1
|
Huang C, Chu LM, Liang B, Wu HL, Li BS, Ren S, Hou ML, Nie HC, Kong LY, Fan LQ, Du J, Zhu WB. Comparative genetic analysis of blood and semen samples in sperm donors from Hunan, China. Ann Med 2025; 57:2447421. [PMID: 39757988 PMCID: PMC11721621 DOI: 10.1080/07853890.2024.2447421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVES At present, most genetic tests or carrier screening are performed with blood samples, and the known carrier rate of disease-causing variants is also derived from blood. For semen donors, what is really passed on to offspring is the pathogenic variant in their sperm. This study aimed to determine whether pathogenic variants identified in the sperm of young semen donors are also present in their blood, and whether matching results for blood are consistent with results for sperm. METHODS We included 40 paired sperm and blood samples from 40 qualified semen donors at the Hunan Province Human Sperm Bank of China. All samples underwent exome sequencing (ES) analysis, and the pathogenicity was assessed according to the American College of Medical Genetics (ACMG) guidelines. Scoring for sperm donation matching, which was based on gene scoring and variant scoring, was also used to assess the consistency of sperm and blood genetic test results. RESULTS A total of 108 pathogenic (P)/likely pathogenic (LP) variants in 82 genes were identified. The highest carrier had 7 variants, and there was also one donor did not carry any P/LP variant. On average, each donor carried 2.7 P/LP variants. Among all the P/LP variants, missense mutation was the dominant type and most of them were located in exonic regions. Chromosome 1 harboured the largest number of variants and no pathogenic copy number variants (CNV) was identified in semen donors. The P/LP variant of all the 40 semen donors was consistent by comparing sperm and blood. Except for one case that was slightly different, the rest simulated matching results for blood were all consistent with results for sperm. CONCLUSIONS It is reasonable to choose either blood or sperm for genetic screening in semen donors.
Collapse
Affiliation(s)
- Chuan Huang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Li-Ming Chu
- Basecare Medical Device Co., Ltd, Suzhou, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Lan Wu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | - Bai-Shun Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | - Shuai Ren
- Basecare Medical Device Co., Ltd, Suzhou, China
| | | | - Hong-Chuan Nie
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
| | | | - Li-Qing Fan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Juan Du
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wen-Bing Zhu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
2
|
汤 莹, 张 湧, 吴 丹, 林 炎, 兰 风. [Detection of pathogenic gene mutations in thirteen cases of congenital bilateral absence of vas deferens infertility patients]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:763-774. [PMID: 39397452 PMCID: PMC11480543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To detect the cystic fibrosis transmembrane transduction regulator (CFTR) gene mutations and congenital bilateral absence of vas deferens (CBAVD) susceptibility gene mutations in patients with CBAVD, and to explore their association with the risk of CBAVD. METHODS Whole-exome sequencing and Sanger sequencing validation were conducted on the pathogenic genes CFTR, adhesion G protein-coupled receptor G2 (ADGRG2), sodium channel epithelial 1 subunit beta (SCNN1B), carbonic anhydrase 12 (CA12), and solute carrier family 9 member A3 (SLC9A3) in thirteen cases of isolated CBAVD patients. The polymorphic loci, intron and flanking sequences of CFTR gene were amplified by polymerase chain reaction (PCR) followed by Sanger sequencing. Bioinformatics methods were employed for conservative analysis and deleterious prediction of novel susceptibility gene mutations in CBAVD. Genetic analysis was performed on the pedigree of one out of thirteen patients with CBAVD to evaluate the risk of inheritance in offspring. RESULTS Exome sequencing revealed CFTR gene exon mutations in only six of the thirteen CBAVD patients, with six missense mutations c.2684G>A(p.Ser895Asn), c.4056G>C(p.Gln1352His), c.2812G>(p.Val938Leu), c.3068T>G(p.Ile1023Arg), c.374T>C(p.Ile125Thr), c.1666A>G(p.Ile556Val)), and one nonsense mutation (c.1657C>T(p.Arg553Ter). Among these six patients, two also had the CFTR homozygous p.V470 site, additionally, mutations in CFTR gene exon regions were not detected in the remaining seven patients. Within the thirteen CBAVD patients, three carried the homozygous p.V470 polymorphic site, four carried the 5T allele, two carried the TG13 allele, and ten carried the c.-966T>G site. Four CBAVD patients simultaneously carried 2-3 of the aforementioned CFTR gene mutation sites. Susceptibility gene mutations in CBAVD among the thirteen patients included one ADGRG2 missense mutation c.2312A>G(p.Asn771Ser), two SLC9A3 missense mutations c.2395T>C(p.Cys799Arg), c.493G>A(p.Val165Ile), one SCNN1B missense mutation c.1514G>A(p.Arg505His), and one CA12 missense mutation c.1061C>T (p.Ala354Val). Notably, the SLC9A3 gene c.493G>A (p.Val165Ile) mutation site was first identified in CBAVD patients. The five mutations exhibited an extremely low population mutation frequency in the gnomAD database, classifying them as rare mutations. Predictions from Mutation Taster and Polyphen-2 software indicated that the harmfulness level of the SLC9A3 gene c.493G>A (p.Val165Ile) site and the SCNN1B gene c.1514G>A (p.Arg505His) site were disease causing and probably damaging. The genetic analysis of one pedigree revealed that the c.1657C>T (p.Arg553Ter) mutation in the proband was a de novo mutation, as neither the proband's father nor mother carried this mutation. The proband and his spouse conceived a daughter through assisted reproductive technology, and the daughter inherited the proband's pathogenic mutation c.1657C>T (p.Arg553Ter). CONCLUSION CFTR gene mutations remain the leading cause of CBAVD in Chinese patients; however, the distribution and frequency of mutations differ from data reported in other domestic and international studies, highlighting the need to expand the CFTR mutation spectrum in Chinese CBAVD patients. The susceptibility genes ADGRG2, SLC9A3, SCNN1B, and CA12 may explain some cases of CBAVD without CFTR mutations. Given the lack of specific clinical manifestations in CBAVD patients, it is recommended that clinicians conduct further physical examinations and consider scrotal or transrectal ultrasound before making a defi-nitive diagnosis. It is advisable to employ CFTR gene mutation testing in preconception genetic screening to reduce the risk of CBAVD and cystic fibrosis in offspring.
Collapse
Affiliation(s)
- 莹 汤
- />福建省移植生物学重点实验室,福建医科大学福总临床医学院(第九〇〇医院),福州 350025Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical Medical College of Fujian Medical University (The 900th Hospital of Joint Logistic Support Force, PLA), Fuzhou 350025, China
| | - 湧波 张
- />福建省移植生物学重点实验室,福建医科大学福总临床医学院(第九〇〇医院),福州 350025Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical Medical College of Fujian Medical University (The 900th Hospital of Joint Logistic Support Force, PLA), Fuzhou 350025, China
| | - 丹红 吴
- />福建省移植生物学重点实验室,福建医科大学福总临床医学院(第九〇〇医院),福州 350025Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical Medical College of Fujian Medical University (The 900th Hospital of Joint Logistic Support Force, PLA), Fuzhou 350025, China
| | - 炎鸿 林
- />福建省移植生物学重点实验室,福建医科大学福总临床医学院(第九〇〇医院),福州 350025Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical Medical College of Fujian Medical University (The 900th Hospital of Joint Logistic Support Force, PLA), Fuzhou 350025, China
| | - 风华 兰
- />福建省移植生物学重点实验室,福建医科大学福总临床医学院(第九〇〇医院),福州 350025Fujian Provincial Key Laboratory of Transplant Biology, Fuzong Clinical Medical College of Fujian Medical University (The 900th Hospital of Joint Logistic Support Force, PLA), Fuzhou 350025, China
| |
Collapse
|
3
|
Ayupova G, Litvinov S, Akhmetova V, Minniakhmetov I, Mokrysheva N, Khusainova R. Population Characteristics of the Spectrum and Frequencies of CFTR Gene Mutations in Patients with Cystic Fibrosis from the Republic of Bashkortostan (Russia). Genes (Basel) 2024; 15:1335. [PMID: 39457459 PMCID: PMC11507265 DOI: 10.3390/genes15101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cystic fibrosis (CF) is one of the most common autosomal-recessive disorders worldwide. The incidence of CF depends on the prevalence of cystic fibrosis transmembrane conductance regulator gene (CFTR) mutations in the population, which is determined by genetic diversity and ethnicity. METHODS The search for the causes of mutations in the transmembrane conductance regulator gene (CFTR) was carried out using targeted next-generation sequencing (NGS) on the Illumina platform in patients with cystic fibrosis from the Republic of Bashkortostan (Russia), taking into account the ethnic structure of the sample. RESULTS A total of 35 distinct causal variants were found in 139 cases from 129 families. Five (F508del, E92K, 3849+10kbC>T, CFTRdele2.3, L138ins) explain 78.7% of identified CF causal alleles. Variants N13103K and 394delTT were found in four families each. Variants 2143delT, S1196X, W1282X, Y84X, G194R, and 1525-1G>A, as well as the two previously described complex alleles-c. [S466X; R1070Q] and str.[G509D;E217G]-were found in two or three families each. Twenty additional variants occurred only once. Variant c.3883_3888dup has not been described previously. Thus, regional and ethnic features were identified in the spectrum of frequencies of pathogenic variants of the CFTR gene in the three major sub-groups of patients-Russians, Tatars, and Bashkirs. CONCLUSIONS Taking into account these results, highlighting the genetic specificity of the region, a more efficient search for CFTR mutations in patients can be performed. In particular it is possible to choose certain test kits for quick and effective genetic screening before use of NGS sequencing.
Collapse
Affiliation(s)
- Guzel Ayupova
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Sergey Litvinov
- Institute of Biochemistry and Genetics, 450000 Ufa, Russia; (S.L.); (V.A.)
| | - Vita Akhmetova
- Institute of Biochemistry and Genetics, 450000 Ufa, Russia; (S.L.); (V.A.)
| | | | | | - Rita Khusainova
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia;
- Institute of Biochemistry and Genetics, 450000 Ufa, Russia; (S.L.); (V.A.)
- Endocrinology Research Centre, 117292 Moscow, Russia; (I.M.); (N.M.)
| |
Collapse
|
4
|
Abu-El-Haija M, Zhang W, Karns R, Ginzburg G, Vitale DS, Farrell P, Nasr A, Ibrahim S, Bellin MD, Thompson T, Garlapally V, Woo JG, Husain SZ, Denson LA. The Role of Pancreatitis Risk Genes in Endocrine Insufficiency Development After Acute Pancreatitis in Children. Clin Gastroenterol Hepatol 2024; 22:2033-2043.e2. [PMID: 38871151 PMCID: PMC11424246 DOI: 10.1016/j.cgh.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND & AIMS Acute pancreatitis (AP) is increasingly recognized as a risk factor for diabetes mellitus (DM). We aimed to study the association of pancreatitis genes with pancreatic endocrine insufficiency (pre-DM and DM) development post-AP in children. METHODS This was an observational cohort study that enrolled subjects ≤21 years with their first episode of AP and followed them for 12 months for the development of pancreatic endocrine insufficiency. Pancreatitis risk genes (CASR, CEL, CFTR, CLDN2, CPA1, CTRC, PRSS1, SBDS, SPINK1, and UBR1) were sequenced. A genetic risk score was derived from all genes with univariable P < .15. RESULTS A total 120 subjects with AP were genotyped. Sixty-three subjects (52.5%) had at least 1 reportable variant identified. For modeling the development of pancreatic endocrine insufficiency at 1 year, 6 were excluded (2 with DM at baseline, 3 with total pancreatectomy, and 1 death). From this group of 114, 95 remained normoglycemic and 19 (17%) developed endocrine insufficiency (4 DM, 15 pre-DM). Severe AP (58% vs 20%; P = .001) and at least 1 gene affected (79% vs 47%; P = .01) were enriched among the endocrine-insufficient group. Those with versus without endocrine insufficiency were similar in age, sex, race, ethnicity, body mass index, and AP recurrence. A model for pre-DM/DM development included AP severity (odds ratio, 5.17 [1.66-16.15]; P = .005) and genetic risk score (odds ratio, 4.89 [1.83-13.08]; P = .002) and had an area under the curve of 0.74. CONCLUSIONS In this cohort of children with AP, pancreatitis risk genes and AP disease severity were associated with pre-DM or DM development post-AP.
