1
|
Hung JH, Langlois S, Wiebe M, Wild B, Barré-Dunn J, Cowan KN. Increased Elastase and Matrix Metalloproteinase Levels in the Pulmonary Arteries of Infants With Congenital Diaphragmatic Hernia. J Pediatr Surg 2024; 59:839-846. [PMID: 38365473 DOI: 10.1016/j.jpedsurg.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Pulmonary vascular disease (PVD) complicated with pulmonary hypertension (PH) is a leading cause of mortality in congenital diaphragmatic hernia (CDH). Unfortunately, CDH patients are often resistant to PH therapy. Using the nitrogen CDH rat model, we previously demonstrated that CDH-associated PVD involves an induction of elastase and matrix metalloproteinase (MMP) activities, increased osteopontin and epidermal growth factor (EGF) levels, and enhanced smooth muscle cell (SMC) proliferation. Here, we aimed to determine whether the levels of the key members of this proteinase-induced pathway are also elevated in the pulmonary arteries (PAs) of CDH patients. METHODS Neutrophil elastase (NE), matrix metalloproteinase-2 (MMP-2), epidermal growth factor (EGF), tenascin-C, and osteopontin levels were assessed by immunohistochemistry in the PAs from the lungs of 11 CDH patients and 5 normal age-matched controls. Markers of proliferation (proliferating cell nuclear antigen (PCNA)) and apoptosis (cleaved (active) caspase-3) were also used. RESULTS While expressed by both control and CDH lungs, the levels of NE, MMP-2, EGF, as well as tenascin-C and osteopontin were significantly increased in the PAs from CDH patients. The percentage of PCNA-positive PA SMCs were also enhanced, while those positive for caspase-3 were slightly decreased. CONCLUSIONS These results suggest that increased elastase and MMPs, together with elevated tenascin-C and osteopontin levels in an EGF-rich environment may contribute to the PVD in CDH infants. The next step of this study is to expand our analysis to a larger cohort, and determine the potential of targeting this pathway for the treatment of CDH-associated PVD and PH. TYPE OF STUDY Therapeutic. LEVEL OF EVIDENCE LEVEL III.
Collapse
Affiliation(s)
- Jui-Hsia Hung
- Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Stéphanie Langlois
- Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Meagan Wiebe
- Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Benjamin Wild
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Barré-Dunn
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Kyle N Cowan
- Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
New Drugs and Therapies in Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24065850. [PMID: 36982922 PMCID: PMC10058689 DOI: 10.3390/ijms24065850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Pulmonary arterial hypertension is a chronic, progressive disorder of the pulmonary vasculature with associated pulmonary and cardiac remodeling. PAH was a uniformly fatal disease until the late 1970s, but with the advent of targeted therapies, the life expectancy of patients with PAH has now considerably improved. Despite these advances, PAH inevitably remains a progressive disease with significant morbidity and mortality. Thus, there is still an unmet need for the development of new drugs and other interventional therapies for the treatment of PAH. One shortcoming of currently approved vasodilator therapies is that they do not target or reverse the underlying pathogenesis of the disease process itself. A large body of evidence has evolved in the past two decades clarifying the role of genetics, dysregulation of growth factors, inflammatory pathways, mitochondrial dysfunction, DNA damage, sex hormones, neurohormonal pathways, and iron deficiency in the pathogenesis of PAH. This review focuses on newer targets and drugs that modify these pathways as well as novel interventional therapies in PAH.
Collapse
|
3
|
Hindmarch CCT, Tian L, Xiong PY, Potus F, Bentley RET, Al-Qazazi R, Prins KW, Archer SL. An integrated proteomic and transcriptomic signature of the failing right ventricle in monocrotaline induced pulmonary arterial hypertension in male rats. Front Physiol 2022; 13:966454. [PMID: 36388115 PMCID: PMC9664166 DOI: 10.3389/fphys.2022.966454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023] Open
Abstract
Aim: Pulmonary arterial hypertension (PAH) is an obstructive pulmonary vasculopathy that results in death from right ventricular failure (RVF). There is limited understanding of the molecular mechanisms of RVF in PAH. Methods: In a PAH-RVF model induced by injection of adult male rats with monocrotaline (MCT; 60 mg/kg), we performed mass spectrometry to identify proteins that change in the RV as a consequence of PAH induced RVF. Bioinformatic analysis was used to integrate our previously published RNA sequencing data from an independent cohort of PAH rats. Results: We identified 1,277 differentially regulated proteins in the RV of MCT rats compared to controls. Integration of MCT RV transcriptome and proteome data sets identified 410 targets that are concordantly regulated at the mRNA and protein levels. Functional analysis of these data revealed enriched functions, including mitochondrial metabolism, cellular respiration, and purine metabolism. We also prioritized 15 highly enriched protein:transcript pairs and confirmed their biological plausibility as contributors to RVF. We demonstrated an overlap of these differentially expressed pairs with data published by independent investigators using multiple PAH models, including the male SU5416-hypoxia model and several male rat strains. Conclusion: Multiomic integration provides a novel view of the molecular phenotype of RVF in PAH which includes dysregulation of pathways involving purine metabolism, mitochondrial function, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Charles Colin Thomas Hindmarch
- QCPU, Queen’s Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Lian Tian
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Ping Yu Xiong
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Francois Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Quebec, Quebec City, QC, Canada
| | | | - Ruaa Al-Qazazi
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Kurt W. Prins
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Stephen L. Archer
- QCPU, Queen’s Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada,Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Stephen L. Archer,
| |
Collapse
|
4
|
Gholipour A, Shakerian F, Zahedmehr A, Oveisee M, Maleki M, Mowla SJ, Malakootian M. Tenascin-C as a noninvasive biomarker of coronary artery disease. Mol Biol Rep 2022; 49:9267-9273. [PMID: 35941419 DOI: 10.1007/s11033-022-07760-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Coronary artery disease (CAD), is the leading cause of mortality and morbidity worldwide. Tenascin-C (TNC) with high expression levels in inflammatory and cardiovascular diseases, leads to the rupture of atherosclerotic plaques. The origin of plaque destabilization can be associated to endothelial dysfunction. Given the high prevalence of CAD, finding valuable biomarkers for its early detection is of great interest. Using serum samples from patients with CAD and individuals without CAD, we assessed the efficacy of TNC expression levels in serum exosomes and during endothelial cell differentiation as a noninvasive biomarker of CAD. METHODS TNC expression was analyzed using the RNA-sequencing data sets of 6 CAD and 6 normal samples of blood exosomes and endothelial differentiation transitions. Additionally, TNC expression was investigated in the serum samples of patients with CAD and individuals without CAD via qRT-PCR. ROC curve analysis was employed to test the suitability of TNC expression alterations as a CAD biomarker. RESULTS TNC exhibited higher expression in the exosomes of the CAD samples than in those of the non-CAD samples. During endothelial differentiation, TNC expression was upregulated and then consistently downregulated in mature endothelial cells. Moreover, TNC was significantly upregulated in the serum of the CAD group (P = 0.02), with an AUC of 0.744 for the expression level (95% confidence interval, 0.582 to 0.907; P = 0.011). Hence its expression level can be discriminated CAD from non-CAD samples. DISCUSSION Our study is the first to confirm that altered TNC expression is associated with pathological CAD conditions in Iranian patients. The expression of TNC is involved in endothelial differentiation and CAD development. Accordingly, TNC can serve as a valuable noninvasive biomarker with potential application in CAD diagnosis.
