1
|
Li H, Lu Y, Tian G, Wu Y, Chen T, Zhang J, Hu N, Wang X, Wang Y, Gao L, Yan J, Zhou L, Shi Q. A regimen based on the combination of trimethoprim/sulfamethoxazole with caspofungin and corticosteroids as a first-line therapy for patients with severe non-HIV-related pneumocystis jirovecii pneumonia: a retrospective study in a tertiary hospital. BMC Infect Dis 2024; 24:152. [PMID: 38297200 PMCID: PMC10829312 DOI: 10.1186/s12879-024-09031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Pneumocystis jirovecii pneumonia (PJP) is a life-threatening and severe disease in immunocompromised hosts. A synergistic regimen based on the combination of sulfamethoxazole-trimethoprim (SMX-TMP) with caspofungin and glucocorticosteroids (GCSs) may be a potential first-line therapy for PJP. Therefore, it is important to explore the efficacy and safety of this synergistic therapy for treating non-HIV-related PJP patients. METHODS We retrospectively analysed the data of 38 patients with non-HIV-related PJP at the First Affiliated Hospital of Xi'an Jiaotong University. Patients were divided into two groups: the synergistic therapy group (ST group, n = 20) and the monotherapy group (MT group, n = 18). All patients were from the ICU and were diagnosed with severe PJP. In the ST group, all patients were treated with SMX-TMP (TMP 15-20 mg/kg per day) combined with caspofungin (70 mg as the loading dose and 50 mg/day as the maintenance dose) and a GCS (methylprednisolone 40-80 mg/day). Patients in the MT group were treated only with SMX-TMP (TMP 15-20 mg/kg per day). The clinical response, adverse events and mortality were compared between the two groups. RESULTS The percentage of patients with a positive clinical response in the ST group was significantly greater than that in the MT group (100.00% vs. 66.70%, P = 0.005). The incidence of adverse events in the MT group was greater than that in the ST group (50.00% vs. 15.00%, P = 0.022). Furthermore, the dose of TMP and duration of fever in the ST group were markedly lower than those in the MT group (15.71 mg/kg/day vs. 18.35 mg/kg/day (P = 0.001) and 7.00 days vs. 11.50 days (P = 0.029), respectively). However, there were no significant differences in all-cause mortality or duration of hospital stay between the MT group and the ST group. CONCLUSIONS Compared with SMZ/TMP monotherapy, synergistic therapy (SMZ-TMP combined with caspofungin and a GCS) for the treatment of non-HIV-related PJP can increase the clinical response rate, decrease the incidence of adverse events and shorten the duration of fever. These results indicate that synergistic therapy is effective and safe for treating severe non-HIV-related PJP.
Collapse
Affiliation(s)
- Hao Li
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Xi'an, Shaanxi, China
| | - Yihe Lu
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Xi'an, Shaanxi, China
| | - Guoxin Tian
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Xi'an, Shaanxi, China
| | - Yongxing Wu
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Xi'an, Shaanxi, China
| | - Tianjun Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China
| | - Jiangwei Zhang
- Department of Kideny Transplant, Hospital of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China
| | - Nan Hu
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China
| | - Xiaoning Wang
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China
| | - Yang Wang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China
| | - Lan Gao
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Xi'an, Shaanxi, China
| | - Jinqi Yan
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Xi'an, Shaanxi, China
| | - Linjing Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Xi'an, Shaanxi, China
| | - Qindong Shi
- Department of Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China.
- Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Kottom TJ, Carmona EM, Limper AH. Gene Expression in Lung Epithelial Cells Following Interaction with Pneumocystis carinii and its Specific Life Forms Yields Insights into Host Gene Responses to Infection. Microbiol Immunol 2022; 66:238-251. [PMID: 35229348 PMCID: PMC9090966 DOI: 10.1111/1348-0421.12972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
Pneumocystis spp. interacts with epithelial cells in the alveolar spaces of the lung. It is thought that the binding of Pneumocystis to host cell epithelium is needed for life cycle completion and proliferation. The effect of this interaction on lung epithelial cells have previously shown that the trophic form of this organism greatly inhibits p34 cdc2 activity, a serine/threonine kinase required for transition from G2 to M phase in the cell cycle. To gain further insight into the host response during Pneumocystis pneumonia (PCP), we used microarray technology to profile epithelial cell (A549) gene expression patterns following Pneumocystis carinii interaction. Furthermore, we isolated separate populations of cyst and trophic forms of P. carinii, which were then applied to the lung epithelial cells. Differential expression of genes involved in various cellular functions dependent on the specific P. carinii life form in contact with the A549 cell were identified. The reliability of our data was further confirmed by Northern blot analysis on a number of selected up or down regulated transcripts. The transcriptional response to P. carinii was dominated by cytokines, apoptotic, and anti-apoptotic related genes. These results reveal several previously unknown effects of P. carinii on the lung epithelial cell and provide insight into the complex interactions of host and pathogen. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905, USA
| |
Collapse
|
3
|
Kottom TJ, Schaefbauer K, Carmona EM, Limper AH. EphA2 is a Lung Epithelial Cell Receptor for Pneumocystis β-glucans. J Infect Dis 2021; 225:525-530. [PMID: 34289046 DOI: 10.1093/infdis/jiab384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/20/2021] [Indexed: 11/14/2022] Open
Abstract
Pneumocystis spp. interaction with myeloid cells is well known, especially in macrophages. Contrary, how the organism binds to lung epithelial cells is incompletely understood. Ephrin type-A receptor (EphA2), has been previously identified as a lung epithelial pattern recognition receptor (PRR) that binds to fungal β-glucans. Herein, we also report that EphA2 can also bind Pneumocystis β-glucans, both in isolated forms and also on exposed surfaces of the organism. Furthermore, binding of Pneumocystis β-glucans resulted in phosphorylation of the EphA2 receptor, which has been shown to be important for downstream proinflammatory response. Indeed, we also show that IL-6 cytokine is significantly increased when lung epithelial cells are exposed to Pneumocystis β-glucans, and that this response could be blocked with preincubation with a specific antibody to EphA2. Our study presents yet another Pneumocystis lung epithelial cell receptor with implications for initial colonization and possible therapeutic intervention.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Department of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905. USA
| | - Kyle Schaefbauer
- Thoracic Diseases Research Unit, Department of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905. USA
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Department of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905. USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Department of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota, 55905. USA
| |
Collapse
|
4
|
Kottom TJ, Hebrink DM, Limper AH. Binding of Pneumocystis carinii to the lung epithelial cell receptor HSPA5 (GRP78). J Med Microbiol 2018; 67:1772-1777. [PMID: 30328808 DOI: 10.1099/jmm.0.000864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The importance of lung macrophages in Pneumocystis-host interaction is well known, but little is known about the initial binding/colonization of the airway epithelium. Our prior studies have documented cell-signalling events that occur following binding of the organisms to lung epithelial cells; however, the receptors that mediate Pneumocystis attachment to lung surfaces have not yet been fully defined. Using affinity chromatography, we identified heat shock protein 5 (HSPA5), also known as GRP78, as a potential host receptor that may have relevance in Pneumocystis lung colonization. Pneumocystis carinii (Pc) organisms not only bound HSPA5 on a rat lung epithelial cell line, but also on primary rat airway epithelial cells (AECs). Furthermore, Pc bound CHO1 cells overexpressing HSPA5 more than the CHO1 parent line alone, supporting a role for Pc-HSPA5 protein interaction in mediating organism attachment. These results provide new insights into the interactions of Pneumocystis with host lung epithelium.
