1
|
Wang N, Shi B, Ding L, Zhang X, Ma X, Guo S, Qiao X, Wang L, Ma D, Cao J. FMRP protects breast cancer cells from ferroptosis by promoting SLC7A11 alternative splicing through interacting with hnRNPM. Redox Biol 2024; 77:103382. [PMID: 39388855 PMCID: PMC11497378 DOI: 10.1016/j.redox.2024.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Ferroptosis is a unique modality of regulated cell death that is driven by iron-dependent phospholipid peroxidation. N6-methyladenosine (m6A) RNA modification participates in varieties of cellular processes. However, it remains elusive whether m6A reader Fragile X Mental Retardation Protein (FMRP) are involved in the modulation of ferroptosis in breast cancer (BC). In this study, we found that FMRP expression was elevated and associated with poor prognosis and pathological stage in BC patients. Overexpression of FMRP induced ferroptosis resistance and exerted oncogenic roles by positively regulating a critical ferroptosis defense gene SLC7A11. Mechanistically, upregulated FMRP catalyzes m6A modification of SLC7A11 mRNA and further influences the SLC7A11 translation through METTL3-dependent manner. Further studies revealed that FMRP interacts with splicing factor hnRNPM to recognize the splice site and then modulated the exon skip splicing event of SLC7A11 transcript. Interestingly, SLC7A11-S splicing variant can effectively promote FMRP overexpression-induced ferroptosis resistance in BC cells. Moreover, our clinical data suggested that FMRP/hnRNPM/SLC7A11 expression were significantly increased in the tumor tissues, and this signal axis was important evaluation factors closely related to the worse survival and prognosis of BC patients. Overall, our results uncovered a novel regulatory mechanism by which high FMRP expression protects BC cells from undergoing ferroptosis. Targeting the FMRP-SLC7A11 axis has a dual effect of inhibiting ferroptosis resistance and tumor growth, which could be a promising therapeutic target for treating BC.
Collapse
Affiliation(s)
- Nan Wang
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China; Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Shi
- Department of Emergency, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lu Ding
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xu Zhang
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaolan Ma
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China; Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Songlin Guo
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xia Qiao
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Libin Wang
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, China.
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Jia Cao
- Department of Surgery Laboratory, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
2
|
Carnes S, Fonseca LD, Lee D, Parekh A, Robertson A, Kumar G. Examining Impact of Insurance Type on Genetic Testing in Pediatric Neurology. Pediatr Neurol 2024; 161:223-226. [PMID: 39447440 DOI: 10.1016/j.pediatrneurol.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Studies that examine the impact of insurance type on the ease of obtaining genetic testing are scarce. Therefore, we aim to analyze how different types of insurance influence the time taken to obtain genetic test results among pediatric neurology patients. METHODS This was a retrospective cohort study from Dayton Children's Hospital. Patients who had at least one neurological genetic result found in the electronic medical record from January 1, 2014, to March 1, 2023, were included in the study. Variables collected include demographics, health insurance data, and genetic testing results. RESULTS A total of 141 patients were included. Most patients were male (51.8%), white (78.0%), and not Hispanic/Latino (96.5%). The mean age at the time of genetic testing was 7.9 years. Most patients had Medicaid as their primary insurance (60.3%) when compared with private insurance (39.7%). Two hundred fifteen genetic reports were examined (137 Medicaid charts and 78 private insurance charts). There was no statistically significant difference from mean time lapse between test order date and results date for Medicaid patients (27.3 days) versus private insurance (31.5 days, P = 0.40). Molecular genetics testing and epilepsy gene panel order were the most common tests ordered for both Medicaid (86.1%, 37.2%) and private insurance (88.5%, 39.7%, respectively). CONCLUSIONS The mean time between test order date and results date was comparable between private- and Medicaid-insured patients. Our results suggest that there is no significant difference for time to result between pediatric neurology patients who carry public versus private insurance for genetic testing.
Collapse
Affiliation(s)
- Sydney Carnes
- Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Laura D Fonseca
- Department of Neurology, Dayton Children's Hospital, Dayton, Ohio
| | - Deborah Lee
- Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Ankur Parekh
- Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Anna Robertson
- Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Gogi Kumar
- Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton, Ohio; Department of Neurology, Dayton Children's Hospital, Dayton, Ohio.
| |
Collapse
|
3
|
Walters JM, Noblet HA, Chung HJ. An emerging role of STriatal-Enriched protein tyrosine Phosphatase in hyperexcitability-associated brain disorders. Neurobiol Dis 2024; 200:106641. [PMID: 39159894 DOI: 10.1016/j.nbd.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase that is associated with numerous neurological and neuropsychiatric disorders. STEP dephosphorylates and inactivates various kinases and phosphatases critical for neuronal function and health including Fyn, Pyk2, ERK1/2, p38, and PTPα. Importantly, STEP dephosphorylates NMDA and AMPA receptors, two major glutamate receptors that mediate fast excitatory synaptic transmission. This STEP-mediated dephosphorylation leads to their internalization and inhibits both Hebbian synaptic potentiation and homeostatic synaptic scaling. Hence, STEP has been widely accepted to weaken excitatory synaptic strength. However, emerging evidence implicates a novel role of STEP in neuronal hyperexcitability and seizure disorders. Genetic deletion and pharmacological blockade of STEP reduces seizure susceptibility in acute seizure mouse models and audiogenic seizures in a mouse model of Fragile X syndrome. Pharmacologic inhibition of STEP also decreases hippocampal activity and neuronal intrinsic excitability. Here, we will highlight the divergent roles of STEP in excitatory synaptic transmission and neuronal intrinsic excitability, present the potential underlying mechanisms, and discuss their impact on STEP-associated neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennifer M Walters
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hayden A Noblet
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
5
|
Mbachu CNP, Hagerman R, Eseigbe E, Odita A, Mbachu I, Ilikanu S, Akowundu K, Ndukwu C, Echezona M, Okereke O, Echendu S, Udigwe I. Knowledge and perceptions about fragile X syndrome and fragile X-premutation-associated conditions among medical doctors in Nigeria. Clin Genet 2024. [PMID: 39295073 DOI: 10.1111/cge.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
Fragile X syndrome (FXS) is a significant cause of intellectual disability and autism, while Fragile X Premutation -Associated Conditions (FXPAC) are a significant cause of morbidity and mortality globally. This study assessed the level of knowledge and perceptions about FXS and FXPAC among doctors in Nigeria. It was a web-based, cross-sectional study conducted among a cohort of doctors in Nigeria. Socio-demographic profile, knowledge of FXS, perceptions about FXS, knowledge of FXPAC, experience of doctors, and suggested ways of improving knowledge and management of FXS were obtained. Data were analyzed using STATA 16.0. Chi-square and Fisher's exact tests of association were used to determine the association between variables, with the significance level set at p < 0.05. A total of 274 doctors participated in the study. A significant proportion of respondents had limited knowledge about the clinical features of FXS. Nine of ten (90.0%) participants with good knowledge of FXS had good perceptions of FXS management. This was statistically significant (p < 0.001). There was a high nonresponse rate to what FXPAC is (164/274, 59.9%) among the respondents because of insufficient knowledge. Suboptimal knowledge of FXS which influenced perception was noted among doctors. More strategies should be considered to improve doctors' knowledge and management of FXS and FXPAC in Nigeria.
Collapse
Affiliation(s)
- Chioma N P Mbachu
- Department of Paediatrics, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi, Anambra, Nigeria
- University of California Davis MIND Institute, Sacramento, California, USA
| | - Randi Hagerman
- University of California Davis MIND Institute, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, California, USA
| | - Edwin Eseigbe
- Department of Paediatrics, Benue State University and Teaching Hospital, Makurdi, Nigeria
| | - Amalachukwu Odita
- Department of Paediatrics, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi, Anambra, Nigeria
| | - Ikechukwu Mbachu
- Department of Obstetrics, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi, Nigeria
| | - Samuel Ilikanu
- Department of Obstetrics and Gynaecology, Federal Medical Centre, Asaba, Nigeria
| | - Kasarachi Akowundu
- Department of Paediatrics, Lagos University Teaching Hospital, Idi Araba, Nigeria
| | - Chizalu Ndukwu
- Department of Paediatrics, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi, Anambra, Nigeria
| | - Malachy Echezona
- Department of Medicine, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi, Nigeria
| | | | - Sylvia Echendu
- Department of Paediatrics, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi, Anambra, Nigeria
| | - Ifeoma Udigwe
- Department of Community Medicine, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi campus, Nnewi, Nigeria
| |
Collapse
|
6
|
Vannelli A, Mariano V, Bagni C, Kanellopoulos AK. Activation of the 5-HT1A Receptor by Eltoprazine Restores Mitochondrial and Motor Deficits in a Drosophila Model of Fragile X Syndrome. Int J Mol Sci 2024; 25:8787. [PMID: 39201473 PMCID: PMC11354613 DOI: 10.3390/ijms25168787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Neurons rely on mitochondrial energy metabolism for essential functions like neurogenesis, neurotransmission, and synaptic plasticity. Mitochondrial dysfunctions are associated with neurodevelopmental disorders including Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, which also presents with motor skill deficits. However, the precise role of mitochondria in the pathophysiology of FXS remains largely unknown. Notably, previous studies have linked the serotonergic system and mitochondrial activity to FXS. Our study investigates the potential therapeutic role of serotonin receptor 1A (5-HT1A) in FXS. Using the Drosophila model of FXS, we demonstrated that treatment with eltoprazine, a 5-HT1A agonist, can ameliorate synaptic transmission, correct mitochondrial deficits, and ultimately improve motor behavior. While these findings suggest that the 5-HT1A-mitochondrial axis may be a promising therapeutic target, further investigation is needed in the context of FXS.
Collapse
Affiliation(s)
- Anna Vannelli
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | | |
Collapse
|
7
|
LaFlamme CW, Rastin C, Sengupta S, Pennington HE, Russ-Hall SJ, Schneider AL, Bonkowski ES, Almanza Fuerte EP, Allan TJ, Zalusky MPG, Goffena J, Gibson SB, Nyaga DM, Lieffering N, Hebbar M, Walker EV, Darnell D, Olsen SR, Kolekar P, Djekidel MN, Rosikiewicz W, McConkey H, Kerkhof J, Levy MA, Relator R, Lev D, Lerman-Sagie T, Park KL, Alders M, Cappuccio G, Chatron N, Demain L, Genevieve D, Lesca G, Roscioli T, Sanlaville D, Tedder ML, Gupta S, Jones EA, Weisz-Hubshman M, Ketkar S, Dai H, Worley KC, Rosenfeld JA, Chao HT, Neale G, Carvill GL, Wang Z, Berkovic SF, Sadleir LG, Miller DE, Scheffer IE, Sadikovic B, Mefford HC. Diagnostic utility of DNA methylation analysis in genetically unsolved pediatric epilepsies and CHD2 episignature refinement. Nat Commun 2024; 15:6524. [PMID: 39107278 PMCID: PMC11303402 DOI: 10.1038/s41467-024-50159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Sequence-based genetic testing identifies causative variants in ~ 50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. We interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 582 individuals with genetically unsolved DEEs. We identify rare differentially methylated regions (DMRs) and explanatory episignatures to uncover causative and candidate genetic etiologies in 12 individuals. Using long-read sequencing, we identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and four copy number variants. We also identify pathogenic variants associated with episignatures. Finally, we refine the CHD2 episignature using an 850 K methylation array and bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate variants as 2% (12/582) for unsolved DEE cases.
