hana Hünigen
- Institute of Veterinary Anatomy, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
26
|
Podliesna S, Bezzina CR, Lodder EM. Complex Genetics of Cardiovascular Traits in Mice: F2-Mapping of QTLs and Their Underlying Genes. Methods Mol Biol 2017; 1488:431-454. [PMID: 27933537 DOI: 10.1007/978-1-4939-6427-7_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this chapter, we will use the example of the identification of Tnni3k as a modulator of cardiac conduction to introduce you to the use of a murine F2-generation intercross as a powerful method for the identification of novel genes relevant for cardiovascular traits. Murine F2-progeny is a genetically diverse panel of mice with differences in phenotype manifestations, e.g. cardiovascular traits such as cardiomyopathy and ECG parameters. This chapter discusses the best strategies for using F2-mice for genetic mapping. Moreover, we provide an example of the feasibility of identification of new genes modulating cardiac function utilizing the technique of mapping quantitative trait loci (QTLs) and a systems genetics integration of available genetic, gene expression, and phenotypic data.
Collapse
Affiliation(s)
- Svitlana Podliesna
- Department of Clinical and Experimental Cardiology, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Elisabeth M Lodder
- Department of Clinical and Experimental Cardiology, Academic Medical Centre (AMC), University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
An insertion/deletion polymorphism within 3'UTR of RYR2 modulates sudden unexplained death risk in Chinese populations. Forensic Sci Int 2016; 270:165-172. [PMID: 27987400 DOI: 10.1016/j.forsciint.2016.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/26/2016] [Accepted: 12/03/2016] [Indexed: 01/30/2023]
Abstract
Sudden unexplained death (SUD) constitutes a part of the overall sudden death that can not be underestimated. Over the last years, genetic testing on SUD has revealed that inherited channelopathies might play important roles in the pathophysiology of this disease. Ryanodine receptor type-2 (RYR2) is a kind of ion channel extensively distributed in the sarcoplasmic reticulum (SR) of myocardium. Studies on RYR2 have suggested that either dysfunction or abnormal expression of it could lead to arrhythmia, which may cause cardiac arrest. In this study, we conducted a case-control study to evaluate the association of a 4-base pair (4-bp) Indel polymorphism (rs10692285) in the 3'UTR of RYR2 with the risk of SUD and sudden cardiac death induced by coronary heart disease (SCD-AS) in a Chinese population. Logistic regression analysis showed that the insertion allele of rs10692285 had significantly increased the risk of SUD [OR=2.03; 95% confidence interval (CI)=1.08-3.77; P=0.0161; statistical power=0.743]. No relevance was observed between rs10692285 and SCD-AS. Further genotype-phenotype association analysis suggested that the expression level of RYR2 in human myocardium tissues with the insertion allele was higher than that with the deletion allele at both mRNA and protein levels. Dual-Luciferase activity assay system was used to detect the effect of rs10692285 on the transcription activity of RYR2. As expected, the result indicated that the transcription activity of RYR2 with the ins/ins genotype was higher than that with the del/del genotype. Finally, in-silico prediction revealed that different alleles of rs10692285 could alter the local structure of RYR2 mRNA and microRNA (miRNA) binding. In summary, our findings provided evidence that rs10692285 might contribute to SUD susceptibility through affecting the expression of RYR2, which suggest that abnormal ion channel activity is very likely to be the underlying mechanism of SUD, but not for SCD-AS. Thus, rs10692285 may become a potential marker for molecular diagnosis and genetic counseling of SUD.
Collapse
|
28
|
Pipilas DC, Johnson CN, Webster G, Schlaepfer J, Fellmann F, Sekarski N, Wren LM, Ogorodnik KV, Chazin DM, Chazin WJ, Crotti L, Bhuiyan ZA, George AL. Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes. Heart Rhythm 2016; 13:2012-9. [PMID: 27374306 PMCID: PMC5035189 DOI: 10.1016/j.hrthm.2016.06.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Calmodulin (CaM) mutations are associated with cardiac arrhythmia susceptibility including congenital long QT syndrome (LQTS). OBJECTIVE The purpose of this study was to determine the clinical, genetic, and functional features of 2 novel CaM mutations in children with life-threatening ventricular arrhythmias. METHODS The clinical and genetic features of 2 congenital arrhythmia cases associated with 2 novel CaM gene mutations were ascertained. Biochemical and functional investigations were conducted on the 2 mutations. RESULTS A novel de novo CALM2 mutation (D132H) was discovered by candidate gene screening in a male infant with prenatal bradycardia born to healthy parents. Postnatal course was complicated by profound bradycardia, prolonged corrected QT interval (651 ms), 2:1 atrioventricular block, and cardiogenic shock. He was resuscitated and was treated with a cardiac device. A second novel de novo mutation in CALM1 (D132V) was discovered by clinical exome sequencing in a 3-year-old boy who suffered a witnessed cardiac arrest secondary to ventricular fibrillation. Electrocardiographic recording after successful resuscitation revealed a prolonged corrected QT interval of 574 ms. The Ca(2+) affinity of CaM-D132H and CaM-D132V revealed extremely weak binding to the C-terminal domain, with significant structural perturbations noted for D132H. Voltage-clamp recordings of human induced pluripotent stem cell-derived cardiomyocytes transiently expressing wild-type or mutant CaM demonstrated that both mutations caused impaired Ca(2+)-dependent inactivation of voltage-gated Ca(2+) current. Neither mutant affected voltage-dependent inactivation. CONCLUSION Our findings implicate impaired Ca(2+)-dependent inactivation in human cardiomyocytes as the plausible mechanism for long QT syndrome associated with 2 novel CaM mutations. The data further expand the spectrum of genotype and phenotype associated with calmodulinopathy.