Collapse
Affiliation(s)
- Akram Gholipour
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Shakerian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zahedmehr
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maziar Oveisee
- Orthopedic Department, Bam University of Medical Sciences, Bam, Kerman, Iran.,Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Kerman, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Dieffenbach PB, Mallarino Haeger C, Rehman R, Corcoran AM, Coronata AMF, Vellarikkal SK, Chrobak I, Waxman AB, Vitali SH, Sholl LM, Padera RF, Lagares D, Polverino F, Owen CA, Fredenburgh LE. A Novel Protective Role for Matrix Metalloproteinase-8 in the Pulmonary Vasculature. Am J Respir Crit Care Med 2021; 204:1433-1451. [PMID: 34550870 PMCID: PMC8865706 DOI: 10.1164/rccm.202108-1863oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: Mechanical signaling through cell-matrix interactions plays a major role in progressive vascular remodeling in pulmonary arterial hypertension (PAH). MMP-8 (matrix metalloproteinase-8) is an interstitial collagenase involved in regulating inflammation and fibrosis of the lung and systemic vasculature, but its role in PAH pathogenesis remains unexplored. Objectives: To evaluate MMP-8 as a modulator of pathogenic mechanical signaling in PAH. Methods: MMP-8 levels were measured in plasma from patients with pulmonary hypertension (PH) and controls by ELISA. MMP-8 vascular expression was examined in lung tissue from patients with PAH and rodent models of PH. MMP-8-/- and MMP-8+/+ mice were exposed to normobaric hypoxia or normoxia for 4-8 weeks. PH severity was evaluated by right ventricular systolic pressure, echocardiography, pulmonary artery morphometry, and immunostaining. Proliferation, migration, matrix component expression, and mechanical signaling were assessed in MMP-8-/- and MMP-8+/+ pulmonary artery smooth muscle cells (PASMCs). Measurements and Main Results: MMP-8 expression was significantly increased in plasma and pulmonary arteries of patients with PH compared with controls and induced in the pulmonary vasculature in rodent PH models. Hypoxia-exposed MMP-8-/- mice had significant mortality, increased right ventricular systolic pressure, severe right ventricular dysfunction, and exaggerated vascular remodeling compared with MMP-8+/+ mice. MMP-8-/- PASMCs demonstrated exaggerated proliferation and migration mediated by altered matrix protein expression, elevated integrin-β3 levels, and induction of FAK (focal adhesion kinase) and downstream YAP (Yes-associated protein)/TAZ (transcriptional coactivator with PDZ-binding motif) activity. Conclusions: MMP-8 is a novel protective factor upregulated in the pulmonary vasculature during PAH pathogenesis. MMP-8 opposes pathologic mechanobiological feedback by altering matrix composition and disrupting integrin-β3/FAK and YAP/TAZ-dependent mechanical signaling in PASMCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Izabela Chrobak
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | | | - Sally H. Vitali
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts; and
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Robert F. Padera
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - David Lagares
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | |
Collapse
|
6
|
Sweatt AJ, Miyagawa K, Rhodes CJ, Taylor S, Del Rosario PA, Hsi A, Haddad F, Spiekerkoetter E, Bental-Roof M, Bland RD, Swietlik EM, Gräf S, Wilkins MR, Morrell NW, Nicolls MR, Rabinovitch M, Zamanian RT. Severe Pulmonary Arterial Hypertension Is Characterized by Increased Neutrophil Elastase and Relative Elafin Deficiency. Chest 2021; 160:1442-1458. [PMID: 34181952 PMCID: PMC8546243 DOI: 10.1016/j.chest.2021.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Preclinical evidence implicates neutrophil elastase (NE) in pulmonary arterial hypertension (PAH) pathogenesis, and the NE inhibitor elafin is under early therapeutic investigation. RESEARCH QUESTION Are circulating NE and elafin levels abnormal in PAH and are they associated with clinical severity? STUDY DESIGN AND METHODS In an observational Stanford University PAH cohort (n = 249), plasma NE and elafin levels were measured in comparison with those of healthy control participants (n = 106). NE and elafin measurements were then related to PAH clinical features and relevant ancillary biomarkers. Cox regression models were fitted with cubic spline functions to associate NE and elafin levels with survival. To validate prognostic relationships, we analyzed two United Kingdom cohorts (n = 75 and n = 357). Mixed-effects models evaluated NE and elafin changes during disease progression. Finally, we studied effects of NE-elafin balance on pulmonary artery endothelial cells (PAECs) from patients with PAH. RESULTS Relative to control participants, patients with PAH were found to have increased NE levels (205.1 ng/mL [interquartile range (IQR), 123.6-387.3 ng/mL] vs 97.6 ng/mL [IQR, 74.4-126.6 ng/mL]; P < .0001) and decreased elafin levels (32.0 ng/mL [IQR, 15.3-59.1 ng/mL] vs 45.5 ng/mL [IQR, 28.1-92.8 ng/mL]; P < .0001) independent of PAH subtype, illness duration, and therapies. Higher NE levels were associated with worse symptom severity, shorter 6-min walk distance, higher N-terminal pro-type brain natriuretic peptide levels, greater right ventricular dysfunction, worse hemodynamics, increased circulating neutrophil levels, elevated cytokine levels, and lower blood BMPR2 expression. In Stanford patients, NE levels of > 168.5 ng/mL portended increased mortality risk after adjustment for known clinical predictors (hazard ratio [HR], 2.52; CI, 1.36-4.65, P = .003) or prognostic cytokines (HR, 2.63; CI, 1.42-4.87; P = .001), and the NE level added incremental value to established PAH risk scores. Similar prognostic thresholds were identified in validation cohorts. Longitudinal NE changes tracked with clinical trends and outcomes. PAH PAECs exhibited increased apoptosis and attenuated angiogenesis when exposed to NE at the level observed in patients' blood. Elafin rescued PAEC homeostasis, yet the required dose exceeded levels found in patients. INTERPRETATION Blood levels of NE are increased while elafin levels are deficient across PAH subtypes. Higher NE levels are associated with worse clinical disease severity and outcomes, and this target-specific biomarker could facilitate therapeutic development of elafin.
Collapse
Affiliation(s)
- Andrew J Sweatt
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA.
| | - Kazuya Miyagawa
- Department of Pediatrics-Cardiology, Stanford University, Stanford, CA; Betty Irene Moore Children's Heart Center, Stanford University, Stanford, CA
| | - Christopher J Rhodes
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London
| | - Shalina Taylor
- Department of Pediatrics-Cardiology, Stanford University, Stanford, CA; Betty Irene Moore Children's Heart Center, Stanford University, Stanford, CA
| | - Patricia A Del Rosario
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA
| | - Andrew Hsi
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA
| | - Francois Haddad
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA
| | - Edda Spiekerkoetter
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA
| | - Michal Bental-Roof
- Department of Pediatrics-Cardiology, Stanford University, Stanford, CA; Betty Irene Moore Children's Heart Center, Stanford University, Stanford, CA
| | - Richard D Bland
- Department of Pediatrics-Neonatology, Stanford University, Stanford, CA
| | | | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge, England; NIHR BioResource for Translational Research, University of Cambridge, Cambridge, England; Department of Haematology, University of Cambridge, Cambridge, England; on behalf of the British Heart Foundation/Medical Research Council UK PAH Consortium (C. J. Rhodes, E. M. Swietlik, S. Gräf, M. R. Wilkins, and N. W. Morrell)
| | - Martin R Wilkins
- National Heart and Lung Institute, Hammersmith Hospital, Imperial College, London
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge, England; NIHR BioResource for Translational Research, University of Cambridge, Cambridge, England
| | - Mark R Nicolls
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA
| | - Marlene Rabinovitch
- Department of Pediatrics-Cardiology, Stanford University, Stanford, CA; Betty Irene Moore Children's Heart Center, Stanford University, Stanford, CA
| | - Roham T Zamanian
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA
| |
Collapse
|
7
|
Zolty R. Novel Experimental Therapies for Treatment of Pulmonary Arterial Hypertension. J Exp Pharmacol 2021; 13:817-857. [PMID: 34429666 PMCID: PMC8380049 DOI: 10.2147/jep.s236743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary artery vasoconstriction and vascular remodeling leading to vascular rarefaction with elevation of pulmonary arterial pressures and pulmonary vascular resistance. Often PAH will cause death from right heart failure. Current PAH-targeted therapies improve functional capacity, pulmonary hemodynamics and reduce hospitalization. Nevertheless, today PAH still remains incurable and is often refractory to medical therapy, underscoring the need for further research. Over the last three decades, PAH has evolved from a disease of unknown pathogenesis devoid of effective therapy to a condition whose cellular, genetic and molecular underpinnings are unfolding. This article provides an update on current knowledge and summarizes the progression in recent advances in pharmacological therapy in PAH.
Collapse
Affiliation(s)
- Ronald Zolty
- Pulmonary Hypertension Program, University of Nebraska Medical Center, Lied Transplant Center, Omaha, NE, USA
| |
Collapse
|
8
|
Su W, Zhao Y, Wei Y, Zhang X, Ji J, Yang S. Exploring the Pathogenesis of Psoriasis Complicated With Atherosclerosis via Microarray Data Analysis. Front Immunol 2021; 12:667690. [PMID: 34122426 PMCID: PMC8190392 DOI: 10.3389/fimmu.2021.667690] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
Background Although more and more evidence has supported psoriasis is prone to atherosclerosis, the common mechanism of its occurrence is still not fully elucidated. The purpose of this study is to further explore the molecular mechanism of the occurrence of this complication. Methods The gene expression profiles of psoriasis (GSE30999) and atherosclerosis (GSE28829) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) of psoriasis and atherosclerosis, three kinds of analyses were performed, namely functional annotation, protein‐protein interaction (PPI) network and module construction, and hub gene identification and co-expression analysis. Results A total of 94 common DEGs (24 downregulated genes and 70 upregulated genes) was selected for subsequent analyses. Functional analysis emphasizes the important role of chemokines and cytokines in these two diseases. In addition, lipopolysaccharide-mediated signaling pathway is closely related to both. Finally, 16 important hub genes were identified using cytoHubba, including LYN, CSF2RB, IL1RN, RAC2, CCL5, IRF8, C1QB, MMP9, PLEK, PTPRC, FYB, BCL2A1, LCP2, CD53, NCF2 and TLR2. Conclusions Our study reveals the common pathogenesis of psoriasis and atherosclerosis. These common pathways and hub genes may provide new ideas for further mechanism research.
Collapse
Affiliation(s)
- Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.,Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqian Wei
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoyan Zhang
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang Ji
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shun Yang
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
He J, Li N, Fan Y, Zhao X, Liu C, Hu X. Metformin Inhibits Abdominal Aortic Aneurysm Formation through the Activation of the AMPK/mTOR Signaling Pathway. J Vasc Res 2021; 58:148-158. [PMID: 33601368 DOI: 10.1159/000513465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/26/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Epidemiological evidence suggests that the antidiabetic drug metformin (MET) can also inhibit abdominal aortic aneurysm (AAA) formation. However, the underlying protective mechanism remains unknown. It has been reported that phosphorylated AMP-activated protein kinase (AMPK) levels are significantly lower in AAA tissues than control aortic tissues. AMPK activation can inhibit the downstream signaling molecule called mechanistic target of rapamycin (mTOR), which has also been reported be upregulated in thoracic aneurysms. Thus, blocking mTOR signaling could attenuate AAA progression. MET is a known agonist of AMPK. Therefore, in this study, we investigated if MET could inhibit formation of AAA by activating the AMPK/mTOR signaling pathway. MATERIALS AND METHODS The AAA animal model was induced by intraluminal porcine pancreatic elastase (PPE) perfusion in male Sprague Dawley rats. The rats were treated with MET or compound C (C.C), which is an AMPK inhibitor. AAA formation was monitored by serial ultrasound. Aortas were collected 4 weeks after surgery and subjected to immunohistochemistry, Western blot, and transmission electron microscopy analyses. RESULTS MET treatment dramatically inhibited the formation of AAA 4 weeks after PPE perfusion. MET reduced the aortic diameter, downregulated both macrophage infiltration and matrix metalloproteinase expression, decreased neovascularization, and preserved the contractile phenotype of the aortic vascular smooth muscle cells. Furthermore, we detected an increase in autophagy after MET treatment. All of these effects were reversed by the AMPK inhibitor C.C. CONCLUSION This study demonstrated that MET activates AMPK and suppresses AAA formation. Our study provides a novel mechanism for MET and suggests that MET could be potentially used as a therapeutic candidate for preventing AAA.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/ultrastructure
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Dilatation, Pathologic
- Disease Models, Animal
- Enzyme Activation
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Metformin/pharmacology
- Neovascularization, Pathologic
- Pancreatic Elastase
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
- Vascular Remodeling/drug effects
- Rats
Collapse
Affiliation(s)
- Jiaan He
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Nan Li
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yichuan Fan
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xingzhi Zhao
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Chengwei Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Xinhua Hu
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China,
| |
Collapse
|
10
|
Ovalı F. Molecular and Mechanical Mechanisms Regulating Ductus Arteriosus Closure in Preterm Infants. Front Pediatr 2020; 8:516. [PMID: 32984222 PMCID: PMC7477801 DOI: 10.3389/fped.2020.00516] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Failure of ductus arteriosus closure after preterm birth is associated with significant morbidities. Ductal closure requires and is regulated by a complex interplay of molecular and mechanical mechanisms with underlying genetic factors. In utero patency of the ductus is maintained by low oxygen tension, high levels of prostaglandins, nitric oxide and carbon monoxide. After birth, ductal closure occurs first by functional closure, followed by anatomical remodeling. High oxygen tension and decreased prostaglandin levels mediated by numerous factors including potassium channels, endothelin-1, isoprostanes lead to the contraction of the ductus. Bradykinin and corticosteroids also induce ductal constriction by attenuating the sensitivity of the ductus to PGE2. Smooth muscle cells of the ductus can sense oxygen through a mitochondrial network by the role of Rho-kinase pathway which ends up with increased intracellular calcium levels and contraction of myosin light chains. Anatomical closure of the ductus is also complex with various mechanisms such as migration and proliferation of smooth muscle cells, extracellular matrix production, endothelial cell proliferation which mediate cushion formation with the interaction of blood cells. Regulation of vessel walls is affected by retinoic acid, TGF-β1, notch signaling, hyaluronan, fibronectin, chondroitin sulfate, elastin, and vascular endothelial cell growth factor (VEGF). Formation of the platelet plug facilitates luminal remodeling by the obstruction of the constricted ductal lumen. Vasa vasorum are more pronounced in the term ductus but are less active in the preterm ductus. More than 100 genes are effective in the prostaglandin pathway or in vascular smooth muscle development and structure may affect the patency of ductus. Hemodynamic changes after birth including fluid load and flow characteristics as well as shear forces within the ductus also stimulate closure. Current pharmacological treatment for the closure of a patent ductus is based on the blockage of the prostaglandin pathway mainly through COX or POX inhibition, albeit with some limitations and side effects. Further research for new agents aiming ductal closure should focus on a clear understanding of vascular biology of the ductus.