Collapse
Affiliation(s)
- Theodore J Kottom
- From the Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Deanne M Hebrink
- From the Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Andrew H Limper
- From the Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| |
Collapse
|
5
|
Kottom TJ, Hebrink DM, Jenson PE, Ramirez-Prado JH, Limper AH. Characterization of N-Acetylglucosamine Biosynthesis in Pneumocystis species. A New Potential Target for Therapy. Am J Respir Cell Mol Biol 2017; 56:213-222. [PMID: 27632412 DOI: 10.1165/rcmb.2016-0155oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
N-acetylglucosamine (GlcNAc) serves as an essential structural sugar on the cell surface of organisms. For example, GlcNAc is a major component of bacterial peptidoglycan, it is an important building block of fungal cell walls, including a major constituent of chitin and mannoproteins, and it is also required for extracellular matrix generation by animal cells. Herein, we provide evidence for a uridine diphospho (UDP)-GlcNAc pathway in Pneumocystis species. Using an in silico search of the Pneumocystis jirovecii and P. murina (Pm) genomic databases, we determined the presence of at least four proteins implicated in the Saccharomyces cerevisiae UDP-GlcNAc biosynthetic pathway. These genes, termed GFA1, GNA1, AGM1, and UDP-GlcNAc pyrophosphorylase (UAP1), were either confirmed to be present in the Pneumocystis genomes by PCR, or, in the case of Pm uap1 (Pmuap1), functionally confirmed by direct enzymatic activity assay. Expression analysis using quantitative PCR of Pneumocystis pneumonia in mice demonstrated abundant expression of the Pm uap1 transcript. A GlcNAc-binding recombinant protein and a novel GlcNAc-binding immune detection method both verified the presence of GlcNAc in P. carinii (Pc) lysates. Studies of Pc cell wall fractions using high-performance gas chromatography/mass spectrometry documented the presence of GlcNAc glycosyl residues. Pc was shown to synthesize GlcNAc in vitro. The competitive UDP-GlcNAc substrate synthetic inhibitor, nikkomycin Z, suppressed incorporation of GlcNAc by Pc preparations. Finally, treatment of rats with Pneumocystis pneumonia using nikkomycin Z significantly reduced organism burdens. Taken together, these data support an important role for GlcNAc generation in the cell surface of Pneumocystis organisms.
Collapse
Affiliation(s)
- Theodore J Kottom
- 1 Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Deanne M Hebrink
- 1 Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Paige E Jenson
- 1 Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Jorge H Ramirez-Prado
- 2 Unidad de Biotecnologia, Centro de Investigacion Cientifica de Yucatan, Asociación Civil, Merida, Yucatan, Mexico
| | - Andrew H Limper
- 1 Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| |
Collapse
|
6
|
Kottom TJ, Limper AH. Evidence for a Pneumocystis carinii Flo8-like transcription factor: insights into organism adhesion. Med Microbiol Immunol 2015. [PMID: 26215665 DOI: 10.1007/s00430-015-0428-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pneumocystis carinii (Pc) adhesion to alveolar epithelial cells is well established and is thought to be a prerequisite for the initiation of Pneumocystis pneumonia. Pc binding events occur in part through the major Pc surface glycoprotein Msg, as well as an integrin-like molecule termed PcInt1. Recent data from the Pc sequencing project also demonstrate DNA sequences homologous to other genes important in Candida spp. binding to mammalian host cells, as well as organism binding to polystyrene surfaces and in biofilm formation. One of these genes, flo8, a transcription factor needed for downstream cAMP/PKA-pathway-mediated activation of the major adhesion/flocculin Flo11 in yeast, was cloned from a Pc cDNA library utilizing a partial sequence available in the Pc genome database. A CHEF blot of Pc genomic DNA yielded a single band providing evidence this gene is present in the organism. BLASTP analysis of the predicted protein demonstrated 41 % homology to the Saccharomyces cerevisiae Flo8. Northern blotting demonstrated greatest expression at pH 6.0-8.0, pH comparable to reported fungal biofilm milieu. Western blot and immunoprecipitation assays of PcFlo8 protein in isolated cyst and tropic life forms confirmed the presence of the cognate protein in these Pc life forms. Heterologous expression of Pcflo8 cDNA in flo8Δ-deficient yeast strains demonstrated that the Pcflo8 was able to restore yeast binding to polystyrene and invasive growth of yeast flo8Δ cells. Furthermore, Pcflo8 promoted yeast binding to HEK293 human epithelial cells, strengthening its functional classification as a Flo8 transcription factor. Taken together, these data suggest that PcFlo8 is expressed by Pc and may exert activity in organism adhesion and biofilm formation.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 8-24 Stabile, Rochester, MN, 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 8-24 Stabile, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
Abstract
Since its initial misidentification as a trypanosome some 100 years ago, Pneumocystis has remained recalcitrant to study. Although we have learned much, we still do not have definitive answers to such basic questions as, where is the reservoir of infection, how does Pneumocystis reproduce, what is the mechanism of infection, and are there true species of Pneumocystis? The goal of this review is to provide the reader the most up to date information available about the biology of Pneumocystis and the disease it produces.
