1
|
Herron TJ, Devaney E, Guerrero-Serna G, Mundada L, Metzger JM. Gene transfer of human cardiomyopathy β-MyHC mutant R403Q directly alters intact cardiac myocyte calcium homeostasis and causes hyper-contractility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605903. [PMID: 39211095 PMCID: PMC11361141 DOI: 10.1101/2024.07.31.605903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The R403Q mutation of human cardiac β-myosin heavy chain was the first missense mutation of a sarcomeric protein identified as being causal for hypertrophic cardiomyopathy (HCM), in humans. The direct effect of the R403Q mutant myosin on intracellular calcium homeostasis and contractility is not fully known. Here we have used in vitro gene transfer of the R403Q mutant human β-myosin to study its direct effects on single intact adult cardiac myocyte contractility and calcium homeostasis. In the first experiments, adult cardiac myocytes transduced with the R403Q mutant myosin recombinant viral vectors were compared to myocytes transduced with wild-type human β-myosin (wtMYH7). Efficiency of gene transfer was high in both groups (>98%) and the degree of stoichiometric myofilament incorporation of either the mutant or normal myosin was comparable at ∼40% in quiescent myocytes in primary culture. Sarcomere structure and cellular morphology were unaffected by R403Q myosin expression and myofilament incorporation. Functionally, in electrically paced cardiac myocytes, the R403Q mutant myosin caused a significant increase in intracellular calcium concentration and myocyte hyper-contractility. At the sub-cellular myofilament level, the mutant myosin increased the calcium sensitivity of steady state isometric tension development and increased isometric cross-bridge cycling kinetics. R403Q myocytes became arrhythmic after β-adrenergic stimulation with spontaneous calcium transients and contractions in between electrical stimuli. These results indicate that human R403Q mutant myosin directly alters myofilament function and intracellular calcium cycling. Elevated calcium levels may provide a trigger for the ensuing hypertrophy and susceptibility to arrhythmia that are characteristic of HCM.
Collapse
|
2
|
Page ML, Aguzzoli Heberle B, Brandon JA, Wadsworth ME, Gordon LA, Nations KA, Ebbert MTW. Surveying the landscape of RNA isoform diversity and expression across 9 GTEx tissues using long-read sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579945. [PMID: 38405825 PMCID: PMC10888753 DOI: 10.1101/2024.02.13.579945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Even though alternative RNA splicing was discovered nearly 50 years ago (1977), we still understand very little about most isoforms arising from a single gene, including in which tissues they are expressed and if their functions differ. Human gene annotations suggest remarkable transcriptional complexity, with approximately 252,798 distinct RNA isoform annotations from 62,710 gene bodies (Ensembl v109; 2023), emphasizing the need to understand their biological effects. For example, 256 gene bodies have ≥50 annotated isoforms and 30 have ≥100, where one protein-coding gene (MAPK10) even has 192 distinct RNA isoform annotations. Whether such isoform diversity results from biological redundancy or spurious alternative splicing (i.e., noise), or whether individual isoforms have specialized functions (even if subtle) remains a mystery for most genes. Recent studies by Aguzzoli-Heberle et al., Leung et al., and Glinos et al. demonstrated long-read RNAseq enables improved RNA isoform quantification for essentially any tissue, cell type, or biological condition (e.g., disease, development, aging, etc.), making it possible to better assess individual isoform expression and function. While each study provided important discoveries related to RNA isoform diversity, deeper exploration is needed. We sought to quantify and characterize real isoform usage across tissues (compared to annotations). We used long-read RNAseq data from 58 GTEx samples across nine tissues (three brain, two heart, muscle, lung, liver, and cultured fibroblasts) generated by Glinos et al. and found considerable isoform diversity within and across tissues. Cerebellar hemisphere was the most transcriptionally complex tissue (22,522 distinct isoforms; 3,726 unique); liver was least diverse (12,435 distinct isoforms; 1,039 unique). We highlight gene clusters exhibiting high tissue-specific isoform diversity per tissue (e.g., TPM1 expresses 19 in heart's atrial appendage). We also validated 447 of the 700 new isoforms discovered by Aguzzoli-Heberle et al. and found that 88 were expressed in all nine tissues, while 58 were specific to a single tissue. This study represents a broad survey of the RNA isoform landscape, demonstrating isoform diversity across nine tissues and emphasizes the need to better understand how individual isoforms from a single gene body contribute to human health and disease.
Collapse
Affiliation(s)
- Madeline L. Page
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Bernardo Aguzzoli Heberle
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - J. Anthony Brandon
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Mark E. Wadsworth
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Lacey A. Gordon
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Kayla A. Nations
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Mark T. W. Ebbert
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
3
|
Yang Z, Chen J, Li H, Lin Y. Genotype-Phenotype Associations with Restrictive Cardiomyopathy Induced by Pathogenic Genetic Mutations. Rev Cardiovasc Med 2022; 23:185. [PMID: 39077162 PMCID: PMC11273878 DOI: 10.31083/j.rcm2306185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 07/31/2024] Open
Abstract
Restrictive cardiomyopathy (RCM) is an uncommon cardiac muscle disease characterized by impaired ventricular filling and severe diastolic dysfunction with or without systolic dysfunction. The patients with RCM present poor prognosis and high prevalence of sudden cardiac death, especially in the young. The etiology of RCM may be idiopathic, familial or acquired predispositions from various systemic diseases. The genetic background of familial RCM is often caused by mutations in genes encoding proteins of sarcomeres and a significant minority by mutations in non-sarcomeric proteins and transthyretin proteins. It is important to identify the associations between genotype and phenotype to guide clinical diagnosis and treatment. Here, we have summarized the reported index cases with RCM involving genetic etiology to date and highlighted the most significant phenotype results.
Collapse
Affiliation(s)
- Zhe Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710 Dongguan, Guangdong, China
- Department of Endocrinology and Metabolism, Zhuhai Hospital Affiliated to Jinan University; The First Hospital Affiliated to Medical College of Macao University of Science and Technology, 519000 Zhuhai, Guangdong, China
| | - Jia Chen
- The Second Department of Cardiology, The Second People's Hospital of Guangdong Province, 510310 Guangzhou, Guangdong, China
| | - Hong Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710 Dongguan, Guangdong, China
| | - Yubi Lin
- The First Dongguan Affiliated Hospital, Guangdong Medical University, 523710 Dongguan, Guangdong, China
| |
Collapse
|
4
|
Shafaattalab S, Li AY, Gunawan MG, Kim B, Jayousi F, Maaref Y, Song Z, Weiss JN, Solaro RJ, Qu Z, Tibbits GF. Mechanisms of Arrhythmogenicity of Hypertrophic Cardiomyopathy-Associated Troponin T ( TNNT2) Variant I79N. Front Cell Dev Biol 2022; 9:787581. [PMID: 34977031 PMCID: PMC8718794 DOI: 10.3389/fcell.2021.787581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiovascular disease and often results in cardiac remodeling and an increased incidence of sudden cardiac arrest (SCA) and death, especially in youth and young adults. Among thousands of different variants found in HCM patients, variants of TNNT2 (cardiac troponin T—TNNT2) are linked to increased risk of ventricular arrhythmogenesis and sudden death despite causing little to no cardiac hypertrophy. Therefore, studying the effect of TNNT2 variants on cardiac propensity for arrhythmogenesis can pave the way for characterizing HCM in susceptible patients before sudden cardiac arrest occurs. In this study, a TNNT2 variant, I79N, was generated in human cardiac recombinant/reconstituted thin filaments (hcRTF) to investigate the effect of the mutation on myofilament Ca2+ sensitivity and Ca2+ dissociation rate using steady-state and stopped-flow fluorescence techniques. The results revealed that the I79N variant significantly increases myofilament Ca2+ sensitivity and decreases the Ca2+ off-rate constant (koff). To investigate further, a heterozygous I79N+/−TNNT2 variant was introduced into human-induced pluripotent stem cells using CRISPR/Cas9 and subsequently differentiated into ventricular cardiomyocytes (hiPSC-CMs). To study the arrhythmogenic properties, monolayers of I79N+/− hiPSC-CMs were studied in comparison to their isogenic controls. Arrhythmogenesis was investigated by measuring voltage (Vm) and cytosolic Ca2+ transients over a range of stimulation frequencies. An increasing stimulation frequency was applied to the cells, from 55 to 75 bpm. The results of this protocol showed that the TnT-I79N cells had reduced intracellular Ca2+ transients due to the enhanced cytosolic Ca2+ buffering. These changes in Ca2+ handling resulted in beat-to-beat instability and triangulation of the cardiac action potential, which are predictors of arrhythmia risk. While wild-type (WT) hiPSC-CMs were accurately entrained to frequencies of at least 150 bpm, the I79N hiPSC-CMs demonstrated clear patterns of alternans for both Vm and Ca2+ transients at frequencies >75 bpm. Lastly, a transcriptomic analysis was conducted on WT vs. I79N+/−TNNT2 hiPSC-CMs using a custom NanoString codeset. The results showed a significant upregulation of NPPA (atrial natriuretic peptide), NPPB (brain natriuretic peptide), Notch signaling pathway components, and other extracellular matrix (ECM) remodeling components in I79N+/− vs. the isogenic control. This significant shift demonstrates that this missense in the TNNT2 transcript likely causes a biophysical trigger, which initiates this significant alteration in the transcriptome. This TnT-I79N hiPSC-CM model not only reproduces key cellular features of HCM-linked mutations but also suggests that this variant causes uncharted pro-arrhythmic changes to the human action potential and gene expression.