Collapse
Affiliation(s)
- Daniel C Pipilas
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Christopher N Johnson
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee
| | - Gregory Webster
- Division of Cardiology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Lisa M Wren
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kateryna V Ogorodnik
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee
| | - Daniel M Chazin
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee
| | - Walter J Chazin
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee
| | - Lia Crotti
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy; and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
29
|
Kulkarni K, Tolkacheva EG. Real-time feedback based control of cardiac restitution using optical mapping. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:5920-3. [PMID: 26737639 DOI: 10.1109/embc.2015.7319739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac restitution is the shortening of the action potential duration with an increase in the heart rate. A shorter action potential duration enables a longer diastolic interval which ensures that the heart gets adequate time to refill with blood. At higher rates however, restitution becomes steep and thus, can lead to unstable electrical activity (alternans) in the heart, leading to fatal cardiac rhythms. It has been proposed that maintaining a shallow slope of cardiac restitution could have potentially anti-arrhythmic effects. Previous studies involved the control of action potential duration (APD) or diastolic interval (DI) in isolated tissue samples based on the feedback from single microelectrode recordings. This limited the spatial resolution of the feedback system. Here, we aimed to develop a real time feedback control system that enabled the detection of APDs from various single pixels based on optical mapping recordings. Stimuli were applied after a predefined fixed DI after detection of an APD. We validated our algorithm using optical mapping movies from an ex-vivo rabbit heart. Thus, we provide an optical mapping based approach for the control of cardiac restitution and a potential means to validate its anti-arrhythmic effects.
Collapse
|
30
|
Hill AP, Perry MD, Abi-Gerges N, Couderc JP, Fermini B, Hancox JC, Knollmann BC, Mirams GR, Skinner J, Zareba W, Vandenberg JI. Computational cardiology and risk stratification for sudden cardiac death: one of the grand challenges for cardiology in the 21st century. J Physiol 2016; 594:6893-6908. [PMID: 27060987 PMCID: PMC5134408 DOI: 10.1113/jp272015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
Risk stratification in the context of sudden cardiac death has been acknowledged as one of the major challenges facing cardiology for the past four decades. In recent years, the advent of high performance computing has facilitated organ-level simulation of the heart, meaning we can now examine the causes, mechanisms and impact of cardiac dysfunction in silico. As a result, computational cardiology, largely driven by the Physiome project, now stands at the threshold of clinical utility in regards to risk stratification and treatment of patients at risk of sudden cardiac death. In this white paper, we outline a roadmap of what needs to be done to make this translational step, using the relatively well-developed case of acquired or drug-induced long QT syndrome as an exemplar case.
Collapse
Affiliation(s)
- Adam P Hill
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Matthew D Perry
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Najah Abi-Gerges
- AnaBios Corporation, 3030 Bunker Hill St., San Diego, CA, 92109, USA
| | | | - Bernard Fermini
- Global Safety Pharmacology, Pfizer Inc, MS8274-1347 Eastern Point Road, Groton, CT, 06340, USA
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Bjorn C Knollmann
- Vanderbilt University School of Medicine, 1285 Medical Research Building IV, Nashville, Tennessee, 37232, USA
| | - Gary R Mirams
- Computational Biology, Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Jon Skinner
- Cardiac Inherited Disease Group, Starship Hospital, Auckland, New Zealand
| | - Wojciech Zareba
- University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
31
|
E.Z. G, O.I. G, R.A. S, N.I. B, L.A. B. Monogenec Arrhythmic Syndromes: From Molecular and Genetic Aspects to Bedside. Acta Naturae 2016; 8:62-74. [PMID: 27437140 PMCID: PMC4947989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Indexed: 11/09/2022] Open
Abstract
The abrupt cessation of effective cardiac function that is generally due to heart rhythm disorders can cause sudden and unexpected death at any age and is referred to as a syndrome called "sudden cardiac death" (SCD). Annually, about 400,000 cases of SCD occur in the United States alone. Less than 5% of the resuscitation techniques are effective. The prevalence of SCD in a population rises with age according to the prevalence of coronary artery disease, which is the most common cause of sudden cardiac arrest. However, there is a peak in SCD incidence for the age below 5 years, which is equal to 17 cases per 100,000 of the population. This peak is due to congenital monogenic arrhythmic canalopathies. Despite their relative rarity, these cases are obviously the most tragic. The immediate causes, or mechanisms, of SCD are comprehensive. Generally, it is arrhythmic death due to ventricular tachyarrythmias - sustained ventricular tachycardia (VT) or ventricular fibrillation (VF). Bradyarrhythmias and pulseless electrical activity account for no more than 40% of all registered cardiac arrests, and they are more often the outcome of the abovementioned arrhythmias. Our current understanding of the mechanisms responsible for SCD has emerged from decades of basic science investigation into the normal electrophysiology of the heart, the molecular physiology of cardiac ion channels, the fundamental cellular and tissue events associated with cardiac arrhythmias, and the molecular genetics of monogenic disorders of the heart rhythm (for example, the long QT syndrome). This review presents an overview of the molecular and genetic basis of SCD in the long QT syndrome, Brugada syndrome, short QT syndrome, catecholaminergic polymorphic ventricular tachycardia and idiopathic ventricular fibrillation, and arrhythmogenic right ventricular dysplasia, and sudden cardiac death prevention strategies by modern techniques (including implantable cardioverter-defibrillator).