Collapse
Affiliation(s)
- Maisam Abu-El-Haija
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Wenying Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rebekah Karns
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gila Ginzburg
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - David S Vitale
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Peter Farrell
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alexander Nasr
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sherif Ibrahim
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Melena D Bellin
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota; Department Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Tyler Thompson
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Vineet Garlapally
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jessica G Woo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sohail Z Husain
- Department of Pediatrics (Gastroenterology), Stanford University and Stanford Medicine Children's Health, Stanford, California
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
5
|
Yousaf S, Sumaira, Bano I, Rehman A, Kousar S, Ghani MU, Shahid M. Case Study: Analyzing CFTR Mutations and SNPs in Pulmonary Fibrosis Patients with Unclear Symptoms. Case Rep Med 2024; 2024:8836342. [PMID: 39351067 PMCID: PMC11442034 DOI: 10.1155/2024/8836342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic monogenic disorder inherited in an autosomal recessive manner, marked by persistent airway infections in the endobronchial region. This condition leads to the gradual development of bronchiectasis and, ultimately, respiratory failure, emerging as the primary cause of mortality in individuals diagnosed with CF. Diagnosis is done depending on the patient's symptoms and lung radiological findings like chest X-rays and CTs. In younger patients and children, diagnosis becomes difficult due to overlapping symptoms with other diseases such as CF which is a rare genetic disease in our population. Diagnosis of CF usually relies on characteristic symptoms, a family history of CF, and an abnormal sweat chloride test, but in children, low sweat production during testing leads to false negative results. In this case report, a suspected patient with ambiguous respiratory symptoms underwent a comprehensive investigation revealing elevated CRP levels, TLC, and characteristic pulmonary manifestations on chest X-ray, suggesting cystic fibrosis. Despite negative sweat chloride tests, the patient was analysed for potential candidate SNPs and was also tested for potential CFTR mutations to rule out CF, genetic analysis confirmed the diagnosis. Genetic testing plays a crucial role in diagnosing cystic fibrosis, even when traditional tests are inconclusive. Specific mutations like Δ508 deletion and rs213950 guide personalized treatment. Consanguinity and family history highlight genetic predisposition, while environmental factors may influence symptom onset. Further research is needed to understand these complexities and improve diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Sahar Yousaf
- Centre of Excellence in Molecular Biology University of the Punjab, Lahore, Pakistan
| | - Sumaira
- Centre of Excellence in Molecular Biology University of the Punjab, Lahore, Pakistan
| | - Iqbal Bano
- Children Hospital University of Child Health Sciences, Lahore, Pakistan
| | - Atia Rehman
- Centre of Excellence in Molecular Biology University of the Punjab, Lahore, Pakistan
| | - Samra Kousar
- Centre of Excellence in Molecular Biology University of the Punjab, Lahore, Pakistan
| | | | - Mariam Shahid
- Centre of Excellence in Molecular Biology University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Cuyx S, Ramalho AS, Fieuws S, Corthout N, Proesmans M, Boon M, Arnauts K, Carlon MS, Munck S, Dupont L, De Boeck K, Vermeulen F. Rectal organoid morphology analysis (ROMA) as a novel physiological assay for diagnostic classification in cystic fibrosis. Thorax 2024; 79:834-841. [PMID: 39004507 DOI: 10.1136/thorax-2023-220964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/14/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Diagnosing cystic fibrosis (CF) is not always straightforward, in particular when sweat chloride concentration (SCC) is intermediate and <2 CF-causing CFTR variants are identified. The physiological CFTR assays proposed in the guidelines, nasal potential difference and intestinal current measurement, are not readily available nor feasible at all ages. Rectal organoid morphology analysis (ROMA) was previously shown to discriminate between organoids from subjects with and without CF based on a distinct phenotypical difference: compared with non-CF organoids, CF organoids have an irregular shape and lack a visible lumen. The current study serves to further explore the role of ROMA when a CF diagnosis is inconclusive. METHODS Organoid morphology was analysed using the previously established ROMA protocol. Two indices were calculated: the circularity index to quantify the roundness of organoids and the intensity ratio as a measure of the presence of a central lumen. RESULTS Rectal organoids from 116 subjects were cultured and analysed together with the 189 subjects from the previous study. ROMA almost completely discriminated between CF and non-CF. ROMA indices correlated with SCC, pancreatic status and genetics, demonstrating convergent validity. For cases with an inconclusive diagnosis according to current guidelines, ROMA provided additional diagnostic information, with a diagnostic ROMA classification for 18 of 24 (75%). DISCUSSION ROMA provides additional information to support a CF diagnosis when SCC and genetics are insufficient for diagnostic classification. ROMA is standardised and can be centralised, allowing future inclusion in the diagnostic work-up as first-choice physiological assay in case of an unclear diagnosis.
Collapse
Affiliation(s)
- Senne Cuyx
- Department of Development and Regeneration, Woman and Child Unit, CF Research Lab, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Pulmonology, University Hospitals Leuven, Leuven, Belgium
| | - Anabela Santo Ramalho
- Department of Development and Regeneration, Woman and Child Unit, CF Research Lab, KU Leuven, Leuven, Belgium
| | - Steffen Fieuws
- Interuniversity Center for Biostatistics and Statistical Bioinformatics, KU Leuven, Leuven, Belgium
- Interuniversity Center for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | - Nikky Corthout
- VIB Bio Imaging Core and VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, Belgium
- Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - Marijke Proesmans
- Department of Development and Regeneration, Woman and Child Unit, CF Research Lab, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Pulmonology, University Hospitals Leuven, Leuven, Belgium
| | - Mieke Boon
- Department of Development and Regeneration, Woman and Child Unit, CF Research Lab, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Pulmonology, University Hospitals Leuven, Leuven, Belgium
| | - Kaline Arnauts
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Marianne S Carlon
- Center for Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Sebastian Munck
- VIB Bio Imaging Core and VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, Leuven, Belgium
- Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - Lieven Dupont
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Kris De Boeck
- Department of Development and Regeneration, Woman and Child Unit, CF Research Lab, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Pulmonology, University Hospitals Leuven, Leuven, Belgium
| | - François Vermeulen
- Department of Development and Regeneration, Woman and Child Unit, CF Research Lab, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Pulmonology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Hendifar A, Hitchins M, Lauzon M, Hatchell KE, Heald B, Pandol S, Naren AP, Osipov A. High frequency of germline variants in CFTR identified in PDAC patients enrolled in an expanded panel multi-gene panel testing program. HPB (Oxford) 2024; 26:1082-1085. [PMID: 38825435 PMCID: PMC11317177 DOI: 10.1016/j.hpb.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 06/04/2024]
Affiliation(s)
- Andrew Hendifar
- Samuel Oschin Comprehensive Cancer Center, Cedars Sinai Medical Center, Los Angeles CA, USA.
| | - Megan Hitchins
- Samuel Oschin Comprehensive Cancer Center, Cedars Sinai Medical Center, Los Angeles CA, USA
| | - Marie Lauzon
- Samuel Oschin Comprehensive Cancer Center, Cedars Sinai Medical Center, Los Angeles CA, USA
| | | | | | | | | | - Arsen Osipov
- Samuel Oschin Comprehensive Cancer Center, Cedars Sinai Medical Center, Los Angeles CA, USA
| |
Collapse
|
8
|
Shengjia S, Lei W, Tianwei W, Hongmei W, Juanzi S, Sen Q. Compound heterozygous variants in CFTR with potentially reducing ATP-binding ability identified in Chinese infertile brothers with isolated congenital bilateral absence of vas deferens. Mol Genet Genomic Med 2023; 11:e2249. [PMID: 37489040 PMCID: PMC10655520 DOI: 10.1002/mgg3.2249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Isolated congenital bilateral absence of vas deferens (iCBAVD) in men results in obstructive azoospermia and is mainly caused by pathogenic variants in cystic fibrosis transmembrane conductance regulator (CFTR) or adhesion G protein-coupled receptor G2 (ADGRG2). METHODS The next-generation sequencing (NGS) was used to screen the mutations in the proband, and Sanger sequencings were performed to validate the compound heterozygous variant of CFTR in his family members. Protein structure simulation was performed to discover the potential pathological mechanism. RESULTS This study reported novel compound heterozygous CFTR mutations (NM:000492.4, Intron: 5T; c.3965_3969dupTTGGG: p.R1325Gfs*5) in two brothers with obstructive azoospermia. The compound heterozygous CFTR mutations were first screened out by NGS in an infertile male patient who exhibited iCBAVD from a nonconsanguineous Chinese family. Histological analysis of the testicular biopsy from this patient revealed normal spermatogenesis and mature spermatozoa were observed in the seminiferous tubules. Surprisingly, the same compound heterozygous CFTR mutations were also observed in his brothers who also exhibited iCBAVD, with their parents being a heterozygous carrier for the mutations, as verified by Sanger sequencing. Protein structure simulation revealed that these mutations potentially led to impaired ATP-binding ability of CFTR. CONCLUSION We identified novel compound heterozygous CFTR mutations in two brothers and summarized the literature regarding CFTR mutation and male infertility. Our study may contribute to the genetic diagnosis of iCBAVD and future genetic counseling.
Collapse
Affiliation(s)
- Shi Shengjia
- Reproductive CenterNorthwest Women's and Children's HospitalXi'anChina
| | - Wang Lei
- Reproductive CenterNorthwest Women's and Children's HospitalXi'anChina
| | - Wang Tianwei
- Reproductive CenterNorthwest Women's and Children's HospitalXi'anChina
| | - Wang Hongmei
- School of MedicineSoutheast UniversityNanjingChina
| | - Shi Juanzi
- Reproductive CenterNorthwest Women's and Children's HospitalXi'anChina
| | - Qiao Sen
- Reproductive CenterNorthwest Women's and Children's HospitalXi'anChina
| |
Collapse
|
9
|
Horton CA, Alexandari AM, Hayes MGB, Marklund E, Schaepe JM, Aditham AK, Shah N, Suzuki PH, Shrikumar A, Afek A, Greenleaf WJ, Gordân R, Zeitlinger J, Kundaje A, Fordyce PM. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science 2023; 381:eadd1250. [PMID: 37733848 DOI: 10.1126/science.add1250] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
Short tandem repeats (STRs) are enriched in eukaryotic cis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)-DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites.
Collapse
Affiliation(s)
- Connor A Horton
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Amr M Alexandari
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Michael G B Hayes
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Emil Marklund
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julia M Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Nilay Shah
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Avanti Shrikumar
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Ariel Afek
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- The University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94110, USA
| |
Collapse
|
10
|
Haerter CAG, Blanco DR, Traldi JB, Feldberg E, Margarido VP, Lui RL. Are scattered microsatellites weak chromosomal markers? Guided mapping reveals new insights into Trachelyopterus (Siluriformes: Auchenipteridae) diversity. PLoS One 2023; 18:e0285388. [PMID: 37310952 DOI: 10.1371/journal.pone.0285388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/22/2023] [Indexed: 06/15/2023] Open
Abstract
The scattered distribution pattern of microsatellites is a challenging problem in fish cytogenetics. This type of array hinders the identification of useful patterns and the comparison between species, often resulting in over-limited interpretations that only label it as "scattered" or "widely distributed". However, several studies have shown that the distribution pattern of microsatellites is non-random. Thus, here we tested whether a scattered microsatellite could have distinct distribution patterns on homeologous chromosomes of closely related species. The clustered sites of 18S and 5S rDNA, U2 snRNA and H3/H4 histone genes were used as a guide to compare the (GATA)n microsatellite distribution pattern on the homeologous chromosomes of six Trachelyopterus species: T. coriaceus and Trachelyopterus aff. galeatus from the Araguaia River basin; T. striatulus, T. galeatus and T. porosus from the Amazonas River basin; and Trachelyopterus aff. coriaceus from the Paraguay River basin. Most species had similar patterns of the (GATA)n microsatellite in the histone genes and 5S rDNA carriers. However, we have found a chromosomal polymorphism of the (GATA)n sequence in the 18S rDNA carriers of Trachelyopterus galeatus, which is in Hard-Weinberg equilibrium and possibly originated through amplification events; and a chromosome polymorphism in Trachelyopterus aff. galeatus, which combined with an inversion polymorphism of the U2 snRNA in the same chromosome pair resulted in six possible cytotypes, which are in Hardy-Weinberg disequilibrium. Therefore, comparing the distribution pattern on homeologous chromosomes across the species, using gene clusters as a guide to identify it, seems to be an effective way to further the analysis of scattered microsatellites in fish cytogenetics.
Collapse
Affiliation(s)
| | | | - Josiane Baccarin Traldi
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brasil
| | | | - Vladimir Pavan Margarido
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Cascavel, Paraná, Brasil
| | - Roberto Laridondo Lui
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde, Cascavel, Paraná, Brasil
| |
Collapse
|
11
|
Raymond CM, Gaul SP, Han S, Huang G, Dong J. Variability of Clinical Presentation in Patients Heterozygous for the F508del Cystic Fibrosis Variant: A Series of Three Cases and a Review of the Literature. Cureus 2023; 15:e40185. [PMID: 37431359 PMCID: PMC10329848 DOI: 10.7759/cureus.40185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/12/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that affects the lung, pancreas, and other organs caused by the presence of biallelic CF-causing variants in the cystic fibrosis conductance regular gene (CFTR). CFTR variants can also be found in CFTR-related disorders (CFTR-RD), which present milder symptoms. Increasing access to next-generation sequencing has demonstrated that both CF and CFTR-RD have a broader array of genotypes than formerly thought. Here we present three patients who carry the most common CFTR pathogenic variant - F508del - but express a wide array of phenotypes. These cases open discussion on the role of concurrent variants in CFTR, the importance of early diagnosis and treatment, and the contribution of lifestyle factors in CF and CFTR-RD presentation.