Collapse
Affiliation(s)
- Fahri Ovalı
- Division of Neonatology, Department of Pediatrics, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
11
|
Proteomics reveals a set of highly enriched proteins in epiretinal membrane compared with inner limiting membrane. Exp Eye Res 2019; 186:107722. [PMID: 31302158 DOI: 10.1016/j.exer.2019.107722] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
Few data exist regarding the protein composition of idiopathic epiretinal membrane (iERM). In the present study we compared the proteome of epiretinal membrane of iERM with the proteome of the inner limiting membrane (ILM) of idiopathic macular hole (iMH). Twelve epiretinal membrane samples were obtained from patients with iERM undergoing therapeutic vitrectomy. Twelve ILM samples from patients with iMH were used as controls. Proteomic analysis was conducted with discovery-based label-free quantitative nano-liquid chromatography - tandem mass spectrometry (LFQ nLC-MS/MS). Verification of results was performed with targeted MS using selected reaction monitoring on a different set of samples. Discovery data were searched against the Uniprot Homo sapiens protein database using MaxQuant Software. Identified proteins were filtered with Perseus software. Bioinformatic analysis of the differences in protein expression between epiretinal membrane from iERM and ILM from iMH was performed using STRING. A total of 2,183 different proteins were identified. 357 proteins were found to be present in all samples. The protein profile of iERM was highly different from iMH with 62 proteins found at significantly higher levels in iERM. The proteins upregulated more than 10-fold in iERM were: fibrillin-1, tenascin, prolargin, biglycan, opticin, collagen alpha-1(II) chain, protein-glutamine gamma-glutamyltransferase 2, fibronectin, filamin-A, collagen alpha-2(IX) chain, spectrin alpha chain, transforming growth factor beta induced protein ig-h3, dihydropyrimidinase - related protein 3, endoplasmin and glutamate dehydrogenase 1. Proteins with high level in iERM consisted of proteins that especially localized to the actin cytoskeleton, the extracellular matrix and the mitochondrion. Analysis of all proteins indicated that the disease process in iERM at least in part can be characterized as skin formation with perturbation of nucleotide metabolism. Our study identified proteins that have not earlier been associated with iERM. Fifteen proteins are found at very high concentration, 10-fold or more, and amongst these four proteins, fibrillin-1, tenascin, prolargin and biglycan were found at more than a 100-fold higher content compared to ILM of iMH. These proteins may be potential therapeutic targets. Data are available via ProteomeXchange with identifier PXD014286.
Collapse
|
12
|
van der Feen DE, Bartelds B, de Boer RA, Berger RMF. Assessment of reversibility in pulmonary arterial hypertension and congenital heart disease. Heart 2018; 105:276-282. [DOI: 10.1136/heartjnl-2018-314025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/08/2018] [Accepted: 11/03/2018] [Indexed: 12/31/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) in congenital heart disease (CHD) can be reversed by early shunt closure, but this potential is lost beyond a certain point of no return. Therefore, it is crucial to accurately assess the reversibility of this progressive pulmonary arteriopathy in an early stage. Reversibility assessment is currently based on a combination of clinical symptoms and haemodynamic variables such as pulmonary vascular resistance. These measures, however, are of limited predictive value and leave many patients in the grey zone. This review provides a concise overview of the mechanisms involved in flow-dependent progression of PAH in CHD and evaluates existing and future alternatives to more directly investigate the stage of the pulmonary arteriopathy. Structural quantification of the pulmonary arterial tree using fractal branching algorithms, functional imaging with intravascular ultrasound, nuclear imaging, putative new blood biomarkers, genetic testing and the potential for transcriptomic analysis of circulating endothelial cells and educated platelets are being reviewed.
Collapse
|
13
|
Arnold C, Feldner A, Zappe M, Komljenovic D, De La Torre C, Ruzicka P, Hecker M, Neuhofer W, Korff T. Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice. FASEB J 2018; 33:3364-3377. [PMID: 30383452 DOI: 10.1096/fj.201801594r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The arterial wall adapts to alterations in blood flow and pressure by remodeling the cellular and extracellular architecture. Biomechanical stress of vascular smooth muscle cells (VSMCs) in the media is thought to precede this process and promote their activation and subsequent proliferation. However, molecular determinants orchestrating the transcriptional phenotype under these conditions have been insufficiently studied. We identified the transcription factor, nuclear factor of activated T cells 5 (NFAT5; or tonicity enhancer-binding protein) as a crucial regulatory element of mechanical stress responses of VSMCs. Here, the relevance of NFAT5 for arterial growth and thickening is investigated in mice upon inducible smooth muscle cell (SMC)-specific genetic ablation of Nfat5. In cultured mouse VSMCs, loss of Nfat5 inhibits the expression of gene sets involved in the control of the cell cycle and the interaction with the extracellular matrix and cytoskeletal dynamics. In vivo, SMC-specific knockout of Nfat5 did not affect the general vascular architecture and blood pressure levels under baseline conditions. However, proliferation of VSMCs and the thickening of the arterial wall were inhibited during both flow-induced collateral remodeling and hypertension-mediated arterial hypertrophy. Whereas originally described as a hypertonicity-responsive transcription factor, these findings identify NFAT5 as a novel molecular determinant of biomechanically induced phenotype changes of VSMCs and wall stress-induced arterial remodeling processes.-Arnold, C., Feldner, A., Zappe, M., Komljenovic, D., De La Torre, C., Ruzicka, P., Hecker, M., Neuhofer, W., Korff, T. Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice.
Collapse
Affiliation(s)
- Caroline Arnold
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Anja Feldner
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Maren Zappe
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Dorde Komljenovic
- Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Carolina De La Torre
- Center of Medical Research, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Philipp Ruzicka
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Neuhofer
- Medical Clinic V, University Hospital Mannheim, Heidelberg University, Heidelberg, Germany
| | - Thomas Korff
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
14
|
Taylor S, Dirir O, Zamanian RT, Rabinovitch M, Thompson AAR. The Role of Neutrophils and Neutrophil Elastase in Pulmonary Arterial Hypertension. Front Med (Lausanne) 2018; 5:217. [PMID: 30131961 PMCID: PMC6090899 DOI: 10.3389/fmed.2018.00217] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/16/2018] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe vasculopathy characterized by the presence of fibrotic lesions in the arterial wall and the loss of small distal pulmonary arteries. The vasculopathy is accompanied by perivascular inflammation and increased protease levels, with neutrophil elastase notably implicated in aberrant vascular remodeling. However, the source of elevated elastase levels in PAH remains unclear. A major source of neutrophil elastase is the neutrophil, an understudied cell population in PAH. The principal function of neutrophils is to destroy invading pathogens by means of phagocytosis and NET formation, but proteases, chemokines, and cytokines implicated in PAH can be released by and/or prime and activate neutrophils. This review focuses on the contribution of inflammation to the development and progression of the disease, highlighting studies implicating neutrophils, neutrophil elastase, and other neutrophil proteases in PAH. The roles of cytokines, chemokines, and neutrophil elastase in the disease are discussed and we describe new insight into the role neutrophils potentially play in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Shalina Taylor
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States
| | - Omar Dirir
- Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Roham T. Zamanian
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States
- Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Marlene Rabinovitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States
| | - A. A. Roger Thompson
- Infection, Immunity, and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
15
|
Dieffenbach PB, Maracle M, Tschumperlin DJ, Fredenburgh LE. Mechanobiological Feedback in Pulmonary Vascular Disease. Front Physiol 2018; 9:951. [PMID: 30090065 PMCID: PMC6068271 DOI: 10.3389/fphys.2018.00951] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/28/2018] [Indexed: 01/06/2023] Open
Abstract
Vascular stiffening in the pulmonary arterial bed is increasingly recognized as an early disease marker and contributor to right ventricular workload in pulmonary hypertension. Changes in pulmonary artery stiffness throughout the pulmonary vascular tree lead to physiologic alterations in pressure and flow characteristics that may contribute to disease progression. These findings have led to a greater focus on the potential contributions of extracellular matrix remodeling and mechanical signaling to pulmonary hypertension pathogenesis. Several recent studies have demonstrated that the cellular response to vascular stiffness includes upregulation of signaling pathways that precipitate further vascular remodeling, a process known as mechanobiological feedback. The extracellular matrix modifiers, mechanosensors, and mechanotransducers responsible for this process have become increasingly well-recognized. In this review, we discuss the impact of vascular stiffening on pulmonary hypertension morbidity and mortality, evidence in favor of mechanobiological feedback in pulmonary hypertension pathogenesis, and the major contributors to mechanical signaling in the pulmonary vasculature.