Collapse
Affiliation(s)
- Sanam Shafaattalab
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Alison Y Li
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Marvin G Gunawan
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - BaRun Kim
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Farah Jayousi
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Yasaman Maaref
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Zhen Song
- UCLA Cardiac Computation Lab, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - James N Weiss
- UCLA Cardiac Computation Lab, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - R John Solaro
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| | - Zhilin Qu
- UCLA Cardiac Computation Lab, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Glen F Tibbits
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Department of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Karaca Özer P, Ayduk Gövdeli E, Engin B, Atıcı A, Baykız D, Orta H, Demirtakan ZG, Emet S, Elitok A, Tayyareci Y, Umman B, Bilge AK, Buğra Z. Role of global longitudinal strain in discriminating variant forms of left ventricular hypertrophy and predicting mortality. Anatol J Cardiol 2021; 25:863-871. [PMID: 34866580 DOI: 10.5152/anatoljcardiol.2021.21940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE In this study, we aimed to compare the functional adaptations of the left ventricle in variant forms of left ventricular hypertrophy (LVH) and to evaluate the use of two-dimensional speckle tracking echocardiography (2D-STE) in differential diagnosis and prognosis. METHODS This was a prospective cohort study of 68 patients with LVH, including 20 patients with non-obstructive hypertrophic cardiomyopathy (HCM), 23 competitive top-level athletes free of cardiovascular disease, and 25 patients with hypertensive heart disease (HHD). All the subjects underwent 2D transthoracic echocardiography (TTE) and 2D-STE. The primary endpoint was all-cause mortality. Global longitudinal strain (GLS) below -12.5% was defined as severely reduced strain, -12.5% to -17.9% as mildly reduced strain, and above -18% as normal strain. RESULTS The mean LV-GLS value was higher in athletes than in patients with HCM and HHD with the lowest value being in the HCM group (HCM: -11.4±2.2%; HHD: -13.6±2.6%; and athletes: -15.5±2.1%; p<0.001 among groups). LV-GLS below -12.5% distinguished HCM from others with 65% sensitivity and 77% specificity [area under curve (AUC)=0.808, 95% confidence interval (CI): 0.699-0.917, p<0.001]. The median follow-up duration was 6.4±1.1 years. Overall, 11 patients (16%) died. Seven of these were in the HHD group, and four were in the HCM group. The mean GLS value in patients who died was -11.8±1.5%. LV-GLS was significantly associated with mortality after adjusting age and sex via multiple analysis (RR=0.723, 95% CI: 0.537-0.974, p=0.033). Patients with GLS below -12.5% had a higher risk of all-cause mortality compared with that of patients with GLS above -12.5% according to Kaplan-Meier survival analysis for 7 years (29% vs. 9%; p=0.032). The LV-GLS value predicts mortality with 64% sensitivity and 70% specificity with a cut-off value of -12.5 (AUC=0.740, 95% CI: 0.617-0.863, p=0.012). CONCLUSION The 2D-STE provides important information about the longitudinal systolic function of the myocardium. It may enable differentiation variable forms of LVH and predict prognosis.
Collapse
Affiliation(s)
- Pelin Karaca Özer
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| | - Elif Ayduk Gövdeli
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| | - Berat Engin
- Department of Cardiology, Manavgat State Hospital; Antalya-Turkey
| | - Adem Atıcı
- Department of Cardiology, İstanbul Medeniyet University, Göztepe Training and Research Hospital; İstanbul-Turkey
| | - Derya Baykız
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| | - Hüseyin Orta
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| | | | - Samim Emet
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| | - Ali Elitok
- Department of Cardiology, İstinye University, Liv Hospital; İstanbul-Turkey
| | - Yelda Tayyareci
- Department of Cardiology, İstinye University, Liv Hospital; İstanbul-Turkey
| | - Berrin Umman
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| | - Ahmet Kaya Bilge
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| | - Zehra Buğra
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| |
Collapse
|
6
|
Clippinger SR, Cloonan PE, Wang W, Greenberg L, Stump WT, Angsutararux P, Nerbonne JM, Greenberg MJ. Mechanical dysfunction of the sarcomere induced by a pathogenic mutation in troponin T drives cellular adaptation. J Gen Physiol 2021; 153:211992. [PMID: 33856419 PMCID: PMC8054178 DOI: 10.1085/jgp.202012787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM), a leading cause of sudden cardiac death, is primarily caused by mutations in sarcomeric proteins. The pathogenesis of HCM is complex, with functional changes that span scales, from molecules to tissues. This makes it challenging to deconvolve the biophysical molecular defect that drives the disease pathogenesis from downstream changes in cellular function. In this study, we examine an HCM mutation in troponin T, R92Q, for which several models explaining its effects in disease have been put forward. We demonstrate that the primary molecular insult driving disease pathogenesis is mutation-induced alterations in tropomyosin positioning, which causes increased molecular and cellular force generation during calcium-based activation. Computational modeling shows that the increased cellular force is consistent with the molecular mechanism. These changes in cellular contractility cause downstream alterations in gene expression, calcium handling, and electrophysiology. Taken together, our results demonstrate that molecularly driven changes in mechanical tension drive the early disease pathogenesis of familial HCM, leading to activation of adaptive mechanobiological signaling pathways.
Collapse
Affiliation(s)
- Sarah R Clippinger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Paige E Cloonan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Wei Wang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | | | - Jeanne M Nerbonne
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
7
|
Greenberg MJ, Tardiff JC. Complexity in genetic cardiomyopathies and new approaches for mechanism-based precision medicine. J Gen Physiol 2021; 153:e202012662. [PMID: 33512404 PMCID: PMC7852459 DOI: 10.1085/jgp.202012662] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic cardiomyopathies have been studied for decades, and it has become increasingly clear that these progressive diseases are more complex than originally thought. These complexities can be seen both in the molecular etiologies of these disorders and in the clinical phenotypes observed in patients. While these disorders can be caused by mutations in cardiac genes, including ones encoding sarcomeric proteins, the disease presentation varies depending on the patient mutation, where mutations even within the same gene can cause divergent phenotypes. Moreover, it is challenging to connect the mutation-induced molecular insult that drives the disease pathogenesis with the various compensatory and maladaptive pathways that are activated during the course of the subsequent progressive, pathogenic cardiac remodeling. These inherent complexities have frustrated our ability to understand and develop broadly effective treatments for these disorders. It has been proposed that it might be possible to improve patient outcomes by adopting a precision medicine approach. Here, we lay out a practical framework for such an approach, where patient subpopulations are binned based on common underlying biophysical mechanisms that drive the molecular disease pathogenesis, and we propose that this function-based approach will enable the development of targeted therapeutics that ameliorate these effects. We highlight several mutations to illustrate the need for mechanistic molecular experiments that span organizational and temporal scales, and we describe recent advances in the development of novel therapeutics based on functional targets. Finally, we describe many of the outstanding questions for the field and how fundamental mechanistic studies, informed by our more nuanced understanding of the clinical disorders, will play a central role in realizing the potential of precision medicine for genetic cardiomyopathies.
Collapse
Affiliation(s)
- Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
8
|
Ramachandra CJ, Mai Ja KPM, Lin YH, Shim W, Boisvert WA, Hausenloy DJ. INDUCED PLURIPOTENT STEM CELLS FOR MODELLING ENERGETIC ALTERATIONS IN HYPERTROPHIC CARDIOMYOPATHY. CONDITIONING MEDICINE 2019; 2:142-151. [PMID: 32457935 PMCID: PMC7250397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is one of the most commonly inherited cardiac disorders that manifests with increased ventricular wall thickening, cardiomyocyte hypertrophy, disarrayed myofibers and interstitial fibrosis. The major pathophysiological features include, diastolic dysfunction, obstruction of the left ventricular outflow tract and cardiac arrhythmias. Mutations in genes that encode mostly for sarcomeric proteins have been associated with HCM but, despite the abundant research conducted to decipher the molecular mechanisms underlying the disease, it remains unclear as to how a primary defect in the sarcomere could lead to secondary phenotypes such as cellular hypertrophy. Mounting evidence suggests energy deficiency could be an important contributor of disease pathogenesis as well. Various animal models of HCM have been generated for gaining deeper insight into disease pathogenesis, however species variation between animals and humans, as well as the limited availability of human myocardial samples, has encouraged researchers to seek alternative 'humanized' models. Using induced pluripotent stem cells (iPSCs), human cardiomyocytes (CMs) have been generated from patients with HCM for investigating disease mechanisms. While these HCM-iPSC models demonstrate most of the phenotypic traits, it is important to ascertain if they recapitulate all pathophysiological features, especially that of energy deficiency. In this review we discuss the currently established HCM-iPSC models with emphasis on altered energetics.
Collapse
Affiliation(s)
- Chrishan J.A. Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - K P Myu Mai Ja
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Ying-Hsi Lin
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore
| | - William A. Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, USA
| | - Derek J. Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, UK
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| |
Collapse
|
9
|
Huang X, Yue Y, Wang Y, Deng Y, Liu L, Di Y, Sun S, Chen D, Fan L, Cao J. Assessment of left ventricular systolic and diastolic abnormalities in patients with hypertrophic cardiomyopathy using real-time three-dimensional echocardiography and two-dimensional speckle tracking imaging. Cardiovasc Ultrasound 2018; 16:23. [PMID: 30285887 PMCID: PMC6167824 DOI: 10.1186/s12947-018-0142-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/05/2018] [Indexed: 11/23/2022] Open
Abstract
Background Conventional echocardiography is not sensitive enough to assess left ventricular (LV) dysfunction in hypertrophic cardiomyopathy (HCM) patients. This research attempts to find a new ultrasonic technology to better assess LV diastolic function, systolic function, and myocardial longitudinal and circumferential systolic strain of segments with different thicknesses in HCM patients. Methods This study included 50 patients with HCM and 40 healthy subjects as controls. The peak early and late mitral annulus diastolic velocities at six loci (Ea′ and Aa′, respectively) and the Ea′/Aa′ ratio were measured using real-time tri-plane echocardiography and quantitative tissue velocity imaging (RT-3PE-QTVI). The mean value of Ea′ at six loci (Em′) was obtained for the calculation of E/Em′ ratio. The LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), LV stroke volume (LVSV), and LV ejection fraction (LVEF) were measured using real-time three-dimensional echocardiography (RT-3DE). LV myocardial longitudinal peak systolic strain (LPSS) and circumferential peak systolic strain (CPSS) in the apical-middle-basal segments (LPSS-api, LPSS-mid, LPSS-bas; CPSS-api, CPSS-mid, and CPSS-bas, respectively) were obtained using a software for two-dimensional speckle tracking imaging (2D-STI). According to the different segmental thicknesses (STs) in each HCM patient, the values (LPSS and CPSS) of all the myocardial segments were categorized into three groups and the respective averages were computed. Results The Ea′, Aa′, and, Ea′/Aa’ ratio in HCM patients were lower than those in the controls (all p < 0.001), while the E/Em′ ratio in HCM patients was higher than that in the controls (p < 0.001). The LVEDV, LVSV, and LVEF were significantly lower in HCM patients than in controls (all p < 0.001). In HCM patients, the LPSS-api, LPSS-mid, LPSS-bas, CPSS-api, CPSS-mid, and CPSS-bas and the LPSS and CPSS of LV segments with different thicknesses were all significantly reduced (all p < 0.001). Conclusions In HCM patients, myocardial dysfunction was widespread not only in the obviously hypertrophic segments but also in the non-hypertrophic segments; the LV systolic and diastolic functions were damaged, even with a normal LVEF. LV diastolic dysfunction, systolic dysfunction, and myocardial deformation impairment in HCM patients can be sensitively revealed by RT-3PE-QTVI, RT-3DE, and 2D-STI.