Collapse
Affiliation(s)
| | - Simon P Gaul
- Medicine, University of Texas Medical Branch, John Sealy School of Medicine, Galveston, USA
| | - Song Han
- Pathology, University of Texas Medical Branch, Galveston, USA
| | - Gengming Huang
- Pathology, University of Texas Medical Branch, Galveston, USA
| | - Jianli Dong
- Pathology, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|
12
|
Shi Y, Niu Y, Zhang P, Luo H, Liu S, Zhang S, Wang J, Li Y, Liu X, Song T, Xu T, He S. Characterization of genome-wide STR variation in 6487 human genomes. Nat Commun 2023; 14:2092. [PMID: 37045857 PMCID: PMC10097659 DOI: 10.1038/s41467-023-37690-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Short tandem repeats (STRs) are abundant and highly mutagenic in the human genome. Many STR loci have been associated with a range of human genetic disorders. However, most population-scale studies on STR variation in humans have focused on European ancestry cohorts or are limited by sequencing depth. Here, we depicted a comprehensive map of 366,013 polymorphic STRs (pSTRs) constructed from 6487 deeply sequenced genomes, comprising 3983 Chinese samples (~31.5x, NyuWa) and 2504 samples from the 1000 Genomes Project (~33.3x, 1KGP). We found that STR mutations were affected by motif length, chromosome context and epigenetic features. We identified 3273 and 1117 pSTRs whose repeat numbers were associated with gene expression and 3'UTR alternative polyadenylation, respectively. We also implemented population analysis, investigated population differentiated signatures, and genotyped 60 known disease-causing STRs. Overall, this study further extends the scale of STR variation in humans and propels our understanding of the semantics of STRs.
Collapse
Affiliation(s)
- Yirong Shi
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiwei Niu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaxia Luo
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuai Liu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sijia Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia Wang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanyan Li
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinyue Liu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingrui Song
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Hamanaka K, Yamauchi D, Koshimizu E, Watase K, Mogushi K, Ishikawa K, Mizusawa H, Tsuchida N, Uchiyama Y, Fujita A, Misawa K, Mizuguchi T, Miyatake S, Matsumoto N. Genome-wide identification of tandem repeats associated with splicing variation across 49 tissues in humans. Genome Res 2023; 33:435-447. [PMID: 37307504 PMCID: PMC10078293 DOI: 10.1101/gr.277335.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023]
Abstract
Tandem repeats (TRs) are one of the largest sources of polymorphism, and their length is associated with gene regulation. Although previous studies reported several tandem repeats regulating gene splicing in cis (spl-TRs), no large-scale study has been conducted. In this study, we established a genome-wide catalog of 9537 spl-TRs with a total of 58,290 significant TR-splicing associations across 49 tissues (false discovery rate 5%) by using Genotype-Tissue expression (GTex) Project data. Regression models explaining splicing variation by using spl-TRs and other flanking variants suggest that at least some of the spl-TRs directly modulate splicing. In our catalog, two spl-TRs are known loci for repeat expansion diseases, spinocerebellar ataxia 6 (SCA6) and 12 (SCA12). Splicing alterations by these spl-TRs were compatible with those observed in SCA6 and SCA12. Thus, our comprehensive spl-TR catalog may help elucidate the pathomechanism of genetic diseases.
Collapse
Affiliation(s)
- Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | | | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Kei Watase
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kaoru Mogushi
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kinya Ishikawa
- The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
- Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan;
| |
Collapse
|
14
|
The COPD-Associated Polymorphism Impairs the CFTR Function to Suppress Excessive IL-8 Production upon Environmental Pathogen Exposure. Int J Mol Sci 2023; 24:ijms24032305. [PMID: 36768629 PMCID: PMC9916815 DOI: 10.3390/ijms24032305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
COPD is a lifestyle-related disease resulting from irreversible damage to respiratory tissues mostly due to chronic exposure to environmental pollutants, including cigarette smoke. Environmental pathogens and pollutants induce the acquired dysfunction of the CFTR Cl- channel, which is invoked in COPD. Despite the increased incidence of CFTR polymorphism R75Q or M470V in COPD patients, the mechanism of how the CFTR variant affects COPD pathogenesis remains unclear. Here, we investigated the impact of CFTR polymorphisms (R75Q, M470V) on the CFTR function in airway epithelial cell models. While wild-type (WT) CFTR suppressed the proinflammatory cytokine production induced by COPD-related pathogens including pyocyanin (PYO), R75Q- or M470V-CFTR failed. Mechanistically, the R75Q- or M470V-CFTR fractional PM activity (FPMA) was significantly lower than WT-CFTR in the presence of PYO. Notably, the CF drug Trikafta corrected the PM expression of R75Q- or M470V-CFTR even upon PYO exposure and consequently suppressed the excessive IL-8 production. These results suggest that R75Q or M470V polymorphism impairs the CFTR function to suppress the excessive proinflammatory response to environmental pathogens associated with COPD. Moreover, Trikafta may be useful to prevent the COPD pathogenesis associated with acquired CFTR dysfunction.
Collapse
|
15
|
Splicing mutations in the CFTR gene as therapeutic targets. Gene Ther 2022; 29:399-406. [PMID: 35650428 PMCID: PMC9385490 DOI: 10.1038/s41434-022-00347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
The marketing approval, about ten years ago, of the first disease modulator for patients with cystic fibrosis harboring specific CFTR genotypes (~5% of all patients) brought new hope for their treatment. To date, several therapeutic strategies have been approved and the number of CFTR mutations targeted by therapeutic agents is increasing. Although these drugs do not reverse the existing disease, they help to increase the median life expectancy. However, on the basis of their CFTR genotype, ~10% of patients presently do not qualify for any of the currently available CFTR modulator therapies, particularly patients with splicing mutations (~12% of the reported CFTR mutations). Efforts are currently made to develop therapeutic agents that target disease-causing CFTR variants that affect splicing. This highlights the need to fully identify them by scanning non-coding regions and systematically determine their functional consequences. In this review, we present some examples of CFTR alterations that affect splicing events and the different therapeutic options that are currently developed and tested for splice switching.
Collapse
|
16
|
Tosco A, Castaldo A, Colombo C, Claut L, Carnovale V, Iacotucci P, Lucarelli M, Cimino G, Fabrizzi B, Caporelli N, Majo F, Ciciriello F, Padoan R, Poli P, Taccetti G, Centrone C, Casciaro R, Castellani C, Salvatore D, Colangelo C, Bonomi P, Castaldo G, Terlizzi V. Clinical outcomes of a large cohort of individuals with the F508del/5T;TG12 CFTR genotype. J Cyst Fibros 2022; 21:850-855. [PMID: 35523714 DOI: 10.1016/j.jcf.2022.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/16/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND In recent years, patients with cystic fibrosis (CF) conductance regulator (CFTR) variant poly(T) sequences have been increasingly reported with a wide spectrum of clinical severity. We describe the long-term clinical outcomes and progression to a CF diagnosis over time in a large Italian cohort of patients carrying the CFTR F508del/5T;TG12 genotype. METHODS A retrospective analysis of subjects from 10 CF centres in Italy with the F508del/5T;TG12 genotype was performed. Demographic, clinical, microbiological, and biochemical data, as well as information about the follow-ups and complications of the enroled patients, were collected. RESULTS A total of 129 subjects (54 females; median age: 15.0 years, range: 0-58 years; 59 older than 18 years) were included. In terms of initial diagnoses, 30 were CF (23.3%), 41 were CFTR-related disorder (CFTR-RD) (31.7%), and 58 were CF transmembrane conductance regulator-related metabolic syndrome/cystic fibrosis screen positive, inconclusive diagnosis (CRMS/CFSPID) (45.0%). After a median follow-up of 6.7 years (range 0.2-25 years), 15 patients progressed to CF, bringing the total number of CF diagnoses to 45/129 (34.9%). Most of these patients had mild lung diseases with pancreatic sufficiency and a low prevalence of CF-related complications. CONCLUSIONS At the end of the study, 34.9% of subjects with the CFTR F508del/5T;TG12 genotype were diagnosed with CF. We suggest including patients with the F508del/5T;TG12 genotype in long-term follow-ups.
Collapse
Affiliation(s)
- Antonella Tosco
- Paediatric Unit, Department of Translational Medical Sciences, Cystic Fibrosis Regional Reference Center, University of Naples Federico II, Naples, Italy
| | - Alice Castaldo
- Paediatric Unit, Department of Translational Medical Sciences, Cystic Fibrosis Regional Reference Center, University of Naples Federico II, Naples, Italy
| | - Carla Colombo
- Cystic Fibrosis Regional Reference Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Laura Claut
- Cystic Fibrosis Regional Reference Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Vincenzo Carnovale
- Department of Translational Medical Science, Cystic Fibrosis Center, Adult Unit, University of Naples "Federico II", Italy
| | - Paola Iacotucci
- Department of Translational Medical Science, Cystic Fibrosis Center, Adult Unit, University of Naples "Federico II", Italy
| | - Marco Lucarelli
- Dept of Experimental Medicine, Sapienza University of Rome, Rome, Italy; Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Cimino
- Cystic Fibrosis Regional Reference Center, A.O.U. Policlinico Umberto I, Rome, Italy
| | - Benedetta Fabrizzi
- Cystic Fibrosis Regional Reference Center, Mother - Child Department, United Hospitals, Ancona, Italy
| | - Nicole Caporelli
- Cystic Fibrosis Regional Reference Center, Mother - Child Department, United Hospitals, Ancona, Italy
| | - Fabio Majo
- Cystic Fibrosis Centre, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fabiana Ciciriello
- Cystic Fibrosis Centre, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Padoan
- Cystic Fibrosis Regional Support Center, Department of Pediatrics, University of Brescia, ASST Spedali Civili Brescia, Brescia, Italy
| | - Piercarlo Poli
- Cystic Fibrosis Regional Support Center, Department of Pediatrics, University of Brescia, ASST Spedali Civili Brescia, Brescia, Italy
| | - Giovanni Taccetti
- Meyer Children's Hospital, Cystic Fibrosis Regional Reference Center, Department of Paediatric Medicine, Viale Gaetano Pieraccini 24, Florence, Italy
| | - Claudia Centrone
- Diagnostic Genetics Unit, Careggi University Hospital, Florence, Italy
| | | | | | | | | | | | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, Naples, Italy; CEINGE-Advanced Biotechnology, Naples, Italy
| | - Vito Terlizzi
- Meyer Children's Hospital, Cystic Fibrosis Regional Reference Center, Department of Paediatric Medicine, Viale Gaetano Pieraccini 24, Florence, Italy.
| |
Collapse
|
17
|
Variation in CFTR-dependent ‘β-sweating’ among healthy adults. PLoS One 2022; 17:e0265432. [PMID: 35312728 PMCID: PMC8936459 DOI: 10.1371/journal.pone.0265432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
The genetic disease cystic fibrosis (CF) results when mutations in the gene for the anion channel CFTR reduce CFTR’s activity below a critical level. CFTR activity = N·PO·γ (number of channels x open probability x channel conductance). Small molecules are now available that partially restore CFTR function with dramatic improvements in health of CF subjects. Continued evaluation of these and other compounds in development will be aided by accurate assessments of CFTR function. However, measuring CFTR activity in vivo is challenging and estimates vary widely. The most accurate known measure of CFTR activity in vivo is the ‘β/M’ ratio of sweat rates, which is produced by stimulation with a β-adrenergic agonist cocktail referenced to the same individual’s methacholine-stimulated sweat rate. The most meaningful metric of CFTR activity is to express it as a percent of normal function, so it is critical to establish β/M carefully in a population of healthy control subjects. Here, we analyze β/M from a sample of 50 healthy adults in which sweat rates to cholinergic and β-adrenergic agonists were measured repeatedly (3 times) in multiple, (~50) identified sweat glands from each individual (giving ~20,000 measurements). The results show an approximately 7-fold range, 26–187% of the WT average set to 100%. These provide a benchmark against which other measures of CFTR activity can be compared. Factors contributing to β/M variation in healthy controls are discussed.