Collapse
Affiliation(s)
- Francis Gigliotti
- Department of Pediatrics, University of Rochester Medical School, Rochester, New York 14642
| | - Andrew H Limper
- Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Terry Wright
- Department of Pediatrics, University of Rochester Medical School, Rochester, New York 14642
| |
Collapse
|
8
|
Pneumocystis carinii interactions with lung epithelial cells and matrix proteins induce expression and activity of the PcSte20 kinase with subsequent phosphorylation of the downstream cell wall biosynthesis kinase PcCbk1. Infect Immun 2011; 79:4157-64. [PMID: 21768277 DOI: 10.1128/iai.05066-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Eukaryotic cell proliferation and phenotype are highly regulated by contact-dependent mechanisms. We have previously shown that the binding and interaction of the opportunistic fungal pathogen Pneumocystis carinii to lung epithelial cells and extracellular matrix proteins induces mRNA expression of both the mitogen-activated protein (MAP) kinase P. carinii Ste20 (PcSte20) and the cell wall-remodeling enzyme PcCbk1 (16). Herein, we report that in addition to PcSte20 mRNA expression being upregulated, Pneumocystis PcSte20 kinase activity is increased upon interacting with these same lung targets. This activity is also significantly suppressed by Clostridium difficile toxin B, a pan-specific inhibitor of small GTPases, demonstrating the potential role of a Cdc42-like molecule in this signaling cascade. We further observed that the PcSte20 kinase physically interacts with a specific region of the P. carinii cell wall biosynthesis kinase, PcCbk1, a downstream kinase important for mating projection formation and cell wall remodeling. This direct binding was mapped to a specific region of the PcCbk1 protein. We also demonstrated that PcSte20 obtained from whole P. carinii lysates has the ability to phosphorylate PcCbk1 after the organism interacts with lung epithelial cells and extracellular matrix components. These observations provide new insights into P. carinii signaling induced by interactions of this important opportunistic fungal pathogen with lung epithelial cells and matrix.
Collapse
|
9
|
Kottom TJ, Han J, Zhang Z, Limper AH. Pneumocystis carinii expresses an active Rtt109 histone acetyltransferase. Am J Respir Cell Mol Biol 2010; 44:768-76. [PMID: 20656950 DOI: 10.1165/rcmb.2009-0443oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Species in the genus Pneumocystis can cause severe pneumonia in immune-compromised hosts. The identification of specific targets present in Pneumocystis species, but lacking in mammalian hosts, is paramount to developing new means to treat this infection. One such potential protein is Rtt109, which is a type of histone acetyltransferase (HAT) required for DNA replication in fungi, but not found in mammals. Sequence orthologues of Rtt109 are present in other fungi, but are absent in mammals, making it a potential pan-specific target against medically relevant fungi. Accordingly, we sought to identify the presence of an Rtt109 in P. carinii. A Pneumocystis carinii (Pc) Rtt109 165-bp partial sequence was initially identified from the incomplete P. carinii genome database. Subsequently, a full-length, 1,128-bp cDNA with homology to Saccharomyces cerevisiae Rtt109 (39% Basic Local Alignment Search Tool (BLASTP)) was cloned and characterized. Sequence analysis of PcRtt109 indicated that the P. carinii molecule contains the putative catalytic aspartate present in yeast. We further demonstrated that the PcRtt109 expressed in rtt109Δ S. cerevisiae cells restored H3-K56 acetylation and the sensitivity toward DNA-damaging agents of rtt109Δ mutant cells. Purified PcRtt109 had the ability to acetylate lysine-56 of histone H3, similar to the ability of Schizosaccharomyces pombe Rtt109 protein. The site-directed mutagenesis of PcRtt109 D84A, a potential regulatory site in the Rtt109 HAT family, abolished H3 acetylation, whereas a DD218/219AA mutation that compromised the activity of ScRtt109 had little effect, demonstrating similarities and differences in Pneumocystis PcRtt109 compared with yeast Saccharomyces cerevisiae Rtt109. These results indicate that P. carinii contains an Rtt109 HAT molecule, and represent the complete identification and characterization of a HAT molecule from this important opportunistic fungal pathogen.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Department of Medicine and Department of Biochemistry, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
10
|