Collapse
Affiliation(s)
- Christy W LaFlamme
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cassandra Rastin
- Department of Pathology & Laboratory Medicine, Western University, London, ON, N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Soham Sengupta
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Helen E Pennington
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Mathematics & Statistics, Rhodes College, Memphis, TN, 38112, USA
| | - Sophie J Russ-Hall
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Amy L Schneider
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Emily S Bonkowski
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Edith P Almanza Fuerte
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Talia J Allan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Miranda Perez-Galey Zalusky
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Joy Goffena
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Sophia B Gibson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Denis M Nyaga
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Nico Lieffering
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Emily V Walker
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Scott R Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, 58100, Israel
| | - Tally Lerman-Sagie
- Fetal Neurology Clinic, Pediatric Neurology Unit, Wolfson Medical Center, Holon, 58100, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kristen L Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Nicolas Chatron
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | - Leigh Demain
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - David Genevieve
- Montpellier University, Inserm Unit 1183, Reference Center for Rare Diseases Developmental Anomaly and Malformative Syndrome, Clinical Genetic Department, CHU Montpellier, Montpellier, France
| | - Gaetan Lesca
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Damien Sanlaville
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | | | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Elizabeth A Jones
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Genetic Department, Houston, TX, 77030, USA
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, 77030, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia
- Florey Institute and Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Western University, London, ON, N5A 3K7, Canada.
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada.
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
8
|
Bai SY, Zeng DY, Ouyang M, Zeng Y, Tan W, Xu L. Synaptic cell adhesion molecules contribute to the pathogenesis and progression of fragile X syndrome. Front Cell Neurosci 2024; 18:1393536. [PMID: 39022311 PMCID: PMC11252757 DOI: 10.3389/fncel.2024.1393536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a monogenic cause of autism spectrum disorders. Deficiencies in the fragile X messenger ribonucleoprotein, encoded by the FMR1 gene, lead to various anatomical and pathophysiological abnormalities and behavioral deficits, such as spine dysmorphogenesis and learning and memory impairments. Synaptic cell adhesion molecules (CAMs) play crucial roles in synapse formation and neural signal transmission by promoting the formation of new synaptic contacts, accurately organizing presynaptic and postsynaptic protein complexes, and ensuring the accuracy of signal transmission. Recent studies have implicated synaptic CAMs such as the immunoglobulin superfamily, N-cadherin, leucine-rich repeat proteins, and neuroligin-1 in the pathogenesis of FXS and found that they contribute to defects in dendritic spines and synaptic plasticity in FXS animal models. This review systematically summarizes the biological associations between nine representative synaptic CAMs and FMRP, as well as the functional consequences of the interaction, to provide new insights into the mechanisms of abnormal synaptic development in FXS.
Collapse
Affiliation(s)
- Shu-Yuan Bai
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - De-Yang Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Ouyang
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Lang Xu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Bhandari K, Kanodia H, Donato F, Caroni P. Selective vulnerability of the ventral hippocampus-prelimbic cortex axis parvalbumin interneuron network underlies learning deficits of fragile X mice. Cell Rep 2024; 43:114124. [PMID: 38630591 DOI: 10.1016/j.celrep.2024.114124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
High-penetrance mutations affecting mental health can involve genes ubiquitously expressed in the brain. Whether the specific patterns of dysfunctions result from ubiquitous circuit deficits or might reflect selective vulnerabilities of targetable subnetworks has remained unclear. Here, we determine how loss of ubiquitously expressed fragile X mental retardation protein (FMRP), the cause of fragile X syndrome, affects brain networks in Fmr1y/- mice. We find that in wild-type mice, area-specific knockout of FMRP in the adult mimics behavioral consequences of area-specific silencing. By contrast, the functional axis linking the ventral hippocampus (vH) to the prelimbic cortex (PreL) is selectively affected in constitutive Fmr1y/- mice. A chronic alteration in late-born parvalbumin interneuron networks across the vH-PreL axis rescued by VIP signaling specifically accounts for deficits in vH-PreL theta-band network coherence, ensemble assembly, and learning functions of Fmr1y/- mice. Therefore, vH-PreL axis function exhibits a selective vulnerability to loss of FMRP in the vH or PreL, leading to learning and memory dysfunctions in fragile X mice.
Collapse
Affiliation(s)
- Komal Bhandari
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Harsh Kanodia
- Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Flavio Donato
- Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Pico Caroni
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
10
|
Mbachu CNP, Mbachu II, Hagerman R. A Comprehensive Review of Fragile X Syndrome and Fragile X Premutation Associated Conditions in Africa. Genes (Basel) 2024; 15:683. [PMID: 38927619 PMCID: PMC11203117 DOI: 10.3390/genes15060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Fragile X syndrome (FXS) is a genetic disorder caused by a mutation in the fragile X messenger ribonucleoprotein 1 (FMR1) gene and known to be a leading cause of inherited intellectual disability globally. It results in a range of intellectual, developmental, and behavioral problems. Fragile X premutation-associated conditions (FXPAC), caused by a smaller CGG expansion (55 to 200 CGG repeats) in the FMR1 gene, are linked to other conditions that increase morbidity and mortality for affected persons. Limited research has been conducted on the burden, characteristics, diagnosis, and management of these conditions in Africa. This comprehensive review provides an overview of the current literature on FXS and FXPAC in Africa. The issues addressed include epidemiology, clinical features, discrimination against affected persons, limited awareness and research, and poor access to resources, including genetic services and treatment programs. This paper provides an in-depth analysis of the existing worldwide data for the diagnosis and treatment of fragile X disorders. This review will improve the understanding of FXS and FXPAC in Africa by incorporating existing knowledge, identifying research gaps, and potential topics for future research to enhance the well-being of individuals and families affected by FXS and FXPAC.
Collapse
Affiliation(s)
- Chioma N. P. Mbachu
- Department of Paediatrics, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi 435101, Nigeria
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA
| | - Ikechukwu Innocent Mbachu
- Department of Obstetrics and Gynaecology, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus, Nnewi 435101, Nigeria;
| | - Randi Hagerman
- MIND Institute, University of California Davis, Sacramento, CA 95817, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
11
|
Takarae Y, Zanesco A, Erickson CA, Pedapati EV. EEG Microstates as Markers for Cognitive Impairments in Fragile X Syndrome. Brain Topogr 2024; 37:432-446. [PMID: 37751055 DOI: 10.1007/s10548-023-01009-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Fragile X syndrome (FXS) is one of the most common inherited causes of intellectual disabilities. While there is currently no cure for FXS, EEG is considered an important method to investigate the pathophysiology and evaluate behavioral and cognitive treatments. We conducted EEG microstate analysis to investigate resting brain dynamics in FXS participants. Resting-state recordings from 70 FXS participants and 71 chronological age-matched typically developing control (TDC) participants were used to derive microstates via modified k-means clustering. The occurrence, mean global field power (GFP), and global explained variance (GEV) of microstate C were significantly higher in the FXS group compared to the TDC group. The mean GFP was significantly negatively correlated with non-verbal IQ (NVIQ) in the FXS group, where lower NVIQ scores were associated with greater GFP. In addition, the occurrence, mean duration, mean GFP, and GEV of microstate D were significantly greater in the FXS group than the TDC group. The mean GFP and occurrence of microstate D were also correlated with individual alpha frequencies in the FXS group, where lower IAF frequencies accompanied greater microstate GFP and occurrence. Alterations in microstates C and D may be related to the two well-established cognitive characteristics of FXS, intellectual disabilities and attention impairments, suggesting that microstate parameters could serve as markers to study cognitive impairments and evaluate treatment outcomes in this population. Slowing of the alpha peak frequency and its correlation to microstate D parameters may suggest changes in thalamocortical dynamics in FXS, which could be specifically related to attention control. (250 words).
Collapse
Affiliation(s)
- Yukari Takarae
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA.
- M.I.N.D. Institute, University of California, Davis, Sacramento, CA, USA.
| | - Anthony Zanesco
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
12
|
Ramírez-Cheyne J, López D, Payán-Gómez C, Arcos-Burgos M, Saldarriaga W. Fragile X syndrome in the largest world clustering. I. Genetic epidemiology and founder effect outline. Am J Med Genet A 2024; 194:e63523. [PMID: 38164622 DOI: 10.1002/ajmg.a.63523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/19/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
The FMR1 5' regulation gene region harbors a CGG trinucleotide repeat expansion (CGG-TRE) that causes Fragile X syndrome (FXS) when it expands to more than 200 repetitions. Ricaurte is a small village in southwestern Colombia, with an FXS prevalence of 1 in 38 men and 1 in 100 women (~100 times higher than the worldwide reported prevalence), defining Ricaurte as the largest FXS cluster in the world. In the present study, using next-generation sequencing of whole exome capture, we genotype 55 individuals from Ricaurte (49 with either full mutation or with premutation), four individuals from neighboring villages (with either the full mutation or with the premutation), and one unaffected woman, native of Ricaurte, who did not belong to any of the affected families. With advanced clustering and haplotype reconstruction, we modeled a common haplotype of 33 SNPs spanning 83,567,899 bp and harboring the FMR1 gene. This reconstructed haplotype was found in all the men from Ricaurte who carried the expansion, demonstrating that the genetic conglomerate of FXS in this population is due to a founder effect. The definition of this founder effect and its population outlining will allow a better prediction, follow-up, precise and personalized characterization of epidemiological parameters, better knowledge of the disease's natural history, and confident improvement of the clinical attention, life quality, and health interventions for this community.
Collapse
Affiliation(s)
| | - Diana López
- Department of Biological Science, Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Palmira, Colombia
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia. Sede de La Paz. Cesar, Colombia
| | - Mauricio Arcos-Burgos
- Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
13
|
Abbasi DA, Berry-Kravis E, Zhao X, Cologna SM. Proteomics insights into fragile X syndrome: Unraveling molecular mechanisms and therapeutic avenues. Neurobiol Dis 2024; 194:106486. [PMID: 38548140 DOI: 10.1016/j.nbd.2024.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Fragile X Syndrome (FXS) is a neurodevelopment disorder characterized by cognitive impairment, behavioral challenges, and synaptic abnormalities, with a genetic basis linked to a mutation in the FMR1 (Fragile X Messenger Ribonucleoprotein 1) gene that results in a deficiency or absence of its protein product, Fragile X Messenger Ribonucleoprotein (FMRP). In recent years, mass spectrometry (MS) - based proteomics has emerged as a powerful tool to uncover the complex molecular landscape underlying FXS. This review provides a comprehensive overview of the proteomics studies focused on FXS, summarizing key findings with an emphasis on dysregulated proteins associated with FXS. These proteins span a wide range of cellular functions including, but not limited to, synaptic plasticity, RNA translation, and mitochondrial function. The work conducted in these proteomic studies provides a more holistic understanding to the molecular pathways involved in FXS and considerably enhances our knowledge into the synaptic dysfunction seen in FXS.