Collapse
|
18
|
Cai Z, Li H. Congenital Bilateral Absence of the Vas Deferens. Front Genet 2022; 13:775123. [PMID: 35222530 PMCID: PMC8873976 DOI: 10.3389/fgene.2022.775123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/19/2022] [Indexed: 01/23/2023] Open
Abstract
Congenital bilateral absence of the vas deferens (CBAVD) is clinically characterized by the absence of the bilateral vas deferens; the main clinical manifestation is infertility, accounting for 1–2% of male infertility cases. CBAVD may be accompanied by congenital abnormalities in the urogenital system and cystic fibrosis (CF)-related clinical manifestations. CBAVD can develop as a mild manifestation of CF or can be isolated. The main pathogenic mechanism of CBAVD is gene mutation, and CBAVD and CF have a common genetic mutation background. CFTR mutation is the main pathogenic cause of CBAVD and CF, and ADGRG2 mutation is the second most common cause. Although lack of the vas deferens in CBAVD patients causes infertility due to the inability to release sperm, the testes of CBAVD patients have spermatogenic function. Therefore, CBAVD patients can achieve fertility through sperm retrieval surgery and assisted reproductive technology (ART). However, gene mutations in CBAVD patients can have an impact on the ART outcome, and there is a risk of passing on gene mutations to offspring. For CBAVD patients and their spouses, performing genetic counseling (which currently refers mainly to CFTR mutation screening) helps to reduce the risks of genetic mutations being passed on to offspring and of offspring having CF with concomitant CBAVD.
Collapse
|
19
|
Wine JJ. How the sweat gland reveals levels of CFTR activity. J Cyst Fibros 2022; 21:396-406. [DOI: 10.1016/j.jcf.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/05/2022] [Accepted: 02/05/2022] [Indexed: 10/19/2022]
|
20
|
Hatton A, Bergougnoux A, Zybert K, Chevalier B, Mesbahi M, Altéri JP, Walicka-Serzysko K, Postek M, Taulan-Cadars M, Edelman A, Hinzpeter A, Claustres M, Girodon E, Raynal C, Sermet-Gaudelus I, Sands D. Reclassifying inconclusive diagnosis after newborn screening for cystic fibrosis. Moving forward. J Cyst Fibros 2021; 21:448-455. [PMID: 34949556 DOI: 10.1016/j.jcf.2021.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Newborn screening for Cystic Fibrosis (CF) is associated with situations where the diagnosis of CF or CFTR related disorders (CFTR-RD) cannot be clearly ruled out. MATERIALS/PATIENTS AND METHODS We report a case series of 23 children with unconclusive diagnosis after newborn screening for CF and a mean follow-up of 7.7 years (4-13). Comprehensive investigations including whole CFTR gene sequencing, in vivo intestinal current measurement (ICM), nasal potential difference (NPD), and in vitro functional studies of variants of unknown significance, helped to reclassify the patients. RESULTS Extensive genetic testing identified, in trans with a CF causing mutation, variants with varying clinical consequences and 3 variants of unknown significance (VUS). Eighteen deep intronic variants were identified by deep resequencing of the whole CFTR gene in 13 patients and were finally considered as non-pathogenic. All patients had normal CFTR dependent chloride transport in ICM. NPD differentiated 3 different profiles: CF-like tracings qualifying the patients as CF, such as F508del/D1152H patients; normal responses, suggesting an extremely low likelihood of developing a CFTR-RD such as F508del/TG11T5 patients; partial CFTR dysfunction above 20% of the normal, highlighting a remaining risk of developing CFTR-RD such as F508del/F1052V patients. The 3 VUS were reclassified as variant with defective maturation (D537N), defective expression (T582I) or with no clinical consequence (M952T). CONCLUSION This study demonstrates the usefulness of combining genetic and functional investigations to assess the possibility of evolving to CF or CFTR-RD in babies with inconclusive diagnosis at neonatal screening.
Collapse
Affiliation(s)
- Aurelie Hatton
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 149 rue de Sévres, Paris 75015, France; Université de Paris, Paris, France
| | - Anne Bergougnoux
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France; CHU de Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France
| | - Katarzyna Zybert
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland
| | - Benoit Chevalier
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 149 rue de Sévres, Paris 75015, France; Université de Paris, Paris, France
| | - Myriam Mesbahi
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 149 rue de Sévres, Paris 75015, France; Université de Paris, Paris, France
| | - Jean Pierre Altéri
- CHU de Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France
| | | | - Magdalena Postek
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland
| | - Magali Taulan-Cadars
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France; Université de Montpellier, Montpellier, France
| | - Aleksander Edelman
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 149 rue de Sévres, Paris 75015, France; Université de Paris, Paris, France
| | - Alexandre Hinzpeter
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 149 rue de Sévres, Paris 75015, France; Université de Paris, Paris, France
| | | | - Emmanuelle Girodon
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 149 rue de Sévres, Paris 75015, France; Laboratoire de Génétique et Biologie Moléculaires, Hôpital Cochin, APHP Centre, Université de Paris, Paris, France
| | - Caroline Raynal
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France; CHU de Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France
| | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker Enfants Malades, Université de Paris, 149 rue de Sévres, Paris 75015, France; Université de Paris, Paris, France; Centre de Référence Maladies Rares, Mucoviscidose et maladies apparentées, Hôpital Necker Enfants Malades, Paris, France; European Reference Network-Lung, France.
| | - Dorota Sands
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland
| |
Collapse
|
21
|
Tan MQ, Huang WJ, Lan FH, Xu YJ, Zheng MY, Tang Y. Genetic mutation analysis of 22 patients with congenital absence of vas deferens: A single-center study†. Biol Reprod 2021; 106:108-117. [PMID: 34673937 DOI: 10.1093/biolre/ioab194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Congenital absence of the vas deferens (CAVD), a congenital malformation of the male reproductive system, causes obstructive azoospermia and male infertility. Currently, the cystic fibrosis transmembrane conductance regulator (CFTR) has been recognized as the main pathogenic gene in CAVD, with some other genes, such as adhesion G-protein coupled receptor G2 (ADGRG2), solute carrier family 9 isoform 3 (SLC9A3), sodium channel epithelial 1 subunit beta (SCNN1B), and carbonic anhydrase 12 (CA12) being candidate genes in the pathogenesis of CAVD. However, the frequency and spectrum of these mutations, as well as the pathogenic mechanisms of CAVD, have not been fully investigated. Here, we sequenced all genes with potentially pathogenic mutations using next-generation sequencing and verified all identified variants by Sanger sequencing. Further bioinformatic analysis was performed to predict the pathogenicity of mutations. We described the distribution of the p.V470M, poly-T, and TG-repeat CFTR polymorphisms, and identified novel missense mutations in the CFTR and SLC9A3 genes, respectively. Taken together, we identified mutations in the CFTR, ADGRG2, SLC9A3, SCNN1B, and CA12 genes in 22 patients with CAVD, thus broadening the genetic spectrum of Chinese patients with CAVD.
Collapse
Affiliation(s)
- Mao-Qing Tan
- Department of Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China.,Department of Clinical Laboratory, Dongfang Hospital Affiliated to Xiamen University, Fuzhou, Fujian, 350025, P.R. China
| | - Wu-Jian Huang
- Center for Reproductive Medicine, 900TH Hospital of Joint Logistic Support Force, Fuzhou, Fujian, 350025, P.R. China
| | - Feng-Hua Lan
- Laboratory of Basic Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350025, P.R. China
| | - Yong-Jun Xu
- Laboratory of Basic Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350025, P.R. China
| | - Mei-Yu Zheng
- Laboratory of Basic Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350025, P.R. China
| | - Ying Tang
- Laboratory of Basic Medicine, 900TH Hospital of Joint Logistics Support Force, Fuzhou, Fujian, 350025, P.R. China
| |
Collapse
|
22
|
Carrasco-Hernández L, Quintana-Gallego E, Calero C, Reinoso-Arija R, Ruiz-Duque B, López-Campos JL. Dysfunction in the Cystic Fibrosis Transmembrane Regulator in Chronic Obstructive Pulmonary Disease as a Potential Target for Personalised Medicine. Biomedicines 2021; 9:1437. [PMID: 34680554 PMCID: PMC8533244 DOI: 10.3390/biomedicines9101437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 01/09/2023] Open
Abstract
In recent years, numerous pathways were explored in the pathogenesis of COPD in the quest for new potential therapeutic targets for more personalised medical care. In this context, the study of the cystic fibrosis transmembrane conductance regulator (CFTR) began to gain importance, especially since the advent of the new CFTR modulators which had the potential to correct this protein's dysfunction in COPD. The CFTR is an ion transporter that regulates the hydration and viscosity of mucous secretions in the airway. Therefore, its abnormal function favours the accumulation of thicker and more viscous secretions, reduces the periciliary layer and mucociliary clearance, and produces inflammation in the airway, as a consequence of a bronchial infection by both bacteria and viruses. Identifying CFTR dysfunction in the context of COPD pathogenesis is key to fully understanding its role in the complex pathophysiology of COPD and the potential of the different therapeutic approaches proposed to overcome this dysfunction. In particular, the potential of the rehydration of mucus and the role of antioxidants and phosphodiesterase inhibitors should be discussed. Additionally, the modulatory drugs which enhance or restore decreased levels of the protein CFTR were recently described. In particular, two CFTR potentiators, ivacaftor and icenticaftor, were explored in COPD. The present review updated the pathophysiology of the complex role of CFTR in COPD and the therapeutic options which could be explored.
Collapse
Affiliation(s)
- Laura Carrasco-Hernández
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (L.C.-H.); (E.Q.-G.); (C.C.); (R.R.-A.); (B.R.-D.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther Quintana-Gallego
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (L.C.-H.); (E.Q.-G.); (C.C.); (R.R.-A.); (B.R.-D.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Calero
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (L.C.-H.); (E.Q.-G.); (C.C.); (R.R.-A.); (B.R.-D.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rocío Reinoso-Arija
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (L.C.-H.); (E.Q.-G.); (C.C.); (R.R.-A.); (B.R.-D.)
| | - Borja Ruiz-Duque
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (L.C.-H.); (E.Q.-G.); (C.C.); (R.R.-A.); (B.R.-D.)
| | - José Luis López-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, 41013 Sevilla, Spain; (L.C.-H.); (E.Q.-G.); (C.C.); (R.R.-A.); (B.R.-D.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
23
|
Nykamp K, Truty R, Riethmaier D, Wilkinson J, Bristow SL, Aguilar S, Neitzel D, Faulkner N, Aradhya S. Elucidating clinical phenotypic variability associated with the polyT tract and TG repeats in CFTR. Hum Mutat 2021; 42:1165-1172. [PMID: 34196078 PMCID: PMC9292755 DOI: 10.1002/humu.24250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023]
Abstract
Biallelic pathogenic variants in CFTR manifest as cystic fibrosis (CF) or other CFTR-related disorders (CFTR-RDs). The 5T allele, causing alternative splicing and reduced protein activity, is modulated by the adjacent TG repeat element, though previous data have been limited to small, selective cohorts. Here, the risk and spectrum of phenotypes associated with the CFTR TG-T5 haplotype variants (TG11T5, TG12T5, and TG13T5) in the absence of the p.Arg117His variant are evaluated. Individuals who received physician-ordered next-generation sequencing of CFTR were included. TG[11-13]T5 variant frequencies (biallelic or with another CF-causing variant [CFvar]) were calculated. Clinical information reported by the ordering provider or the individual was examined. Among 548,300 individuals, the T5 minor allele frequency (MAF) was 4.2% (TG repeat distribution: TG11 = 68.1%, TG12 = 29.5%, TG13 = 2.4%). When present with a CFvar, each TG[11-13]T5 variant was significantly enriched in individuals with a high suspicion of CF or CFTR-RD (personal/family history of CF/CFTR-RD) compared to those with a low suspicion for CF or CFTR-RD (hereditary cancer screening, CFTR not requisitioned). Compared to CFvar/CFvar individuals, those with TG[11-13]T5/CFvar generally had single-organ involvement, milder symptoms, variable expressivity, and reduced penetrance. These data improve our understanding of disease risks associated with TG[11-13]T5 variants and have important implications for reproductive genetic counseling.
Collapse
|
24
|
Khedri A, Farahmandi AY, Moghaveleh M, Baghbani KA, Khoob SN, Moghbelinejad S, Asadi F. TG12-T5-V470 haplotype in the CFTR gene is associated with non-obstructive azoospermia in Iranian infertile men. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Gharesouran J, Hosseinzadeh H, Ghafouri-Fard S, Taheri M, Rezazadeh M. STRs: Ancient Architectures of the Genome beyond the Sequence. J Mol Neurosci 2021; 71:2441-2455. [PMID: 34056692 DOI: 10.1007/s12031-021-01850-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 01/24/2023]
Abstract
Short tandem repeats (STRs) are commonly defined as short runs of repetitive nucleotides, consisting of tandemly repeating 2-6- bp motif units, which are ubiquitously distributed throughout genomes. Functional STRs are polymorphic in the population, and their variations influence gene expression, which subsequently may result in pathogenic phenotypes. To understand STR phenotypic effects and their functional roles, we describe four different mutational mechanisms including the unequal crossing-over model, gene conversion, retrotransposition mechanism and replication slippage. Due to the multi-allelic nature, small length, abundance, high variability, codominant inheritance, nearly neutral evolution, extensive genome coverage and simple assaying of STRs, these markers are widely used in various types of biological research, including population genetics studies, genome mapping, molecular epidemiology, paternity analysis and gene flow studies. In this review, we focus on the current knowledge regarding STR genomic distribution, function, mutation and applications.