Carmona EM, Lamont JD, Xue A, Wylam M, Limper AH. Pneumocystis cell wall beta-glucan stimulates calcium-dependent signaling of IL-8 secretion by human airway epithelial cells. Respir Res 2010; 11:95. [PMID: 20626862 PMCID: PMC2912823 DOI: 10.1186/1465-9921-11-95] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 07/13/2010] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Respiratory failure secondary to alveolar inflammation during Pneumocystis pneumonia is a major cause of death in immunocompromised patients. Neutrophil infiltration in the lung of patients with Pneumocystis infection predicts severity of the infection and death. Several previous studies indicate that airway epithelial cells release the neutrophil chemoattractant proteins, MIP-2 (rodents) and IL-8 (humans), in response to Pneumocystis and purified Pneumocystis cell wall beta-glucans (PCBG) through the NF-kappaB-dependent pathway. However, little is known about the molecular mechanisms that are involved in the activation of airway epithelium cells by PCBG resulting in the secretion of IL-8. METHOD To address this, we have studied the activation of different calcium-dependent mitogen-activated protein kinases (MAPKs) in 1HAEo- cells, a human airway epithelial cell line. RESULTS Our data provide evidence that PCBG induces phosphorylation of the MAPKs, ERK, and p38, the activation of NF-kappaB and the subsequently secretion of IL-8 in a calcium-dependent manner. Further, we evaluated the role of glycosphingolipids as possible receptors for beta-glucans in human airway epithelial cells. Preincubation of the cells with D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) a potent inhibitor of the glycosphingolipids synthesis, prior to PCBG stimulation, significantly decreased IL-8 production. CONCLUSION These data indicate that PCBG activates calcium dependent MAPK signaling resulting in the release of IL-8 in a process that requires glycosphingolipid for optimal signaling.
Collapse
Affiliation(s)
- Eva M Carmona
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Department of Medicine Mayo Clinic and Foundation, Rochester, Minnesota, 55905, USA
| | | | | | | | | |
Collapse
|
11
|
Catherinot E, Lanternier F, Bougnoux ME, Lecuit M, Couderc LJ, Lortholary O. Pneumocystis jirovecii Pneumonia. Infect Dis Clin North Am 2010; 24:107-38. [PMID: 20171548 DOI: 10.1016/j.idc.2009.10.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pneumocystis jirovecii has gained attention during the last decade in the context of the AIDS epidemic and the increasing use of cytotoxic and immunosuppressive therapies. This article summarizes current knowledge on biology, pathophysiology, epidemiology, diagnosis, prevention, and treatment of pulmonary P jirovecii infection, with a particular focus on the evolving pathophysiology and epidemiology. Pneumocystis pneumonia still remains a severe opportunistic infection, associated with a high mortality rate.
Collapse
Affiliation(s)
- Emilie Catherinot
- Université Paris Descartes, Service de Maladies Infectieuses et Tropicales, 149 Rue de Sèvres, Centre d'Infectiologie Necker-Pasteur, Hôpital Necker-Enfants Malades, Paris 75015, France
| | | | | | | | | | | |
Collapse
|
12
|
Characterization of a novel ADAM protease expressed by Pneumocystis carinii. Infect Immun 2009; 77:3328-36. [PMID: 19451239 DOI: 10.1128/iai.01383-08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis species are opportunistic fungal pathogens that cause severe pneumonia in immunocompromised hosts. Recent evidence has suggested that unidentified proteases are involved in Pneumocystis life cycle regulation. Proteolytically active ADAM (named for "a disintegrin and metalloprotease") family molecules have been identified in some fungal organisms, such as Aspergillus fumigatus and Schizosaccharomyces pombe, and some have been shown to participate in life cycle regulation. Accordingly, we sought to characterize ADAM-like molecules in the fungal opportunistic pathogen, Pneumocystis carinii (PcADAM). After an in silico search of the P. carinii genomic sequencing project identified a 329-bp partial sequence with homology to known ADAM proteins, the full-length PcADAM sequence was obtained by PCR extension cloning, yielding a final coding sequence of 1,650 bp. Sequence analysis detected the presence of a typical ADAM catalytic active site (HEXXHXXGXXHD). Expression of PcADAM over the Pneumocystis life cycle was analyzed by Northern blot. Southern and contour-clamped homogenous electronic field blot analysis demonstrated its presence in the P. carinii genome. Expression of PcADAM was observed to be increased in Pneumocystis cysts compared to trophic forms. The full-length gene was subsequently cloned and heterologously expressed in Saccharomyces cerevisiae. Purified PcADAMp protein was proteolytically active in casein zymography, requiring divalent zinc. Furthermore, native PcADAMp extracted directly from freshly isolated Pneumocystis organisms also exhibited protease activity. This is the first report of protease activity attributable to a specific, characterized protein in the clinically important opportunistic fungal pathogen Pneumocystis.