Collapse
Affiliation(s)
- Paul B Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Marcy Maracle
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
16
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|
17
|
|
18
|
Relationship between matrix metalloproteinase-3 serum level and pulmonary artery systolic pressure in patients with rheumatoid arthritis. Heart Vessels 2017; 33:191-197. [DOI: 10.1007/s00380-017-1045-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
|
19
|
Wild B, St-Pierre ME, Langlois S, Cowan KN. Elastase and matrix metalloproteinase activities are associated with pulmonary vascular disease in the nitrofen rat model of congenital diaphragmatic hernia. J Pediatr Surg 2017; 52:693-701. [PMID: 28189447 DOI: 10.1016/j.jpedsurg.2017.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND/PURPOSE Pulmonary vascular disease (PVD) is a leading cause of congenital diaphragmatic hernia (CDH) mortality. Progression of PVD involves extracellular matrix remodeling by elastases and matrix metalloproteinases (MMP), concomitant with proliferation of smooth muscle cells in a growth factor-enriched environment. Blockade of this pathway reversed primary pulmonary hypertension and improved survival. This study was designed to determine whether a similar pathway is induced in PVD secondary to CDH. METHODS Fetal rats exposed to nitrofen at gestational day 9 developed left-sided CDH and were compared at term to their non-CDH littermates by assessing histologic and biochemical features of PVD. RESULTS Rats with CDH displayed right ventricle hypertrophy, increased pulmonary artery medial wall thickness and muscularization, and decreased lumen size. As revealed by in situ zymography and immunohistochemistry, this was associated with an induction of elastolytic and MMP activities as well as an elevation of epidermal growth factor and osteopontin levels in the diseased lung vasculature. CONCLUSIONS CDH-associated PVD involves an induction of elastase and MMP activities and increased osteopontin deposition in an epidermal growth factor-rich environment. Inhibition of this pathway may thus represent a novel therapeutic approach for the treatment of CDH-associated PVD. LEVEL OF EVIDENCE Level I (Basic Science Study).
Collapse
Affiliation(s)
- Benjamin Wild
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Eve St-Pierre
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Stéphanie Langlois
- Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Kyle N Cowan
- Department of Surgery, Division of Pediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
20
|
Mohsenin V. The emerging role of microRNAs in hypoxia-induced pulmonary hypertension. Sleep Breath 2016; 20:1059-67. [DOI: 10.1007/s11325-016-1351-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 11/30/2022]
|
21
|
Li S, Han D, Zhang Y, Xie X, Ke R, Zhu Y, Liu L, Song Y, Yang L, Li M. Activation of AMPK Prevents Monocrotaline-Induced Extracellular Matrix Remodeling of Pulmonary Artery. Med Sci Monit Basic Res 2016; 22:27-33. [PMID: 26978596 PMCID: PMC4795089 DOI: 10.12659/msmbr.897505] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background The current study was performed to investigate the effect of adenosine monophosphate (AMP) – activated protein kinase (AMPK) activation on the extracellular matrix (ECM) remodeling of pulmonary arteries in pulmonary arterial hypertension (PAH) and to address its potential mechanisms. Material/Methods PAH was induced by a single intraperitoneal injection of monocrotaline (MCT) into Sprague-Dawley rats. Metformin (MET) was administered to activate AMPK. Immunoblotting was used to determine the phosphorylation and expression of AMPK and expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). Gelatin zymography was performed to determine the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9. Results Activation of AMPK by MET significantly reduced the right ventricle systolic pressure and the right ventricular hypertrophy in MCT-induced rat PAH model, and partially inhibited the ECM remodeling of pulmonary arteries. These effects were coupled with the decrease of MMP-2/9 activity and TIMP-1 expression. Conclusions This study suggests that activation of AMPK benefits PAH by inhibiting ECM remodeling of pulmonary arteries. Enhancing AMPK activity might have potential value in clinical treatment of PAH.
Collapse
Affiliation(s)
- Shaojun Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Dong Han
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Yonghong Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Xinming Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Rui Ke
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Yanting Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Lu Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Yang Song
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Lan Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Manxiang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
22
|
Archer SL. Acquired Mitochondrial Abnormalities, Including Epigenetic Inhibition of Superoxide Dismutase 2, in Pulmonary Hypertension and Cancer: Therapeutic Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:29-53. [PMID: 27343087 DOI: 10.1007/978-1-4899-7678-9_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is no cure for non-small-cell lung cancer (NSCLC) or pulmonary arterial hypertension (PAH). Therapies lack efficacy and/or are toxic, reflecting a failure to target disease abnormalities that are distinct from processes vital to normal cells. NSCLC and PAH share reversible mitochondrial-metabolic abnormalities which may offer selective therapeutic targets. The following mutually reinforcing, mitochondrial abnormalities favor proliferation, impair apoptosis, and are relatively restricted to PAH and cancer cells: (1) Epigenetic silencing of superoxide dismutase-2 (SOD2) by methylation of CpG islands creates a pseudohypoxic redox environment that causes normoxic activation of hypoxia inducible factor (HIF-1α). (2) HIF-1α increases expression of pyruvate dehydrogenase kinase (PDK), which impairs oxidative metabolism and promotes a glycolytic metabolic state. (3) Mitochondrial fragmentation, partially due to mitofusin-2 downregulation, promotes proliferation. This review focuses on the recent discovery that decreased expression of SOD2, a putative tumor-suppressor gene and the major source of H2O2, results from hypermethylation of CpG islands. In cancer and PAH hypermethylation of a site in the enhancer region of intron 2 inhibits SOD2 transcription. In normal PASMC, SOD2 siRNA decreases H2O2 and activates HIF-1α. In PAH, reduced SOD2 expression decreases H2O2, reduces the cytosol and thereby activates HIF-1α. This causes a glycolytic shift in metabolism and increases the proliferation/apoptosis ratio by downregulating Kv1.5 channels, increasing cytosolic calcium, and inhibiting caspases. The DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine, which restores SOD2 expression, corrects the proliferation/apoptosis imbalance in PAH and cancer cells. The specificity of PAH for lung vessels may relate to the selective upregulation of DNA methyltransferases that mediate CpG methylation in PASMC (DNA MT-1A and -3B). SOD2 augmentation inactivates HIF-1α in PAH PASMC and therapy with the SOD mimetic, MnTBAP, regresses experimental PAH. In conclusion, cancer and PAH share acquired mitochondrial abnormalities that increase proliferation and inhibit apoptosis, suggesting new therapeutic targets.
Collapse
Affiliation(s)
- Stephen L Archer
- Head Department of Medicine, Queen's University Program Medical Director KGH, HD, SMOL Etherington Hall, Room 3041 94 Stuart St., Kingston, Ontario, Canada, K7L 3N6.
| |
Collapse
|
23
|
Chun HJ, Yu PB. Elafin in pulmonary arterial hypertension. Beyond targeting elastases. Am J Respir Crit Care Med 2015; 191:1217-9. [PMID: 26029832 DOI: 10.1164/rccm.201504-0686ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Hyung J Chun
- 1 Yale Cardiovascular Research Center Yale School of Medicine New Haven, Connecticut
| | | |
Collapse
|
24
|
Wells A, Nuschke A, Yates CC. Skin tissue repair: Matrix microenvironmental influences. Matrix Biol 2015; 49:25-36. [PMID: 26278492 DOI: 10.1016/j.matbio.2015.08.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/31/2022]
Abstract
The process of repair of wounded skin involves intricate orchestration not only between the epidermal and dermal compartments but also between the resident and immigrant cells and the local microenvironment. Only now are we beginning to appreciate the complex roles played by the matrix in directing the outcome of the repair processes, and how this impacts the signals from the various cells. Recent findings speak of dynamic and reciprocal interactions that occurs among the matrix, growth factors, and cells that underlies this integrated process. Further confounding this integration are the physiologic and pathologic situations that directly alter the matrix to impart at least part of the dysrepair that occurs. These topics will be discussed with a call for innovative model systems of direct relevance to the human situation.
Collapse
Affiliation(s)
- Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213 USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA.
| | - Austin Nuschke
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213 USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Cecelia C Yates
- Department of Health Development and Promotion, University of Pittsburgh, Pittsburgh, PA 15213 USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| |
Collapse
|
25
|
Kameshima S, Kazama K, Okada M, Yamawaki H. Eukaryotic elongation factor 2 kinase mediates monocrotaline-induced pulmonary arterial hypertension via reactive oxygen species-dependent vascular remodeling. Am J Physiol Heart Circ Physiol 2015; 308:H1298-305. [DOI: 10.1152/ajpheart.00864.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/01/2015] [Indexed: 01/08/2023]
Abstract
Pulmonary arterial (PA) hypertension (PAH) is a progressive and lethal disease that is caused by increased vascular contractile reactivity and structural remodeling. These changes contribute to increasing pulmonary peripheral vascular resistance, finally leading to right heart failure and death. Eukaryotic elongation factor 2 kinase (eEF2K) is a Ca2+/calmodulin-dependent protein kinase. We previously revealed that eEF2K protein increases in the mesenteric artery from spontaneously hypertensive rats and partly mediates the development of hypertension via a promotion of ROS-dependent vascular inflammatory responses and proliferation and migration of vascular smooth muscle cells. However, a role of eEF2K in the pathogenesis of PAH is unknown. In the present study, we tested the hypothesis that eEF2K may be involved in the pathogenesis of PAH. PAH was induced by a single intraperitoneal injection of monocrotaline (MCT; 60 mg/kg) to rats. A specific eEF2K inhibitor, A-484954 (2.5 mg·kg−1·day−1), was intraperitoneally injected for 14 days. Long-term A-484954 treatment inhibited MCT-induced increased PA pressure. It was revealed that A-484954 inhibited MCT-induced PA hypertrophy and fibrosis but not impairment of endothelium-dependent and -independent relaxation. Furthermore, A-484954 inhibited MCT-induced NADPH oxidase-1 expression and ROS generation as well as matrix metalloproteinase-2 activation. In conclusion, the present results suggest that eEF2K at least partly mediates MCT-induced PAH via stimulation of vascular structural remodeling perhaps through NADPH oxidase-1/ROS/matrix metalloproteinase-2 pathway.