Collapse
Affiliation(s)
- Jalal Gharesouran
- Molecular Genetics Division, GMG center, Tabriz, Iran.,Division of Medical Genetics, Tabriz Childrens Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Hosseinzadeh
- Molecular Genetics Division, GMG center, Tabriz, Iran.,Division of Medical Genetics, Tabriz Childrens Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Division of Medical Genetics, Tabriz Childrens Hospital, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Levkova M, Chervenkov T, Hachmeriyan M, Angelova L. CFTR gene variants as a reason for impaired spermatogenesis: a pilot study and a Meta-analysis of published data. HUM FERTIL 2021; 25:728-737. [PMID: 33719834 DOI: 10.1080/14647273.2021.1900608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There is increasing data that IVS8-5T variand and TG repeats could lead to impaired spermatogenesis. To investigate this we performed Sanger sequencing on 50 Bulgarian men with a sperm count below 5 × 106/mL and 20 normal fertile men. Frequencies of the results were compared among the two groups. A meta-analysis was perfomed by using the data for 6,423 patients and 5,834 control subjects, tested for the IVS8-5T polymorphism. One case subject (2.0%) was homozygote for the 5 T/5T variant whereas two (4.0%) were heterozygotes for the 5 T/7T variant. No 5 T alleles were found in the control group. The genotypes of the two groups showed a statistically significant difference (p = 0.04, α < 0.05). Also, the odds ratio was 3.73, but this was unsignificant (p = 0.38). All control subjects had 11 TG repeats and for the test group: 47 (94.0%) men with 11 TG repeats and three (6.00%) with 10 TG repeats. Fisher's test showed no significant difference (p = 0.55). The meta-analysis showed that IVS8-5T variant was a risk factor for impaired spermatogenesis (OR = 2.84, p < 0.05) and this was more prominent for non-European (OR = 4.50, p < 0.05) compared to European (OR = 1.28, p < 0.05) men. The IVS8 - 5 T variant could be associated with disorders of sperm production.
Collapse
Affiliation(s)
- Mariya Levkova
- Department of Medical Genetics, Medical University Varna, Varna, Bulgaria.,Laboratory of Medical Genetics, St. Marina Hospital, Varna, Bulgaria
| | - Trifon Chervenkov
- Department of Medical Genetics, Medical University Varna, Varna, Bulgaria.,Laboratory of Clinical Immunology, St. Marina Hospital, Varna, Bulgaria
| | - Mari Hachmeriyan
- Department of Medical Genetics, Medical University Varna, Varna, Bulgaria.,Laboratory of Medical Genetics, St. Marina Hospital, Varna, Bulgaria
| | - Lyudmila Angelova
- Department of Medical Genetics, Medical University Varna, Varna, Bulgaria
| |
Collapse
|
27
|
Quantitative Evaluation of CFTR Pre-mRNA Splicing Dependent on the (TG)mTn Poly-Variant Tract. Diagnostics (Basel) 2021; 11:diagnostics11020168. [PMID: 33504063 PMCID: PMC7911278 DOI: 10.3390/diagnostics11020168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic analysis in cystic fibrosis (CF) is a difficult task. Within the many causes of variability and uncertainty, a major determinant is poor knowledge of the functional effect of most DNA variants of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. In turn, knowledge of the effect of a CFTR variant has dramatic diagnostic, prognostic and, in the era of CF precision medicine, also therapeutic consequences. One of the most challenging CFTR variants is the (TG)mTn haplotype, which has variable functional effect and controversial clinical consequences. The exact quantification of the anomalous splicing of CFTR exon 10 (in the HGVS name; exon 9 in the legacy name) and, consequently, of the residual wild-type functional CFTR mRNA, should be mandatory in clinical assessment of patients with potentially pathological haplotype of this tract. Here, we present a real time-based assay for the quantification of the proportion of exon 10+/exon 10− CFTR mRNA, starting from nasal brushing. Our assay proved rapid, economic and easy to perform. Specific primers used for this assay are either disclosed or commercially available, allowing any laboratory to easily perform it. A simplified analysis of the data is provided, facilitating the interpretation of the results. This method helps to enhance the comprehension of the genotype–phenotype relationship in CF and CFTR-related disorders (CFTR-RD), crucial for the diagnosis, prognosis and personalized therapy of CF.
Collapse
|
28
|
Fedder J, Jørgensen MW, Engvad B. Prevalence of CBAVD in azoospermic men carrying pathogenic CFTR mutations - Evaluated in a cohort of 639 non-vasectomized azoospermic men. Andrology 2020; 9:588-598. [PMID: 33095972 PMCID: PMC7894542 DOI: 10.1111/andr.12925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Men with obstructive azoospermia (OA) due to impaired development of the genital tract often carry at least one Cystic Fibrosis Transmembrane Conductance Regulator CFTR mutation. OBJECTIVE To determine the frequency of Congenital Bilateral Absence of Vas deferens (CBAVD) in men with azoospermia carrying CFTR gene mutations. MATERIALS AND METHODS Non-vasectomized men with azoospermia referred to our andrological center were consecutively included. All men underwent palpation of the scrotal parts of the Vasa deferentia, ultrasonography of the testicles and hormone profile, and genetic analyses. Testicular biopsy was usually performed. A panel of 32 of the most important CFTR mutations was examined from genomic DNA isolated from blood lymphocytes. Either multiplex PCR analysis or a next-generation sequencing technique was performed. RESULTS Among the 639 men with azoospermia, 69 (10.8%) had at least one CFTR mutation. Of the 43 patients with at least one of the two CFTR mutations, ΔF508 and R117H, 19 (44.2%) showed CBAVD, 2 (4.7%) Congenital Unilateral Absence of Vas deferens (CUAVD), and 22 (51.2%) presence of the scrotal parts of the Vasa deferentia. In contrast, only 1/21 men (4.8%) with an isolated IVS8-5T variant showed CBAVD. Among the further 20 men with an isolated IVS8-5T variant, 11 had a history of cryptorchidism. Among the 570 men without CFTR mutations, CBAVD was found in only two men and CUAVD in one. FSH level was higher and testicular volume lower in men with present Vasa deferentia compared to those without (P < .001; Student's t test). Thirty-one men with either ΔF508 or R117H mutations, or both, had a testicular biopsy. Motile spermatozoa were found in 100% of 16 cases with CBAVD but in only 6 out of 15 cases with present Vasa deferentia (P < .01; Fisher's exact test). DISCUSSION AND CONCLUSIONS CBAVD was found in ~ 44% of men with ΔF508/R117H mutations. The data may support that CFTR mutations might affect male fertility through other mechanisms than obstruction of the genital tract. For a practical, clinical purpose analysis for only ΔF508, R117H and IVS8-5T seems sufficient until further research shows anything else.
Collapse
Affiliation(s)
- Jens Fedder
- Centre of Andrology & Fertility Clinic, Odense University Hospital, Odense, Denmark.,Institute of Clinical Medicine, University of Southern Denmark, Odense, Denmark
| | - Mette W Jørgensen
- Department of Clinical Genetics, Lillebaelt Hospital, Vejle, Denmark
| | - Birte Engvad
- Department of Pathology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
29
|
Cao Y, Donaldson R, Lee D. "Summer hypokalemia" as an initial presentation of cystic fibrosis in a morbidly obese African American adult: case report. BMC Nephrol 2020; 21:462. [PMID: 33160331 PMCID: PMC7648400 DOI: 10.1186/s12882-020-02130-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most patients with cystic fibrosis (CF) present with respiratory or digestive symptoms. About 3% of patients have electrolyte disturbances at the time of diagnosis, but most of the described cases presenting with this manifestation have been in children. Only 3 adult patients are identified in the literature who first presented with hypokalemia. We describe a morbidly obese African American adult who presented with severe hypokalemia and metabolic alkalosis, which eventually led to the diagnosis of CF after multiple hospitalizations over 4 consecutive summers. Besides being the first African American adult with this presentation, he had the highest BMI, lowest serum potassium, highest pH, and highest bicarbonate level. CASE PRESENTATION In the summer of 2015, a 26 year-old African American man presented to the hospital for generalized weakness. His BMI was 54 kg/M2, and he had been on a special diet for a few months with a weight loss of 50 pounds. He sweated profusely while working as a chef. Laboratory tests showed severe hypokalemia and metabolic alkalosis. Further work-up pointed toward extrarenal losses of potassium. He was treated with intravenous normal saline and potassium chloride. After discharge, his potassium level remained normal through the winter while the potassium was tapered off. However, over the following three summers, he repeatedly presented to hospitals for the same problems. Cystic fibrosis was suspected and confirmed by an abnormal pilocarpine sweat test. Gene test revealed two mutations of cystic fibrosis transmembrane conductance regulator (CFTR). Thereafter, his potassium level remained normal with potassium replacement during summertime. Unexpectedly, however, his BMI rose to 83 kg/M2 after he stopped the special diet for weight reduction. The reason for the delayed diagnosis is discussed. CONCLUSION We present an exceedingly rare case of CF in a morbidly obese African American adult male whose only manifestation of CF was hypokalemia and metabolic alkalosis. Clinicians should keep an open mind to the diagnosis of CF in ethnically diverse populations, even if it seems unlikely at first glance. For "summer hypokalemia", consider cystic fibrosis.
Collapse
Affiliation(s)
- Yangming Cao
- Divisions of Nephrology, Department of Internal Medicine, UCSF Fresno Center for Medical Education and Research, 155 N Fresno St, Fresno, CA, 93701, USA. .,The Nephrology Group, 568 E Herndon Ave, Suite 201, Fresno, CA, 93720, USA.
| | - Rachel Donaldson
- Divisions of Pulmonology, Department of Internal Medicine, UCSF Fresno Center for Medical Education and Research, 155 N Fresno St, Fresno, CA, 93701, USA
| | - David Lee
- Divisions of Pulmonology, Department of Internal Medicine, UCSF Fresno Center for Medical Education and Research, 155 N Fresno St, Fresno, CA, 93701, USA
| |
Collapse
|
30
|
Donegà S, Rogalska ME, Pianigiani G, Igreja S, Amaral MD, Pagani F. Rescue of common exon-skipping mutations in cystic fibrosis with modified U1 snRNAs. Hum Mutat 2020; 41:2143-2154. [PMID: 32935393 DOI: 10.1002/humu.24116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
In cystic fibrosis (CF), the correction of splicing defects represents an interesting therapeutic approach to restore normal CFTR function. In this study, we focused on 10 common mutations/variants 711+3A>G/C, 711+5G>A, TG13T3, TG13T5, TG12T5, 1863C>T, 1898+3A>G, 2789+5G>A, and 3120G>A that induce skipping of the corresponding CFTR exons 5, 10, 13, 16, and 18. To rescue the splicing defects we tested, in a minigene assay, a panel of modified U1 small nuclear RNAs (snRNAs), named Exon Specific U1s (ExSpeU1s), that was engineered to bind to intronic sequences downstream of each defective exon. Using this approach, we show that all 10 splicing mutations analyzed are efficiently corrected by specific ExSpeU1s. Using complementary DNA-splicing competent minigenes, we also show that the ExspeU1-mediated splicing correction at the RNA level recovered the full-length CFTR protein for 1863C>T, 1898+3A>G, 2789+5G>A variants. In addition, detailed mutagenesis experiments performed on exon 13 led us to identify a novel intronic regulatory element involved in the ExSpeU1-mediated splicing rescue. These results provide a common strategy based on modified U1 snRNAs to correct exon skipping in a group of disease-causing CFTR mutations.