Collapse
|
13
|
Haque AK, Adegboyega PA. Pneumocystis jiroveci Pneumonia. DAIL AND HAMMAR’S PULMONARY PATHOLOGY 2008. [PMCID: PMC7121032 DOI: 10.1007/978-0-387-68792-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pneumocystis pneumonia (PCP) is one of the most common pulmonary infections in persons with impaired cell-mediated immunity, and particularly those infected with human immunodeficiency virus (HIV).1–7 Pneumocystis was first described in the lungs of guinea pigs, during experiments on American trypanosomiasis by Carlos Chagas8 in 1909 and by Antonio Carinii9 in 1910. Both considered the cysts of Pneumocystis as part of the trypanosome’s life cycle. Shortly afterward the Delanoes10 found identical forms in the lungs of rats that had not been infected with trypanosomes and recognized the organism as a separate species. The name Pneumocystis carinii, was given to this organism as a generic name (Greek:pneumon, “lung”; kystis, “cyst”), honoring Carinii.11
Collapse
|
14
|
Kottom TJ, Kennedy CC, Limper AH. Pneumocystis PCINT1, a molecule with integrin-like features that mediates organism adhesion to fibronectin. Mol Microbiol 2007; 67:747-61. [PMID: 18179594 DOI: 10.1111/j.1365-2958.2007.06093.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pneumocystis species cause severe pneumonia during chronic immunosuppression, especially in patients with AIDS or malignancy. Adhesion of Pneumocystis to extracellular matrix proteins, particularly fibronectin, associated with alveolar epithelial cell surfaces, triggers organism proliferative pathways. Herein, we report the characterization of a novel Pneumocystis molecule with considerable structural features of an integrin-like extracellular matrix adhesion receptor. A PCINT1115 bp probe was initially identified from partial sequence present within the Pneumocystis genome project database. A full-length 3018 bp cDNA was subsequently obtained with extensive homology to the C-terminal region of Candida albicans INT1 (31% blastx), a gene originally described as encoding an integrin-like molecule implicated in adhesion, growth, and virulence. Sequence analysis of PCINT1 indicated that the Pneumocystis molecule contained both a putative internal RGD motif and four Metal Ion-Dependent Attachment Sites (MIDAS) motifs required for coordination of divalent cations, as well as a specific tyrosine residue found in the cytoplasmic tails of some integrin receptors and C. albicans INT1. Northern, Western and immunofluorescence studies demonstrated that the trophic forms of Pneumocystis, known to be the life cycle forms that tightly adhere to lung epithelium, expressed the molecule to a substantially greater degree than cystic forms. Heterologous expression of PCINT1 in yeast followed by application to human fibronectin-coated surfaces demonstrated these yeast display PCINT1 on their surfaces and subsequently gain the ability to bind fibronectin in a cation dependent fashion. Taken together, these results indicate that Pneumocystis expresses a novel integrin-like PCINT1 molecule sufficient to mediate interactions with extracellular matrix fibronectin, an integral component of host-cell organism interactions during this infection.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Division of Pulmonary, Critical Care and Internal Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
15
|
Thomas CF, Limper AH. Current insights into the biology and pathogenesis of Pneumocystis pneumonia. Nat Rev Microbiol 2007; 5:298-308. [PMID: 17363968 DOI: 10.1038/nrmicro1621] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fungal infection Pneumocystis pneumonia is the most prevalent opportunistic infection in patients with AIDS. Although the analysis of this opportunistic fungal pathogen has been hindered by the inability to isolate it in pure culture, the use of molecular techniques and genomic analysis have brought insights into its complex cell biology. Analysis of the intricate relationship between Pneumocystis and the host lung during infection has revealed that the attachment of Pneumocystis to the alveolar epithelium promotes the transition of the organism from the trophic to the cyst form. It also revealed that Pneumocystis infection elicits the production of inflammatory mediators, culminating in lung injury and impaired gas exchange. Here we discuss these and other recent findings relating to the biology and pathogenesis of this intractable fungus.