Collapse
Affiliation(s)
- Golukhova E.Z.
- Bakoulev Centre for Cardiovascular Surgery, Rublevskoye sh. 135, 121552, Moscow, Russia
| | - Gromova O.I.
- Bakoulev Centre for Cardiovascular Surgery, Rublevskoye sh. 135, 121552, Moscow, Russia
| | - Shomahov R.A.
- Bakoulev Centre for Cardiovascular Surgery, Rublevskoye sh. 135, 121552, Moscow, Russia
| | - Bulaeva N.I.
- Bakoulev Centre for Cardiovascular Surgery, Rublevskoye sh. 135, 121552, Moscow, Russia
| | - Bockeria L.A.
- Bakoulev Centre for Cardiovascular Surgery, Rublevskoye sh. 135, 121552, Moscow, Russia
| |
Collapse
|
32
|
Hu Z, Crump SM, Zhang P, Abbott GW. Kcne2 deletion attenuates acute post-ischaemia/reperfusion myocardial infarction. Cardiovasc Res 2016; 110:227-37. [PMID: 26952045 DOI: 10.1093/cvr/cvw048] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/28/2016] [Indexed: 02/05/2023] Open
Abstract
AIMS Most cardiac arrhythmia-associated genes encode ion channel subunits and regulatory proteins that are also expressed outside the heart, suggesting that diseases linked to their disruption may be multifactorial. KCNE2 is a ubiquitously expressed potassium channel β subunit associated with cardiac arrhythmia, atherosclerosis, and myocardial infarction (MI) in human populations. Here, we tested the hypothesis that Kcne2 disruption in mice would influence the acute outcome of experimentally induced MI. METHODS AND RESULTS One-year-old male Kcne2⁺/⁺ and Kcne2⁻/⁻ mice were subjected to cardiac ischaemia/reperfusion injury (IRI) by left anterior descending coronary artery ligation. After reperfusion (3 h), infarct size and markers of tissue damage were quantified. Unexpectedly, post-reperfusion, Kcne2⁻/⁻ mice exhibited 40% lower infarct size, decreased myocardial apoptosis and damage, and more than two-fold lower serum levels of damage markers, lactate dehydrogenase and creatine kinase, than Kcne2⁺/⁺ mice. Kcne2 deletion, despite increasing normalized heart weight and prolonging baseline QTc by 70%, helped preserve post-infarct cardiac function (quantified by a Millar catheter), with parameters including left ventricular maximum pressure, max dP/dt (P < 0.01), contractility index, and pressure/time index (P < 0.05) all greater in Kcne2⁻/⁻ compared with Kcne2⁺/⁺ mice. Western blotting indicated two-fold-increased glycogen synthase kinase 3β (GSK-3β) phosphorylation (inactivation) before and after IRI (P < 0.05) in Kcne2⁻/⁻ mice compared with Kcne2⁺/⁺ mice. GSK-3β inhibition by SB216763 mimicked in Kcne2⁺/⁺ mice the cardioprotective effects of Kcne2 deletion, but did not further enhance them in Kcne2⁻/⁻mice, suggesting that GSK-3β inactivation was a primary cardioprotective mechanism arising from Kcne2 deletion. CONCLUSIONS Kcne2 deletion preconditions the heart, attenuating the acute tissue damage caused by an imposed IRI. The findings contribute further evidence that genetic disruption of arrhythmia-associated ion channel genes has cardiac ramifications beyond abnormal electrical activity.