Collapse
Affiliation(s)
- Satoshi Kameshima
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Kyosuke Kazama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| |
Collapse
|
26
|
Imanaka-Yoshida K, Yoshida T, Miyagawa-Tomita S. Tenascin-C in development and disease of blood vessels. Anat Rec (Hoboken) 2015; 297:1747-57. [PMID: 25125186 DOI: 10.1002/ar.22985] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/25/2014] [Accepted: 01/25/2014] [Indexed: 12/30/2022]
Abstract
Tenascin-C (TNC) is an extracellular glycoprotein categorized as a matricellular protein. It is highly expressed during embryonic development, wound healing, inflammation, and cancer invasion, and has a wide range of effects on cell response in tissue morphogenesis and remodeling including the cardiovascular system. In the heart, TNC is sparsely detected in normal adults but transiently expressed at restricted sites during embryonic development and in response to injury, playing an important role in myocardial remodeling. Although TNC in the vascular system appears more complex than in the heart, the expression of TNC in normal adult blood vessels is generally low. During embryonic development, vascular smooth muscle cells highly express TNC on maturation of the vascular wall, which is controlled in a way that depends on the embryonic site of cell origin. Strong expression of TNC is also linked with several pathological conditions such as cerebral vasospasm, intimal hyperplasia, pulmonary artery hypertension, and aortic aneurysm/ dissection. TNC synthesized by smooth muscle cells in response to developmental and environmental cues regulates cell responses such as proliferation, migration, differentiation, and survival in an autocrine/paracrine fashion and in a context-dependent manner. Thus, TNC can be a key molecule in controlling cellular activity in adaptation during normal vascular development as well as tissue remodeling in pathological conditions.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan; Mie University Research Center for Matrix Biology, Tsu, Mie, 514-8507, Japan
| | | | | |
Collapse
|
27
|
Kölliker Frers R, Bisoendial R, Montoya S, Kerzkerg E, Castilla R, Tak P, Milei J, Capani F. Psoriasis and cardiovascular risk: Immune-mediated crosstalk between metabolic, vascular and autoimmune inflammation. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ijcme.2015.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Ryan J, Dasgupta A, Huston J, Chen KH, Archer SL. Mitochondrial dynamics in pulmonary arterial hypertension. J Mol Med (Berl) 2015; 93:229-42. [PMID: 25672499 DOI: 10.1007/s00109-015-1263-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 12/31/2022]
Abstract
Pulmonary arterial hypertension (PAH) is an idiopathic cardiopulmonary disease characterized by obstruction of small pulmonary arteries. Vascular obstruction is the consequence of excessive proliferation and apoptosis resistance of vascular cells, as well as inflammation, thrombosis, and vasoconstriction. Vascular obstruction increases the afterload faced by the right ventricle (RV), leading to RV failure. The proliferative, obstructive vasculopathy of PAH shares several mitochondrial abnormalities with cancer, notably a shift to aerobic glycolysis and mitochondrial fragmentation. Mitochondria in the pulmonary artery smooth muscle cell (PASMC) normally serve as oxygen sensors. In PAH, acquired mitochondrial abnormalities, including epigenetic silencing of superoxide dismutase (SOD2), disrupt oxygen sensing creating a pseudo-hypoxic environment characterized by normoxic activation of hypoxia-inducible factor-1α (HIF-1α). The resulting metabolic shift to aerobic glycolysis (the Warburg phenomenon) reflects inhibition of pyruvate dehydrogenase by pyruvate dehydrogenase kinases. In addition, altered mitochondrial dynamics result in mitochondrial fragmentation. The molecular basis of this structural change includes upregulation and activation of fission mediators, notably dynamin-related protein 1 (DRP-1), and downregulation of fusion mediators, especially mitofusin-2 (MFN2). These pathogenic mitochondrial abnormalities offer new therapeutic targets. Inhibition of mitotic fission or enhancement of fusion in PAH PASMC slows cell proliferation, causes cell cycle arrest, and induces apoptosis. DRP-1 inhibition or MFN2 gene therapy can regress PAH in experimental models of PAH. This review focuses on the etiology of mitochondrial fragmentation in PAH and explores the therapeutic implications of mitochondrial dynamics in the pulmonary vasculature and RV.
Collapse
Affiliation(s)
- John Ryan
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
29
|
Hsu CH, Ho WJ, Huang WC, Chiu YW, Hsu TS, Kuo PH, Hsu HH, Chang JK, Cheng CC, Lai CL, Liang KW, Lin SL, Sung HH, Tsai WC, Weng KP, Hsieh KS, Yin WH, Lin SJ, Wang KY. 2014 Guidelines of Taiwan Society of Cardiology (TSOC) for the Management of Pulmonary Arterial Hypertension. ACTA CARDIOLOGICA SINICA 2014; 30:401-444. [PMID: 27122817 PMCID: PMC4824720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 08/21/2014] [Indexed: 06/05/2023]
Abstract
UNLABELLED Pulmonary hypertension (PH) is a hemodynamic and pathophysiologic condition, defined as a mean pulmonary arterial pressure exceeding 25 mmHg at rest. According to the recent classifications, it is grouped into pulmonary arterial hypertension (PAH), heart-related, lung-related, thromboembolic, and miscellaneous PH. In the past two decades, tremendous advances have occurred in the field of PH. These include (1) development of clinical diagnostic algorithm and a monitoring strategy dedicated to PAH, (2) defining strong rationales for screening at-risk populations, (3) advent of pulmonary specific drugs which makes PAH manageable, (4) recognition of needs of having proper strategy of combining existing pulmonary specific drugs, and/or potential novel drugs, (5) pursuit of clinical trials with optimal surrogate endpoints and study durations, (6) recognition of critical roles of PH/right ventricular function, as well as interdependence of ventricles in different conditions, especially those with various phenotypes of heart failure, and (7) for rare diseases, putting equal importance on carefully designed observation studies, various registries, etc., besides double blind randomized studies. In addition, ongoing basic and clinical research has led to further understanding of relevant physiology, pathophysiology, epidemiology and genetics of PH/PAH. This guidelines from the working group of Pulmonary Hypertension of the Taiwan Society of Cardiology is to provide updated guidelines based on the most recent international guidelines as well as Taiwan's domestic research on PH. The guidelines are mainly for the management of PAH (Group 1) ; however the majority of content can be helpful for managing other types of PH. KEY WORDS Pulmonary arterial hypertension; Taiwan guidelines.
Collapse
Affiliation(s)
- Chih-Hsin Hsu
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan
| | - Wan-Jing Ho
- Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan
| | - Wei-Chun Huang
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Yu-Wei Chiu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City
| | - Tsu-Shiu Hsu
- Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan
| | - Ping-Hung Kuo
- Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Hsao-Hsun Hsu
- Department of Surgery, National Taiwan University Hospital, Taipei
| | - Jia-Kan Chang
- Department of Pediatrics, Cheng-Hsin General Hospital, Taipei
| | - Chin-Chang Cheng
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Chao-Lun Lai
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu
| | - Kae-Woei Liang
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung
| | - Shoa-Lin Lin
- Department of Internal Medicine, Yuan’s General Hospital, Kaohsiung
| | - Hsao-Hsun Sung
- Department of Internal Medicine, Taipei Veterans General Hospital Taipei
| | - Wei-Chuan Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan
| | - Ken-Pen Weng
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Kai-Sheng Hsieh
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan
| | - Wei-Hsian Yin
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan
| | - Shing-Jong Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan
| | - Kuo-Yang Wang
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung
- Department of Internal Medicine, Chung-Shan Medical University, Taichung, Taiwan
| |
Collapse
|
30
|
Abstract
Pulmonary arterial hypertension is a progressive disorder in which endothelial dysfunction and vascular remodeling obstruct small pulmonary arteries, resulting in increased pulmonary vascular resistance and pulmonary pressures. This leads to reduced cardiac output, right heart failure, and ultimately death. In this review, we attempt to answer some important questions commonly asked by patients diagnosed with pulmonary arterial hypertension pertaining to the disease, and aim to provide an explanation in terms of classification, diagnosis, pathophysiology, genetic causes, demographics, and prognostic factors. Furthermore, important molecular pathways that are central to the pathogenesis of pulmonary arterial hypertension are reviewed, including nitric oxide, prostacyclin, endothelin-1, reactive oxygen species, and endothelial and smooth muscle proliferation.
Collapse
Affiliation(s)
- Yen-Chun Lai
- From Vascular Medicine Institute (Y.-C.L., K.C.P., A.L.M., M.T.G.) and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (A.L.M., M.T.G.), University of Pittsburgh, PA
| | - Karin C Potoka
- From Vascular Medicine Institute (Y.-C.L., K.C.P., A.L.M., M.T.G.) and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (A.L.M., M.T.G.), University of Pittsburgh, PA
| | - Hunter C Champion
- From Vascular Medicine Institute (Y.-C.L., K.C.P., A.L.M., M.T.G.) and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (A.L.M., M.T.G.), University of Pittsburgh, PA
| | - Ana L Mora
- From Vascular Medicine Institute (Y.-C.L., K.C.P., A.L.M., M.T.G.) and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (A.L.M., M.T.G.), University of Pittsburgh, PA
| | - Mark T Gladwin
- From Vascular Medicine Institute (Y.-C.L., K.C.P., A.L.M., M.T.G.) and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (A.L.M., M.T.G.), University of Pittsburgh, PA.