Collapse
Affiliation(s)
- Stefano Donegà
- Human Molecular Genetics, ICGEB - International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Malgorzata Ewa Rogalska
- Human Molecular Genetics, ICGEB - International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giulia Pianigiani
- Human Molecular Genetics, ICGEB - International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Susana Igreja
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Margarida Duarte Amaral
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Franco Pagani
- Human Molecular Genetics, ICGEB - International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
31
|
Cui X, Wu X, Li Q, Jing X. Mutations of the cystic fibrosis transmembrane conductance regulator gene in males with congenital bilateral absence of the vas deferens: Reproductive implications and genetic counseling (Review). Mol Med Rep 2020; 22:3587-3596. [PMID: 33000223 PMCID: PMC7533508 DOI: 10.3892/mmr.2020.11456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/21/2020] [Indexed: 11/05/2022] Open
Abstract
Congenital bilateral absence of the vas deferens (CBAVD) is predominantly caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CBAVD accounts for 2–6% of male infertility cases and up to 25% of cases of obstructive azoospermia. With the use of pre-implantation genetic diagnosis, testicular or epididymal sperm aspiration, intracytoplasmic sperm injection and in vitro fertilization, patients affected by CBAVD are able to have children who do not carry CFTR gene mutations, thereby preventing disease. Therefore, genetic counseling should be provided to couples receiving assisted reproductive techniques to discuss the impact of CFTR gene mutations on reproductive health. In the present article, the current literature concerning the CFTR gene and its association with CBAVD is reviewed.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Qiang Li
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
32
|
AlMaghamsi T, Iqbal N, Al-Esaei NA, Mohammed M, Eddin KZ, Ghurab F, Moghrabi N, Heaphy E, Junaid I. Cystic fibrosis gene mutations and polymorphisms in Saudi men with infertility. Ann Saudi Med 2020; 40:321-329. [PMID: 32757986 PMCID: PMC7410224 DOI: 10.5144/0256-4947.2020.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Some mutations of the cystic fibrosis transmembrane regulator (CFTR) gene may impair spermatogenesis or cause a congenital absence of the vas deferens that manifests as isolated male infertility. OBJECTIVE Assess the frequency and analyze the spectrum of CFTR gene variations in Saudi men with primary infertility. DESIGN Prospective, cross-sectional. SETTING Tertiary care specialist hospital in Jeddah. PATIENTS AND METHODS Genomic DNA was extracted from peripheral blood samples of Saudi men who presented with primary infertility to the outpatient andrology clinic with either azoospermia or oligoasthenoteratozoospermia. Polymerase chain reaction and direct sequencing were used to identify all variants of the CFTR gene. MAIN OUTCOME MEASURES Proportion of the patients with a mutant CFTR gene and the spectrum of CFTR gene variations. SAMPLE SIZE 50 infertile Saudi men. RESULTS This study identified 10 CFTR gene variants in 7 (14%) subjects (100 chromosomes). The detected variants and polymorphisms were: c.1408G>A, c.4389G>A, c.2562T>G, c.869+11C>T, c.2909-92G>A, c.3469-65C>A, c.1210-6delT, c.1210-6T>A, c.2988+1G>A, and c.1210-13GT>TG. CONCLUSION We demonstrated that 14% of the study subjects had one or more CFTR mutations and these were compounded in most of the affected patients. The spectrum of CFTR gene mutations in these subjects was similar to the mutations reported in other studies throughout the world. LIMITATIONS Small sample size and the lack of a control group. CONFLICTS OF INTEREST None.
Collapse
Affiliation(s)
- Talal AlMaghamsi
- From the Department of Pediatrics, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Naeem Iqbal
- From the Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Nabil Abdullrahman Al-Esaei
- From the Department of Pediatrics, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Muhsina Mohammed
- From the Department of Pediatrics, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Kamel Zein Eddin
- From the Department of Pediatrics, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Fatima Ghurab
- From the Department of Pediatrics, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Nabil Moghrabi
- From the Department of Genetics, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Emily Heaphy
- From the Research Center, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Islam Junaid
- From the Department of Surgery, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Zhou D, Bai R, Wang L. The Cystic Fibrosis Transmembrane Conductance Regulator 470 Met Allele Is Associated with an Increased Risk of Chronic Pancreatitis in Both Asian and Caucasian Populations: A Meta-Analysis. Genet Test Mol Biomarkers 2020; 24:24-32. [PMID: 31940241 DOI: 10.1089/gtmb.2019.0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: The Met470Val polymorphism (1540A>G [rs213950]) within the cystic fibrosis transmembrane conductance regulator (CFTR) protein has been reported to be associated with chronic pancreatitis (CP). The results remain inconclusive, and therefore, we performed this meta-analysis to clarify the association between M470V and CP risk. Methodology/Results: We conducted a meta-analysis of 7 case-control studies, including a total of 1121 CP patients and 2209 controls from Asian and Caucasian populations. We calculated the odds ratio (OR) and 95% confidence intervals (95% CI). Met470Val was found to be significantly associated with an increased risk of CP under all the genetic models (M vs. V, OR = 1.260, 95% CI: 1.134-1.399; MV vs. VV, OR = 1.292, 95% CI: 1.091-1.530; MM vs. VV, OR = 1.579, 95% CI: 1.274-1.956; MV/MV vs. VV, OR = 1.366, 95% CI: 1.165-1.603; MM vs. MV/VV, OR = 1.346, 95% CI: 1.114-1.621). Met470Val was also found to be significantly associated with an increased risk of idiopathic CP (ICP) in allele contrast, codominant, and recessive models (M vs. V, OR = 1.298, 95% CI: 1.020-1.653; MV vs. VV, OR = 1.297, 95% CI: 1.074-1.566; MM vs. VV, OR = 1.473, 95% CI: 1.165-1.862; MM vs. MV/VV, OR = 1.254, 95% CI: 1.023-1.538). Conclusions: The CFTR 470 M allele is significantly associated with an increased risk of CP in both Asian and Caucasian populations. The CFTR 470 M allele is also significantly associated with risk of ICP.
Collapse
Affiliation(s)
- Donger Zhou
- Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Rui Bai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Liang Wang
- Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| |
Collapse
|
34
|
Patel SD, Bono TR, Rowe SM, Solomon GM. CFTR targeted therapies: recent advances in cystic fibrosis and possibilities in other diseases of the airways. Eur Respir Rev 2020; 29:29/156/190068. [PMID: 32554756 PMCID: PMC9131734 DOI: 10.1183/16000617.0068-2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion transporter that regulates mucus hydration, viscosity and acidity of the airway epithelial surface. Genetic defects in CFTR impair regulation of mucus homeostasis, causing severe defects of mucociliary clearance as seen in cystic fibrosis. Recent work has established that CFTR dysfunction can be acquired in chronic obstructive pulmonary disease (COPD) and may also contribute to other diseases that share clinical features of cystic fibrosis, such as asthma, allergic bronchopulmonary aspergillosis and bronchiectasis. Protean causes of CFTR dysfunction have been identified including cigarette smoke exposure, toxic metals and downstream effects of neutrophil activation pathways. Recently, CFTR modulators, small molecule agents that potentiate CFTR or restore diminished protein levels at the cell surface, have been successfully developed for various CFTR gene defects, prompting interest in their use to treat diseases of acquired dysfunction. The spectrum of CFTR dysfunction, strategies for CFTR modulation, and candidate diseases for CFTR modulation beyond cystic fibrosis will be reviewed in this manuscript. CFTR dysfunction may be part of the pathophysiology of many diseases of the airways. Exploration of mechanisms of dysfunction and options for CFTR-directed therapies are examined in this article. http://bit.ly/33o6nDu
Collapse
Affiliation(s)
- Sheylan D Patel
- Dept of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Both authors contributed equally
| | - Taylor R Bono
- Dept of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Both authors contributed equally
| | - Steven M Rowe
- Dept of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA .,The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George M Solomon
- Dept of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
35
|
Grimes AC, Chen Y, Bansal H, Aguilar C, Perez Prado L, Quezada G, Estrada J, Tomlinson GE. Genetic markers for treatment-related pancreatitis in a cohort of Hispanic children with acute lymphoblastic leukemia. Support Care Cancer 2020; 29:725-731. [PMID: 32447501 DOI: 10.1007/s00520-020-05530-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Treatment-related pancreatitis (TRP) is a serious complication occurring in children with acute lymphoblastic leukemia (ALL). Those affected are at high risk for severe organ toxicity and treatment delays that can impact outcomes. TRP is associated with asparaginase, a standard therapeutic agent in childhood ALL. Native American ancestry, older age, high-risk leukemia, and increased use of asparaginase are linked to pancreatitis risk. However, dedicated genetic studies evaluating pancreatitis in childhood ALL include few Hispanics. Thus, the genetic basis for higher risk of pancreatitis among Hispanic children with ALL remains unknown. METHODS Cases of children with ALL treated in from 1994 through 2013 were reviewed and identified 14, all Hispanic, who developed pancreatitis related to asparaginase therapy. Forty-six controls consisting of Hispanic children treated on the same regimens without pancreatitis were selected for comparison. Total DNA isolated from whole blood was used for targeted DNA sequencing of 23 selected genes, including genes associated with pancreatitis without ALL and genes involved in asparagine metabolism. RESULTS Non-synonymous polymorphisms and frameshift deletions were detected in 15 genes. Most children with TRP had variants in ABAT, ASNS, and CFTR. Notably, children with TRP harbored many more CFTR variants (71.4%) compared with controls (39.1%). Among these, V470M (rs213950) was most frequent (OR 4.27, p = 0.025). CONCLUSIONS This is the first study of genetic factors in treatment-related pancreatitis in Hispanic children with ALL. Identifying correlative variants in ethnically vulnerable populations may improve screening to identify which patients with ALL are at greatest risk for pancreatitis.
Collapse
Affiliation(s)
- Allison C Grimes
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Hima Bansal
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Christine Aguilar
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Luz Perez Prado
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Gerardo Quezada
- Methodist Children's Hospital, San Antonio, TX, USA
- Children's Hospital of San Antonio, San Antonio, TX, USA
| | | | - Gail E Tomlinson
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
36
|
Karimi N, Bidemeshki Pour A, Alibakhshi R, Almasi S. Haplotype analysis of the CFTR gene on normal and mutant CFTR genes. Mutat Res 2020; 821:111708. [PMID: 32563932 DOI: 10.1016/j.mrfmmm.2020.111708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are responsible for Cystic Fibrosis (CF) disease. Since the distribution of polymorphisms varies among populations, a comparison between the frequency of CFTR polymorphisms in patients and healthy population may further identify their role in CF disease. The results obtained from this research may facilitate the prediction of disease phenotype in prenatal diagnosis or newborn screening program as well as determine the possible associations between haplotypes and specific mutations. METHODS Blood samples collected from 27 unrelated West Iranian families contain at least one CF patient and 55 control families with no history of CF. Samples were analyzed for c.1210-12 T [5-9], c.1242-35-1242-12GT [8-10], c.744-33GATT [6-8] and c.869 + 11C > T polymorphisms by automated direct DNA sequencing following DNA extraction. RESULTS Our results showed that the T7 allele is the most common allele in normal and non-ΔF508 CF chromosomes with the frequencies of 93.6% and 100%, respectively. Conversely, T9 was the only allele detected in ΔF508 chromosomes. Moreover, the c.1242-35-1242-12GT analysis showed that (TG)11 repeat was the most common dinucleotide repeat in both, non-ΔF508 and normal chromosomes with the frequencies of 91% and 71%, respectively. The c.744-33GATT and c.869 + 11C > T polymorphism analyses indicated that (GATT)6 and T allele are only found in ΔF508 CF chromosomes. Besides, the [T7-TG11-GATT7-C] haplotype was the most common haplotype in both, normal and non-ΔF508 CF subjects while the [T9-TG10- GATT6-T] haplotype was only detected in CF patients carrying ΔF508 mutation. CONCLUSIONS Our findings identified an informative haplotype that could be used in genetic counseling, prenatal diagnosis and future screening of CF in Iran.