Collapse
Affiliation(s)
- Zhaoyang Hu
- Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shawn M Crump
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Ping Zhang
- Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Pharmacology and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
33
|
Cheng W, Zhu Y, Wang H. The MAPK pathway is involved in the regulation of rapid pacing-induced ionic channel remodeling in rat atrial myocytes. Mol Med Rep 2016; 13:2677-82. [PMID: 26847818 DOI: 10.3892/mmr.2016.4862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
Alterations to the expression L‑type calcium channels (LTCCs) and Kv4.3 potassium channels form the possible basis of atrial electrical remodeling during rapid pacing. The mitogen‑activated protein kinase (MAPK) pathway is affected by increases in cytoplasmic Ca2+, and therefore represents an attractive candidate for the regulation and mediation of Ca2+‑induced ion channel remodeling. The present study aimed to investigate alterations to the ion channel‑MAPK axis, and to determine its influence on ion channel remodeling during atrial fibrillation. Rat atrial myocytes were isolated, cultured, and in vitro rapid pacing was established. Intracellular Ca2+ signals were monitored using the Fluo‑3/AM Ca2+ indicator. Verapamil, PD98058 and SB203580 were added to the culture medium of various groups at specific time‑points. The mRNA expression levels of LTCC‑α1c and Kv4.3 potassium channels were detected by reverse transcription‑polymerase chain reaction. Western blotting was performed to determine the expression levels of channel and signaling proteins. The results demonstrated that fast pacing significantly increased the intracellular Ca2+ concentration in atrial myocytes, whereas treatment with verapamil markedly inhibited this increase. In addition, verapamil significantly antagonized the rapid pacing‑induced activation of extracellular signal‑regulated kinase (ERK) and p38MAPK. These results indicated that the MAPK pathway may have an important role in the opening of LTCCs, and alterations to MAPK molecule expression could affect the expression and remodeling of ion channels.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yun Zhu
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Haidong Wang
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
34
|
Ramakrishna H, O’Hare M, Mookadam F, Gutsche JT, Shah R, Augoustides JG. Sudden Cardiac Death and Disorders of the QT Interval: Anesthetic Implications and Focus on Perioperative Management. J Cardiothorac Vasc Anesth 2015; 29:1723-33. [DOI: 10.1053/j.jvca.2015.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 12/19/2022]
|
35
|
Characterizing Spatial Dynamics of Bifurcation to Alternans in Isolated Whole Rabbit Hearts Based on Alternate Pacing. BIOMED RESEARCH INTERNATIONAL 2015; 2015:170768. [PMID: 26581885 PMCID: PMC4637012 DOI: 10.1155/2015/170768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/06/2015] [Indexed: 01/08/2023]
Abstract
Sudden cardiac death instigated by ventricular fibrillation (VF) is the largest cause of natural death in the USA. Alternans, a beat-to-beat alternation in the action potential duration, has been implicated as being proarrhythmic. The onset of alternans is mediated via a bifurcation, which may occur through either a smooth or a border-collision mechanism. The objective of this study was to characterize the mechanism of bifurcation to alternans based on experiments in isolated whole rabbit hearts. High resolution optical mapping was performed and the electrical activity was recorded from the left ventricle (LV) epicardial surface of the heart. Each heart was paced using an “alternate pacing protocol,” where the basic cycle length (BCL) was alternatively perturbed by ±δ. Local onset of alternans in the heart, BCLstart, was measured in the absence of perturbations (δ = 0) and was defined as the BCL at which 10% of LV exhibited alternans. The influences of perturbation size were investigated at two BCLs: one prior to BCLstart (BCLprior = BCLstart + 20 ms) and one preceding BCLprior (BCLfar = BCLstart + 40 ms). Our results demonstrate significant spatial correlation of the region exhibiting alternans with smooth bifurcation characteristics, indicating that transition to alternans in isolated rabbit hearts occurs predominantly through smooth bifurcation.
Collapse
|
36
|
Marian AJ. The Bottleneck in Genetic Testing. Circ Res 2015; 117:586-8. [PMID: 26358106 DOI: 10.1161/circresaha.115.307344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine, University of Texas Health Sciences Center at Houston, and Texas Heart Institute, Houston, TX
| |
Collapse
|
37
|
Lee SM, Nguyen D, Hu Z, Abbott GW. Kcne2 deletion promotes atherosclerosis and diet-dependent sudden death. J Mol Cell Cardiol 2015; 87:148-51. [PMID: 26307149 DOI: 10.1016/j.yjmcc.2015.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 02/05/2023]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. An estimated half of cases involve genetic predisposition. Sequence variants in human KCNE2, which encodes a cardiac and epithelial K(+) channel β subunit, cause inherited cardiac arrhythmias. Unexpectedly, human KCNE2 polymorphisms also associate with predisposition to atherosclerosis, with unestablished causality or mechanisms. Here, we report that germline Kcne2 deletion promotes atherosclerosis in mice, overcoming the relative resistance of this species to plaque deposition. In female western diet-fed mice, Kcne2 deletion increased plaque deposition >6-fold and also caused premature ventricular complexes and sudden death. The data establish causality for the first example of ion channel-linked atherosclerosis, and demonstrate that the severity of Kcne2-linked cardiac arrhythmias is strongly diet-dependent.