Collapse
Affiliation(s)
- Diana A Abbasi
- Departments of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Xinyu Zhao
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, United States of America.
| |
Collapse
|
14
|
Sweat SC, Cheetham CEJ. Deficits in olfactory system neurogenesis in neurodevelopmental disorders. Genesis 2024; 62:e23590. [PMID: 38490949 PMCID: PMC10990073 DOI: 10.1002/dvg.23590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
The role of neurogenesis in neurodevelopmental disorders (NDDs) merits much attention. The complex process by which stem cells produce daughter cells that in turn differentiate into neurons, migrate various distances, and form synaptic connections that are then refined by neuronal activity or experience is integral to the development of the nervous system. Given the continued postnatal neurogenesis that occurs in the mammalian olfactory system, it provides an ideal model for understanding how disruptions in distinct stages of neurogenesis contribute to the pathophysiology of various NDDs. This review summarizes and discusses what is currently known about the disruption of neurogenesis within the olfactory system as it pertains to attention-deficit/hyperactivity disorder, autism spectrum disorder, Down syndrome, Fragile X syndrome, and Rett syndrome. Studies included in this review used either human subjects, mouse models, or Drosophila models, and lay a compelling foundation for continued investigation of NDDs by utilizing the olfactory system.
Collapse
Affiliation(s)
- Sean C Sweat
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Luermans J, Fleming J, O'Shea R, Barlow-Stewart K, Palmer EE, Leffler M. "We are not a typical family anymore": Exploring the experiences and support needs of fathers of children with Fragile X syndrome in Australia. Am J Med Genet A 2024; 194:e63470. [PMID: 37974553 DOI: 10.1002/ajmg.a.63470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
A diagnosis of the X-linked condition Fragile X syndrome (FXS) in a child commonly reveals the mother's carrier status. Previous research focused on the genetic counseling process for the child and maternal family, despite calls for more research on the support needs of fathers. This study explored experiences and support needs of fathers at least 1 year after their child's FXS diagnosis to understand barriers and enablers and optimize health outcomes for the family. In-depth interviews were conducted with 11 fathers recruited through the Australian Genetics of Learning Disability Service and the Fragile X Association. Deidentified transcripts were analyzed using thematic analysis guided by an inductive approach. Four themes emerged: (1) making life easier through understanding-yesterday and today, (2) the path to a new normal-today and tomorrow, (3) seeking information and support, and (4) what men want. Fathers reported diagnostic odysseys, postdiagnostic grief, and challenges adjusting. They highlighted difficulties in understanding their child's unique behaviors and needs, responding to their partner's psychological support needs, planning for their child's future, and navigating complex health and disability systems. Participants suggested health professionals facilitate father-to-father support and psychological counseling. These findings highlight the unmet needs of fathers and suggest that a strengths-based approach is critically important given the recognized mental health impact.
Collapse
Affiliation(s)
- Jacintha Luermans
- Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, New South Wales, Australia
| | - Jane Fleming
- Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, New South Wales, Australia
| | - Rosie O'Shea
- Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, New South Wales, Australia
| | - Kristine Barlow-Stewart
- Faculty of Medicine and Health, Northern Clinical School, University of Sydney, St Leonards, New South Wales, Australia
| | - Elizabeth Emma Palmer
- Discipline of Paediatrics and Child Health, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Melanie Leffler
- Genetics of Learning Disability (GOLD) Service, Hunter Genetics, Waratah, New South Wales, Australia
| |
Collapse
|
16
|
Beitl K, Ott J, Rosta K, Holzer I, Foessleitner P, Steininger J, Panay N. Premature ovarian insufficiency and autoimmune profiles: a prospective case-control study. Climacteric 2024; 27:187-192. [PMID: 38108204 DOI: 10.1080/13697137.2023.2287631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVE Autoimmunity seems to be present in a large proportion of women with spontaneous premature ovarian insufficiency (POI). Whether these women are at increased risk for autoimmune disease has not been determined to date. Therefore, the aim of this study was to investigate a large series of antibodies in order to shed more light into the autoimmune risk of POI women. METHODS In a prospective case-control study, blood samples from 66 patients with spontaneous POI and 66 healthy controls were analyzed for a series of autoimmune antibodies. RESULTS POI women revealed significantly increased thyroglobulin antibodies (TGAb) (p = 0.045) and thyroid peroxidase antibodies (TPOAb) (p = 0.002). At least one abnormal autoimmune parameter was present in 37.9% of POI women, compared to 18.2% in healthy controls (p = 0.045). A strong association between POI and increased TGAb (adjusted odds ratio 3.586, p = 0.028), increased TPOAb (adjusted odds ratio 7.496, p = 0.003) and any increased autoimmune parameter (adjusted odds ratio 3.189, p = 0.008) could be demonstrated in a binary logistic regression model. CONCLUSION A high prevalence of autoimmunity in POI women compared to a healthy young collective could be demonstrated. Thyroid antibodies were significantly increased in POI women. Our data highlight the increased risk for autoimmune diseases, especially for thyroid disorders.
Collapse
Affiliation(s)
- K Beitl
- Clinical Division of Gynecological Endocrinology and Reproductive Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - J Ott
- Clinical Division of Gynecological Endocrinology and Reproductive Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - K Rosta
- Clinical Division of Gynecological Endocrinology and Reproductive Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - I Holzer
- Clinical Division of Gynecological Endocrinology and Reproductive Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - P Foessleitner
- Clinical Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Vienna, Austria
| | - J Steininger
- Clinical Division of Gynecological Endocrinology and Reproductive Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - N Panay
- Department of Gynaecology, Imperial College Healthcare, NHS Trust, London, UK
| |
Collapse
|
17
|
Subramanian M, Mills WT, Paranjpe MD, Onuchukwu US, Inamdar M, Maytin AR, Li X, Pomerantz JL, Meffert MK. Growth-suppressor microRNAs mediate synaptic overgrowth and behavioral deficits in Fragile X mental retardation protein deficiency. iScience 2024; 27:108676. [PMID: 38235335 PMCID: PMC10792201 DOI: 10.1016/j.isci.2023.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Abnormal neuronal and synapse growth is a core pathology resulting from deficiency of the Fragile X mental retardation protein (FMRP), but molecular links underlying the excessive synthesis of key synaptic proteins remain incompletely defined. We find that basal brain levels of the growth suppressor let-7 microRNA (miRNA) family are selectively lowered in FMRP-deficient mice and activity-dependent let-7 downregulation is abrogated. Primary let-7 miRNA transcripts are not altered in FMRP-deficiency and posttranscriptional misregulation occurs downstream of MAPK pathway induction and elevation of Lin28a, a let-7 biogenesis inhibitor. Neonatal restoration of brain let-7 miRNAs corrects hallmarks of FMRP-deficiency, including dendritic spine overgrowth and social and cognitive behavioral deficits, in adult mice. Blockade of MAPK hyperactivation normalizes let-7 miRNA levels in both brain and peripheral blood plasma from Fmr1 KO mice. These results implicate dysregulated let-7 miRNA biogenesis in the pathogenesis of FMRP-deficiency, and highlight let-7 miRNA-based strategies for future biomarker and therapeutic development.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William T. Mills
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manish D. Paranjpe
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Uche S. Onuchukwu
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manasi Inamdar
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amanda R. Maytin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinbei Li
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mollie K. Meffert
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Aishworiya R, Tak Y, Ponzini MD, Biag HMB, Salcedo-Arellano MJ, Kim K, Tassone F, Schneider A, Thurman AJ, Abbeduto L, Hessl D, Randol JL, Bolduc FV, Lippe S, Hagerman P, Hagerman R. Adaptive, behavioral, and cognitive outcomes in individuals with fragile X syndrome with varying autism severity. Int J Dev Neurosci 2023; 83:715-727. [PMID: 37724826 PMCID: PMC10868665 DOI: 10.1002/jdn.10299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/06/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
This study aimed to determine the association between severity of autism spectrum disorder (ASD) and cognitive, behavioral, and molecular measures in individuals with fragile X syndrome (FXS). Study inclusion criteria included individuals with FXS and (1) age 6-40 years, (2) full-scale IQ < 84, and (3) language ≥3-word phrases. ASD symptom severity was determined by Autism Diagnostic Observation Schedule-2 (ADOS-2). Other measures identified non-verbal IQ, adaptive skills, and aberrant behaviors. Molecular measures included blood FMR1 and CYFIP1 mRNA levels, FMRP and MMP9 levels. Analysis of variance (ANOVA) and Spearman's correlations were used to compare ASD severity groups. Data from 54 individuals was included with no/mild (N = 7), moderate (N = 18), and severe (N = 29) ASD. Individuals with high ASD severity had lower adaptive behavior scores (47.48 ± 17.49) than the no/mild group (69.00 ± 20.45, p = 0.0366); they also had more challenging behaviors, lethargy, and stereotypic behaviors. CYFIP1 mRNA expression levels positively correlated with the ADOS-2 comparison score(r2 = 0.33, p = 0.0349), with no significant correlations with other molecular markers. In conclusion, autism symptom severity is associated with more adverse cognitive and adaptive skills and specific behaviors in FXS, whereas CYFIP1 mRNA expression levels may be a potential biomarker for severity of ASD in FXS.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - YeEun Tak
- University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Matthew Dominic Ponzini
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Hazel Maridith Barlahan Biag
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Maria Jimena Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Kyoungmi Kim
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Angela John Thurman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Leonard Abbeduto
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - David Hessl
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Jamie Leah Randol
- University of California Davis School of Medicine, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America
- Integrative Genetics and Genomics Graduate Group, University of California Davis, One Shields Avenue, Davis, California, United States of America
- UC Davis Biotechnology Program, University of California Davis, Davis, California, United States of America
| | - Francois V Bolduc
- Division of Pediatric Neurology, Pediatrics, University of Alberta, Alberta, Canada
- Division of Medical Genetics, University of Alberta, Alberta, Canada
| | - Sarah Lippe
- Département de Psychologie, Université de Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Université de Montréal, Québec, Canada
| | - Paul Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- University of California Davis School of Medicine, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| |
Collapse
|
19
|
Yu J, Woo Y, Kim H, An S, Park SK, Jang SK. FMRP Enhances the Translation of 4EBP2 mRNA during Neuronal Differentiation. Int J Mol Sci 2023; 24:16319. [PMID: 38003508 PMCID: PMC10671300 DOI: 10.3390/ijms242216319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
FMRP is a multifunctional protein encoded by the Fragile X Messenger Ribonucleoprotein 1 gene (FMR1). The inactivation of the FMR1 gene results in fragile X syndrome (FXS), a serious neurodevelopmental disorder. FMRP deficiency causes abnormal neurite outgrowth, which is likely to lead to abnormal learning and memory capabilities. However, the mechanism of FMRP in modulating neuronal development remains unknown. We found that FMRP enhances the translation of 4EBP2, a neuron-specific form of 4EBPs that inactivates eIF4E by inhibiting the interaction between eIF4E and eIF4G. Depletion of 4EBP2 results in abnormal neurite outgrowth. Moreover, the impairment of neurite outgrowth upon FMRP depletion was overcome by the ectopic expression of 4EBP2. These results suggest that FMRP controls neuronal development by enhancing 4EBP2 expression at the translational level. In addition, treatment with 4EGI-1, a chemical that blocks eIF4E activity, restored neurite length in FMRP-depleted and 4EBP2-depleted cells. In conclusion, we discovered that 4EBP2 functions as a key downstream regulator of FMRP activity in neuronal development and that FMRP represses eIF4E activity by enhancing 4EBP2 translation.