Collapse
Affiliation(s)
- Xin Huang
- Department of cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yan Yue
- Department of medical administration, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yinmeng Wang
- Department of Respiration, Clifford Hospital, Guangzhou, 511495, China
| | - Yujiao Deng
- Department of Ultrasound, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lu Liu
- Department of cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Yanqi Di
- Department of cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Shasha Sun
- Department of cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Deyou Chen
- Department of Outpatient, Chinese PLA General Hospital, Beijing, 100853, China
| | - Li Fan
- Department of cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Jian Cao
- Department of cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| |
Collapse
|
10
|
Wang L, Kim K, Parikh S, Cadar AG, Bersell KR, He H, Pinto JR, Kryshtal DO, Knollmann BC. Hypertrophic cardiomyopathy-linked mutation in troponin T causes myofibrillar disarray and pro-arrhythmic action potential changes in human iPSC cardiomyocytes. J Mol Cell Cardiol 2018; 114:320-327. [PMID: 29217433 PMCID: PMC5800960 DOI: 10.1016/j.yjmcc.2017.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Mutations in cardiac troponin T (TnT) are linked to increased risk of ventricular arrhythmia and sudden death despite causing little to no cardiac hypertrophy. Studies in mice suggest that the hypertrophic cardiomyopathy (HCM)-associated TnT-I79N mutation increases myofilament Ca sensitivity and is arrhythmogenic, but whether findings from mice translate to human cardiomyocyte electrophysiology is not known. OBJECTIVES To study the effects of the TnT-I79N mutation in human cardiomyocytes. METHODS Using CRISPR/Cas9, the TnT-I79N mutation was introduced into human induced pluripotent stem cells (hiPSCs). We then used the matrigel mattress method to generate single rod-shaped cardiomyocytes (CMs) and studied contractility, Ca handling and electrophysiology. RESULTS Compared to isogenic control hiPSC-CMs, TnT-I79N hiPSC-CMs exhibited sarcomere disorganization, increased systolic function and impaired relaxation. The Ca-dependence of contractility was leftward shifted in mutation containing cardiomyocytes, demonstrating increased myofilament Ca sensitivity. In voltage-clamped hiPSC-CMs, TnT-I79N reduced intracellular Ca transients by enhancing cytosolic Ca buffering. These changes in Ca handling resulted in beat-to-beat instability and triangulation of the cardiac action potential, which are predictors of arrhythmia risk. The myofilament Ca sensitizer EMD57033 produced similar action potential triangulation in control hiPSC-CMs. CONCLUSIONS The TnT-I79N hiPSC-CM model not only reproduces key cellular features of TnT-linked HCM such as myofilament disarray, hypercontractility and diastolic dysfunction, but also suggests that this TnT mutation causes pro-arrhythmic changes of the human ventricular action potential.
Collapse
Affiliation(s)
- Lili Wang
- Division of Clinical Pharmacology, Vanderbilt Univ Medical Ctr, Nashville, TN, Medical Research Building IV, Rm.1275, 2215B Garland Ave, Nashville, TN 37232, USA
| | - Kyungsoo Kim
- Division of Clinical Pharmacology, Vanderbilt Univ Medical Ctr, Nashville, TN, Medical Research Building IV, Rm.1275, 2215B Garland Ave, Nashville, TN 37232, USA
| | - Shan Parikh
- Division of Clinical Pharmacology, Vanderbilt Univ Medical Ctr, Nashville, TN, Medical Research Building IV, Rm.1275, 2215B Garland Ave, Nashville, TN 37232, USA
| | - Adrian Gabriel Cadar
- Division of Cardiovascular Medicine, Vanderbilt Univ Medical Ctr, Nashville, TN, Light Hall 1155A, 2215B Garland Ave, Nashville, TN 37232, USA
| | - Kevin R Bersell
- Division of Clinical Pharmacology, Vanderbilt Univ Medical Ctr, Nashville, TN, Medical Research Building IV, Rm.1275, 2215B Garland Ave, Nashville, TN 37232, USA
| | - Huan He
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA; Translational Science Laboratory, Florida State University College of Medicine, 1115 W. Call Street, Tallahassee, FL 32306, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 W. Call Street, Tallahassee, FL 32306, USA
| | - Dmytro O Kryshtal
- Division of Clinical Pharmacology, Vanderbilt Univ Medical Ctr, Nashville, TN, Medical Research Building IV, Rm.1275, 2215B Garland Ave, Nashville, TN 37232, USA.
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt Univ Medical Ctr, Nashville, TN, Medical Research Building IV, Rm.1275, 2215B Garland Ave, Nashville, TN 37232, USA.
| |
Collapse
|
11
|
Cheng Y, Regnier M. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. Arch Biochem Biophys 2016; 601:11-21. [PMID: 26851561 PMCID: PMC4899195 DOI: 10.1016/j.abb.2016.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 11/29/2022]
Abstract
Cardiac troponin (cTn) acts as a pivotal regulator of muscle contraction and relaxation and is composed of three distinct subunits (cTnC: a highly conserved Ca(2+) binding subunit, cTnI: an actomyosin ATPase inhibitory subunit, and cTnT: a tropomyosin binding subunit). In this mini-review, we briefly summarize the structure-function relationship of cTn and its subunits, its modulation by PKA-mediated phosphorylation of cTnI, and what is known about how these properties are altered by hypertrophic cardiomyopathy (HCM) associated mutations of cTnI. This includes recent work using computational modeling approaches to understand the atomic-based structural level basis of disease-associated mutations. We propose a viewpoint that it is alteration of cTnC-cTnI interaction (rather than the Ca(2+) binding properties of cTn) per se that disrupt the ability of PKA-mediated phosphorylation at cTnI Ser-23/24 to alter contraction and relaxation in at least some HCM-associated mutations. The combination of state of the art biophysical approaches can provide new insight on the structure-function mechanisms of contractile dysfunction resulting cTnI mutations and exciting new avenues for the diagnosis, prevention, and even treatment of heart diseases.
Collapse
Affiliation(s)
- Yuanhua Cheng
- University of Washington, Department of Bioengineering, Seattle, WA, USA
| | - Michael Regnier
- University of Washington, Department of Bioengineering, Seattle, WA, USA.
| |
Collapse
|
12
|
Thompson BR, Metzger JM. Cell biology of sarcomeric protein engineering: disease modeling and therapeutic potential. Anat Rec (Hoboken) 2015; 297:1663-9. [PMID: 25125179 DOI: 10.1002/ar.22966] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 11/09/2022]
Abstract
The cardiac sarcomere is the functional unit for myocyte contraction. Ordered arrays of sarcomeric proteins, held in stoichiometric balance with each other, respond to calcium to coordinate contraction and relaxation of the heart. Altered sarcomeric structure-function underlies the primary basis of disease in multiple acquired and inherited heart disease states. Hypertrophic and restrictive cardiomyopathies are caused by inherited mutations in sarcomeric genes and result in altered contractility. Ischemia-mediated acidosis directly alters sarcomere function resulting in decreased contractility. In this review, we highlight the use of acute genetic engineering of adult cardiac myocytes through stoichiometric replacement of sarcomeric proteins in these disease states with particular focus on cardiac troponin I. Stoichiometric replacement of disease causing mutations has been instrumental in defining the molecular mechanisms of hypertrophic and restrictive cardiomyopathy in a cellular context. In addition, taking advantage of stoichiometric replacement through gene therapy is discussed, highlighting the ischemia-resistant histidine-button, A164H cTnI. Stoichiometric replacement of sarcomeric proteins offers a potential gene therapy avenue to replace mutant proteins, alter sarcomeric responses to pathophysiologic insults, or neutralize altered sarcomeric function in disease.
Collapse
Affiliation(s)
- Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | | |
Collapse
|
13
|
Abstract
Traditional methods for DNA transfection are often inefficient and toxic for terminally differentiated cells, such as cardiac myocytes. Vector-based gene transfer is an efficient approach for introducing exogenous cDNA into these types of primary cell cultures. In this chapter, separate protocols for adult rat cardiac myocyte isolation and gene transfer with recombinant adenovirus are provided and are routinely utilized for studying the effects of sarcomeric proteins on myofilament function.