Collapse
Affiliation(s)
- Nasibeh Karimi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ali Bidemeshki Pour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Reza Alibakhshi
- Department of Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada
| |
Collapse
|
37
|
Lorenzi D, Fernández C, Bilinski M, Fabbro M, Galain M, Menazzi S, Miguens M, Perassi PN, Fulco MF, Kopelman S, Fiszbajn G, Nodar F, Papier S. First custom next-generation sequencing infertility panel in Latin America: design and first results. JBRA Assist Reprod 2020; 24:104-114. [PMID: 32155011 PMCID: PMC7169920 DOI: 10.5935/1518-0557.20190065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective To present the development of the first custom gene panel for the diagnosis of male and female infertility in Latin America. Methods We developed a next-generation sequencing (NGS) panel that assesses genes associated with infertility. The panel targeted exons and their flanking regions. Selected introns in the CFTR gene were also included. The FMR1 gene and Y chromosome microdeletions were analyzed with other recommended methodologies. An in-house developed bioinformatic pipeline was applied for the interpretation of the results. Clear infertility phenotypes, idiopathic infertility, and samples with known pathogenic variants were evaluated. Results A total of 75 genes were selected based on female (primary ovarian insufficiency, risk of ovarian hyperstimulation syndrome, recurrent pregnancy loss, oocyte maturation defects, and embryo development arrest) and male conditions (azoospermia, severe oligospermia, asthenozoospermia, and teratozoospermia). The panel designed was used to assess 25 DNA samples. Two of the variants found were classified as pathogenic and enable the diagnosis of a woman with secondary amenorrhea and a man with oligoasthenoteratozoospermia. Targeted NGS assay metrics resulted in a mean of 180X coverage, with more than 98% of the bases covered ≥20X. Conclusion Our custom gene sequencing panel designed for the diagnosis of male and female infertility caused by genetic defects revealed the underlying genetic cause of some cases of infertility. The panel will allow us to develop more precise approaches in assisted reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariana Miguens
- Centro de Estudios en Genética y Reproducción (CEGYR). Buenos Aires, Argentina
| | | | | | - Susana Kopelman
- Centro de Estudios en Genética y Reproducción (CEGYR). Buenos Aires, Argentina
| | | | - Florencia Nodar
- Novagen. Buenos Aires, Argentina.,Centro de Estudios en Genética y Reproducción (CEGYR). Buenos Aires, Argentina
| | - Sergio Papier
- Novagen. Buenos Aires, Argentina.,Centro de Estudios en Genética y Reproducción (CEGYR). Buenos Aires, Argentina
| |
Collapse
|
38
|
Marnat EG, Adyan TA, Stepanova AA, Beskorovainaya TS, Polyakov AV, Chernykh VB. CFTR Gene Variants and Genotypes in Russian Patients with CBAVD Syndrome. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Bieth E, Hamdi SM, Mieusset R. Genetics of the congenital absence of the vas deferens. Hum Genet 2020; 140:59-76. [PMID: 32025909 PMCID: PMC7864840 DOI: 10.1007/s00439-020-02122-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/28/2020] [Indexed: 01/19/2023]
Abstract
Congenital absence of the vas deferens (CAVD) may have various clinical presentations depending on whether it is bilateral (CBAVD) or unilateral (CUAVD), complete or partial, and associated or not with other abnormalities of the male urogenital tract. CBAVD is usually discovered in adult men either during the systematic assessment of cystic fibrosis or other CFTR-related conditions, or during the exploration of isolated infertility with obstructive azoospermia. The prevalence of CAVDs in men is reported to be approximately 0.1%. However, this figure is probably underestimated, because unilateral forms of CAVD in asymptomatic fertile men are not usually diagnosed. The diagnosis of CAVDs is based on clinical, ultrasound, and sperm examinations. The majority of subjects with CAVD carry at least one cystic fibrosis-causing mutation that warrants CFTR testing and in case of a positive result, genetic counseling prior to conception. Approximately 2% of the cases of CAVD are hemizygous for a loss-of-function mutation in the ADGRG2 gene that may cause a familial form of X-linked infertility. However, despite this recent finding, 10–20% of CBAVDs and 60–70% of CUAVDs remain without a genetic diagnosis. An important proportion of these unexplained CAVDs coexist with a solitary kidney suggesting an early organogenesis disorder (Wolffian duct), unlike CAVDs related to CFTR or ADGRG2 mutations, which might be the result of progressive degeneration that begins later in fetal life and probably continues after birth. How the dysfunction of CFTR, ADGRG2, or other genes such as SLC29A3 leads to this involution is the subject of various pathophysiological hypotheses that are discussed in this review.
Collapse
Affiliation(s)
- Eric Bieth
- Service de Génétique Médicale, Hôpital Purpan, CHU, 31059, Toulouse, France.
| | - Safouane M Hamdi
- Service de Biochimie, Institut Fédératif de Biologie, CHU, 31059, Toulouse, France.,EA3694 (Groupe de Recherche en Fertilité Humaine), Université Toulouse III, 31059, Toulouse, France
| | - Roger Mieusset
- EA3694 (Groupe de Recherche en Fertilité Humaine), Université Toulouse III, 31059, Toulouse, France.,Département d'Andrologie (Groupe Activité Médecine de la Reproduction), CHU, 31059, Toulouse, France
| |
Collapse
|
40
|
Hannah WB, Truty R, Gonzales V, Kithcart GP, Ouyang K, Zeman MK, Li C, Drumm M, Nykamp K, Gaston BM. Frequency of Cystic Fibrosis Transmembrane Conductance Regulator Variants in Individuals Evaluated for Primary Ciliary Dyskinesia. J Pediatr 2019; 215:172-177.e2. [PMID: 31610925 DOI: 10.1016/j.jpeds.2019.08.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate whether cystic fibrosis transmembrane conductance regulator (CFTR) variants are more common among individuals tested for primary ciliary dyskinesia (PCD) compared with controls. STUDY DESIGN Data were studied from 1021 individuals with commercial genetic testing for suspected PCD and 91 777 controls with genetic testing at the same company (Invitae) for symptoms/diseases unrelated to PCD or CFTR testing. The prevalence of CFTR variants was compared between controls and each of 3 groups of individuals tested for PCD (PCD-positive, -uncertain, and -negative molecular diagnosis). RESULTS The prevalence of 1 pathogenic CFTR variant was similar among the individual groups. When combining the PCD-uncertain and PCR-negative molecular diagnosis groups, there was a higher prevalence of single pathogenic CFTR variants compared with controls (P = .03). Importantly, >1% of individuals who had negative genetic testing results for PCD had 2 pathogenic CFTR variants (8 of 723), and the incidence of cystic fibrosis (CF) (2 pathogenic variants) is roughly 1 in 3000 individuals of Caucasian ethnicity (∼0.03%). This incidence was also greater than that of 2 pathogenic CFTR variants in the control population (0.09% [84 of 91 777]; P = 9.60 × 10-16). These variants correlate with mild CFTR-related disease. CONCLUSIONS Our results suggest that a single pathogenic CFTR variant is not likely to be a PCD-mimetic, but ongoing studies are needed in individuals in whom PCD is suspected and genetic testing results are uncertain or negative. Furthermore, CF may be misdiagnosed as PCD, reflecting phenotypic overlap. Among individuals evaluated for PCD, CF should be considered in the differential even in the CF newborn screening era.
Collapse
Affiliation(s)
- William B Hannah
- Center for Human Genetics, University Hospitals Cleveland Medical Center, Cleveland, OH; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH.
| | | | - Virginia Gonzales
- Division of Pulmonology, Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Gregory P Kithcart
- Division of Pulmonology, Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH
| | | | | | - Chun Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Mitchell Drumm
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH; Division of Pulmonology, Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH
| | | | - Benjamin M Gaston
- Division of Pulmonology, Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH
| |
Collapse
|
41
|
A rare frameshift variant in trans with the IVS9-5T allele of CFTR in a Chinese pedigree with congenital aplasia of vas deferens. J Assist Reprod Genet 2019; 36:2541-2545. [PMID: 31709488 DOI: 10.1007/s10815-019-01617-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Congenital aplasia of vas deferens (CAVD) is an atypical form of cystic fibrosis (CF) and causes obstructive azoospermia and male infertility. Compound heterozygous variants of CFTR are the main cause of CAVD. However, most evidence comes from genetic screening of sporadic cases and little is from pedigree analysis. In this study, we performed analysis in a Chinese pedigree with two CAVD patients in order to determine the genetic cause of this familial disorder. METHODS In the present study, we performed whole-exome sequencing and co-segregation analysis in a Chinese pedigree involving two patients diagnosed with CAVD. RESULTS We identified a rare frameshift variant (NM_000492.3: c.50dupT;p.S18Qfs*27) and a frequent CBAVD-causing variant (IVS9-TG13-5T) in both patients. The frameshift variant introduced a premature termination codon and was not found in any public databases or reported in the literature. Co-segregation analysis confirmed these two variants were in compound heterozygous state. The other male members, who harbored the frameshift variant and benign IVS9-7T allele, did not have any typical clinical manifestations of CF or CAVD. CONCLUSION Our findings may broaden the mutation spectrum of CFTR in CAVD patients and provide more familial evidence that the combination of a mild variant and a severe variant in trans of CFTR can cause vas deferens malformation.
Collapse
|
42
|
Mutation-specific dual potentiators maximize rescue of CFTR gating mutants. J Cyst Fibros 2019; 19:236-244. [PMID: 31678009 DOI: 10.1016/j.jcf.2019.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The potentiator ivacaftor (VX-770) has been approved for therapy of 38 cystic fibrosis (CF) mutations (∼10% of the patient population) associated with a gating defect of the CF transmembrane conductance regulator (CFTR). Despite the success of VX-770 treatment of patients carrying at least one allele of the most common gating mutation G551D-CFTR, some lung function decline and P. aeruginosa colonization persist. This study aims at identifying potentiator combinations that can considerably enhance the limited channel activity of a panel of CFTR gating mutants over monotherapy. METHODS The functional response of 13 CFTR mutants to single potentiators or systematic potentiator combinations was determined in the human bronchial epithelial cell line CFBE41o- and a subset of them was confirmed in primary human nasal epithelia (HNE). RESULTS In six out of thirteen CFTR missense mutants the fractional plasma membrane (PM) activity, a surrogate measure of CFTR channel gating, reached only ∼10-50% of WT channel activity upon VX-770 treatment, indicating incomplete gating correction. Combinatorial potentiator profiling and cluster analysis of mutant responses to 24 diverse investigational potentiators identified several compound pairs that improved the gating activity of R352Q-, S549R-, S549N-, G551D-, and G1244E-CFTR to ∼70-120% of the WT. Similarly, the potentiator combinations were able to confer WT-like function to G551D-CFTR in patient-derived human nasal epithelia. CONCLUSION This study suggests that half of CF patients with missense mutations approved for VX-770 administration, could benefit from the development of dual potentiator therapy.
Collapse
|
43
|
Aalbers BL, Yaakov Y, Derichs N, Simmonds NJ, De Wachter E, Melotti P, De Boeck K, Leal T, Tümmler B, Wilschanski M, Bronsveld I. Nasal potential difference in suspected cystic fibrosis patients with 5T polymorphism. J Cyst Fibros 2019; 19:627-631. [PMID: 31331863 DOI: 10.1016/j.jcf.2019.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND 5T polymorphism is a CFTR mutation with unclear clinical consequences: the phenotype varies from healthy individuals to Cystic Fibrosis (CF). The aim of this study was to evaluate if nasal potential difference (NPD) and sweat testing correlate with symptoms and CF diagnosis in 5T patients. METHODS 86 patients with 5T who had undergone NPD measurement, were included (6 homozygous (5T/5T), 41 with a PI-CF causing mutation in trans (5T/PI-CF), 11 with a PS-CF causing mutation in trans (5T/PS-CF) and 28 without a known mutation in trans (5T/?). Data including age, phenotype, sweat chloride and follow up were collected. RESULTS 33% of the 5T/5T patients had abnormal NPD results, compared to 70% in 5T/PI-CF; 33% in 5T/PS-CF and 29% in 5T/?. The percentage of high or borderline sweat chloride was highest in 5T/PI-CF, and 5T/?, compared to 5T/5T and 5T/PS-CF (91, 96, 80, and 63%, respectively). TGm (number of TG repeats in intron 8) analysis was performed in 21 5T/PI-CF patients. TG11 was associated with lower sweat chloride, lower percentage of abnormal NPD and less progression of symptoms compared to TG12 and TG13. CONCLUSION There is much variation in clinical status among 5T patients. All patients in this study with 5T/PS CF, all patients with both normal NPD and sweat test, and most patients with TG11 were stable or improving over time. Therefore, NPD measurement and TGm status aid to assess if a patient is at high risk for developing CF or CFTR-related disease and if specific follow up in a CF center is required.
Collapse
Affiliation(s)
- Bente L Aalbers
- Department of Pulmonology, University Medical Center Utrecht, Postbus 85500, 3508, GA, Utrecht, the Netherlands.
| | - Yasmin Yaakov
- Pediatric Gastroenterology Unit and Cystic Fibrosis Center, Hadassah-Hebrew University Medical Center, Kiryat Hadassah, POB 12000, Jerusalem 91120, Israel
| | - Nico Derichs
- CF Center, Pediatric Pulmonology and Immunology, Charité Universitätsmedizin, Charitépl. 1, 10117 Berlin, Germany
| | - Nicholas J Simmonds
- Department of Cystic Fibrosis, Royal Brompton Hospital and Imperial College, Sydney Street, SW3 6NP London, United Kingdom
| | - Elke De Wachter
- Department of Pediatric Pneumology, UZ Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium
| | - Paola Melotti
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata. Piazzale Aristide Stefani 1, 37126 Verona, Italy
| | - Kris De Boeck
- Department of Pediatric Pulmonology, University Hospital Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Teresinha Leal
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Place de l'Université 1, B-1348 Louvain-la-Neuve, Brussels, Belgium
| | - Burkhart Tümmler
- CF Center and Clinical Research Group, Department of Pediatric Pneumology and Neonatology, OE 6710, Medical School Hannover, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Michael Wilschanski
- Pediatric Gastroenterology Unit and Cystic Fibrosis Center, Hadassah-Hebrew University Medical Center, Kiryat Hadassah, POB 12000, Jerusalem 91120, Israel
| | - Inez Bronsveld
- Department of Pulmonology, University Medical Center Utrecht, Postbus 85500, 3508, GA, Utrecht, the Netherlands
| |
Collapse
|
44
|
Chen KG, Zhong P, Zheng W, Beekman JM. Pharmacological analysis of CFTR variants of cystic fibrosis using stem cell-derived organoids. Drug Discov Today 2019; 24:2126-2138. [PMID: 31173911 DOI: 10.1016/j.drudis.2019.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/09/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022]
Abstract
Cystic fibrosis (CF) is a life-shortening genetic disease caused by mutations of CFTR, the gene encoding cystic fibrosis transmembrane conductance regulator. Despite considerable progress in CF therapies, targeting specific CFTR genotypes based on small molecules has been hindered because of the substantial genetic heterogeneity of CFTR mutations in patients with CF, which is difficult to assess by animal models in vivo. There are broadly four classes (e.g., II, III, and IV) of CF genotypes that differentially respond to current CF drugs (e.g., VX-770 and VX-809). In this review, we shed light on the pharmacogenomics of diverse CFTR mutations and the emerging role of stem cell-based organoids in predicting the CF drug response. We discuss mechanisms that underlie differential CF drug responses both in organoid-based assays and in CF clinical trials, thereby facilitating the precision design of safer and more effective therapies for individual patients with CF.