Collapse
Affiliation(s)
- Soo Min Lee
- Bioelectricity Laboratory, Dept. of Pharmacology, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Dara Nguyen
- Bioelectricity Laboratory, Dept. of Pharmacology, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Zhaoyang Hu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Dept. of Pharmacology, Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
38
|
New micro waveforms firstly recorded on electrocardiogram in human. Med Hypotheses 2015; 85:475-9. [PMID: 26175194 DOI: 10.1016/j.mehy.2015.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/27/2015] [Accepted: 06/30/2015] [Indexed: 11/24/2022]
Abstract
In our study, not only the P-QRS-T waves but also the micro-wavelets before QRS complex (in P wave and PR segment) and after QRS complex (ST segment and upstroke of T wave) were first to be identified on surface electrocardiogram in human by the "new electrocardiogram" machine (model PHS-A10) according to conventional 12-lead electrocardiogram connection methods. By comparison to the conventional electrocardiogram in 100 cases of healthy individuals and several patients with arrhythmias, we have found that the wavelets before P wave theoretically reflected electrical activity of sinus node and the micro-wavelets before QRS complex may be related to atrioventricular conduction system (atrioventricular node, His bundle and bundle branch) potentials. Noninvasive atrioventricular node and His bundle potential tracing will contribute to differentiation of the origin of wide QRS and the location of the atrioventricular block. We also have found that the wavelets after QRS complex may be associated with phase 2 and 3 repolarization of ventricular action potential, which will further reveal ventricular repolarization changes.
Collapse
|
39
|
The KCNE2 K⁺ channel regulatory subunit: Ubiquitous influence, complex pathobiology. Gene 2015; 569:162-72. [PMID: 26123744 DOI: 10.1016/j.gene.2015.06.061] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 02/05/2023]
Abstract
The KCNE single-span transmembrane subunits are encoded by five-member gene families in the human and mouse genomes. Primarily recognized for co-assembling with and functionally regulating the voltage-gated potassium channels, the broad influence of KCNE subunits in mammalian physiology belies their small size. KCNE2 has been widely studied since we first discovered one of its roles in the heart and its association with inherited and acquired human Long QT syndrome. Since then, physiological analyses together with human and mouse genetics studies have uncovered a startling array of functions for KCNE2, in the heart, stomach, thyroid and choroid plexus. The other side of this coin is the variety of interconnected disease manifestations caused by KCNE2 disruption, involving both excitable cells such as cardiomyocytes, and non-excitable, polarized epithelia. Kcne2 deletion in mice has been particularly instrumental in illustrating the potential ramifications within a monogenic arrhythmia syndrome, with removal of one piece revealing the unexpected complexity of the puzzle. Here, we review current knowledge of the function and pathobiology of KCNE2.
Collapse
|
40
|
Huang J, Wang X, Hao B, Chen Y, Liu H, Quan L, Tang D, Sheng L, Li M, Huang E, Liu C, Luo B. Genetic variants in KCNE1, KCNQ1, and NOS1AP in sudden unexplained death during daily activities in Chinese Han population. J Forensic Sci 2015; 60:351-6. [PMID: 25639344 DOI: 10.1111/1556-4029.12687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 11/29/2022]
Abstract
Fifty-six sudden unexplained death (SUD) cases were collected from Chinese Han population, which occurred during daily activities and were autopsy negative in comprehensive postmortem autopsy. The coding exons of potassium channel genes KCNE1, KCNQ1, and nitric oxide synthase gene NOS1AP were sequenced. A synonymous mutation, KCNE1 F54F T>C was identified in 2 SUD cases, which was absent in the control subjects. Neither genotype nor allele frequencies of KCNE1 and KCNQ1 exhibited a significant difference between the SUD and control group. In contrast, the allele frequency (p = 2.7 × 10(-10)) and genotype frequency (p = 5.9 × 10(-7)) of rs3751284, and the genotype frequency (p = 2.9 × 10(-2)) of rs348624 in NOS1AP of SUD were significantly different from that of controls (p < 0.05). Our study suggested that rs3751284 and rs348624 might be susceptibility loci for SUD during daily activities. Larger sample sizes and further molecular studies are needed to confirm or exclude an effect of the NOS1AP SNPs on SUD risk.