Collapse
|
14
|
Liu L, Tuo S, Zhang J, Zuo L, Liu F, Hao L, Sun Y, Yang L, Shao H, Qi W, Zhou X, Ge S. Reduction of left ventricular longitudinal global and segmental systolic functions in patients with hypertrophic cardiomyopathy: Study of two-dimensional tissue motion annular displacement. Exp Ther Med 2014; 7:1457-1464. [PMID: 24926326 PMCID: PMC4043569 DOI: 10.3892/etm.2014.1617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 02/05/2014] [Indexed: 11/18/2022] Open
Abstract
The early detection of abnormal left ventricular systolic functions in patients with hypertrophic cardiomyopathy (HCM) remains a challenge. The aim of this study was to identify a novel method for the assessment of left ventricular systolic function in patients with HCM. A total of 65 patients with HCM were included in this study. The patients were divided into obstructive HCM (HOCM; 16 cases) and non-obstructive HCM (NOHCM; 49 cases) groups. The healthy control group comprised 48 participants. Two-dimensional (2D) speckle-tracking technology was used to measure the left ventricular global and segmental longitudinal strains and mitral annular displacement (MADs). Compared with healthy control group, the six segmental strains and the global strain of the left ventricle (LSglobal) increased while six segmental MADs and MADglobal of the mitral annulus decreased in the HOCM and NOHCM groups (P<0.05). In addition, the six segmental MADs of the mitral annulus were significantly negatively correlated with the six segmental strains of the left ventricle (r=−0.744 to −0.647, P<0.001). MADglobal was significantly negatively correlated with LSglobal (r=−0.857, P<0.001). The tissue motion annular displacement (TMAD) at the midpoint was significantly negatively correlated with LSglobal (r=−0.871, P<0.001). The 2D TMAD technique of measuring MAD was feasible and practically approachable for rapidly evaluating the left ventricular longitudinal global and segmental systolic functions of patients with HCM.
Collapse
Affiliation(s)
- Liwen Liu
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shengjun Tuo
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China ; Department of Ultrasound, Yan'an People's Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Jianlei Zhang
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China ; Department of Ultrasound, Yan'an People's Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Lei Zuo
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fang Liu
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lili Hao
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yandan Sun
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liping Yang
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hong Shao
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Qi
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaodong Zhou
- Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shuping Ge
- Department of Cardiology, The Heart Center, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA 19134, USA
| |
Collapse
|
15
|
Charron P, Komajda M. Molecular genetics in hypertrophic cardiomyopathy: towards individualized management of the disease. Expert Rev Mol Diagn 2014; 6:65-78. [PMID: 16359268 DOI: 10.1586/14737159.6.1.65] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hypertrophic cardiomyopathy is a relatively common genetic disease, affecting one person per 500 in the general population, and is clinically defined by the presence of unexplained left ventricular hypertrophy. Although recognized as the most common cause of sudden death in the young (especially in athletes), the cardiac expression of the disease is highly variable with respect to age at onset, degree of symptoms and risk of cardiac death. As a consequence, therapeutic strategies are diverse and must be adapted to the specific features of an individual. Recently, the molecular bases of the disease have been unraveled with the identification of a large number of mutations in genes encoding sarcomeric proteins. This review focuses on the impact of the molecular data on the understanding of the disease, and considers the emerging issues regarding the impact of molecular testing on the management of patients (or relatives) in clinical practice.
Collapse
Affiliation(s)
- Philippe Charron
- Centre of Reference for Cardiac Hereditary Diseases, Département de Génétique, Hôpital Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France.
| | | |
Collapse
|
16
|
Bai F, Caster HM, Pinto JR, Kawai M. Analysis of the molecular pathogenesis of cardiomyopathy-causing cTnT mutants I79N, ΔE96, and ΔK210. Biophys J 2013; 104:1979-88. [PMID: 23663841 DOI: 10.1016/j.bpj.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/27/2013] [Accepted: 04/02/2013] [Indexed: 11/19/2022] Open
Abstract
Three troponin T (TnT) mutants that cause hypertrophic, restrictive, and dilated cardiomyopathy (I79N, ΔE96, and ΔK210, respectively), were examined using the thin-filament extraction/reconstitution technique. Effects of Ca(2+), ATP, phosphate, and ADP concentrations on force and its transients were studied at 25°C. Maximal Ca(2+) tension (THC) and Ca(2+)-activatable tension (Tact), respectively, were similar among I79N, ΔE96, and WT, whereas ΔK210 led to a significantly lower THC (∼20% less) and Tact (∼25% less) than did WT. In pCa solution containing 8 mM Pi and ionic strength adjusted to 200 mM, the Ca(2+) sensitivity (pCa50) of I79N (5.63 ± 0.02) and ΔE96 (5.60 ± 0.03) was significantly greater than that of WT (5.45 ± 0.04), but the pCa50 of ΔK210 (5.54 ± 0.04) remained similar to that of WT. Five equilibrium constants were deduced using sinusoidal analysis. All three mutants showed significantly lower K0 (ADP association constant) and larger K4 (equilibrium constant of force generation step) relative to the corresponding values for WT. I79N and ΔK210 were associated with a K2 (equilibrium constant of cross-bridge detachment step) significantly lower than that of ΔE96 and WT. These results demonstrated that at pCa 4.66, the force/cross-bridge is ∼18% less in I79N and ∼41% less in ΔK210 than that in WT. These results indicate that the molecular pathogenesis of the cardiac TnT mutation-related cardiomyopathies is different for each mutation.
Collapse
Affiliation(s)
- Fan Bai
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | |
Collapse
|
17
|
Witjas-Paalberends ER, Piroddi N, Stam K, van Dijk SJ, Oliviera VS, Ferrara C, Scellini B, Hazebroek M, ten Cate FJ, van Slegtenhorst M, dos Remedios C, Niessen HWM, Tesi C, Stienen GJM, Heymans S, Michels M, Poggesi C, van der Velden J. Mutations in MYH7 reduce the force generating capacity of sarcomeres in human familial hypertrophic cardiomyopathy. Cardiovasc Res 2013; 99:432-41. [PMID: 23674513 DOI: 10.1093/cvr/cvt119] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Familial hypertrophic cardiomyopathy (HCM), frequently caused by sarcomeric gene mutations, is characterized by cellular dysfunction and asymmetric left-ventricular (LV) hypertrophy. We studied whether cellular dysfunction is due to an intrinsic sarcomere defect or cardiomyocyte remodelling. METHODS AND RESULTS Cardiac samples from 43 sarcomere mutation-positive patients (HCMmut: mutations in thick (MYBPC3, MYH7) and thin (TPM1, TNNI3, TNNT2) myofilament genes) were compared with 14 sarcomere mutation-negative patients (HCMsmn), eight patients with secondary LV hypertrophy due to aortic stenosis (LVHao) and 13 donors. Force measurements in single membrane-permeabilized cardiomyocytes revealed significantly lower maximal force generating capacity (Fmax) in HCMmut (21 ± 1 kN/m²) and HCMsmn (26 ± 3 kN/m²) compared with donor (36 ± 2 kN/m²). Cardiomyocyte remodelling was more severe in HCMmut compared with HCMsmn based on significantly lower myofibril density (49 ± 2 vs. 63 ± 5%) and significantly higher cardiomyocyte area (915 ± 15 vs. 612 ± 11 μm²). Low Fmax in MYBPC3mut, TNNI3mut, HCMsmn, and LVHao was normalized to donor values after correction for myofibril density. However, Fmax was significantly lower in MYH7mut, TPM1mut, and TNNT2mut even after correction for myofibril density. In accordance, measurements in single myofibrils showed very low Fmax in MYH7mut, TPM1mut, and TNNT2mut compared with donor (respectively, 73 ± 3, 70 ± 7, 83 ± 6, and 113 ± 5 kN/m²). In addition, force was lower in MYH7mut cardiomyocytes compared with MYBPC3mut, HCMsmn, and donor at submaximal [Ca²⁺]. CONCLUSION Low cardiomyocyte Fmax in HCM patients is largely explained by hypertrophy and reduced myofibril density. MYH7 mutations reduce force generating capacity of sarcomeres at maximal and submaximal [Ca²⁺]. These hypocontractile sarcomeres may represent the primary abnormality in patients with MYH7 mutations.
Collapse
Affiliation(s)
- E Rosalie Witjas-Paalberends
- Laboratory for Physiology, VU University Medical Center, Institute for Cardiovascular Research, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Marian A. Recent advances in genetics and treatment of hypertrophic cardiomyopathy. Future Cardiol 2012; 1:341-53. [PMID: 19804117 DOI: 10.1517/14796678.1.3.341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an intriguing disease with various clinical manifestations, ranging from sudden cardiac death to heart failure. The molecular genetics of HCM are all but elucidated and over 200 mutations in more than a dozen genes have been identified. Conventional therapeutic agents, namely beta-blockers and calcium channel blockers, could provide symptomatic relief but are not known to reduce mortality or induce regression of phenotype. Studies in genetic animal models suggest cardiac hypertrophy and fibrosis, a major histological feature of HCM, may be reversed or prevented through blockade of molecules involved in the pathogenesis of HCM. Surgical myomectomy and ethanol-induced septal ablation are effective procedures for reducing the left ventricular outflow tract obstruction and hence, symptomatic improvement. Randomized studies are needed to compare the effectiveness of medical therapy, ethanol septal ablation and surgical myomectomy in treatment of patients with HCM.
Collapse
Affiliation(s)
- Aj Marian
- Baylor College of Medicine, One Baylor Plaza, 519D Houston, TX 77030, USA.
| |
Collapse
|
19
|
Abstract
Restrictive physiology, a severe form of diastolic dysfunction, is characteristically observed in the setting of constrictive pericarditis and myocardial restriction. The latter is commonly due to systemic diseases, some of which are inherited as mendelian traits (eg, hereditary amyloidosis), while others are multifactorial (eg, sarcoidosis). When restrictive physiology occurs as an early and dominant feature of a primary myocardial disorder, it may be termed restrictive cardiomyopathy. In the past decade, clinical and genetic studies have demonstrated that restrictive cardiomyopathy as such is part of the spectrum of sarcomeric disease and frequently coexists with hypertrophic cardiomyopathy in affected families.
Collapse
Affiliation(s)
- Srijita Sen-Chowdhry
- Faculty of Medicine, Imperial College, St Mary's Campus, Norfolk Place, London, UK
| | | | | |
Collapse
|
20
|
Cardiac troponin mutations and restrictive cardiomyopathy. J Biomed Biotechnol 2010; 2010:350706. [PMID: 20617149 PMCID: PMC2896668 DOI: 10.1155/2010/350706] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 02/22/2010] [Indexed: 11/19/2022] Open
Abstract
Mutations in sarcomeric proteins have recently been established as heritable causes of Restrictive Cardiomyopathy (RCM). RCM is clinically characterized as a defect in cardiac diastolic function, such as, impaired ventricular relaxation, reduced diastolic volume and increased end-diastolic pressure. To date, mutations have been identified in the cardiac genes for desmin, α-actin, troponin I and troponin T. Functional studies in skinned muscle fibers reconstituted with troponin mutants have established phenotypes consistent with the clinical findings which include an increase in myofilament Ca2+ sensitivity and basal force. Moreover, when RCM mutants are incorporated into reconstituted myofilaments, the ability to inhibit the ATPase activity is reduced. A majority of the mutations cluster in specific regions of cardiac troponin and appear to be mutational “hot spots”. This paper highlights the functional and clinical characteristics of RCM linked mutations within the troponin complex.