Collapse
Affiliation(s)
| | | | | | | | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongsangbuk, Republic of Korea; (J.Y.); (Y.W.); (H.K.); (S.A.)
| | - Sung Key Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongsangbuk, Republic of Korea; (J.Y.); (Y.W.); (H.K.); (S.A.)
| |
Collapse
|
20
|
Reale M, Borlongan C, Carta AR, Greig NH. Genetic and Molecular Regulations of Neuronal Activity. Int J Mol Sci 2023; 24:16191. [PMID: 38003381 PMCID: PMC10671438 DOI: 10.3390/ijms242216191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
This Special Issue of the International Journal of Molecular Sciences (IJMS) focuses on 'Genetic and Molecular Regulations of Neuronal Activity' [...].
Collapse
Affiliation(s)
- Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, Unit of Immunodiagnostic and Molecular Pathology, University “G.d’Annunzio”, 66100 Chieti, Italy
| | - Cesar Borlongan
- Department of Neurosurgery, University of South Florida College Medicine, MDC 78, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA;
| | - Anna R. Carta
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Nigel H. Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA;
| |
Collapse
|
21
|
Dy ABC, Tanchanco LBS, Sy JCY, Levantino MD, Hagerman RJ. Screening for Fragile X Syndrome Among Filipino Children with Autism Spectrum Disorder. J Autism Dev Disord 2023; 53:4465-4473. [PMID: 35972625 DOI: 10.1007/s10803-022-05707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Individuals with autism spectrum disorder present with difficulties in social communication, restricted interests or behaviors and other co-morbidities. About 2 to 10% of cases of autism have a genetic cause, and Fragile X Syndrome (FXS) is reported in 0 to 6.5% of individuals with autism. However, the FXS and premutation prevalence among Filipino children has never been reported. The aim of the study was to establish the presence of FXS or premutation carriers among Filipino children with autism and to describe the phenotypic characteristic of cases identified. Blood was collected from 235 children aged 2-6 years old and diagnosed with autism. Samples were analyzed using PCR methods to amplify CGG repeats in the FMRI gene. The diagnosis of autism was confirmed through the Autism Diagnostic Observation Schedule-2. Additional characteristics were documented from a physical examination, Griffiths Scales of Child Development assessment and a parent-answered questionnaire using the Vineland Adaptive Behavior Scale. Fragile X testing through PCR methods in 235 children with diagnosed autism showed 220 (93.6%) were negative, no full mutations, 1 (0.436%) premutation carrier and 14 (5.95%) cases contained intermediate alleles. The FXS testing was limited to confirmed cases of autism, which is considered a high-risk group and does not provide prevalence for the general Filipino population. Subjects were self-referred or referred by clinicians, which may not represent the Filipino autism population with a bias towards those with means for clinical consultations and ability to travel to the place of testing. Samples were not measured for mosaicism, DNA methylation or AGG interspersion patterns. These may have effects on the CGG repeat expansion and overall presentation of FXS. Findings from a single premutation carrier cannot characterize features distinctly present in Filipinos with the mutation. Nevertheless, these results support the data that the prevalence of FXS in Asian populations may be lower than non-Asian populations. This can contribute to a better understanding of FXS and genetic causes of autism in the Philippines and other Asian populations.
Collapse
Affiliation(s)
- Angel Belle C Dy
- Ateneo de Manila University School of Medicine and Public Health, Don Eugenio Lopez Sr. Medical Complex, Pasig City, NCR, Philippines.
| | - Lourdes Bernadette S Tanchanco
- Ateneo de Manila University School of Medicine and Public Health, Don Eugenio Lopez Sr. Medical Complex, Pasig City, NCR, Philippines
| | - Jenica Clarisse Y Sy
- Ateneo de Manila University School of Medicine and Public Health, Don Eugenio Lopez Sr. Medical Complex, Pasig City, NCR, Philippines
| | - Myla Dominicina Levantino
- Ateneo de Manila University School of Medicine and Public Health, Don Eugenio Lopez Sr. Medical Complex, Pasig City, NCR, Philippines
| | - Randi J Hagerman
- University of California Davis, MIND Institute, Sacramento, CA, USA
| |
Collapse
|
22
|
Aishworiya R, Biag HMB, Salcedo-Arellano MJ, Musa Z, Schneider A, Clark C, Santos E, Tassone F, Hagerman R. Fragile X Syndrome and Fetal Alcohol Syndrome: Occurrence of Dual Diagnosis in a Set of Triplets. J Dev Behav Pediatr 2023; 44:e470-e475. [PMID: 37556593 PMCID: PMC10527597 DOI: 10.1097/dbp.0000000000001204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/05/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Fragile X syndrome (FXS) and fetal alcohol syndrome disorders are both common causes of intellectual disability in children. When both conditions are present in the same individual, the resultant phenotype may make identification of clinical issues and management challenging. CASE PRESENTATION In this case report, we present a case of triplets who had significant in utero alcohol exposure; 2 of whom also have FXS and the other not having the fragile X mutation. The siblings with FXS have subtle differences in the physical phenotype compared with the other one, who has prominent features of partial fetal alcohol syndrome instead. However, all 3 siblings have intellectual impairment (although this is more severe in the 2 with FXS), meet diagnostic criteria for autism spectrum disorder, and present with severe behavioral challenges. The clinical presentation of the 2 siblings with FXS is much more severe as compared to a child with FXS alone, and this is likely due to the additive effect of in utero alcohol exposure and environmental factors. We discuss the combination of these 2 pathologies and how this can affect the overall clinical presentation. CONCLUSION In the management of children with FXS, evaluation for other risk factors that can have neurobehavioral sequelae is important, and these can affect clinical presentation and prognosis.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hazel Maridith Barlahan Biag
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Maria Jimena Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Zayan Musa
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Courtney Clark
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Ellery Santos
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California, United States of America
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, California, United States of America
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, United States of America
| |
Collapse
|
23
|
Subashi E, Lemaire V, Petroni V, Pietropaolo S. The Impact of Mild Chronic Stress and Maternal Experience in the Fmr1 Mouse Model of Fragile X Syndrome. Int J Mol Sci 2023; 24:11398. [PMID: 37511156 PMCID: PMC10380347 DOI: 10.3390/ijms241411398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Fragile X syndrome (FXS) is a pervasive developmental disorder and the most common monogenic cause of autism spectrum disorder (ASD). Female heterozygous (HET) carriers play a major role in the transmission of the pathology and present several FXS- and ASD-like behavioral alterations. Despite their clear genetic origins, FXS symptoms are known to be modulated by environmental factors, e.g., exposure to chronic stress, especially during critical life periods, such as pregnancy. Pregnancy, together with pups' care, constitutes maternal experience, i.e., another powerful environmental factor affecting several neurobehavioral functions in females. Here we investigated the impact of maternal experience on the long-term effects of stress in Fmr1-HET female mice. Our findings demonstrated that the behavioral abnormalities of HET females, i.e., hyperactivity and memory deficits, were unaffected by stress or maternal experience. In contrast, stress, independently of maternal experience, induced the appearance of cognitive deficits in WT mice. Maternal experience increased anxiety levels in all mice and enhanced their corticosterone levels, concomitantly promoting the effects of stress on social communication and adrenal glands. In translational terms, these results advance our understanding of the environmental modulation of the behavioral alterations observed in FXS female carriers and highlight the long-term impact of maternal experience and its interactions with chronic stress.
Collapse
Affiliation(s)
- Enejda Subashi
- University Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Valerie Lemaire
- University Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Valeria Petroni
- University Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | | |
Collapse
|
24
|
Elhawary NA, AlJahdali IA, Abumansour IS, Azher ZA, Falemban AH, Madani WM, Alosaimi W, Alghamdi G, Sindi IA. Phenotypic variability to medication management: an update on fragile X syndrome. Hum Genomics 2023; 17:60. [PMID: 37420260 PMCID: PMC10329374 DOI: 10.1186/s40246-023-00507-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
This review discusses the discovery, epidemiology, pathophysiology, genetic etiology, molecular diagnosis, and medication-based management of fragile X syndrome (FXS). It also highlights the syndrome's variable expressivity and common comorbid and overlapping conditions. FXS is an X-linked dominant disorder associated with a wide spectrum of clinical features, including but not limited to intellectual disability, autism spectrum disorder, language deficits, macroorchidism, seizures, and anxiety. Its prevalence in the general population is approximately 1 in 5000-7000 men and 1 in 4000-6000 women worldwide. FXS is associated with the fragile X messenger ribonucleoprotein 1 (FMR1) gene located at locus Xq27.3 and encodes the fragile X messenger ribonucleoprotein (FMRP). Most individuals with FXS have an FMR1 allele with > 200 CGG repeats (full mutation) and hypermethylation of the CpG island proximal to the repeats, which silences the gene's promoter. Some individuals have mosaicism in the size of the CGG repeats or in hypermethylation of the CpG island, both produce some FMRP and give rise to milder cognitive and behavioral deficits than in non-mosaic individuals with FXS. As in several monogenic disorders, modifier genes influence the penetrance of FMR1 mutations and FXS's variable expressivity by regulating the pathophysiological mechanisms related to the syndrome's behavioral features. Although there is no cure for FXS, prenatal molecular diagnostic testing is recommended to facilitate early diagnosis. Pharmacologic agents can reduce some behavioral features of FXS, and researchers are investigating whether gene editing can be used to demethylate the FMR1 promoter region to improve patient outcomes. Moreover, clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 and developed nuclease defective Cas9 (dCas9) strategies have promised options of genome editing in gain-of-function mutations to rewrite new genetic information into a specified DNA site, are also being studied.