Collapse
Affiliation(s)
- Jinglu Huang
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Ali J Marian
- From the Center for Cardiovascular Genetics, Institute of Molecular Medicine, Department of Medicine, University of Texas Health Sciences Center at Houston and Texas Heart Institute, Houston.
| |
Collapse
|
42
|
Affiliation(s)
- Alfred L George
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
43
|
Santos-Miranda A, Gondim AN, Menezes-Filho JER, Vasconcelos CML, Cruz JS, Roman-Campos D. Pharmacological evaluation of R(+)-pulegone on cardiac excitability: role of potassium current blockage and control of action potential waveform. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1146-1153. [PMID: 24912864 DOI: 10.1016/j.phymed.2014.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/10/2014] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
INTRODUCTION R(+)-pulegone is a ketone monoterpene and it is the main constituent of essential oils in several plants. Previous studies provided some evidence that R(+)-pulegone may act on isolated cardiac myocytes. In this study, we evaluated in extended detail, the pharmacological effects of R(+)-pulegone on cardiac tissue. METHODS Using in vivo measurements of rat cardiac electrocardiogram (ECG) and patch-clamp technique in isolated myocytes we determinate the influence of R(+)-pulegone on cardiac excitability. RESULTS R(+)-pulegone delayed action potential repolarization (APR) in a concentration-dependent manner (EC50=775.7±1.48, 325.0±1.30, 469.3±1.91 μM at 10, 50 and 90% of APR respectively). In line with prolongation of APR R(+)-pulegone, in a concentration-dependent manner, blocked distinct potassium current components (transient outward potassium current (I(to)), rapid delayed rectifier potassium current (I(Kr)), inactivating steady state potassium current (I(ss)) and inward rectifier potassium current (I(K1))) (EC50=1441±1.04; 605.0±1.22, 818.7±1.22; 1753±1.09 μM for I(to), I(Kr), I(ss) and I(K1), respectively). The inhibition occurred in a fast and reversible way, without changing the steady-state activation curve, but instead shifting to the left the steady-state inactivation curve (V1/2 from -56.92±0.35 to -67.52±0.19 mV). In vivo infusion of 100 mg/kg R(+)-pulegone prolonged the QTc (∼40%) and PR (∼62%) interval along with reducing the heart rate by ∼26%. CONCLUSION Taken together, R(+)-pulegone prolongs the APR by inhibiting several cardiomyocyte K(+) current components in a concentration-dependent manner. This occurs through a direct block by R(+)-pulegone of the channel pore, followed by a left shift on the steady state inactivation curve. Finally, R(+)-pulegone induced changes in some aspects of the ECG profile, which are in agreement with its effects on potassium channels of isolated cardiomyocytes.
Collapse
Affiliation(s)
- Artur Santos-Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Antonio Nei Gondim
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Laboratório Laboratório de Biofísica e Farmacologia do Coração, Departamento de Educação - Campus XII, Universidade do Estado da Bahia, Guanambi, Bahia, Brazil
| | | | - Carla Marina Lins Vasconcelos
- Laboratório de Biofísica do Coração, Departamento de Fisiologia, Universidade Federal de Sergipe, Aracaju, Sergipe, Brazil
| | - Jader Santos Cruz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Danilo Roman-Campos
- Departamento de Biofísica, Universidade Federal de São Paulo/Escola Paulista de Medicina, São Paulo, Brazil.
| |
Collapse
|
44
|
Affiliation(s)
- Ali J Marian
- From the Institute of Molecular Medicine, Center for Cardiovascular Genetic Research, University of Texas Health Science Center, Houston.
| |
Collapse
|
45
|
Abstract
Activated/uninhibited calcineurin is both necessary and sufficient to induce cardiac hypertrophy, a condition that often leads to dilated cardiomyopathy, heart failure, and sudden cardiac death. We expressed constitutively active calcineurin in the adult heart of Drosophila melanogaster and identified enlarged cardiac chamber dimensions and reduced cardiac contractility. In addition, expressing constitutively active calcineurin in the fly heart using the Gal4/UAS system induced an increase in heart wall thickness. We performed a targeted genetic screen for modifiers of calcineurin-induced cardiac enlargement based on previous calcineurin studies in the fly and identified galactokinase as a novel modifier of calcineurin-induced cardiomyopathy. Genomic deficiencies spanning the galactokinase locus, transposable elements that disrupt galactokinase, and cardiac-specific RNAi knockdown of galactokinase suppressed constitutively active calcineurin-induced cardiomyopathy. In addition, in flies expressing constitutively active calcineurin using the Gal4/UAS system, a transposable element in galactokinase suppressed the increase in heart wall thickness. Finally, genetic disruption of galactokinase suppressed calcineurin-induced wing vein abnormalities. Collectively, we generated a model for discovering novel modifiers of calcineurin-induced cardiac enlargement in the fly and identified galactokinase as a previously unknown regulator of calcineurin-induced cardiomyopathy in adult Drosophila.
Collapse
|
46
|
Vasiliadis I, Kolovou G, Mavrogeni S, Nair DR, Mikhailidis DP. Sudden cardiac death and diabetes mellitus. J Diabetes Complications 2014; 28:573-9. [PMID: 24666923 DOI: 10.1016/j.jdiacomp.2014.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 01/11/2023]
Abstract
Sudden cardiac death (SCD) affects a significant percentage of diabetic patients. SCD in these patients can be due to several factors, such as diastolic dysfunction, heart failure, altered platelet function, inflammation, sympathetic nervous stimulation and other factors. In the present review, we discuss the association between diabetes mellitus and SCD.