Collapse
|
21
|
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is the prototypic form of pathological cardiac hypertrophy. HCM is an important cause of sudden cardiac death in the young and a major cause of morbidity in the elderly. DESIGN We discuss the clinical implications of recent advances in the molecular genetics of HCM. RESULTS The current diagnosis of HCM is neither adequately sensitive nor specific. Partial elucidation of the molecular genetic basis of HCM has raised interest in genetic-based diagnosis and management. Over a dozen causal genes have been identified. MYH7 and MYBPC3 mutations account for about 50% of cases. The remaining known causal genes are uncommon and some are rare. Advances in DNA sequencing techniques have made genetic screening practical. The difficulty, particularly in the sporadic cases and in small families, is to discern the causal from the non-causal variants. Overall, the causal mutations alone have limited implications in risk stratification and prognostication, as the clinical phenotype arises from complex and often non-linear interactions between various determinants. CONCLUSIONS The clinical phenotype of 'HCM' results from mutations in sarcomeric proteins and subsequent activation of multiple cellular constituents including signal transducers. We advocate that HCM, despite its current recognition and management as a single disease entity, involves multiple partially independent mechanisms, despite similarity in the ensuing phenotype. To treat HCM effectively, it is necessary to delineate the underlying fundamental mechanisms that govern the pathogenesis of the phenotype and apply these principles to the treatment of each subset of clinically recognized HCM.
Collapse
Affiliation(s)
- Ali J Marian
- Center for Cardiovascular Genetics, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center and Texas Heart Institute at St. Luke's Episcopal Hospital, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Experimental therapies in hypertrophic cardiomyopathy. J Cardiovasc Transl Res 2009; 2:483-92. [PMID: 20560006 DOI: 10.1007/s12265-009-9132-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 09/16/2009] [Indexed: 12/31/2022]
Abstract
The quintessential clinical diagnostic phenotype of human hypertrophic cardiomyopathy (HCM) is primary cardiac hypertrophy. Cardiac hypertrophy is also a major determinant of mortality and morbidity including the risk of sudden cardiac death (SCD) in patients with HCM. Reversal and attenuation of cardiac hypertrophy and its accompanying fibrosis is expected to improve morbidity as well as decrease the risk of SCD in patients with HCM.The conventionally used pharmacological agents in treatment of patients with HCM have not been shown to reverse or attenuate established cardiac hypertrophy and fibrosis. An effective treatment of HCM has to target the molecular mechanisms that are involved in the pathogenesis of the phenotype. Mechanistic studies suggest that cardiac hypertrophy in HCM is secondary to activation of various hypertrophic signaling molecules and, hence, is potentially reversible. The hypothesis is supported by the results of genetic and pharmacological interventions in animal models. The results have shown potential beneficial effects of angiotensin II receptor blocker losartan, mineralocorticoid receptor blocker spironolactone, 3-hydroxy-3-methyglutaryl-coenzyme A reductase inhibitors simvastatin and atorvastatin, and most recently, N-acetylcysteine (NAC) on reversal or prevention of hypertrophy and fibrosis in HCM. The most promising results have been obtained with NAC, which through multiple thiol-responsive mechanisms completely reversed established cardiac hypertrophy and fibrosis in three independent studies. Pilot studies with losartan and statins in humans have established the feasibility of such studies. The results in animal models have firmly established the reversibility of established cardiac hypertrophy and fibrosis in HCM and have set the stage for advancing the findings in the animal models to human patients with HCM through conducting large-scale efficacy studies.
Collapse
|
23
|
Threonine-5 at the N-terminus can modulate sarcolipin function in cardiac myocytes. J Mol Cell Cardiol 2009; 47:723-9. [PMID: 19631655 DOI: 10.1016/j.yjmcc.2009.07.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/10/2009] [Accepted: 07/15/2009] [Indexed: 11/20/2022]
Abstract
Sarcolipin (SLN) has emerged as an important regulator of the atrial sarcoplasmic reticulum (SR) Ca2+ transport. The inhibitory effect of SLN on cardiac SR Ca2+ ATPase (SERCA) pump can be relieved by beta-adrenergic stimulation, which indicates that SLN is a reversible inhibitor. However, the mechanism of this reversible regulation of SERCA pump by SLN is yet to be determined. In the current study using adult rat ventricular myocytes we provide evidence that the threonine 5 (T5) residue at the N-terminus of SLN which is conserved among various species, critically regulates the SLN function. Point mutation of T5-->alanine exerts an inhibitory effect on myocyte contractility and calcium transients similar to that of wild-type SLN, whereas mutation of T5-->glutamic acid which mimics the phosphorylation abolished the inhibitory function of SLN. Our results showed that T5 can be phosphorylated in vitro by calcium-calmodulin dependent protein kinase II (CaMKII). Blocking the CaMKII activity in WT-SLN overexpressing myocytes using autocamtide inhibitory peptide completely abolished the beta-adrenergic response. Taken together, our data suggest that T5 is the key amino acid which modulates SLN function via phosphorylation/dephosphorylation mechanisms through CaMKII pathway.
Collapse
|
24
|
Michels M, Soliman OII, Kofflard MJ, Hoedemaekers YM, Dooijes D, Majoor-Krakauer D, ten Cate FJ. Diastolic abnormalities as the first feature of hypertrophic cardiomyopathy in Dutch myosin-binding protein C founder mutations. JACC Cardiovasc Imaging 2009; 2:58-64. [PMID: 19356534 DOI: 10.1016/j.jcmg.2008.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 08/14/2008] [Accepted: 08/19/2008] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To test the hypothesis that carriers of Dutch founder mutations in cardiac myosin-binding protein C (MYBPC3), without left ventricular hypertrophy (LVH) or electrocardiographic abnormalities, have diastolic dysfunction on tissue Doppler imaging (TDI), which can be used for the screening of family members in the hypertrophic cardiomyopathy (HCM) population. BACKGROUND TDI is a more sensitive technique for the assessment of left ventricular contraction and relaxation abnormalities than is conventional echocardiography. METHODS Echocardiographic studies including TDI were performed in genotyped hypertrophic cardiomyopathy patients (genotype-positive, G+/LVH+; n = 27), mutation carriers without LVH (G+/LVH-; n = 27), and healthy controls (n = 55). The identified mutations in MYBPC3 in the G+/LVH+ subjects were c.2864_2865delCT (12 subjects), c.2373dupG (n = 8), and p. Arg943X (n = 7). In the G+/LVH- subjects, the following mutations were identified: c.2864_2865delCT (n = 11), c.2373dupG (n = 8), and p. Arg943X (n = 8). RESULTS Mean TDI-derived systolic and early and late diastolic mitral annular velocities were significantly lower in the G+/LVH+ subjects compared with the other groups. However, there was no difference between controls and G+/LVH- subjects. Mean TDI-derived late mitral annular diastolic velocities were significantly higher in the G+/LVH- subjects compared with controls and G+/LVH+ subjects. Using a cut-off value of mean +/- 2 SD, an abnormal late mitral annular diastolic velocity was found in 14 (51%) of G+/LVH- patients. There was no difference among the 3 different mutations. CONCLUSIONS In contrast to earlier reports, mean mitral annular systolic velocity and early mitral annular diastolic velocity velocities were not reduced in G+/LVH- subjects, and TDI velocities were not sufficiently sensitive for determination of the affected status of an individual subject. Our findings, however, support the theory that diastolic dysfunction is a primary component of pre-clinical HCM.
Collapse
Affiliation(s)
- Michelle Michels
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center Rotterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Designing heart performance by gene transfer. Physiol Rev 2008; 88:1567-651. [PMID: 18923190 DOI: 10.1152/physrev.00039.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The birth of molecular cardiology can be traced to the development and implementation of high-fidelity genetic approaches for manipulating the heart. Recombinant viral vector-based technology offers a highly effective approach to genetically engineer cardiac muscle in vitro and in vivo. This review highlights discoveries made in cardiac muscle physiology through the use of targeted viral-mediated genetic modification. Here the history of cardiac gene transfer technology and the strengths and limitations of viral and nonviral vectors for gene delivery are reviewed. A comprehensive account is given of the application of gene transfer technology for studying key cardiac muscle targets including Ca(2+) handling, the sarcomere, the cytoskeleton, and signaling molecules and their posttranslational modifications. The primary objective of this review is to provide a thorough analysis of gene transfer studies for understanding cardiac physiology in health and disease. By comparing results obtained from gene transfer with those obtained from transgenesis and biophysical and biochemical methodologies, this review provides a global view of cardiac structure-function with an eye towards future areas of research. The data presented here serve as a basis for discovery of new therapeutic targets for remediation of acquired and inherited cardiac diseases.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Menon SC, Michels VV, Pellikka PA, Ballew JD, Karst ML, Herron KJ, Nelson SM, Rodeheffer RJ, Olson TM. Cardiac troponin T mutation in familial cardiomyopathy with variable remodeling and restrictive physiology. Clin Genet 2008; 74:445-54. [PMID: 18651846 DOI: 10.1111/j.1399-0004.2008.01062.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We identified a unique family with autosomal dominant heart disease variably expressed as restrictive cardiomyopathy (RCM), hypertrophic cardiomyopathy (HCM), and dilated cardiomyopathy (DCM), and sought to identify the molecular defect that triggered divergent remodeling pathways. Polymorphic DNA markers for nine sarcomeric genes for DCM and/or HCM were tested for segregation with disease. Linkage to eight genes was excluded, but a cardiac troponin T (TNNT2) marker cosegregated with the disease phenotype. Sequencing of TNNT2 identified a heterozygous missense mutation resulting in an I79N substitution, inherited by all nine affected family members but by none of the six unaffected relatives. Mutation carriers were diagnosed with RCM (n = 2), non-obstructive HCM (n = 3), DCM (n = 2), mixed cardiomyopathy (n = 1), and mild concentric left ventricular hypertrophy (n = 1). Endomyocardial biopsy in the proband revealed non-specific fibrosis, myocyte hypertrophy, and no myofibrillar disarray. Restrictive Doppler filling patterns, atrial enlargement, and pulmonary hypertension were observed among family members regardless of cardiomyopathy subtype. Mutation of a sarcomeric protein gene can cause RCM, HCM, and DCM within the same family, underscoring the necessity of comprehensive morphological and physiological cardiac assessment in familial cardiomyopathy screening.