| |
Collapse
|
31
|
Karamanian VA, Harhay M, Grant GR, Palevsky HI, Grizzle WE, Zamanian RT, Ihida-Stansbury K, Taichman DB, Kawut SM, Jones PL. Erythropoietin upregulation in pulmonary arterial hypertension. Pulm Circ 2014; 4:269-79. [PMID: 25006446 DOI: 10.1086/675990] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/07/2014] [Indexed: 01/05/2023] Open
Abstract
The pathophysiologic alterations of patients with pulmonary arterial hypertension (PAH) are diverse. We aimed to determine novel pathogenic pathways from circulating proteins in patients with PAH. Multianalyte profiling (MAP) was used to measure 90 specifically selected antigens in the plasma of 113 PAH patients and 51 control patients. Erythropoietin (EPO) functional activity was assessed via in vitro pulmonary artery endothelial cell networking and smooth muscle cell proliferation assays. Fifty-eight patients had idiopathic PAH, whereas 55 had other forms of PAH; 5 had heritable PAH, 18 had connective tissue disease (15 with scleroderma and 3 with lupus erythematosis), 13 had portopulmonary hypertension, 6 had PAH associated with drugs or toxins, and 5 had congenital heart disease. The plasma-antigen profile of PAH revealed increased levels of several novel biomarkers, including EPO. Immune quantitative and histochemical studies revealed that EPO not only was significantly elevated in the plasma of PAH patients but also promoted pulmonary artery endothelial cell network formation and smooth muscle cell proliferation. MAP is a hypothesis-generating approach to identifying novel pathophysiologic pathways in PAH. EPO is upregulated in the circulation and lungs of patients with PAH and may affect endothelial and smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Vanesa A Karamanian
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA ; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA ; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Harhay
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA ; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory R Grant
- Department of Genetics and Penn Center for Bioinformatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harold I Palevsky
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA ; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Roham T Zamanian
- Department of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California, USA; and Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, California, USA
| | - Kaori Ihida-Stansbury
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA ; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA ; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Darren B Taichman
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA ; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven M Kawut
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA ; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA ; These authors contributed equally
| | - Peter L Jones
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA ; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA ; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA ; These authors contributed equally
| |
Collapse
|
32
|
Tuder RM, Archer SL, Dorfmüller P, Erzurum SC, Guignabert C, Michelakis E, Rabinovitch M, Schermuly R, Stenmark KR, Morrell NW. Relevant issues in the pathology and pathobiology of pulmonary hypertension. J Am Coll Cardiol 2014; 62:D4-12. [PMID: 24355640 DOI: 10.1016/j.jacc.2013.10.025] [Citation(s) in RCA: 402] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
Abstract
Knowledge of the pathobiology of pulmonary hypertension (PH) continues to accelerate. However, fundamental gaps remain in our understanding of the underlying pathological changes in pulmonary arteries and veins in the different forms of this syndrome. Although PH primarily affects the arteries, venous disease is increasingly recognized as an important entity. Moreover, prognosis in PH is determined largely by the status of the right ventricle, rather than the levels of pulmonary artery pressures. It is increasingly clear that although vasospasm plays a role, PH is an obstructive lung panvasculopathy. Disordered metabolism and mitochondrial structure, inflammation, and dysregulation of growth factors lead to a proliferative, apoptosis-resistant state. These abnormalities may be acquired, genetically mediated as a result of mutations in bone morphogenetic protein receptor-2 or activin-like kinase-1, or epigenetically inherited (as a result of epigenetic silencing of genes such as superoxide dismutase-2). There is a pressing need to better understand how the pathobiology leads to severe disease in some patients versus mild PH in others. Recent recognition of a potential role of acquired abnormalities of mitochondrial metabolism in the right ventricular myocytes and pulmonary vascular cells suggests new therapeutic approaches, diagnostic modalities, and biomarkers. Finally, dissection of the role of pulmonary inflammation in the initiation and promotion of PH has revealed a complex yet fascinating interplay with pulmonary vascular remodeling, promising to lead to novel therapeutics and diagnostics. Emerging concepts are also relevant to the pathobiology of PH, including a role for bone marrow and circulating progenitor cells and microribonucleic acids. Continued interest in the interface of the genetic basis of PH and cellular and molecular pathogenetic links should further expand our understanding of the disease.
Collapse
Affiliation(s)
- Rubin M Tuder
- Program in Translational Lung Research, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Peter Dorfmüller
- Department of Pathology, Marie Lannelongue Hospital, University Paris-Sud, Le Plessis-Robinson, France
| | - Serpil C Erzurum
- Lerner Research Institute and Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Christophe Guignabert
- INSERM UMR 999, LabEx LERMIT, Marie Lannelongue Hospital and University Paris-Sud, School of Medicine, Kremlin-Bicêtre, France
| | | | - Marlene Rabinovitch
- Cardiovascular Institute and Department of Pediatrics and The Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, California
| | - Ralph Schermuly
- Excellence Cluster Cardio-Pulmonary System, German Lung Center, Universities of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Germany
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Laboratory, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom.
| |
Collapse
|
33
|
Scherer C, Pfisterer L, Wagner AH, Hödebeck M, Cattaruzza M, Hecker M, Korff T. Arterial wall stress controls NFAT5 activity in vascular smooth muscle cells. J Am Heart Assoc 2014; 3:e000626. [PMID: 24614757 PMCID: PMC4187483 DOI: 10.1161/jaha.113.000626] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Nuclear factor of activated T‐cells 5 (NFAT5) has recently been described to control the phenotype of vascular smooth muscle cells (VSMCs). Although an increase in wall stress or stretch (eg, elicited by hypertension) is a prototypic determinant of VSMC activation, the impact of this biomechanical force on the activity of NFAT5 is unknown. This study intended to reveal the function of NFAT5 and to explore potential signal transduction pathways leading to its activation in stretch‐stimulated VSMCs. Methods and Results Human arterial VSMCs were exposed to biomechanical stretch and subjected to immunofluorescence and protein‐biochemical analyses. Stretch promoted the translocation of NFAT5 to the nucleus within 24 hours. While the protein abundance of NFAT5 was regulated through activation of c‐Jun N‐terminal kinase under these conditions, its translocation required prior activation of palmitoyltransferases. DNA microarray and ChiP analyses identified the matrix molecule tenascin‐C as a prominent transcriptional target of NFAT5 under these conditions that stimulates migration of VSMCs. Analyses of isolated mouse femoral arteries exposed to hypertensive perfusion conditions verified that NFAT5 translocation to the nucleus is followed by an increase in tenascin‐C abundance in the vessel wall. Conclusions Collectively, our data suggest that biomechanical stretch is sufficient to activate NFAT5 both in native and cultured VSMCs where it regulates the expression of tenascin‐C. This may contribute to an improved migratory activity of VSMCs and thus promote maladaptive vascular remodeling processes such as hypertension‐induced arterial stiffening.
Collapse
Affiliation(s)
- Clemens Scherer
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Sulica R, Poon M. Medical therapeutics for pulmonary arterial hypertension: from basic science and clinical trial design to evidence-based medicine. Expert Rev Cardiovasc Ther 2014; 3:347-60. [PMID: 15853607 DOI: 10.1586/14779072.3.2.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pulmonary arterial hypertension is a severe disease with poor prognosis, caused by obliteration of the pulmonary vasculature as a result of pulmonary-vascular remodeling, active vasoconstriction and in situ thrombosis. Left untreated, pulmonary arterial hypertension results in right-ventricular failure and death. There has been dramatic progress in the treatment of pulmonary arterial hypertension during recent years. A remarkable number of randomized-controlled trials with agents known to target specific abnormalities present in pulmonary arterial hypertension have been completed. Most commonly, therapeutic efficacy was judged by the ability of the drug under study to improve exercise capacity and to decrease the rate of severe complications. Completed clinical trials have mainly evaluated patients with relatively advanced disease. Despite these advances, responses to therapy in pulmonary arterial hypertension are not uniformly favorable and frequently incomplete. In addition, the methods of delivery and the adverse effect profile of the currently available pulmonary arterial hypertension-specific drugs create further management difficulties. Based on newly identified pathobiologic abnormalities in the pulmonary vasculature, future studies are likely to focus on the discovery of new therapeutic targets. Clinical trial design will continue to evolve in an attempt to enable inclusion of patients with less advanced disease and evaluation of treatment combinations or comparisons of the currently approved drugs.
Collapse
Affiliation(s)
- Roxana Sulica
- Mount Sinai School of Medicine, 1 Gustave L Levy Place, Box 1030, New York, NY 10029, USA.
| | | |
Collapse
|
35
|
Tajsic T, Morrell NW. Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol 2013; 1:295-317. [PMID: 23737174 DOI: 10.1002/cphy.c100026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pulmonary hypertension is a multifactorial disease characterized by sustained elevation of pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP). Central to the pathobiology of this disease is the process of vascular remodelling. This process involves structural and functional changes to the normal architecture of the walls of pulmonary arteries (PAs) that lead to increased muscularization of the muscular PAs, muscularization of the peripheral, previously nonmuscular, arteries of the respiratory acinus, formation of neointima, and formation of plexiform lesions. Underlying or contributing to the development of these lesions is hypertrophy, proliferation, migration, and resistance to apoptosis of medial cells and this article is concerned with the cellular and molecular mechanisms of these processes. In the first part of the article we focus on the concept of smooth muscle cell phenotype and the difficulties surrounding the identification and characterization of the cell/cells involved in the remodelling of the vessel media and we review the general mechanisms of cell hypertrophy, proliferation, migration and apoptosis. Then, in the larger part of the article, we review the factors identified thus far to be involved in PH intiation and/or progression and review and discuss their effects on pulmonary artery smooth muscle cells (PASMCs) the predominant cells in the tunica media of PAs.
Collapse
Affiliation(s)
- Tamara Tajsic
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | | |
Collapse
|
36
|
Pushpakumar SB, Kundu S, Metreveli N, Tyagi SC, Sen U. Matrix Metalloproteinase Inhibition Mitigates Renovascular Remodeling in Salt-Sensitive Hypertension. Physiol Rep 2013; 1:e00063. [PMID: 24159376 PMCID: PMC3804376 DOI: 10.1002/phy2.63] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Extracellular matrix (ECM) remodeling is the hallmark of hypertensive nephropathy. Uncontrolled proteolytic activity due to an imbalance between matrix metalloproteinases and tissue inhibitors of metalloproteinases (MMPs/TIMPs) has been implicated in renovascular fibrosis. We hypothesized that inhibition of MMPs will reduce excess ECM deposition and modulate autophagy to attenuate hypertension. Dahl salt-sensitive (Dahl/SS) and Lewis rats were fed on high salt diet and treated without or with 1.2 mg/kg b.w. of GM6001 (MMP inhibitor) by intraperitoneal injection on alternate days for 4 weeks. Blood pressure (BP), renal cortical blood flow, vascular density, collagen, elastin, and MMPs/TIMPs were measured. GM6001 treatment significantly reduced mean BP in hypertensive Dahl/SS rats. Renal resistive index (RI) was increased in hypertensive Dahl/SS rats and Doppler flowmetry showed reduced cortical perfusion. Barium angiography demonstrated a reduction in terminal branches of renal vasculature. Inhibition of MMPs by GM6001 resulted in a significant improvement in all the parameters including renal function. In hypertensive Dahl/SS rats, protein levels of MMP-9, -2, and -13 were increased including the activity of MMP-9 and -2; TIMP-1 and -2 levels were increased whereas TIMP-3 levels were similar to Lewis controls. Administration of GM6001 reduced the activity of MMPs and increased the levels of TIMP-1, -2, and -3. MMP inhibition reduced type 1 collagen deposition and increased elastin in the intrarenal vessels indicating reduced fibrosis. Autophagy markers were decreased in hypertensive Dahl/SS rats and GM6001 treatment enhanced their levels. We conclude that MMP inhibition (GM6001) reduces adverse renovascular remodeling in hypertension by modulating ECM turnover and stimulating autophagy.