Collapse
Affiliation(s)
- Kevin G Chen
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, 20057, USA.
| | - Pingyu Zhong
- Singapore Immunology Network, Agency for Science, Technology and Research (A⁎STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, Regenerative Medicine Center Utrecht, University Medical Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
45
|
CFTR IVS8 Poly-T Variation Affects Severity of Acute Pancreatitis in Women. J Gastrointest Surg 2019; 23:975-981. [PMID: 30132293 DOI: 10.1007/s11605-018-3913-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/01/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cystic fibrosis transmembrane conductance regulator (CFTR) is important for normal pancreatic function. Its coding gene is polymorphic, and the variations have been associated with the increased risk for acute pancreatitis. However, their impact on the disease severity is still unknown. Therefore, the aim of our study was to determine the functional importance of common cystic fibrosis transmembrane conductance regulator variations IVS8-poly T, R117H, and M470V for the severity of acute pancreatitis. METHOD The study involved 98 acute pancreatitis patients. The severity of the disease was determined based on the Atlanta Classification system. IVS8-poly T, R117H, and M470V genotyping was performed using PCR-RFLP method. RESULTS IVS8-5T, IVS8-7T, IVS8-9T, and M470V alleles were found at the frequencies of 5.7, 75.5, 18.9, and 55.7%, respectively, while R117H was not observed. Among women, the severe form of the disease was more frequent in carriers of at least one IVS8 9T allele (RR for 9T/9T + 9T/non-9T vs. non-9T/non-9T: 2.115; 95% CI: 1.241-3.605). This association was not detected in men and was not affected by M470V. In addition, co-morbidities increased the severity of acute pancreatitis (p = 0.022). CONCLUSION Our study reveals that IVS8 poly-T variation affects severity of acute pancreatitis in women and that existent co-morbidities worsen the clinical course of the disease.
Collapse
|
46
|
The CFTR gene variants in Japanese children with idiopathic pancreatitis. Hum Genome Var 2019; 6:17. [PMID: 30992994 PMCID: PMC6459923 DOI: 10.1038/s41439-019-0049-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) gene has been reported as one of the pancreatitis susceptibility genes. Although many variants of CFTR have been reported in Caucasian patients, there are few data in Japanese patients. We aimed to survey CFTR variants in Japanese children with idiopathic pancreatitis. Twenty-eight Japanese paediatric patients with idiopathic pancreatitis were enroled, who were not previously diagnosed by genetic analysis of PRSS1 and SPINK1. The entire CFTR gene was sequenced in the patients by combining LA-PCR and next-generation sequencing analysis. To determine a splice-affecting variant, CFTR expression was investigated in the nasal epithelial cells by RT-PCR. One (3.6%) and 15 (53.6%) of 28 patients had pathogenic and functionally affected variants in the CFTR gene, respectively. Two variants, p.Arg352Gln and p.Arg1453Trp, were found more frequently in the patients compared with one in Japanese healthy controls (p = 0.0078 and 0.044, respectively). We confirmed skipping of exon 10 in the nasal epithelial cells in one patient having a splice-affecting variant (c.1210-12 T(5)) in intron 9. Functionally affected variants of the CFTR gene are not so rare in Japanese paediatric patients with idiopathic pancreatitis. Surveying CFTR gene variants in a Japanese sample could help identify pancreatitis risk in these children. Mutations in a cystic fibrosis-related gene could help identify Japanese children at risk of developing pancreatic inflammation. Tadashi Kaname, of Tokyo’s National Center for Child Health and Development, and colleagues sequenced the cystic fibrosis transmembrane conductance regulator gene (CFTR) in 28 Japanese children with pancreatitis of unknown origin. The gene is involved in the development of cystic fibrosis and has been reported to be associated with pancreatitis but little is known about its role in idiopathic pancreatitis in Asian populations. The team found CFTR gene mutations in 16 out of the 28 children. Cystic fibrosis is uncommon among Japanese, so CFTR mutations were also thought to be rare. The study suggests, however, that mutations might not be so rare in Japanese children with idiopathic pancreatitis and could help identify those at risk of developing the condition.
Collapse
|
47
|
Yang B, Wang X, Zhang W, Li H, Wang B. Compound heterozygous mutations in CFTR causing CBAVD in Chinese pedigrees. Mol Genet Genomic Med 2018; 6:1097-1103. [PMID: 30450785 PMCID: PMC6305631 DOI: 10.1002/mgg3.486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Congenital bilateral absence of the vas deferens (CBAVD) is an important cause of obstructive azoospermia and male infertility. Mutations of CFTR caused the majority of CBAVD cases, and ADGRG2 was recently identified as a new pathogenic gene. Yet, most of the genetic evidence came from sporadic cases, and only one mutation in CFTR can be found in patients. METHODS In present study, we collected two CBAVD pedigrees, each having two affected male siblings. We performed whole exome sequencing on all patients and validated all potential variants by Sanger sequencing. RESULTS We excluded ADGRG2 variants but identified compound heterozygous variants of CFTR in both families (NM_000492.3:c.1210-33_1210-6GT[13]T[5] and c.4056G>C;p.Gln1352Cys in pedigree 1, c.592G>C;p.Ala198Pro and c.3717G>A;p.Arg1239= in pedigree 2), which were subsequently validated by direct sequencing. c.1210-33_1210-6GT[13]T[5] (also known as IVS8-T5-TG13) was a known disease-causing variant causing the skipping of exon 9 of CFTR and inherited from the proband's mother. p.Gln1352Cys and Ala198Pro were rare or novel in public databases and predicted to be deleterious. The p.Arg1239= was a synonymous variant but located at the end of an exon, which was predicted to alter the splicing pattern. CONCLUSION Our study, in which compound heterozygous variants were identified in two pedigrees, provides more familial evidence that only recessive variants (homozygous or compound heterozygous) in CFTR cause CBAVD. Furthermore, whole exome sequencing may be utilized as a useful tool for mutation screening of genes causing CBAVD.
Collapse
Affiliation(s)
- Bin Yang
- Department of Urology, Union Medical College Hospital, Chinese Academy of Medical Science, Peking, Beijing, China
| | - Xi Wang
- Center for Genetics, National Research Institute for Family Planning, Haidian, Beijing, China
| | - Wei Zhang
- Center for Genetics, National Research Institute for Family Planning, Haidian, Beijing, China
| | - Hongjun Li
- Department of Urology, Union Medical College Hospital, Chinese Academy of Medical Science, Peking, Beijing, China
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, Haidian, Beijing, China
| |
Collapse
|
48
|
Cai H, Qing X, Niringiyumukiza JD, Zhan X, Mo D, Zhou Y, Shang X. CFTR variants and renal abnormalities in males with congenital unilateral absence of the vas deferens (CUAVD): a systematic review and meta-analysis of observational studies. Genet Med 2018; 21:826-836. [PMID: 30214069 PMCID: PMC6752674 DOI: 10.1038/s41436-018-0262-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE CFTR variant is the main genetic contributor to congenital (unilateral/bilateral) absence of the vas deferens (CAVD/CUAVD/CBAVD). We performed a systematic review to elucidate the genetic link between CFTR variants, CUAVD, and the associated risk of renal abnormality (RA). METHODS We searched relevant databases for eligible articles reporting CFTR variants in CUAVD. The frequency of CFTR variants and RA, and the odds ratios (ORs) for common alleles and RA risk, were pooled under random-/fixed-effect models. Subgroup analyses and heterogeneity tests were performed. RESULTS Twenty-three studies were included. Among CUAVD patients, 46% had at least one CFTR variant, with 27% having one and 5% having two. The allele frequency in CUAVD was 4% for F508del and 9% for 5T. The summary OR for 5T risk in CUAVD was 5.79 compared with normal controls and 2.82 compared with non-CAVD infertile males. The overall incidence of RA was 22% in CUAVD. The pooled OR for RA risk among CUAVD patients was 4.85 compared with CBAVD patients. CONCLUSION CFTR variants are common in CUAVD, and the 5T allele may be associated with increased CUAVD risk. CUAVD patients bear a higher RA risk than CBAVD patients, but this is not associated with CFTR variants.
Collapse
Affiliation(s)
- Hongcai Cai
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xingrong Qing
- Department of Gynecology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong, China
| | - Jean Damascene Niringiyumukiza
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuxin Zhan
- Department of Reproductive Medicine, Xi'an No. 4 Hospital, Xi'an, Shaanxi, China
| | - Dunsheng Mo
- Department of Urology, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Guizhou, Zunyi, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital Affiliated to Southern Medical University, Nanjing, China. .,Department of Andrology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
49
|
Guan WJ, Li JC, Liu F, Zhou J, Liu YP, Ling C, Gao YH, Li HM, Yuan JJ, Huang Y, Chen CL, Chen RC, Zhang X, Zhong NS. Next-generation sequencing for identifying genetic mutations in adults with bronchiectasis. J Thorac Dis 2018; 10:2618-2630. [PMID: 29997923 PMCID: PMC6006054 DOI: 10.21037/jtd.2018.04.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/19/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND Defective airway host-defense (e.g., altered mucus properties, ciliary defects) contributes to the pathogenesis of bronchiectasis. This study aims to determine whether genetic mutations associated with defective airway host-defense are implicated in the pathogenesis of bronchiectasis. METHODS Based on the systematic screening of 32 frequently reported bronchiectasis-associated genes, we performed next-generation sequencing (NGS) on peripheral blood samples from 192 bronchiectasis patients and 100 healthy subjects. The variant distribution frequency and pathogenicity of mutations were analyzed. RESULTS We identified 162 rare variants in 192 bronchiectasis patients, and 85 rare variants among 100 healthy subjects. Among bronchiectasis patients, 25 (15.4%), 117 (72.2%) and 18 (11.1%) rare variants were associated with cystic fibrosis transmembrane receptor (CFTR), epithelial sodium channel, and primary ciliary dyskinesia genes, respectively. Biallelic CFTR variants were detected in four bronchiectasis patients but none of the healthy subjects. Carriers of homozygous p.M470 plus at least one CFTR rare variant were detected in 6.3% of bronchiectasis patients (n=12) and in 1.0% of healthy subjects (n=1, P=0.039). Twenty-six patients (16 with idiopathic and 6 with post-infectious bronchiectasis) harbored biallelic variants. Bronchiectasis patients with biallelic DNAH5 variants, or biallelic CFTR variants plus an epithelial sodium channel variant, tended to have greater disease severity. CONCLUSIONS Genetic mutations leading to impaired host-defense might have implicated in the pathogenesis of bronchiectasis. Genetic screening may be a useful tool for unraveling the underlying causes of bronchiectasis, and offers molecular information which is complementary to conventional etiologic assessment for bronchiectasis.
Collapse
Affiliation(s)
- Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510120, China
| | - Jia-Cheng Li
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Fang Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jian Zhou
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ya-Ping Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chao Ling
- Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yong-Hua Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui-Min Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Jing-Jing Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Yan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Chun-Lan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Rong-Chang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
50
|
Akinsal EC, Baydilli N, Dogan ME, Ekmekcioglu O. Comorbidity of the congenital absence of the vas deferens. Andrologia 2018; 50:e12994. [PMID: 29484681 DOI: 10.1111/and.12994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2018] [Indexed: 01/01/2023] Open
Abstract
Congenital absence of the vas deferens (CAVD) is a relatively rare anomaly that may contribute to male infertility. The aim of this study was to evaluate the clinical features of patients with CAVD and to emphasise some pathological conditions that may be detected during the infertility work-up or follow-up of these patients. The charts of 150 males with the diagnosis of CAVD were evaluated retrospectively. The demographic characteristics, reasons for attendance, the way of diagnosis, interventions for infertility before and after attendance, physical examination findings, reproductive hormone levels, semen analysis results, genetical analysis results and resultant live birth events were all included in the study. There were 101 bilateral and 43 unilateral CAVD cases. Thirty-two males (30.2%) had some renal abnormalities. Two cases, one with bilateral and one with unilateral agenesis, died because of colon cancer at a young age. One case with CUAVD had acute lymphoblastic leukaemia. Congenital absence of the vas deferens should not be seen only as a fertility problem because of the many genotypic or phenotypic disorders that may be present with it. These disorders can cause serious general health problems either presently or in future and can also be transmitted to future generations.
Collapse
Affiliation(s)
- E C Akinsal
- Urology Department, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - N Baydilli
- Urology Department, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - M E Dogan
- Department of Medical Genetics, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - O Ekmekcioglu
- Urology Department, Medical Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|