Collapse
Affiliation(s)
- S C Menon
- Department of Pediatric and Adolescent Medicine, Division of Cardiology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
A novel mutant cardiac troponin C disrupts molecular motions critical for calcium binding affinity and cardiomyocyte contractility. Biophys J 2008; 94:3577-89. [PMID: 18212018 DOI: 10.1529/biophysj.107.112896] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Troponin C (TnC) belongs to the superfamily of EF-hand (helix-loop-helix) Ca(2+)-binding proteins and is an essential component of the regulatory thin filament complex. In a patient diagnosed with idiopathic dilated cardiomyopathy, we identified two novel missense mutations localized in the regulatory Ca(2+)-binding Site II of TnC, TnC((E59D,D75Y)). Expression of recombinant TnC((E59D,D75Y)) in isolated rat cardiomyocytes induced a marked decrease in contractility despite normal intracellular calcium homeostasis in intact cardiomyocytes and resulted in impaired myofilament calcium responsiveness in Triton-permeabilized cardiomyocytes. Expression of the individual mutants in cardiomyocytes showed that TnC(D75Y) was able to recapitulate the TnC((E59D,D75Y)) phenotype, whereas TnC(E59D) was functionally benign. Force-pCa relationships in TnC((E59D,D75Y)) reconstituted rabbit psoas fibers and fluorescence spectroscopy of TnC((E59D,D75Y)) labeled with 2-[(4'-iodoacetamide)-aniline]naphthalene-6-sulfonic acid showed a decrease in myofilament Ca(2+) sensitivity and Ca(2+) binding affinity, respectively. Furthermore, computational analysis of TnC showed the Ca(2+)-binding pocket as an active region of concerted motions, which are decreased markedly by mutation D75Y. We conclude that D75Y interferes with proper concerted motions within the regulatory Ca(2+)-binding pocket of TnC that hinders the relay of the thin filament calcium signal, thereby providing a primary stimulus for impaired cardiomyocyte contractility. This in turn may trigger pathways leading to aberrant ventricular remodeling and ultimately a dilated cardiomyopathy phenotype.
Collapse
|
28
|
Abstract
Over the last two decades, a large number of mutations have been identified in sarcomeric proteins as a cause of hypertrophic, dilated or restrictive cardiomyopathy. Functional analyses of mutant proteins in vitro have revealed several important functional changes in sarcomeric proteins that might be primarily involved in the pathogenesis of each cardiomyopathy. Creation of transgenic or knock-in animals expressing mutant proteins in their hearts confirmed that these mutations in genes for sarcomeric proteins induced distinct types of cardiomyopathies and provided useful animal models to explore the molecular pathogenic mechanisms and potential therapeutics of cardiomyopathy in vivo. In this review, I discuss the functional consequences of mutations in different sarcomeric proteins found in hypertrophic, dilated, and restrictive cardiomyopathies in conjunction with their effects on cardiac structure and function in vivo and their possible molecular and cellular mechanisms, which underlie the pathogenesis of these inherited cardiomyopathies.
Collapse
Affiliation(s)
- Sachio Morimoto
- Laboratory of Clinical Pharmacology, Kyushu University Graduate School of Medicine, Fukuoka, Japan.
| |
Collapse
|
29
|
Alcalai R, Seidman JG, Seidman CE. Genetic basis of hypertrophic cardiomyopathy: from bench to the clinics. J Cardiovasc Electrophysiol 2007; 19:104-10. [PMID: 17916152 DOI: 10.1111/j.1540-8167.2007.00965.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a common inherited cardiac disorder that characterized by marked thickening of the left ventricular wall that occurs in the absence of increased external load. HCM is the most common cause of sudden cardiac death under 35 years and in addition causes heart failure. HCM is usually inherited as an autosomal dominant mutation in genes that encode protein constituents of the sarcomere. To date, more than 450 different mutations have been identified within 13 myofilament-related genes. This review focuses current research involved in the discovery of other causative genes, investigation of the mechanisms by which sarcomere genes mutations produce hypertrophy and arrhythmia, and identification of modifying factors that influence clinical expression in HCM patients. The clinical implications of molecular advances in HCM are discussed.
Collapse
Affiliation(s)
- Ronny Alcalai
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
30
|
Morimoto S. Molecular pathogenic mechanisms of cardiomyopathies caused by mutations in cardiac troponin T. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:227-39. [PMID: 17278368 DOI: 10.1007/978-4-431-38453-3_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sachio Morimoto
- Department of Clinical Pharmacology, Kyushu University Graduate School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
31
|
Herron TJ, Vandenboom R, Fomicheva E, Mundada L, Edwards T, Metzger JM. Calcium-independent negative inotropy by beta-myosin heavy chain gene transfer in cardiac myocytes. Circ Res 2007; 100:1182-90. [PMID: 17363698 DOI: 10.1161/01.res.0000264102.00706.4e] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased relative expression of the slow molecular motor of the heart (beta-myosin heavy chain [MyHC]) is well known to occur in many rodent models of cardiovascular disease and in human heart failure. The direct effect of increased relative beta-MyHC expression on intact cardiac myocyte contractility, however, is unclear. To determine the direct effects of increased relative beta-MyHC expression on cardiac contractility, we used acute genetic engineering with a recombinant adenoviral vector (AdMYH7) to genetically titrate beta-MyHC protein expression in isolated rodent ventricular cardiac myocytes that predominantly expressed alpha-MyHC (fast molecular motor). AdMYH7-directed beta-MyHC protein expression and sarcomeric incorporation was observed as soon as 1 day after gene transfer. Effects of beta-MyHC expression on myocyte contractility were determined in electrically paced single myocytes (0.2 Hz, 37 degrees C) by measuring sarcomere shortening and intracellular calcium cycling. Gene transfer-based replacement of alpha-MyHC with beta-MyHC attenuated contractility in a dose-dependent manner, whereas calcium transients were unaffected. For example, when beta-MyHC expression accounted for approximately 18% of the total sarcomeric myosin, the amplitude of sarcomere-length shortening (nanometers, nm) was depressed by 42% (151.0+/-10.7 [control] versus 87.0+/-5.4 nm [AdMYH7 transduced]); and genetic titration of beta-MyHC, leading to 38% beta-MyHC content, attenuated shortening by 57% (138.9+/-13.0 versus 59.7+/-7.1 nm). Maximal isometric cross-bridge cycling rate was also slower in AdMYH7-transduced myocytes. Results indicate that small increases of beta-MyHC expression (18%) have Ca2+ transient-independent physiologically relevant effects to decrease intact cardiac myocyte function. We conclude that beta-MyHC is a negative inotrope among the cardiac myofilament proteins.
Collapse
Affiliation(s)
- Todd J Herron
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-0622, USA.
| | | | | | | | | | | |
Collapse
|
32
|
MacDonald KA, Kittleson MD, Kass PH, Meurs KM. Tissue Doppler Imaging in Maine Coon Cats with a Mutation of Myosin Binding Protein C with or without Hypertrophy. J Vet Intern Med 2007. [DOI: 10.1111/j.1939-1676.2007.tb02954.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
33
|
|
34
|
Tardiff JC. Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Fail Rev 2006; 10:237-48. [PMID: 16416046 DOI: 10.1007/s10741-005-5253-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hypertrophic Cardiomyopathy (HCM) is a relatively common primary cardiac disorder defined as the presence of a hypertrophied left ventricle in the absence of any other diagnosed etiology. HCM is the most common cause of sudden cardiac death in young people which often occurs without precedent symptoms. The overall clinical phenotype of patients with HCM is broad, ranging from a complete lack of cardiovascular symptoms to exertional dyspnea, chest pain, and sudden death, often due to arrhythmias. To date, 270 independent mutations in nine sarcomeric protein genes have been linked to Familial Hypertrophic Cardiomyopathy (FHC), thus the clinical variability is matched by significant genetic heterogeneity. While the final clinical phenotype in patients with FHC is a result of multiple factors including modifier genes, environmental influences and genotype, initial screening studies had suggested that individual gene mutations could be linked to specific prognoses. Given that the sarcomeric genes linked to FHC encode proteins with known functions, a vast array of biochemical, biophysical and physiologic experimental approaches have been applied to elucidate the molecular mechanisms that underlie the pathogenesis of this complex cardiovascular disorder. In this review, to illustrate the basic relationship between protein dysfunction and disease pathogenesis we focus on representative gene mutations from each of the major structural components of the cardiac sarcomere: the thick filament (beta MyHC), the thin filament (cTnT and Tm) and associated proteins (MyBP-C). The results of these studies will lead to a better understanding of FHC and eventually identify targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jil C Tardiff
- Department of Physiology and Biophysics and the Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
35
|
Li X, Deng Y, Yang H. Left ventricular regional systolic function in patient with hypertrophic cardiomyopathy by quantitative tissue velocity imaging. ACTA ACUST UNITED AC 2006; 26:153-6. [PMID: 16711033 DOI: 10.1007/bf02828065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The left ventricular regional systolic functions in patients with hypertrophic cardiomyopathy (HCM) were assessed by using quantitative tissue velocity imaging (QTVI). Left ventricular (LV) regional myocardial velocity along long- and short-axis in 31 HCM patients and 20 healthy subjects were analyzed by QTVI, and the regional myocardial systolic peak velocities (MVS) were measured. Mean MVS at each level including mitral annular, basal, middle and apical segments were calculated. The ratio of MVS along long-axis to that along short-axis (Ri) at basal and middle segments of the LV posterior wall and ventricular septum were calculated. The results showed that mean MVS was slower at each level including mitral annular, basal, middle and apical segments in the HCM patients than that in the healthy subjects (P < 0.01). There were no significant differences in mean MVS between obstructive and non-obstructive groups in HCM patients. MVS of all regional myocardial segments along long-axis in the HCM patients were significantly slower than that in the healthy subjects (P < 0.05), but there was no significant difference in MVS of all regional myocardial segments along long-axis between hypertrophied and non-hypertrophied group in the HCM patients. Ri was significantly lower in the HCM patients than that in the healthy subjects. The LV regional myocardial contractility along long-axis was impaired not only in the hypertrophied wall but also in the non-hypertrophied one in patients with HCM, suggesting that QTVI can assess accurately LV regional systolic function in patient with HCM and provides a novel means for an early diagnosis before and independent of hypertrophy.