Collapse
Affiliation(s)
- Sathnur B Pushpakumar
- Department of Physiology and Biophysics, University of Louisville School of Medicine Louisville, KY-40292
| | | | | | | | | |
Collapse
|
37
|
Eba S, Hoshikawa Y, Moriguchi T, Mitsuishi Y, Satoh H, Ishida K, Watanabe T, Shimizu T, Shimokawa H, Okada Y, Yamamoto M, Kondo T. The Nuclear Factor Erythroid 2–Related Factor 2 Activator Oltipraz Attenuates Chronic Hypoxia–Induced Cardiopulmonary Alterations in Mice. Am J Respir Cell Mol Biol 2013; 49:324-33. [DOI: 10.1165/rcmb.2011-0396oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
38
|
MicroRNAs in pulmonary arterial remodeling. Cell Mol Life Sci 2013; 70:4479-94. [PMID: 23739951 PMCID: PMC3827895 DOI: 10.1007/s00018-013-1382-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 12/12/2022]
Abstract
Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH.
Collapse
|
39
|
Morrell NW, Archer SL, Defelice A, Evans S, Fiszman M, Martin T, Saulnier M, Rabinovitch M, Schermuly R, Stewart D, Truebel H, Walker G, Stenmark KR. Anticipated classes of new medications and molecular targets for pulmonary arterial hypertension. Pulm Circ 2013; 3:226-44. [PMID: 23662201 PMCID: PMC3641734 DOI: 10.4103/2045-8932.109940] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) remains a life-limiting condition with a major impact on the ability to lead a normal life. Although existing therapies may improve the outlook in some patients there remains a major unmet need to develop more effective therapies in this condition. There have been significant advances in our understanding of the genetic, cell and molecular basis of PAH over the last few years. This research has identified important new targets that could be explored as potential therapies for PAH. In this review we discuss whether further exploitation of vasoactive agents could bring additional benefits over existing approaches. Approaches to enhance smooth muscle cell apotosis and the potential of receptor tyrosine kinase inhibition are summarised. We evaluate the role of inflammation, epigenetic changes and altered glycolytic metabolism as potential targets for therapy, and whether inherited genetic mutations in PAH have revealed druggable targets. The potential of cell based therapies and gene therapy are also discussed. Potential candidate pathways that could be explored in the context of experimental medicine are identified.
Collapse
|
40
|
Ghatnekar A, Chrobak I, Reese C, Stawski L, Seta F, Wirrig E, Paez-Cortez J, Markiewicz M, Asano Y, Harley R, Silver R, Feghali-Bostwick C, Trojanowska M. Endothelial GATA-6 deficiency promotes pulmonary arterial hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2391-406. [PMID: 23583651 DOI: 10.1016/j.ajpath.2013.02.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/07/2013] [Accepted: 02/07/2013] [Indexed: 01/05/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic and progressive disease characterized by pulmonary vasculopathy with elevation of pulmonary artery pressure, often culminating in right ventricular failure. GATA-6, a member of the GATA family of zinc-finger transcription factors, is highly expressed in quiescent vasculature and is frequently lost during vascular injury. We hypothesized that endothelial GATA-6 may play a critical role in the molecular mechanisms underlying endothelial cell (EC) dysfunction in PAH. Here we report that GATA-6 is markedly reduced in pulmonary ECs lining both occluded and nonoccluded vessels in patients with idiopathic and systemic sclerosis-associated PAH. GATA-6 transcripts are also rapidly decreased in rodent PAH models. Endothelial GATA-6 is a direct transcriptional regulator of genes controlling vascular tone [endothelin-1, endothelin-1 receptor type A, and endothelial nitric oxide synthase (eNOS)], pro-inflammatory genes, CX3CL1 (fractalkine), 5-lipoxygenease-activating protein, and markers of vascular remodeling, including PAI-1 and RhoB. Mice with the genetic deletion of GATA-6 in ECs (Gata6-KO) spontaneously develop elevated pulmonary artery pressure and increased vessel muscularization, and these features are further exacerbated in response to hypoxia. Furthermore, innate immune cells including macrophages (CD11b(+)/F4/80(+)), granulocytes (Ly6G(+)/CD45(+)), and dendritic cells (CD11b(+)/CD11c(+)) are significantly increased in normoxic Gata6-KO mice. Together, our findings suggest a critical role of endothelial GATA-6 deficiency in development and disease progression in PAH.
Collapse
Affiliation(s)
- Angela Ghatnekar
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sakamoto N, Hoshino Y, Misaka T, Mizukami H, Suzuki S, Sugimoto K, Yamaki T, Kunii H, Nakazato K, Suzuki H, Saitoh SI, Takeishi Y. Serum tenascin-C level is associated with coronary plaque rupture in patients with acute coronary syndrome. Heart Vessels 2013; 29:165-70. [PMID: 23532307 DOI: 10.1007/s00380-013-0341-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
Abstract
Tenascin-C, a large oligometric glycoprotein of the extracellular matrix, increases the expression of matrix metalloproteinases that lead to plaque instability and rupture, resulting in acute coronary syndrome (ACS). We hypothesized that a high serum tenascin-C level is associated with plaque rupture in patients with ACS. Fifty-two consecutive ACS patients who underwent emergency percutaneous coronary intervention (PCI) and, as a control, 66 consecutive patients with stable angina pectoris (SAP) were enrolled in this study. Blood samples were obtained from the ascending aorta just prior to the PCI procedures. After coronary guide-wire crossing, intravascular ultrasonography (IVUS) was performed for assessment of plaque characterization. Based on the IVUS findings, ACS patients were assigned to two groups according to whether there was ruptured plaque (ruptured ACS group) or not (nonruptured ACS group). There were 23 patients in the ruptured group and 29 patients in the nonruptured group. Clinical characteristics and IVUS measurements did not differ between the two groups. Tenascin-C levels were significantly higher in the ruptured ACS group than in the SAP group, whereas there was no significant difference between the nonruptured ACS and SAP groups. Importantly, in the ruptured ACS group, tenascin-C levels were significantly higher than in the nonruptured ACS group (71.9 ± 34.9 vs 50.5 ± 20.5 ng/ml, P < 0.005). Our data demonstrate that tenascin-C level is associated with pathologic conditions in ACS, especially the presence of ruptured plaque.
Collapse
Affiliation(s)
- Nobuo Sakamoto
- Department of Cardiology and Hematology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang JX, Pan YY, Zhao YY, Wang XX. Endothelial progenitor cell-based therapy for pulmonary arterial hypertension. Cell Transplant 2013; 22:1325-36. [PMID: 23295102 DOI: 10.3727/096368912x659899] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A growing body of evidence in animal models and clinical studies supports the concept that endothelial progenitor cell (EPC)-mediated therapy ameliorates pulmonary arterial hypertension (PAH) and thus may represent a novel approach to treat it. Conversely, several experimental findings suggest that EPCs may be involved in PAH pathogenesis and disease progression. These discrepant results confuse the application of EPC transplantation as an effective treatment strategy for PAH. To improve the study of EPC transplantation in PAH therapy, it is high time that we resolve this dilemma. In this review, we examine the pathobiological changes of PAH, the characteristics of EPCs, and the underlying mechanisms of EPC effects on PAH.
Collapse
Affiliation(s)
- Jin-Xiu Yang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | | | | | | |
Collapse
|
43
|
Celik A, Gunebakmaz O, Baran O, Dogdu O, Elcik D, Kobat MA, Balin M, Erdem K, Aydin S, Ozdogru I, Topsakal R. An investigation of tenascin-C levels in rheumatic mitral stenosis and their response to percutaneous mitral balloon valvuloplasty. Med Princ Pract 2013; 22:29-34. [PMID: 22889719 PMCID: PMC5586711 DOI: 10.1159/000340061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 06/11/2012] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the tenascin-C levels in severe rheumatic mitral stenosis before and after percutaneous mitral balloon valvuloplasty (PMBV). SUBJECTS AND METHODS Forty patients with severe mitral stenosis requiring PMBV and 20 age-matched healthy subjects were included in the study. The mitral valve areas, mitral gradients and systolic pulmonary artery pressure (sPAP) were measured by echocardiography. The sPAP values and mitral gradients were also measured by catheterization before and after PMBV. The blood tenascin-C levels were measured before PMBV and 1 month after the procedure. RESULTS The echocardiographic mean mitral gradients had a significant decrease after PMBV (11.7 ± 2.8 vs. 5.6 ± 1.7 mm Hg; p < 0.001) and also those of catheterization (13.9 ± 4.4 vs. 4.0 ± 2.4 mm Hg; p < 0.001). Mitral valve areas increased significantly after PMBV (from 1.1 ± 0.1 to 1.8 ± 0.2 cm(2), p < 0.001). Tenascin-C levels decreased significantly in patients after PMBV (from 15.0 ± 3.8 to 10.9 ± 3.1 ng/ml; p < 0.001). Tenascin-C levels were higher in patients with mitral stenosis before PMBV than in healthy subjects (15.0 ± 3.8 and 9.4 ± 2.9 ng/ml; p < 0.001, respectively). There were no significant differences between patients with mitral stenosis after PMBV and healthy subjects (10.9 ± 3.1 and 9.4 ± 2.9 ng/ml; p = 0.09, respectively). There was a significant positive correlation between tenascin-C levels and sPAP (r = 0.508, p < 0.001). In multivariant analysis, tenascin-C predicted mitral stenosis (p = 0.004, OR: 2.31). CONCLUSIONS Tenascin-C was an independent predictor for rheumatic mitral stenosis.