Collapse
Affiliation(s)
- Nasser A. Elhawary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Imad A. AlJahdali
- Department of Community Medicine, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Iman S. Abumansour
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Zohor A. Azher
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Alaa H. Falemban
- Department of Pharmacology and Toxicology, College of Medicine, Umm Al-Qura University, Mecca, 24382 Saudi Arabia
| | - Wefaq M. Madani
- Department of Hematology and Immunology, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Wafaa Alosaimi
- Department of Hematology, Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Ghydda Alghamdi
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Preparatory Year Program, Batterjee Medical College, Jeddah, 21442 Saudi Arabia
| |
Collapse
|
25
|
Godler DE, Inaba Y, Bui MQ, Francis D, Skinner C, Schwartz CE, Amor DJ. Defining the 3'Epigenetic Boundary of the FMR1 Promoter and Its Loss in Individuals with Fragile X Syndrome. Int J Mol Sci 2023; 24:10712. [PMID: 37445892 DOI: 10.3390/ijms241310712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study characterizes the DNA methylation patterns specific to fragile X syndrome (FXS) with a full mutation (FM > 200 CGGs), premutation (PM 55-199 CGGs), and X inactivation in blood and brain tissues at the 3' boundary of the FMR1 promoter. Blood was analyzed from 95 controls and 462 individuals (32% males) with FM and PM alleles. Brain tissues (62% males) were analyzed from 12 controls and 4 with FXS. There was a significant increase in intron 1 methylation, extending to a newly defined 3' epigenetic boundary in the FM compared with that in the control and PM groups (p < 0.0001), and this was consistent between the blood and brain tissues. A distinct intron 2 site showed a significant decrease in methylation for the FXS groups compared with the controls in both sexes (p < 0.01). In all female groups, most intron 1 (but not intron 2 sites) were sensitive to X inactivation. In all PM groups, methylation at the 3' epigenetic boundary and the proximal sites was significantly decreased compared with that in the control and FM groups (p < 0.0001). In conclusion, abnormal FMR1 intron 1 and 2 methylation that was sensitive to X inactivation in the blood and brain tissues provided a novel avenue for the detection of PM and FM alleles through DNA methylation analysis.
Collapse
Affiliation(s)
- David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Yoshimi Inaba
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Minh Q Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - David Francis
- Victorian Clinical Genetics Services and Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - Cindy Skinner
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Charles E Schwartz
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - David J Amor
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| |
Collapse
|
26
|
Mango D, Ledonne A. Updates on the Physiopathology of Group I Metabotropic Glutamate Receptors (mGluRI)-Dependent Long-Term Depression. Cells 2023; 12:1588. [PMID: 37371058 DOI: 10.3390/cells12121588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRI), including mGluR1 and mGluR5 subtypes, modulate essential brain functions by affecting neuronal excitability, intracellular calcium dynamics, protein synthesis, dendritic spine formation, and synaptic transmission and plasticity. Nowadays, it is well appreciated that the mGluRI-dependent long-term depression (LTD) of glutamatergic synaptic transmission (mGluRI-LTD) is a key mechanism by which mGluRI shapes connectivity in various cerebral circuitries, directing complex brain functions and behaviors, and that it is deranged in several neurological and psychiatric illnesses, including neurodevelopmental disorders, neurodegenerative diseases, and psychopathologies. Here, we will provide an updated overview of the physiopathology of mGluRI-LTD, by describing mechanisms of induction and regulation by endogenous mGluRI interactors, as well as functional physiological implications and pathological deviations.
Collapse
Affiliation(s)
- Dalila Mango
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Ada Ledonne
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
27
|
Acero-Garcés DO, Saldarriaga W, Cabal-Herrera AM, Rojas CA, Hagerman RJ. Fragile X Syndrome in children. Colomb Med (Cali) 2023; 54:e4005089. [PMID: 37664646 PMCID: PMC10469670 DOI: 10.25100/cm.v54i2.5089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 11/28/2022] [Accepted: 05/14/2023] [Indexed: 09/05/2023] Open
Abstract
Fragile X syndrome is caused by the expansion of CGG triplets in the FMR1 gene, which generates epigenetic changes that silence its expression. The absence of the protein coded by this gene, FMRP, causes cellular dysfunction, leading to impaired brain development and functional abnormalities. The physical and neurologic manifestations of the disease appear early in life and may suggest the diagnosis. However, it must be confirmed by molecular tests. It affects multiple areas of daily living and greatly burdens the affected individuals and their families. Fragile X syndrome is the most common monogenic cause of intellectual disability and autism spectrum disorder; the diagnosis should be suspected in every patient with neurodevelopmental delay. Early interventions could improve the functional prognosis of patients with Fragile X syndrome, significantly impacting their quality of life and daily functioning. Therefore, healthcare for children with Fragile X syndrome should include a multidisciplinary approach.
Collapse
Affiliation(s)
| | - Wilmar Saldarriaga
- Universidad del Valle, Facultad de Salud, Escuela de Medicina, Cali, Colombia
- Universidad del Valle, Facultad de Salud, Escuela de Ciencias Básicas, Cali, Colombia
| | | | - Christian A. Rojas
- Universidad del Valle, Facultad de Salud, Escuela de Medicina, Cali, Colombia
| | - Randi J. Hagerman
- University of California, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, USA
- Davis Medical Center, Sacramento, CA, USA
- University of California, Department of Pediatrics, Davis, CA, USA
| |
Collapse
|
28
|
Cencelli G, Pacini L, De Luca A, Messia I, Gentile A, Kang Y, Nobile V, Tabolacci E, Jin P, Farace MG, Bagni C. Age-Dependent Dysregulation of APP in Neuronal and Skin Cells from Fragile X Individuals. Cells 2023; 12:758. [PMID: 36899894 PMCID: PMC10000963 DOI: 10.3390/cells12050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 03/04/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common form of monogenic intellectual disability and autism, caused by the absence of the functional fragile X messenger ribonucleoprotein 1 (FMRP). FXS features include increased and dysregulated protein synthesis, observed in both murine and human cells. Altered processing of the amyloid precursor protein (APP), consisting of an excess of soluble APPα (sAPPα), may contribute to this molecular phenotype in mice and human fibroblasts. Here we show an age-dependent dysregulation of APP processing in fibroblasts from FXS individuals, human neural precursor cells derived from induced pluripotent stem cells (iPSCs), and forebrain organoids. Moreover, FXS fibroblasts treated with a cell-permeable peptide that decreases the generation of sAPPα show restored levels of protein synthesis. Our findings suggest the possibility of using cell-based permeable peptides as a future therapeutic approach for FXS during a defined developmental window.
Collapse
Affiliation(s)
- Giulia Cencelli
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Laura Pacini
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Faculty of Medicine, UniCamillus, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Anastasia De Luca
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilenia Messia
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonietta Gentile
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, 00166 Rome, Italy
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Veronica Nobile
- Institute of Genomic Medicine, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Elisabetta Tabolacci
- Institute of Genomic Medicine, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maria Giulia Farace
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
29
|
FMRP, FXR1 protein and Dlg4 mRNA, which are associated with fragile X syndrome, are involved in the ubiquitin-proteasome system. Sci Rep 2023; 13:1956. [PMID: 36732356 PMCID: PMC9894842 DOI: 10.1038/s41598-023-29152-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is a proteolytic pathway that is essential for life maintenance and vital functions, and its disruption causes serious impairments, e.g., disease development. Thus, the UPS is properly regulated. Here we show novel UPS-related factors: the fragile X mental retardation 1 (FMR1) and Fmr1 autosomal homolog 1 (FXR1) proteins and discs large MAGUK scaffold protein 4 (Dlg4) mRNA, which are associated with Fragile X syndrome, are involved in UPS activity. Fmr1-, Fxr1- and Dlg4-knockdown and Fmr1- and Fxr1-knockdown resulted in increased ubiquitination and proteasome activity, respectively. FXR1 protein was further confirmed to be associated with proteasomes, and Dlg4 mRNA itself was found to be involved in the UPS. Knockdown of these genes also affected neurite outgrowth. These findings provide new insights into the regulatory mechanism of the UPS and into the interpretation of the pathogenesis of diseases in which these genes are involved as UPS-related factors.
Collapse
|
30
|
Lin J, de Rezende VL, de Aguiar da Costa M, de Oliveira J, Gonçalves CL. Cholesterol metabolism pathway in autism spectrum disorder: From animal models to clinical observations. Pharmacol Biochem Behav 2023; 223:173522. [PMID: 36717034 DOI: 10.1016/j.pbb.2023.173522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/18/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by a persistent impairment of social skills, including aspects of perception, interpretation, and response, combined with restricted and repetitive behavior. ASD is a complex and multifactorial condition, and its etiology could be attributed to genetic and environmental factors. Despite numerous clinical and experimental studies, no etiological factor, biomarker, and specific model of transmission have been consistently associated with ASD. However, an imbalance in cholesterol levels has been observed in many patients, more specifically, a condition of hypocholesterolemia, which seems to be shared between ASD and ASD-related genetic syndromes such as fragile X syndrome (FXS), Rett syndrome (RS), and Smith- Lemli-Opitz (SLO). Furthermore, it is known that alterations in cholesterol levels lead to neuroinflammation, oxidative stress, impaired myelination and synaptogenesis. Thus, the aim of this review is to discuss the cholesterol metabolic pathways in the ASD context, as well as in genetic syndromes related to ASD, through clinical observations and animal models. In fact, SLO, FXS, and RS patients display early behavioral markers of ASD followed by cholesterol disturbances. Several studies have demonstrated the role of cholesterol in psychiatric conditions and how its levels modulate brain neurodevelopment. This review suggests an important relationship between ASD pathology and cholesterol metabolism impairment; thus, some strategies could be raised - at clinical and pre-clinical levels - to explore whether cholesterol metabolism disturbance has a generally adverse effect in exacerbating the symptoms of ASD patients.
Collapse
Affiliation(s)
- Jaime Lin
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jade de Oliveira
- Laboratory for Research in Metabolic Disorders and Neurodegenerative Diseases, Graduate Program in Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
31
|
Abstract
The fragile X-related disorders are an important group of hereditary disorders that are caused by expanded CGG repeats in the 5' untranslated region of the FMR1 gene or by mutations in the coding sequence of this gene. Two categories of pathological CGG repeats are associated with these disorders, full mutation alleles and shorter premutation alleles. Individuals with full mutation alleles develop fragile X syndrome, which causes autism and intellectual disability, whereas those with premutation alleles, which have shorter CGG expansions, can develop fragile X-associated tremor/ataxia syndrome, a progressive neurodegenerative disease. Thus, fragile X-related disorders can manifest as neurodegenerative or neurodevelopmental disorders, depending on the size of the repeat expansion. Here, we review mouse models of fragile X-related disorders and discuss how they have informed our understanding of neurodegenerative and neurodevelopmental disorders. We also assess the translational value of these models for developing rational targeted therapies for intellectual disability and autism disorders.