Collapse
Affiliation(s)
- Xiulan Li
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | |
Collapse
|
36
|
Koffas H, Dukes-McEwan J, Corcoran B, Moran C, French A, Sboros V, Simpson K, McDicken W. Pulsed Tissue Doppler Imaging in Normal Cats and Cats with Hypertrophic Cardiomyopathy. J Vet Intern Med 2006. [DOI: 10.1111/j.1939-1676.2006.tb02825.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
37
|
|
38
|
Abstract
Troponin, one of the sarcomeric proteins, plays a central role in the Ca(2+) regulation of contraction in vertebrate skeletal and cardiac muscles. It consists of three subunits with distinct structure and function, troponin T, troponin I, and troponin C, and their accurate and complex intermolecular interaction in response to the rapid rise and fall of Ca(2+) in cardiomyocytes plays a key role in maintaining the normal cardiac pump function. More than 200 mutations in the cardiac sarcomeric proteins, including myosin heavy and light chains, actin, troponin, tropomyosin, myosin-binding protein-C, and titin/connectin, have been found to cause various types of cardiomyopathy in human since 1990, and more than 60 mutations in human cardiac troponin subunits have been identified in dilated, hypertrophic, and restrictive forms of cardiomyopathy. In this review, we have focused on the mutations in the genes for human cardiac troponin subunits and discussed their functional consequences that might be involved in the primary mechanisms for the pathogenesis of these different types of cardiomyopathy.
Collapse
Affiliation(s)
- K Harada
- Department of Clinical Pharmacology, Kyushu University Graduate School of Medicine, Higashi-ku, Fukuoka 812-8582, Japan
| | | |
Collapse
|
39
|
Abstract
Troponin is the regulatory complex of the myofibrillar thin filament that plays a critical role in regulating excitation-contraction coupling in the heart. Troponin is composed of three distinct gene products: troponin C (cTnC), the 18-kD Ca(2+)-binding subunit; troponin I (cTnI), the approximately 23-kD inhibitory subunit that prevents contraction in the absence of Ca2+ binding to cTnC; and troponin T (cTnT), the approximately 35-kD subunit that attaches troponin to tropomyosin (Tm) and to the myofibrillar thin filament. Over the past 45 years, extensive biochemical, biophysical, and structural studies have helped to elucidate the molecular basis of troponin function and thin filament activation in the heart. At the onset of systole, Ca2+ binds to the N-terminal Ca2+ binding site of cTnC initiating a conformational change in cTnC, which catalyzes protein-protein associations activating the myofibrillar thin filament. Thin filament activation in turn facilitates crossbridge cycling, myofibrillar activation, and contraction of the heart. The intrinsic length-tension properties of cardiac myocytes as well as the Frank-Starling properties of the intact heart are mediated primarily through Ca(2+)-responsive thin filament activation. cTnC, cTnI, and cTnT are encoded by distinct single-copy genes in the human genome, each of which is expressed in a unique cardiac-restricted developmentally regulated fashion. Elucidation of the transcriptional programs that regulate troponin transcription and gene expression has provided insights into the molecular mechanisms that regulate and coordinate cardiac myocyte differentiation and provided unanticipated insights into the pathogenesis of cardiac hypertrophy. Autosomal dominant mutations in cTnI and cTnT have been identified and are associated with familial hypertrophic and restrictive cardiomyopathies.
Collapse
Affiliation(s)
- Michael S Parmacek
- Department of Medicine, University of Pennsylvania School of Medicine, 3400 Spruce St., 9123 Founders Pavilion, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
40
|
Nassar R, Malouf NN, Mao L, Rockman HA, Oakeley AE, Frye JR, Herlong JR, Sanders SP, Anderson PAW. cTnT1, a cardiac troponin T isoform, decreases myofilament tension and affects the left ventricular pressure waveform. Am J Physiol Heart Circ Physiol 2004; 288:H1147-56. [PMID: 15513965 DOI: 10.1152/ajpheart.00140.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four isoforms of cardiac troponin T (cTnT), a protein essential for calcium-dependent myocardial force development, are expressed in the human; they differ in charge and length. Their expression is regulated developmentally and is affected by disease states. Human cTnT (hcTnT) isoform effects have been examined in reconstituted myofilaments. In this study, we evaluated the modulatory effects of overexpressing one cTnT isoform on in vitro and in vivo myocardial function. A hcTnT isoform, hcTnT(1), expressed during development and in heart disease but not in the normal adult heart, was expressed in transgenic (TG) mice (1-30% of total cTnT). Maximal active tension measured in skinned myocardium decreased as a function of relative hcTnT(1) expression. The pCa at half-maximal force development, Hill coefficient, and rate of redevelopment of force did not change significantly with hcTnT(1) expression. In vivo maximum rates of rise and fall of left ventricular pressure decreased, and the half-time of isovolumic relaxation increased, with hcTnT(1) expression. Substituting total cTnT charge for hcTnT(1) expression resulted in similar conclusions. Morphometric analysis and electron microscopy revealed no differences between wild-type (non-TG) and TG myocardium. No differences in isoform expression of tropomyosin, myosin heavy chain, essential and regulatory myosin light chains (MLC), TnI, or in posttranslational modifications of mouse cTnT, cTnI, or regulatory MLC were observed. These results support the hypothesis that cTnT isoform amino-terminal differences affect myofilament function and suggest that hcTnT(1) expression levels present during human development and in human heart disease can affect in vivo ventricular function.
Collapse
Affiliation(s)
- Rashid Nassar
- Department of Pediatrics, Duke University, Durham, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Doolan A, Nguyen L, Semsarian C. Hypertrophic Cardiomyopathy: From “Heart Tumour” to a Complex Molecular Genetic Disorder. Heart Lung Circ 2004; 13:15-25. [PMID: 16352163 DOI: 10.1016/j.hlc.2004.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a disorder which has fascinated clinicians for many years. The remarkable diversity in clinical presentations, ranging from no symptoms to severe heart failure and sudden cardiac death, illustrates the complexity of this disorder. Over the last decade, major advances have been made in our understanding of the molecular basis of several cardiac conditions. HCM was the first cardiac disorder in which a genetic basis was identified and as such, has acted as a paradigm for the study of an inherited cardiac disorder. At least eleven genes have now been identified, defects in which cause HCM. Most of these genes encode proteins which comprise the basic contractile unit of the heart, i.e. the sarcomere. Genetic studies are now beginning to have a major impact on diagnosis in HCM, as well as in guiding treatment and preventative strategies. While much is known about which genes cause disease, relatively little is known about the molecular steps leading from the gene defect to the clinical phenotype, and what factors modify the expression of the mutant genes. Concurrent studies in cell culture and animal models of HCM are now beginning to shed light on the signalling pathways involved in HCM, and the role of both environmental and genetic modifying factors. Understanding these basic molecular mechanisms will ultimately improve our knowledge of the basic biology of heart muscle function, and will therefore provide new avenues for diagnosis and treatment not only for HCM, but for a range of cardiovascular diseases in man.
Collapse
Affiliation(s)
- Alessandra Doolan
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Locked Bag 6, Newtown, NSW, Sydney 2042, Australia
| | | | | |
Collapse
|
42
|
Sachse FB, Seemann G, Chaisaowong K, Weiss D. Quantitative Reconstruction of Cardiac Electromechanics in Human Myocardium:. J Cardiovasc Electrophysiol 2003; 14:S210-8. [PMID: 14760926 DOI: 10.1046/j.1540.8167.90313.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Myocytes from normal and failing myocardium show significant differences in electromechanical behavior. Mathematical modeling of the behavior provides insights into the underlying physiologic and pathophysiologic mechanisms. Electromechanical models of cardiomyocytes exist for various species, but models of human myocytes are lacking. METHODS AND RESULTS A mathematical model of electromechanics in normal and failing cardiac myocytes in humans was created by assembly and adaptation of parameters of an electrophysiologic model at the level of single cells and a force development model at the level of the sarcomere. The adaptation was performed using data from recent studies of ventricular myocytes and myocardium. The model was applied to quantitatively reconstruct measurement data from different experimental studies of normal and failing myocardium. Several simulations were performed to quantify the transmembrane voltage Vm, intracellular concentration of calcium[Ca2+]i, the [Ca2+]i-force relationship, and force transients. Furthermore, frequency dependencies and restitution of action voltage duration to 90% recovery APD90, peak [Ca2+]i, duration to 50% force recovery FD50, and peak force were determined. CONCLUSION The presented mathematical model was capable of quantitatively reconstructing data obtained from different studies of electrophysiology and force development in normal and failing myocardium of humans. In future work, the model can serve as a component for studying macroscopic mechanisms of excitation propagation, metabolism, and electromechanics in human myocardium.
Collapse
Affiliation(s)
- Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | |
Collapse
|
43
|
Schwartz K, Mercadier JJ. Cardiac troponin T and familial hypertrophic cardiomyopathy: an energetic affair. J Clin Invest 2003; 112:652-4. [PMID: 12952912 PMCID: PMC182216 DOI: 10.1172/jci19632] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It has long been noted that while patients with familial hypertrophic cardiomyopathy due to cardiac troponin T (cTnT) mutations often suffer sudden cardiac death, they do not develop significant ventricular hypertrophy, suggesting that a distinct cellular mechanism apart from alterations in myocardial contractility is responsible. A new study has revealed that a single missense mutation in cTnT causes a striking disruption to energy metabolism, leading to cardiomyopathy.