Collapse
Affiliation(s)
- Ahmet Celik
- Department of Cardiology, Elazig Education and Research Hospital, Elazig, Turkey.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jakovcevski I, Miljkovic D, Schachner M, Andjus PR. Tenascins and inflammation in disorders of the nervous system. Amino Acids 2012; 44:1115-27. [DOI: 10.1007/s00726-012-1446-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
|
45
|
Predicting rates of cell state change caused by stochastic fluctuations using a data-driven landscape model. Proc Natl Acad Sci U S A 2012; 109:19262-7. [PMID: 23115330 DOI: 10.1073/pnas.1207544109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We develop a potential landscape approach to quantitatively describe experimental data from a fibroblast cell line that exhibits a wide range of GFP expression levels under the control of the promoter for tenascin-C. Time-lapse live-cell microscopy provides data about short-term fluctuations in promoter activity, and flow cytometry measurements provide data about the long-term kinetics, because isolated subpopulations of cells relax from a relatively narrow distribution of GFP expression back to the original broad distribution of responses. The landscape is obtained from the steady state distribution of GFP expression and connected to a potential-like function using a stochastic differential equation description (Langevin/Fokker-Planck). The range of cell states is constrained by a force that is proportional to the gradient of the potential, and biochemical noise causes movement of cells within the landscape. Analyzing the mean square displacement of GFP intensity changes in live cells indicates that these fluctuations are described by a single diffusion constant in log GFP space. This finding allows application of the Kramers' model to calculate rates of switching between two attractor states and enables an accurate simulation of the dynamics of relaxation back to the steady state with no adjustable parameters. With this approach, it is possible to use the steady state distribution of phenotypes and a quantitative description of the short-term fluctuations in individual cells to accurately predict the rates at which different phenotypes will arise from an isolated subpopulation of cells.
Collapse
|
46
|
Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Rotellar F, Valentí V, Silva C, Gil MJ, Salvador J, Frühbeck G. Increased tenascin C and Toll-like receptor 4 levels in visceral adipose tissue as a link between inflammation and extracellular matrix remodeling in obesity. J Clin Endocrinol Metab 2012; 97:E1880-9. [PMID: 22851489 PMCID: PMC3462948 DOI: 10.1210/jc.2012-1670] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Obesity is associated with an altered inflammatory and extracellular matrix (ECM) profile. Tenascin C (TNC) is an ECM glycoprotein with proinflammatory effects. OBJECTIVE We aimed to explore the expression levels of TNC in adipose tissue analyzing the contribution of adipocytes and stromovascular fraction cells (SVFC) as well as its impact on inflammation and ECM regulation. We also analyzed the effect of the stimulation with TNF-α and lipopolysaccharide (LPS) on both SVFC and adipocytes. PATIENTS AND METHODS Samples obtained from 75 subjects were used in the study. Expression levels of TNC, TLR4, MMP2, and MMP9 were analyzed in visceral adipose tissue (VAT) as well as in both adipocytes and SVFC. In addition, Tnc expression was measured in two mice models of obesity. RESULTS We show, for the first time, that VAT expression levels of TNC are increased in normoglycemic and type 2 diabetic obese patients (P<0.01) as well as in obese patients with nonalcoholic steatohepatitis (P<0.01). Furthermore, expression levels of Tnc in epididymal adipose tissue from two different mice models of obesity were significantly increased (P<0.01). TNC and TLR4 were mainly expressed by SVFC, and its expression was significantly enhanced (P<0.01) by TNF-α treatment. LPS treatment also increased mRNA levels of TNC. Moreover, the addition of exogenous TNC induced (P<0.05) TLR4 and CCL2 mRNA expression in human adipocyte cultures. CONCLUSIONS These findings indicate that TNC is involved in the etiopathology of obesity via visceral adipose tissue inflammation representing a link with ECM remodeling.
Collapse
Affiliation(s)
- Victoria Catalán
- Metabolic Research Laboratory, Department of Surgery, Clínica Universidad de Navarra, Avenuda Pío XII, 36, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Xue H, Sun K, Xie W, Hu G, Kong H, Wang Q, Wang H. Etanercept attenuates short-term cigarette-smoke-exposure-induced pulmonary arterial remodelling in rats by suppressing the activation of TNF-a/NF-kB signal and the activities of MMP-2 and MMP-9. Pulm Pharmacol Ther 2012; 25:208-15. [PMID: 22724137 DOI: 10.1016/j.pupt.2012.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathogenesis of cigarette-smoke-exposure-induced pulmonary vasculature impairment is unclear. Cigarette-smoke-exposure-induced the accumulation of tumour necrosis factor-alpha (TNF-α) and upregulates the expression and activities of matrix metalloproteinases (MMPs) involved in smoke-induced vascular remodelling, which are important processes in the pathogenesis of vasculature impairment. The TNF-α antagonist Etanercept is an anti-inflammatory drug with a potential role in regulating MMP expression. To determine the effect of Etanercept on short-term smoke-induced pulmonary arteriole impairment and investigate its possible mechanism, male Sprague-Dawley rats were exposed to cigarette-smoke daily for two weeks in both the absence and presence of Etanercept. Cigarette-smoke-exposure-induced elevation of mean pulmonary artery pressures and medial hypertrophy of pulmonary arterioles were partially reduced by Etanercept. Up-regulation of the expression and activities of MMP-2 and MMP-9, induced by cigarette-smoke, were also suppressed significantly by Etanercept. Furthermore, Etanercept treatment significantly attenuated cigarette-smoke-induced TNFα accumulation and activation of nuclear factor NF-kB signal. These results suggest that Etanercept have the protective effects in cigarette-smoke-induced pulmonary vascular remodelling, with the attenuation of the up-regulated expression and activities of MMP-2 and MMP-9 and activation of TNF-α/NF-kB signal pathway probably being involved as part of its mechanism. Our study might provide insight into the development of new interventions for vasculature impairment.
Collapse
Affiliation(s)
- Hong Xue
- Department of respiratory medicine, The First Affiliated Hospital of Nanjing Medical University, and Department of Pharmacology and Neurobiology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Huang J, Wolk JH, Gewitz MH, Mathew R. Caveolin-1 expression during the progression of pulmonary hypertension. Exp Biol Med (Maywood) 2012; 237:956-65. [PMID: 22890027 DOI: 10.1258/ebm.2012.011382] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Caveolin-1 plays a pivotal role in maintaining vascular health. Progressive loss of endothelial caveolin-1 and activation of proliferative and anti-apoptotic pathways occur before the onset of monocrotaline (MCT)-induced pulmonary hypertension (PH), and the rescue of endothelial caveolin-1 attenuates PH. Recently, we reported endothelial caveolin-1 loss associated with enhanced expression of caveolin-1 in smooth muscle cells (SMC) with subsequent neointima formation in human PH. To examine whether the loss of endothelial caveolin-1 followed by an enhanced expression in SMC is a sequential event in the progression of PH, we studied rats at two and four weeks post-MCT. Right ventricular (RV) systolic pressure, RV hypertrophy, pulmonary vascular histology, and the expression of caveolin-1 and endothelial membrane proteins (platelet/endothelial cell adhesion molecule-1 [PECAM-1], both α and β subunits of soluble guanylate cyclase [sGC]), von Willebrand factor (vWF), smooth muscle α-actin, proliferative and anti-apoptotic factors (PY-STAT3 and Bcl-xL) and matrix metalloproteinase (MMP) 2 in the lungs were examined. PH was accompanied by a progressive loss of endothelial caveolin-1, activation of PY-STAT3, increased Bcl-xL expression and vascular remodeling at two and four weeks post-MCT. Loss of PECAM-1 and sGC (both subunits) paralleled that of caveolin-1, whereas vWF was well preserved at two weeks post-MCT. At four weeks post-MCT, 29% of the arteries showed a loss of vWF in addition to endothelial caveolin-1, and 70% of these arteries exhibited enhanced expression of caveolin-1 in SMC; and there was increased expression and activity of MMP2. In conclusion, MCT-induced endothelial injury disrupts endothelial cell membrane with a progressive loss of endothelial caveolin-1, and the activation of proliferative and antiapoptotic pathways leading to PH. Subsequent extensive endothelial cell damage results in enhanced expression of caveolin-1 in SMC. In addition, there is a progressive increase in MMP2 expression and activity. These alterations may further facilitate cell proliferation, matrix degradation and cell migration, thus contributing to the progression of the disease.
Collapse
Affiliation(s)
- Jing Huang
- Section of Pediatric Cardiology, Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
49
|
Current pathophysiological concepts and management of pulmonary hypertension. Int J Cardiol 2012; 155:350-61. [PMID: 21641060 DOI: 10.1016/j.ijcard.2011.05.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/14/2011] [Accepted: 05/13/2011] [Indexed: 01/23/2023]
Abstract
Pulmonary hypertension (PH), increasingly recognized as a major health burden, remains underdiagnosed due mainly to the unspecific symptoms. Pulmonary arterial hypertension (PAH) has been extensively investigated. Pathophysiological knowledge derives mostly from experimental models. Paradoxically, common non-PAH PH forms remain largely unexplored. Drugs targeting lung vascular tonus became available during the last two decades, notwithstanding the disease progresses in many patients. The aim of this review is to summarize recent advances in epidemiology, pathophysiology and management with particular focus on associated myocardial and systemic compromise and experimental therapeutic possibilities. PAH, currently viewed as a panvasculopathy, is due to a crosstalk between endothelial and smooth muscle cells, inflammatory activation and altered subcellular pathways. Cardiac cachexia and right ventricular compromise are fundamental determinants of PH prognosis. Combined vasodilator therapy is already mainstay for refractory cases, but drugs directed at these new pathophysiological pathways may constitute a significant advance.
Collapse
|
50
|
Schmid-Schönbein GW. An emerging role of degrading proteinases in hypertension and the metabolic syndrome: autodigestion and receptor cleavage. Curr Hypertens Rep 2012; 14:88-96. [PMID: 22081429 DOI: 10.1007/s11906-011-0240-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the major challenges for hypertension research is to identify the mechanisms that cause the comorbidities encountered in many hypertensive patients, as seen in the metabolic syndrome. An emerging body of evidence suggests that human and experimental hypertensives may exhibit uncontrolled activity of proteinases, including the family of matrix metalloproteinases, recognized for their ability to restructure the extracellular matrix proteins and to play a role in hypertrophy. We propose a new hypothesis that provides a molecular framework for the comorbidities of hypertension, diabetes, capillary rarefaction, immune suppression, and other cell and organ dysfunctions due to early and uncontrolled extracellular receptor cleavage by active proteinases. The proteinase and signaling activity in hypertensives requires further detailed analysis of the proteinase expression, the mechanisms causing proenzyme activation, and identification of the proteinase substrate. This work may open the opportunity for reassessment of old interventions and development of new interventions to manage hypertension and its comorbidities.
Collapse
Affiliation(s)
- Geert W Schmid-Schönbein
- Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA 92093-0412, USA.
| |
Collapse
|