Collapse
Affiliation(s)
- Rob Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands. Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium
| | - R. Frank Kooy
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands. Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium
| |
Collapse
|
32
|
Wang X, Fan Q, Yu X, Wang Y. Cellular distribution of the Fragile X mental retardation protein in the inner ear: a developmental and comparative study in the mouse, rat, gerbil, and chicken. J Comp Neurol 2023; 531:149-169. [PMID: 36222577 PMCID: PMC9691623 DOI: 10.1002/cne.25420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
The Fragile X mental retardation protein (FMRP) is an mRNA binding protein that is essential for neural circuit assembly and synaptic plasticity. Loss of functional FMRP leads to Fragile X syndrome (FXS), a neurodevelopmental disorder characterized by sensory dysfunction including abnormal auditory processing. While the central mechanisms of FMRP regulation have been studied in the brain, whether FMRP is expressed in the auditory periphery and how it develops and functions remains unknown. In this study, we characterized the spatiotemporal distribution pattern of FMRP immunoreactivity in the inner ear of mice, rats, gerbils, and chickens. Across species, FMRP was expressed in hair cells and supporting cells, with a particularly high level in immature hair cells during the prehearing period. Interestingly, the distribution of cytoplasmic FMRP displayed an age-dependent translocation in hair cells, and this feature was conserved across species. In the auditory ganglion (AG), FMRP immunoreactivity was detected in neuronal cell bodies as well as their peripheral and central processes. Distinct from hair cells, FMRP intensity in AG neurons was high both during development and after maturation. Additionally, FMRP was evident in mature glial cells surrounding AG neurons. Together, these observations demonstrate distinct developmental trajectories across cell types in the auditory periphery. Given the importance of peripheral inputs to the maturation of auditory circuits, these findings implicate involvement of FMRP in inner ear development as well as a potential contribution of periphery FMRP to the generation of auditory dysfunction in FXS.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, College of Medicine, Jinan University, Guangzhou 510632, China
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Qiwei Fan
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, College of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaoyan Yu
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
33
|
Aishworiya R, Protic D, Tang SJ, Schneider A, Tassone F, Hagerman R. Fragile X-Associated Neuropsychiatric Disorders (FXAND) in Young Fragile X Premutation Carriers. Genes (Basel) 2022; 13:genes13122399. [PMID: 36553666 PMCID: PMC9778214 DOI: 10.3390/genes13122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Background: The fragile X premutation carrier state (PM) (55-200 CGG repeats in the fragile X messenger ribonucleoprotein 1, FMR1 gene) is associated with several conditions, including fragile X-associated primary ovarian insufficiency (FXPOI) and fragile X-associated tremor ataxia (FXTAS), with current literature largely primarily investigating older PM individuals. The aim of this study was to identify the prevalence of fragile X-associated neurodevelopmental disorders (FXAND) in a sample of young PM individuals. Methods: This was a retrospective study conducted through a medical record review of PM individuals who were seen either for clinical concerns (probands, 45.9%) or identified through the cascade testing (non-probands, 54.1%) of an affected sibling with fragile X syndrome. Information on the presence of autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, long-term psychiatric medication intake, and cognitive function, based on standardized assessments, was obtained. Molecular data, including CGG repeat number and FMR1 mRNA levels, were also available for a subset of participants. Analysis included descriptive statistics and a test of comparison to describe the clinical profile of PM individuals pertinent to FXAND. Results: Participants included 61 individuals (52 males and 9 females) aged 7.8 to 20.0 years (mean 12.6 ± 3.4) with a mean full-scale IQ of 90.9 ± 22.7. The majority (N = 52; 85.2%) had at least one mental health disorder, with anxiety being the most common (82.0% of subjects), followed by ADHD (66.5%), and ASD (32.8%). Twenty-seven (87.1%) of non-probands also had at least one mental health condition, with probands having lower cognitive and adaptive skills than non-probands. ASD was present in 20 participants (17/52 males and 3/9 females; 15 probands) with significantly lower FSIQ in those with ASD (mean 73.5 vs. 98.0, p < 0.001). Participants with ASD had a higher number of long-term medications compared to those without (2.32 vs. 1.3, p = 0.002). Conclusions: Our findings indicate a high rate of FXAND diagnoses within a cohort of young PM individuals, including those identified via cascade testing, although this was not a population sample. An awareness of the entity of FXAND and the early recognition of the symptoms of associated conditions may facilitate timely and appropriate care for PM individuals.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
- Correspondence: ; Tel.: +916-703-0247; Fax: +916-703-0240
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Si Jie Tang
- Department of Pediatrics, School of Medicine, University of California Davis, 4610 X St, Sacramento, CA 95817, USA
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
- Department of Pediatrics, School of Medicine, University of California Davis, 4610 X St, Sacramento, CA 95817, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, 4610 X St, Sacramento, CA 95817, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
- Department of Pediatrics, School of Medicine, University of California Davis, 4610 X St, Sacramento, CA 95817, USA
| |
Collapse
|
34
|
Kim Y, Jeon SJ, Gonzales EL, Shin D, Remonde CG, Ahn T, Shin CY. Pirenperone relieves the symptoms of fragile X syndrome in Fmr1 knockout mice. Sci Rep 2022; 12:20966. [PMID: 36470953 PMCID: PMC9723111 DOI: 10.1038/s41598-022-25582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that is caused by the loss of Fragile X-linked mental retardation protein (FMRP), an RNA binding protein that can bind and recognize different RNA structures and regulate the target mRNAs' translation involved in neuronal synaptic plasticity. Perturbations of this gene expression network have been related to abnormal behavioral symptoms such as hyperactivity, and impulsivity. Considering the roles of FMRP in the modulation of mRNA translation, we investigated the differentially expressed genes which might be targeted to revert to normal and ameliorate behavioral symptoms. Gene expression data was analyzed and used the connectivity map (CMap) to understand the changes in gene expression in FXS and predict the effective drug candidates. We analyzed the GSE7329 dataset that had 15 control and 8 FXS patients' lymphoblastoid samples. Among 924 genes, 42 genes were selected as signatures for CMap analysis, and 24 associated drugs were found. Pirenperone was selected as a potential drug candidate for FXS for its possible antipsychotic effect. Treatment of pirenperone increased the expression level of Fmr1 gene. Moreover, pirenperone rescued the behavioral deficits in Fmr1 KO mice including hyperactivity, spatial memory, and impulsivity. These results suggest that pirenperone is a new drug candidate for FXS, which should be verified in future studies.
Collapse
Affiliation(s)
- Yujeong Kim
- grid.258676.80000 0004 0532 8339Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| | - Se Jin Jeon
- grid.412357.60000 0004 0533 2063Department of Integrative Biotechnology, College of Science and Technology, Sahmyook University, Seoul, 01795 Republic of Korea
| | - Edson Luck Gonzales
- grid.258676.80000 0004 0532 8339Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| | - Dongpil Shin
- grid.258676.80000 0004 0532 8339Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| | - Chilly Gay Remonde
- grid.258676.80000 0004 0532 8339Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| | - TaeJin Ahn
- grid.411957.f0000 0004 0647 2543Department of Life Science, Handong Global University, Nehemiah 36, Handong-ro 558, Pohang, 37554 Republic of Korea
| | - Chan Young Shin
- grid.258676.80000 0004 0532 8339Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
35
|
Sreenivasan VKA, Henck J, Spielmann M. Single-cell sequencing: promises and challenges for human genetics. MED GENET-BERLIN 2022; 34:261-273. [PMID: 38836091 PMCID: PMC11006387 DOI: 10.1515/medgen-2022-2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Over the last decade, single-cell sequencing has transformed many fields. It has enabled the unbiased molecular phenotyping of even whole organisms with unprecedented cellular resolution. In the field of human genetics, where the phenotypic consequences of genetic and epigenetic alterations are of central concern, this transformative technology promises to functionally annotate every region in the human genome and all possible variants within them at a massive scale. In this review aimed at the clinicians in human genetics, we describe the current status of the field of single-cell sequencing and its role for human genetics, including how the technology works as well as how it is being applied to characterize and monitor diseases, to develop human cell atlases, and to annotate the genome.
Collapse
Affiliation(s)
- Varun K A Sreenivasan
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, 23562 Lübeck, 24105 Kiel, Germany
| | - Jana Henck
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, 23562 Lübeck, 24105 Kiel, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | - Malte Spielmann
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, 23562 Lübeck, 24105 Kiel, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
- DZHK e. V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
36
|
Speranza L, Filiz KD, Goebel S, Perrone-Capano C, Pulcrano S, Volpicelli F, Francesconi A. Combined DiI and Antibody Labeling Reveals Complex Dysgenesis of Hippocampal Dendritic Spines in a Mouse Model of Fragile X Syndrome. Biomedicines 2022; 10:2692. [PMID: 36359212 PMCID: PMC9687937 DOI: 10.3390/biomedicines10112692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Structural, functional, and molecular alterations in excitatory spines are a common hallmark of many neurodevelopmental disorders including intellectual disability and autism. Here, we describe an optimized methodology, based on combined use of DiI and immunofluorescence, for rapid and sensitive characterization of the structure and composition of spines in native brain tissue. We successfully demonstrate the applicability of this approach by examining the properties of hippocampal spines in juvenile Fmr1 KO mice, a mouse model of Fragile X Syndrome. We find that mutant mice display pervasive dysgenesis of spines evidenced by an overabundance of both abnormally elongated thin spines and cup-shaped spines, in combination with reduced density of mushroom spines. We further find that mushroom spines expressing the actin-binding protein Synaptopodin-a marker for spine apparatus-are more prevalent in mutant mice. Previous work identified spines with Synaptopodin/spine apparatus as the locus of mGluR-LTD, which is abnormally elevated in Fmr1 KO mice. Altogether, our data suggest this enhancement may be linked to the preponderance of this subset of spines in the mutant. Overall, these findings demonstrate the sensitivity and versatility of the optimized methodology by uncovering a novel facet of spine dysgenesis in Fmr1 KO mice.
Collapse
Affiliation(s)
- Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kardelen Dalım Filiz
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Sarah Goebel
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Carla Perrone-Capano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Salvatore Pulcrano
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, C.N.R., 80131 Naples, Italy
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Anna Francesconi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
37
|
Susco SG, Ghosh S, Mazzucato P, Angelini G, Beccard A, Barrera V, Berryer MH, Messana A, Lam D, Hazelbaker DZ, Barrett LE. Molecular convergence between Down syndrome and fragile X syndrome identified using human pluripotent stem cell models. Cell Rep 2022; 40:111312. [PMID: 36070702 PMCID: PMC9465809 DOI: 10.1016/j.celrep.2022.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/19/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022] Open
Abstract
Down syndrome (DS), driven by an extra copy of chromosome 21 (HSA21), and fragile X syndrome (FXS), driven by loss of the RNA-binding protein FMRP, are two common genetic causes of intellectual disability and autism. Based upon the number of DS-implicated transcripts bound by FMRP, we hypothesize that DS and FXS may share underlying mechanisms. Comparing DS and FXS human pluripotent stem cell (hPSC) and glutamatergic neuron models, we identify increased protein expression of select targets and overlapping transcriptional perturbations. Moreover, acute upregulation of endogenous FMRP in DS patient cells using CRISPRa is sufficient to significantly reduce expression levels of candidate proteins and reverse 40% of global transcriptional perturbations. These results pinpoint specific molecular perturbations shared between DS and FXS that can be leveraged as a strategy for target prioritization; they also provide evidence for the functional relevance of previous associations between FMRP targets and disease-implicated genes.