Collapse
MESH Headings
- Animals
- Death, Sudden, Cardiac/epidemiology
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/prevention & control
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/therapy
- Diabetic Angiopathies/complications
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/prevention & control
- Diabetic Angiopathies/therapy
- Diabetic Cardiomyopathies/complications
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/prevention & control
- Diabetic Cardiomyopathies/therapy
- Disease Progression
- Evidence-Based Medicine
- Humans
Collapse
Affiliation(s)
- I Vasiliadis
- Department of Clinical Biochemistry (Vascular Prevention Clinic), Royal Free Campus, University College London Medical School, University College London (UCL), London, United Kingdom; Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - G Kolovou
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - S Mavrogeni
- Cardiology Department, Onassis Cardiac Surgery Center, Athens, Greece
| | - D R Nair
- Department of Clinical Biochemistry (Vascular Prevention Clinic), Royal Free Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - D P Mikhailidis
- Department of Clinical Biochemistry (Vascular Prevention Clinic), Royal Free Campus, University College London Medical School, University College London (UCL), London, United Kingdom.
| |
Collapse
|
47
|
Makita N, Yagihara N, Crotti L, Johnson CN, Beckmann BM, Roh MS, Shigemizu D, Lichtner P, Ishikawa T, Aiba T, Homfray T, Behr ER, Klug D, Denjoy I, Mastantuono E, Theisen D, Tsunoda T, Satake W, Toda T, Nakagawa H, Tsuji Y, Tsuchiya T, Yamamoto H, Miyamoto Y, Endo N, Kimura A, Ozaki K, Motomura H, Suda K, Tanaka T, Schwartz PJ, Meitinger T, Kääb S, Guicheney P, Shimizu W, Bhuiyan ZA, Watanabe H, Chazin WJ, George AL. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. ACTA ACUST UNITED AC 2014; 7:466-74. [PMID: 24917665 DOI: 10.1161/circgenetics.113.000459] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Genetic predisposition to life-threatening cardiac arrhythmias such as congenital long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) represent treatable causes of sudden cardiac death in young adults and children. Recently, mutations in calmodulin (CALM1, CALM2) have been associated with severe forms of LQTS and CPVT, with life-threatening arrhythmias occurring very early in life. Additional mutation-positive cases are needed to discern genotype-phenotype correlations associated with calmodulin mutations. METHODS AND RESULTS We used conventional and next-generation sequencing approaches, including exome analysis, in genotype-negative LQTS probands. We identified 5 novel de novo missense mutations in CALM2 in 3 subjects with LQTS (p.N98S, p.N98I, p.D134H) and 2 subjects with clinical features of both LQTS and CPVT (p.D132E, p.Q136P). Age of onset of major symptoms (syncope or cardiac arrest) ranged from 1 to 9 years. Three of 5 probands had cardiac arrest and 1 of these subjects did not survive. The clinical severity among subjects in this series was generally less than that originally reported for CALM1 and CALM2 associated with recurrent cardiac arrest during infancy. Four of 5 probands responded to β-blocker therapy, whereas 1 subject with mutation p.Q136P died suddenly during exertion despite this treatment. Mutations affect conserved residues located within Ca(2+)-binding loops III (p.N98S, p.N98I) or IV (p.D132E, p.D134H, p.Q136P) and caused reduced Ca(2+)-binding affinity. CONCLUSIONS CALM2 mutations can be associated with LQTS and with overlapping features of LQTS and CPVT.
Collapse
|
48
|
Beckermann TM, McLeod K, Murday V, Potet F, George AL. Novel SCN5A mutation in amiodarone-responsive multifocal ventricular ectopy-associated cardiomyopathy. Heart Rhythm 2014; 11:1446-53. [PMID: 24815523 DOI: 10.1016/j.hrthm.2014.04.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mutations in SCN5A, which encodes the cardiac sodium channel NaV1.5, typically cause ventricular arrhythmia or conduction slowing. Recently, SCN5A mutations have been associated with heart failure combined with variable atrial and ventricular arrhythmia. OBJECTIVE The purpose of this study was to determine the clinical, genetic, and functional features of an amiodarone-responsive multifocal ventricular ectopy-related cardiomyopathy associated with a novel mutation in a NaV1.5 voltage sensor domain. METHODS A novel, de novo SCN5A mutation (NaV1.5-R225P) was identified in a boy with prenatal arrhythmia and impaired cardiac contractility followed by postnatal multifocal ventricular ectopy suppressible by amiodarone. We investigated the functional consequences of NaV1.5-R225P expressed heterologously in tsA201 cells. RESULTS Mutant channels exhibited significant abnormalities in both activation and inactivation leading to large, hyperpolarized window and ramp currents that predict aberrant sodium influx at potentials near the cardiomyocyte resting membrane potential. Mutant channels also exhibited significantly increased persistent (late) sodium current. This profile of channel dysfunction shares features with other SCN5A voltage sensor mutations associated with cardiomyopathy and overlapped that of congenital long QT syndrome. Amiodarone stabilized fast inactivation, suppressed persistent sodium current, and caused frequency-dependent inhibition of channel availability. CONCLUSION We determined the functional consequences and pharmacologic responses of a novel SCN5A mutation associated with an arrhythmia-associated cardiomyopathy. Comparisons with other cardiomyopathy-associated NaV1.5 voltage sensor mutations revealed a pattern of abnormal voltage dependence of activation as a shared biophysical mechanism of the syndrome.