Collapse
Affiliation(s)
- Ketty Schwartz
- Institut National de la Santé et de la Recherche Médicale ( INSERM) U582, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | |
Collapse
|
44
|
Metzger JM, Michele DE, Rust EM, Borton AR, Westfall MV. Sarcomere thin filament regulatory isoforms. Evidence of a dominant effect of slow skeletal troponin I on cardiac contraction. J Biol Chem 2003; 278:13118-23. [PMID: 12551900 DOI: 10.1074/jbc.m212601200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thin filament proteins tropomyosin (Tm), troponin T (TnT), and troponin I (TnI) form an allosteric regulatory complex that is required for normal cardiac contraction. Multiple isoforms of TnT, Tm, and TnI are differentially expressed in both cardiac development and disease, but concurrent TnI, Tm, and TnT isoform switching has hindered assignment of cellular function to these transitions. We systematically incorporated into the adult sarcomere the embryonic/fetal isoforms of Tm, TnT, and TnI by using gene transfer. In separate experiments, greater than 90% of native TnI and 40-50% of native Tm or TnT were specifically replaced. The Ca(2+) sensitivity of tension development was markedly enhanced by TnI replacement but not by TnT or Tm isoform replacement. Titration of TnI replacement from >90% to <30% revealed a dominant functional effect of slow skeletal TnI to modulate regulation. Over this range of isoform replacement, TnI, but not Tm or TnT embryonic isoforms, influenced calcium regulation of contraction, and this identifies TnI as a potential target to modify contractile performance in normal and diseased myocardium.
Collapse
Affiliation(s)
- Joseph M Metzger
- Department of Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109-0622, USA.
| | | | | | | | | |
Collapse
|
45
|
Roberts R, Sidhu J. Genetic Basis for Hypertrophic Cardiomyopathy: Implications for Diagnosis and Treatment. ACTA ACUST UNITED AC 2003; 1:128-34. [PMID: 15815132 DOI: 10.1111/j.1541-9215.2003.02110.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Familial hypertrophic cardiomyopathy is a genetic disease defined by cardiac hypertrophy in the absence of an increased external load. It is the most common inherited cardiac disorder occurring in 1 in 500 individuals. Ten genes exhibiting over 200 mutations have been identified. However, about 75% are due to mutations in just three genes: e-myosin heavy chain, cardiac troponin T, and myosin binding protein-C. Certain phenotypes are more common with certain genes, such as the myosin binding protein-C gene, which induces the disease predominantly in the fifth or sixth decade of life. Genetic animal models in the mouse and rabbit have helped to elucidate the pathophysiology. The primary defect imparted by the specific mutation alters contractile function, which stimulates release of various growth factors that induce secondary cardiac hypertrophy and fibrosis. Placebo single-blinded studies in the mouse indicate that losartan reverses the phenotype; in the rabbit, simvastatin essentially reversed the phenotype after 12 weeks of therapy. Clinical trials are ongoing in human familial hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Robert Roberts
- Department of Medicine, Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
46
|
Chung MW, Tsoutsman T, Semsarian C. Hypertrophic cardiomyopathy: from gene defect to clinical disease. Cell Res 2003; 13:9-20. [PMID: 12643345 DOI: 10.1038/sj.cr.7290146] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Major advances have been made over the last decade in our understanding of the molecular basis of several cardiac conditions. Hypertrophic cardiomyopathy (HCM) was the first cardiac disorder in which a genetic basis was identified and as such, has acted as a paradigm for the study of an inherited cardiac disorder. HCM can result in clinical symptoms ranging from no symptoms to severe heart failure and premature sudden death. HCM is the commonest cause of sudden death in those aged less than 35 years, including competitive athletes. At least ten genes have now been identified, defects in which cause HCM. All of these genes encode proteins which comprise the basic contractile unit of the heart, i.e. the sarcomere. While much is now known about which genes cause disease and the various clinical presentations, very little is known about how these gene defects cause disease, and what factors modify the expression of the mutant genes. Studies in both cell culture and animal models of HCM are now beginning to shed light on the signalling pathways involved in HCM, and the role of both environmental and genetic modifying factors. Understanding these mechanisms will ultimately improve our knowledge of the basic biology of heart muscle function, and will therefore provide new avenues for treating cardiovascular disease in man.
Collapse
Affiliation(s)
- Man-Wei Chung
- Molecular Cardiology Group, Centenary Institute, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | | |
Collapse
|
47
|
Okafor CC, Saunders L, Li X, Ito T, Dixon M, Stepenek A, Hajjar RJ, Wood JR, Doye AA, Gwathmey JK. Myofibrillar responsiveness to cAMP, PKA, and caffeine in an animal model of heart failure. Biochem Biophys Res Commun 2003; 300:592-9. [PMID: 12504124 DOI: 10.1016/s0006-291x(02)02885-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated whether an alteration of myofilament calcium responsiveness and contractile activation may in part contribute to heart failure. A control group of Broad Breasted White turkey poults was given regular feed without additive, whereas the experimental group was given the control ration with 700 ppm of furazolidone at 1 week of age for 3 weeks (DCM). At 4 weeks of age, left ventricular trabeculae carneae were isolated from hearts and calcium-force relationships studied. No differences in calcium-activation between fibers from control or failing hearts were noted under standard experimental conditions. Also failing hearts demonstrated no significant shift in the population of troponin T isoforms but we did observe a significant 4-fold decrease in TnT content in failing hearts compared to non-failing hearts. Addition of caffeine, however, resulted in a greater leftward shift on the calcium axis in fibers from failing hearts. At pCa 6, caffeine increased force by 26+/-2.1% in control fibers and 44.5+/-8.7% in myopathic fibers. Cyclic AMP resulted in a greater rightward shift on the calcium axis in failing myocardium. In control muscles, the frequency of minimum stiffness (f(min)) was higher than in muscles from failing hearts. cAMP and caffeine both shifted f(min) to higher frequencies in control fibers whereas in fibers from failing hearts both caused a greater shift. These results lead us to conclude that heart failure exerts differential effects on cAMP and caffeine responsiveness. Our data suggest that changes at the level of the thin myofilaments may alter myofilament calcium responsiveness and contribute to the contractile dysfunction seen in heart failure.
Collapse
Affiliation(s)
- Chukwuka C Okafor
- Boston University Medical Center, 715 Albany Street, Boston, MA 02118-22526, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hinkle A, Tobacman LS. Folding and function of the troponin tail domain. Effects of cardiomyopathic troponin T mutations. J Biol Chem 2003; 278:506-13. [PMID: 12409295 DOI: 10.1074/jbc.m209194200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Troponin contains a globular Ca(2+)-binding domain and an elongated tail domain composed of the N terminus of subunit troponin T (TnT). The tail domain anchors troponin to tropomyosin and actin, modulates myosin function, and is a site of cardiomyopathy-inducing mutations. Critical interactions between tropomyosin and troponin are proposed to depend on tail domain residues 112-136, which are highly conserved across phyla. Most cardiomyopathy mutations in TnT flank this region. Three such mutations were examined and had contrasting effects on peptide TnT-(1-156), promoting folding and thermal stability assessed by circular dichroism (F110I) or weakening folding and stability (T104V and to a small extent R92Q). Folding of both TnT-(1-156) and whole troponin was promoted by replacing bovine TnT Thr-104 with human TnT Ala-104, further indicating the importance of this cardiomyopathy site residue for protein folding. Mutation F110I markedly stabilized the troponin tail but weakened binding of holo-troponin to actin-tropomyosin 8-fold, suggesting that loss of flexibility impairs troponin tail function. The effect of the F110I mutation on troponin-tropomyosin binding to actin was much less, indicating this flexibility is particularly important for the interactions of troponin with tropomyosin. We suggest that most cardiomyopathic mutations in the troponin tail alter muscle function indirectly, by perturbing interactions between troponin and tropomyosin requisite for the complex effects of these proteins on myosin.
Collapse
Affiliation(s)
- Ashley Hinkle
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
49
|
Abstract
In the last decade our understanding of cardiac pathophysiology has experienced significant advances linked to major advances in molecular genetics. Although many genes are associated today with cardiac diseases, the genetics of both hypertrophic cardiomyopathy and dilated cardiomyopathy have generated great interest. The familial nature of the disease in some patients has been very useful in this regard. In addition, there are also excellent experimental models to study the implications of the genetic abnormalities. Altogether the study of the molecular genetics of the cardiomyopathies should provide not only prognostic information but also new therapeutic alternatives.
Collapse
Affiliation(s)
- Robert Roberts
- Sección de Cardiología, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
50
|
Abstract
Cardiomyopathies are diseases of heart muscle that may result from a diverse array of conditions that damage the heart and other organs and impair myocardial function, including infection, ischemia, and toxins. However, they may also occur as primary diseases restricted to striated muscle. Over the past decade, the importance of inherited gene defects in the pathogenesis of primary cardiomyopathies has been recognized, with mutations in some 18 genes having been identified as causing hypertrophic cardiomyopathy (HCM) and/or dilated cardiomyopathy (DCM). Defining the role of these genes in cardiac function and the mechanisms by which mutations in these genes lead to hypertrophy, dilation, and contractile failure are major goals of ongoing research. Pathophysiological mechanisms that have been implicated in HCM and DCM include the following: defective force generation, due to mutations in sarcomeric protein genes; defective force transmission, due to mutations in cytoskeletal protein genes; myocardial energy deficits, due to mutations in ATP regulatory protein genes; and abnormal Ca2+ homeostasis, due to altered availability of Ca2+ and altered myofibrillar Ca2+ sensitivity. Improved understanding that will result from these studies should ultimately lead to new approaches for the diagnosis, prognostic stratification, and treatment of patients with heart failure.
Collapse
Affiliation(s)
- Diane Fatkin
- Molecular Cardiology Unit, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia.
| | | |
Collapse
|