Collapse
Affiliation(s)
- Sara G Susco
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patrizia Mazzucato
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gabriella Angelini
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amanda Beccard
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Victor Barrera
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Martin H Berryer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daisy Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dane Z Hazelbaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
38
|
Saldarriaga W, González-Teshima LY, Forero-Forero JV, Tang HT, Tassone F. Mosaicism in Fragile X syndrome: A family case series. JOURNAL OF INTELLECTUAL DISABILITIES : JOID 2022; 26:800-807. [PMID: 33998336 DOI: 10.1177/1744629521995346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fragile X syndrome (FXS) has a classic phenotype, however its expression can be variable among full mutation males. This is secondary to variable methylation mosaicisms and the number of CGG triplet repeats in the non-coding region of the Fragile X Mental Retardation 1 (FMR1) gene, producing a variable expression of the Fragile X Mental Retardation Protein (FMRP). Here we report a family with several individuals affected by FXS: a boy with a hypermethylated FMR1 mutation and a classic phenotype; a man with an FMR1 gene mosaicism in the range of premutation (PM) and full mutation (FM), who has a mild phenotype due to which FXS was initially disregarded; and the cases of four women with a FM and mosaicism. This report highlights the importance of DNA molecular testing for the diagnosis of FXS in patients with developmental delay, intellectual disability and/or autism due to the variable phenotype that occurs in individuals with FMR1 mosaicisms.
Collapse
|
39
|
The role of the dorsal striatum in a mouse model for fragile X syndrome: Behavioral and dendritic spine assessment. Brain Res 2022; 1795:148060. [PMID: 36030973 DOI: 10.1016/j.brainres.2022.148060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
Fragile X syndrome (FXS), a leading monogenic cause of autism spectrum disorders (ASDs), typically occurs as the result of a mutation silencing the Fmr1 gene, preventing production of the fragile X messenger ribonucleoprotein (FMRP). FXS is characterized, in part, by hyperactivity, impaired behavioral flexibility, and the development of repetitive, or stereotyped, behaviors. While these phenotypes are influenced by striatal activity, few studies have examined FXS or FMRP in the context of striatal function. Here, we report enhanced repetitive behaviors in Fmr1 knockout (KO) compared to wild type (WT) mice according to multiple measures, including quantity and intensity of stereotypic behaviors in an open field and nose poking activity in an unbaited hole board test. However, using a baited version of the hole board assay, we see that KO mice do show some behavioral flexibility in that they make changes in their nose poking behavior following familiarization with an appetitive bait. By contrast, repeated exposure to cocaine (15 mg/kg) promotes repetitive behavior in both WT and KO mice, in a manner mostly independent of genotype. Branch length alterations in medium spiny neurons (MSNs) of the dorsolateral striatum (DLS) are similar between WT cocaine-treated and KO saline-treated mice, possibly suggesting shared synaptic mechanisms. Overall, we suggest that scoring open field behavior is a sensitive measure for repetitive sensory-motor behaviors in Fmr1 KO mice. In addition, our findings show that synaptic contacts onto MSNs in the DLS should be examined in conjunction with measures of stereotypical behavior.
Collapse
|
40
|
Messina A, Potrich D, Perrino M, Sheardown E, Miletto Petrazzini ME, Luu P, Nadtochiy A, Truong TV, Sovrano VA, Fraser SE, Brennan CH, Vallortigara G. Quantity as a Fish Views It: Behavior and Neurobiology. Front Neuroanat 2022; 16:943504. [PMID: 35911657 PMCID: PMC9334151 DOI: 10.3389/fnana.2022.943504] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
An ability to estimate quantities, such as the number of conspecifics or the size of a predator, has been reported in vertebrates. Fish, in particular zebrafish, may be instrumental in advancing the understanding of magnitude cognition. We review here the behavioral studies that have described the ecological relevance of quantity estimation in fish and the current status of the research aimed at investigating the neurobiological bases of these abilities. By combining behavioral methods with molecular genetics and calcium imaging, the involvement of the retina and the optic tectum has been documented for the estimation of continuous quantities in the larval and adult zebrafish brain, and the contributions of the thalamus and the dorsal-central pallium for discrete magnitude estimation in the adult zebrafish brain. Evidence for basic circuitry can now be complemented and extended to research that make use of transgenic lines to deepen our understanding of quantity cognition at genetic and molecular levels.
Collapse
Affiliation(s)
- Andrea Messina
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Davide Potrich
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Matilde Perrino
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Eva Sheardown
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, New Hunt’s House, Kings College London, London, United Kingdom
| | | | - Peter Luu
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Anna Nadtochiy
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Thai V. Truong
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Valeria Anna Sovrano
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Scott E. Fraser
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, United States
| | - Caroline H. Brennan
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
41
|
Pietropaolo S, Provenzano G. Editorial: Targeting Excitation-Inhibition Imbalance in Neurodevelopmental and Autism Spectrum Disorders. Front Neurosci 2022; 16:968115. [PMID: 35879927 PMCID: PMC9307874 DOI: 10.3389/fnins.2022.968115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Susanna Pietropaolo
- INCIA, UMR5287, Bordeaux University and CNRS, Bordeaux, France
- *Correspondence: Susanna Pietropaolo
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| |
Collapse
|
42
|
Aishworiya R, Protic D, Hagerman R. Autism spectrum disorder in the fragile X premutation state: possible mechanisms and implications. J Neurol 2022; 269:4676-4683. [PMID: 35723724 DOI: 10.1007/s00415-022-11209-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022]
Abstract
There is increasing recognition of the heterogeneity of origin of cases of autism spectrum disorder (ASD) with multiple forms of ASD having been identified over the decades. Among these, a genetic etiology can be identified in 20-40% of cases when a full genetic work-up is completed. The Fragile X premutation state (characterized by the presence of 55-200 CGG repeats in the FMR1 gene) is a relatively newly identified disease state that has since been associated with several disorders including fragile X-associated tremor ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI) and most recently, fragile X-associated neurodevelopmental disorders (FXAND) which commonly includes anxiety and depression. In addition to these associated disorders, extant literature and clinical observations have suggested an association between the premutation state and ASD. In this paper, we review the literature pertinent to this and discuss possible molecular mechanisms that may explain this association. This includes lowered levels of the FMR1 Protein (FMRP), GABA deficits, mitochondrial dysfunction and secondary genetic abnormalities that is seen in premutation carriers as well as their increased vulnerability to environmental stressors. Understanding these mechanisms can facilitate development of targeted treatment for specific sub-groups of ASD and premutation disorders in future.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA. .,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore. .,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597, Singapore.
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.,Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA, 95817, USA
| |
Collapse
|
43
|
Movaghar A, Page D, Brilliant M, Mailick M. Advancing artificial intelligence-assisted pre-screening for fragile X syndrome. BMC Med Inform Decis Mak 2022; 22:152. [PMID: 35689224 PMCID: PMC9185893 DOI: 10.1186/s12911-022-01896-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism, is significantly underdiagnosed in the general population. Diagnosing FXS is challenging due to the heterogeneity of the condition, subtle physical characteristics at the time of birth and similarity of phenotypes to other conditions. The medical complexity of FXS underscores an urgent need to develop more efficient and effective screening methods to identify individuals with FXS. In this study, we evaluate the effectiveness of using artificial intelligence (AI) and electronic health records (EHRs) to accelerate FXS diagnosis. METHODS The EHRs of 2.1 million patients served by the University of Wisconsin Health System (UW Health) were the main data source for this retrospective study. UW Health includes patients from south central Wisconsin, with approximately 33 years (1988-2021) of digitized health data. We identified all participants who received a code for FXS in the form of International Classification of Diseases (ICD), Ninth or Tenth Revision (ICD9 = 759.83, ICD10 = Q99.2). Only individuals who received the FXS code on at least two occasions ("Rule of 2") were classified as clinically diagnosed cases. To ensure the availability of sufficient data prior to clinical diagnosis to test the model, only individuals who were diagnosed after age 10 were included in the analysis. A supervised random forest classifier was used to create an AI-assisted pre-screening tool to identify cases with FXS, 5 years earlier than the time of clinical diagnosis based on their medical records. The area under receiver operating characteristic curve (AUROC) was reported. The AUROC shows the level of success in identification of cases and controls (AUROC = 1 represents perfect classification). RESULTS 52 individuals were identified as target cases and matched with 5200 controls. AI-assisted pre-screening tool successfully identified cases with FXS, 5 years earlier than the time of clinical diagnosis with an AUROC of 0.717. A separate model trained and tested on UW Health cases achieved the AUROC of 0.798. CONCLUSIONS This result shows the potential utility of our tool in accelerating FXS diagnosis in real clinical settings. Earlier diagnosis can lead to more timely intervention and access to services with the goal of improving patients' health outcomes.
Collapse
Affiliation(s)
- Arezoo Movaghar
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA.
| | - David Page
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Murray Brilliant
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - Marsha Mailick
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| |
Collapse
|
44
|
Targeted therapy of cognitive deficits in fragile X syndrome. Mol Psychiatry 2022; 27:2766-2776. [PMID: 35354925 PMCID: PMC7612812 DOI: 10.1038/s41380-022-01527-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 11/08/2022]
Abstract
Breaking an impasse in finding mechanism-based therapies of neuropsychiatric disorders requires a strategic shift towards alleviating individual symptoms. Here we present a symptom and circuit-specific approach to rescue deficits of reward learning in Fmr1 knockout mice, a model of Fragile X syndrome (FXS), the most common monogenetic cause of inherited mental disability and autism. We use high-throughput, ecologically-relevant automated tests of cognition and social behavior to assess effectiveness of the circuit-targeted injections of designer nanoparticles, loaded with TIMP metalloproteinase inhibitor 1 protein (TIMP-1). Further, to investigate the impact of our therapeutic strategy on neuronal plasticity we perform long-term potentiation recordings and high-resolution electron microscopy. We show that central amygdala-targeted delivery of TIMP-1 designer nanoparticles reverses impaired cognition in Fmr1 knockouts, while having no impact on deficits of social behavior, hence corroborating symptom-specificity of the proposed approach. Moreover, we elucidate the neural correlates of the highly specific behavioral rescue by showing that the applied therapeutic intervention restores functional synaptic plasticity and ultrastructure of neurons in the central amygdala. Thus, we present a targeted, symptom-specific and mechanism-based strategy to remedy cognitive deficits in Fragile X syndrome.
Collapse
|
45
|
Ma W, Xu D, Zhao L, Yuan M, Cui YL, Li Y. Therapeutic role of curcumin in adult neurogenesis for management of psychiatric and neurological disorders: a scientometric study to an in-depth review. Crit Rev Food Sci Nutr 2022; 63:9379-9391. [PMID: 35482938 DOI: 10.1080/10408398.2022.2067827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aberrant neurogenesis is a major factor in psychiatric and neurological disorders that have significantly attracted the attention of neuroscientists. Curcumin is a primary constituent of curcuminoid that exerts several positive pharmacological effects on aberrant neurogenesis. First, it is important to understand the different processes of neurogenesis, and whether their dysfunction promotes etiology as well as the development of many psychiatric and neurological disorders; then investigate mechanisms by which curcumin affects neurogenesis as an active participant in pathophysiological events. Based on scientometric studies and additional extensive research, we explore the mechanisms by which curcumin regulates adult neurogenesis and in turn affects psychiatric diseases, i.e., depression and neurological disorders among them traumatic brain injury (TBI), stroke, Alzheimer's disease (AD), Gulf War Illness (GWI) and Fragile X syndrome (FXS). This review aims to elucidate the therapeutic effects and mechanisms of curcumin on adult neurogenesis in various psychiatric and neurological disorders. Specifically, we discuss the regulatory role of curcumin in different activities of neural stem cells (NSCs), including proliferation, differentiation, and migration of NSCs. This is geared toward providing novel application prospects of curcumin in treating psychiatric and neurological disorders by regulating adult neurogenesis.