Collapse
Affiliation(s)
| | - Karen McLeod
- Royal Hospital for Sick Children, Yorkhill, Glasgow, Scotland, United Kingdom
| | - Victoria Murday
- Royal Hospital for Sick Children, Yorkhill, Glasgow, Scotland, United Kingdom
| | - Franck Potet
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Alfred L George
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee; Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
49
|
Wang T, Hogan-Cann A, Kang Y, Cui Z, Guo J, Yang T, Lamothe SM, Li W, Ma A, Fisher JT, Zhang S. Muscarinic receptor activation increases hERG channel expression through phosphorylation of ubiquitin ligase Nedd4-2. Mol Pharmacol 2014; 85:877-86. [PMID: 24688054 DOI: 10.1124/mol.113.091553] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human ether-à-go-go-related gene (hERG) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel, which is important for cardiac repolarization. Reduction of hERG current due to genetic mutations or drug interferences causes long QT syndrome, leading to cardiac arrhythmias and sudden death. To date, there is no effective therapeutic method to restore or enhance hERG channel function. Using cell biology and electrophysiological methods, we found that the muscarinic receptor agonist carbachol increased the expression and function of hERG, but not ether-à-go-go or Kv1.5 channels stably expressed in human embryonic kidney cells. The carbachol-mediated increase in hERG expression was abolished by the selective M3 antagonist 4-DAMP (1,1-dimethyl-4-diphenylacetoxypiperidinium iodide) but not by the M2 antagonist AF-DX 116 (11[[2-[(diethylamino)methyl]-1-piperidinyl]-acetyl]-5,11-dihydro-6H-pyrido[2,3-b] [1,4]benzodiazepine-6-one). Treatment of cells with carbachol reduced the hERG-ubiquitin interaction and slowed the rate of hERG degradation. We previously showed that the E3 ubiquitin ligase Nedd4-2 mediates degradation of hERG channels. Here, we found that disrupting the Nedd4-2 binding domain in hERG completely eliminated the effect of carbachol on hERG channels. Carbachol treatment enhanced the phosphorylation level, but not the total level, of Nedd4-2. Blockade of the protein kinase C (PKC) pathway abolished the carbachol-induced enhancement of hERG channels. Our data suggest that muscarinic activation increases hERG channel expression by phosphorylating Nedd4-2 via the PKC pathway.
Collapse
Affiliation(s)
- Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China (T.W., A.M.); and Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (T.W., A.H.-C., Y.K., Z.C., J.G., T.Y., S.M.L., W.L., J.T.F., S.Z.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hoshi M, Du XX, Shinlapawittayatorn K, Liu H, Chai S, Wan X, Ficker E, Deschênes I. Brugada syndrome disease phenotype explained in apparently benign sodium channel mutations. ACTA ACUST UNITED AC 2014; 7:123-31. [PMID: 24573164 DOI: 10.1161/circgenetics.113.000292] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Brugada syndrome (BrS) is an arrhythmogenic disorder that has been linked to mutations in SCN5A, the gene encoding for the pore-forming α-subunit of the cardiac sodium channel. Typically, BrS mutations in SCN5A result in a reduction of sodium current with some mutations even exhibiting a dominant-negative effect on wild-type (WT) channels, thus leading to an even more prominent decrease in current amplitudes. However, there is also a category of apparently benign (atypical) BrS SCN5A mutations that in vitro demonstrates only minor biophysical defects. It is therefore not clear how these mutations produce a BrS phenotype. We hypothesized that similar to dominant-negative mutations, atypical mutations could lead to a reduction in sodium currents when coexpressed with WT to mimic the heterozygous patient genotype. METHODS AND RESULTS WT and atypical BrS mutations were coexpressed in Human Embryonic Kidney-293 cells, showing a reduction in sodium current densities similar to typical BrS mutations. Importantly, this reduction in sodium current was also seen when the atypical mutations were expressed in rat or human cardiomyocytes. This decrease in current density was the result of reduced surface expression of both mutant and WT channels. CONCLUSIONS Taken together, we have shown how apparently benign SCN5A BrS mutations can lead to the ECG abnormalities seen in patients with BrS through an induced defect that is only present when the mutations are coexpressed with WT channels. Our work has implications for risk management and stratification for some SCN5A-implicated BrS patients.
Collapse
Affiliation(s)
- Malcolm Hoshi
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus and Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH; and Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | | | | | | |
Collapse
|