Collapse
Affiliation(s)
- Wenxin Ma
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dong Xu
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lucy Zhao
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Mengmeng Yuan
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
46
|
D’Incal C, Broos J, Torfs T, Kooy RF, Vanden Berghe W. Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network. Cells 2022; 11:cells11081325. [PMID: 35456004 PMCID: PMC9029738 DOI: 10.3390/cells11081325] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022] Open
Abstract
Absence of the Fragile X Mental Retardation Protein (FMRP) causes autism spectrum disorders and intellectual disability, commonly referred to as the Fragile X syndrome. FMRP is a negative regulator of protein translation and is essential for neuronal development and synapse formation. FMRP is a target for several post-translational modifications (PTMs) such as phosphorylation and methylation, which tightly regulate its cellular functions. Studies have indicated the involvement of FMRP in a multitude of cellular pathways, and an absence of FMRP was shown to affect several neurotransmitter receptors, for example, the GABA receptor and intracellular signaling molecules such as Akt, ERK, mTOR, and GSK3. Interestingly, many of these molecules function as protein kinases or phosphatases and thus are potentially amendable by pharmacological treatment. Several treatments acting on these kinase-phosphatase systems have been shown to be successful in preclinical models; however, they have failed to convincingly show any improvements in clinical trials. In this review, we highlight the different protein kinase and phosphatase studies that have been performed in the Fragile X syndrome. In our opinion, some of the paradoxical study conclusions are potentially due to the lack of insight into integrative kinase signaling networks in the disease. Quantitative proteome analyses have been performed in several models for the FXS to determine global molecular processes in FXS. However, only one phosphoproteomics study has been carried out in Fmr1 knock-out mouse embryonic fibroblasts, and it showed dysfunctional protein kinase and phosphatase signaling hubs in the brain. This suggests that the further use of phosphoproteomics approaches in Fragile X syndrome holds promise for identifying novel targets for kinase inhibitor therapies.
Collapse
Affiliation(s)
- Claudio D’Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Jitse Broos
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - Thierry Torfs
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Correspondence: ; Tel.: +0032-(0)-32-652-657
| |
Collapse
|
47
|
Sathyanarayana SH, Saunders JA, Slaughter J, Tariq K, Chakrabarti R, Sadanandappa MK, Luikart BW, Bosco G. Pten heterozygosity restores neuronal morphology in fragile X syndrome mice. Proc Natl Acad Sci U S A 2022; 119:e2109448119. [PMID: 35394871 PMCID: PMC9169627 DOI: 10.1073/pnas.2109448119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
Genetic studies of hippocampal granule neuron development have been used to elucidate cellular functions of Pten and Fmr1. While mutations in each gene cause neurodevelopmental disorders such as autism and fragile X syndrome, how Pten and Fmr1 function alone or together during normal development is not known. Moreover, Pten mRNA is bound by the fragile X mental retardation protein (FMRP) RNA binding protein, but how this physical interaction impinges on phosphatase and tensin homolog protein (PTEN) expression is not known. To understand the interaction of PTEN and FMRP, we investigated the dentate gyrus granule neuron development in Pten and Fmr1 knockout (KO) mice. Interestingly, heterozygosity of Pten restored Fmr1 KO cellular phenotypes, including dendritic arborization, and spine density, while PTEN protein expression was significantly increased in Fmr1 KO animals. However, complete deletion of both Pten and Fmr1 resulted in a dramatic increase in dendritic length, spine density, and spine length. In addition, overexpression of PTEN in Fmr1 KO Pten heterozygous background reduced dendritic length, arborization, spine density, and spine length including pS6 levels. Our findings suggest that PTEN levels are negatively regulated by FMRP, and some Fmr1 KO phenotypes are caused by dysregulation of PTEN protein. These observations provide evidence for the genetic interaction of PTEN and FMRP and a possible mechanistic basis for the pathogenesis of Fmr1-related fragile X neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Jasmine A. Saunders
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jacob Slaughter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Kamran Tariq
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cellular Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Madhumala K. Sadanandappa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Bryan W. Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
48
|
Zhou P, Chen X, Shi K, Qu H, Xia J. The characteristics, tumorigenicities and therapeutics of cancer stem cells based on circRNAs. Pathol Res Pract 2022; 233:153822. [DOI: 10.1016/j.prp.2022.153822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
|
49
|
Brašić JR, Goodman JA, Nandi A, Russell DS, Jennings D, Barret O, Martin SD, Slifer K, Sedlak T, Mathur AK, Seibyl JP, Berry-Kravis EM, Wong DF, Budimirovic DB. Fragile X Mental Retardation Protein and Cerebral Expression of Metabotropic Glutamate Receptor Subtype 5 in Men with Fragile X Syndrome: A Pilot Study. Brain Sci 2022; 12:314. [PMID: 35326270 PMCID: PMC8946825 DOI: 10.3390/brainsci12030314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple lines of evidence suggest that a deficiency of Fragile X Mental Retardation Protein (FMRP) mediates dysfunction of the metabotropic glutamate receptor subtype 5 (mGluR5) in the pathogenesis of fragile X syndrome (FXS), the most commonly known single-gene cause of inherited intellectual disability (ID) and autism spectrum disorder (ASD). Nevertheless, animal and human studies regarding the link between FMRP and mGluR5 expression provide inconsistent or conflicting findings about the nature of those relationships. Since multiple clinical trials of glutamatergic agents in humans with FXS did not demonstrate the amelioration of the behavioral phenotype observed in animal models of FXS, we sought measure if mGluR5 expression is increased in men with FXS to form the basis for improved clinical trials. Unexpectedly marked reductions in mGluR5 expression were observed in cortical and subcortical regions in men with FXS. Reduced mGluR5 expression throughout the living brains of men with FXS provides a clue to examine FMRP and mGluR5 expression in FXS. In order to develop the findings of our previous study and to strengthen the objective tools for future clinical trials of glutamatergic agents in FXS, we sought to assess the possible value of measuring both FMRP levels and mGluR5 expression in men with FXS. We aimed to show the value of measurement of FMRP levels and mGluR5 expression for the diagnosis and treatment of individuals with FXS and related conditions. We administered 3-[18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB), a specific mGluR5 radioligand for quantitative measurements of the density and the distribution of mGluR5s, to six men with the full mutation (FM) of FXS and to one man with allele size mosaicism for FXS (FXS-M). Utilizing the seven cortical and subcortical regions affected in neurodegenerative disorders as indicator variables, adjusted linear regression of mGluR5 expression and FMRP showed that mGluR5 expression was significantly reduced in the occipital cortex and the thalamus relative to baseline (anterior cingulate cortex) if FMRP levels are held constant (F(7,47) = 6.84, p < 0.001).These findings indicate the usefulness of cerebral mGluR5 expression measured by PET with [18F]FPEB and FMRP values in men with FXS and related conditions for assessments in community facilities within a hundred-mile radius of a production center with a cyclotron. These initial results of this pilot study advance our previous study regarding the measurement of mGluR5 expression by combining both FMRP levels and mGluR5 expression as tools for meaningful clinical trials of glutamatergic agents for men with FXS. We confirm the feasibility of this protocol as a valuable tool to measure FMRP levels and mGluR5 expression in clinical trials of individuals with FXS and related conditions and to provide the foundations to apply precision medicine to tailor treatment plans to the specific needs of individuals with FXS and related conditions.
Collapse
Affiliation(s)
- James Robert Brašić
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
| | - Jack Alexander Goodman
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT 06473, USA;
| | - Ayon Nandi
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
| | - David S. Russell
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
| | - Danna Jennings
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
- Denali Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Olivier Barret
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Institut de Biologie François Jacob, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Université Paris-Saclay, CEDEX, 92265 Fontenay-aux-Roses, France
| | - Samuel D. Martin
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
- Department of Neuroscience, Zanvyl Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Keith Slifer
- Department of Psychiatry and Behavioral Sciences-Child Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Thomas Sedlak
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
- Department of Psychiatry and Behavioral Sciences-General Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anil Kumar Mathur
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
| | - John P. Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA; (D.S.R.); (D.J.); (O.B.); (J.P.S.)
- Invicro, New Haven, CT 06510, USA
| | - Elizabeth M. Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Dean F. Wong
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.N.); (S.D.M.); (T.S.); (A.K.M.); (D.F.W.)
- Laboratory of Central Nervous System (CNS) Neuropsychopharmacology and Multimodal, Imaging (CNAMI), Mallinckrodt Institute of Radiology, Washington University, Saint Louis, MO 63110, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry and Behavioral Sciences-Child Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Psychiatry, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
50
|
Yildirim Z, Baboo S, Hamid SM, Dogan AE, Tufanli O, Robichaud S, Emerton C, Diedrich JK, Vatandaslar H, Nikolos F, Gu Y, Iwawaki T, Tarling E, Ouimet M, Nelson DL, Yates JR, Walter P, Erbay E. Intercepting IRE1 kinase-FMRP signaling prevents atherosclerosis progression. EMBO Mol Med 2022; 14:e15344. [PMID: 35191199 PMCID: PMC8988208 DOI: 10.15252/emmm.202115344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Fragile X Mental Retardation protein (FMRP), widely known for its role in hereditary intellectual disability, is an RNA‐binding protein (RBP) that controls translation of select mRNAs. We discovered that endoplasmic reticulum (ER) stress induces phosphorylation of FMRP on a site that is known to enhance translation inhibition of FMRP‐bound mRNAs. We show ER stress‐induced activation of Inositol requiring enzyme‐1 (IRE1), an ER‐resident stress‐sensing kinase/endoribonuclease, leads to FMRP phosphorylation and to suppression of macrophage cholesterol efflux and apoptotic cell clearance (efferocytosis). Conversely, FMRP deficiency and pharmacological inhibition of IRE1 kinase activity enhances cholesterol efflux and efferocytosis, reducing atherosclerosis in mice. Our results provide mechanistic insights into how ER stress‐induced IRE1 kinase activity contributes to macrophage cholesterol homeostasis and suggests IRE1 inhibition as a promising new way to counteract atherosclerosis.
Collapse
Affiliation(s)
- Zehra Yildirim
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Syed M Hamid
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Asli E Dogan
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Molecular Biology and Genetics, National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Ozlem Tufanli
- Lagone Medical Center, New York University, New York, NY, USA
| | - Sabrina Robichaud
- Department of Biochemistry, Microbiology and Immunology, Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - Christina Emerton
- Department of Biochemistry, Microbiology and Immunology, Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Fotis Nikolos
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yanghong Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Takao Iwawaki
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Elizabeth Tarling
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Heart Institute, University of Ottawa, Ottawa, ON, Canada
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Peter Walter
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
| | - Ebru Erbay
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|