Collapse
Affiliation(s)
- Charles F Thomas
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
16
|
Abstract
Species of the genus Pneumocystis exist as opportunistic fungal pathogens and are associated with severe pneumonia and pulmonary complications in immunocompromised individuals. Although prophylactic therapy for Pneumocystis has significantly decreased the overall incidence of infection, more than 80% of cases in current patient populations are considered breakthrough cases. In the HIV-infected population, in the years following the initiation of highly active antiretroviral therapy (HAART), significant reductions in the incidence of Pneumocystis infection were observed, although trends over the last several years suggest that the incidence of Pneumocystis has plateaued rather than decreased. Furthermore, with the more prominent usage of immunosuppressive therapies, the frequency of Pneumocystis infection in the HIV-negative population, such as those with hematologic malignancies and those who have undergone transplantation, has risen significantly. Investigating host defense mechanisms against P. carinii has historically been problematic due to the difficulty in achieving continuous in vitro propagation of proliferating Pneumocytis organisms. Nevertheless, clinical and experimental studies have documented that host defense against Pneumocystis involves a concerted effort between innate, cell-mediated (T lymphocyte) and humoral (B lymphocyte) responses. However, the pulmonary environment is a tissue site where heightened inflammatory responses can often lead to inflammation-mediated injury, thereby contributing to the pathogenesis of Pneumocystis infection. Accordingly, clearance of Pneumocystis from the pulmonary environment is dependent on a delicate equilibrium between the inflammatory response and immune-mediated clearance of the organism. Furthermore, innate and adaptive responses against Pneumocystis are strikingly similar to those against other medically-important fungi, thus providing additional evidence that Pneumocystis exists as a fungal organism.
Collapse
Affiliation(s)
- Chad Steele
- Department of Pediatrics, Division of Pulmonology Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | |
Collapse
|
17
|
Evans SE, Hahn PY, McCann F, Kottom TJ, Pavlovic' ZV, Limper AH. Pneumocystis cell wall beta-glucans stimulate alveolar epithelial cell chemokine generation through nuclear factor-kappaB-dependent mechanisms. Am J Respir Cell Mol Biol 2005; 32:490-7. [PMID: 15746433 PMCID: PMC2715319 DOI: 10.1165/rcmb.2004-0300oc] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exuberant inflammatory responses are associated with respiratory failure during Pneumocystis pneumonia. Alveolar epithelial cells (AECs) promote Pneumocystis attachment and proliferation, but also contribute prominently to host cytokine-mediated inflammation during pneumonia. Recent investigations indicate that AECs produce macrophage inflammatory protein-2 (MIP-2) and tumor necrosis factor-alpha (TNF-alpha) following challenge with Pneumocystis carinii. Nuclear factor-kappaB (NF-kappaB) is a ubiquitous transcription factor critical for regulation of proinflammatory cytokine expression. Herein, we assess rat AEC NF-kappaB responses to challenge with a P. carinii beta-glucan cell wall component (PCBG). Prominent nuclear translocation of p65 NF-kappaB was demonstrated following PCBG challenge. NF-kappaB activation was in part mediated through Protein Kinase C (PKC) signaling pathways. PCBG challenge of AECs was also shown to induce MIP-2 and TNF-alpha mRNA production, a response that was ameliorated by NF-kappaB inhibition. MIP-2 protein expression was also dramatically increased by PCBG challenge, in a manner that was significantly attenuated by both PKC and NF-kappaB inhibition. The data further demonstrate that AEC chemokine responses were not mediated by the recently described dectin-1 receptor, but instead involved participation of cell surface lactosylceramide. These data support a significant role for AECs in host responses during Pneumocystis pneumonia, and further indicate that beta-glucan induces inflammatory cytokine production through NF-kappaB-dependent mechanisms.
Collapse
Affiliation(s)
- Scott E Evans
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
18
|
Kottom TJ, Limper AH. Pneumocystis carinii cell wall biosynthesis kinase gene CBK1 is an environmentally responsive gene that complements cell wall defects of cbk-deficient yeast. Infect Immun 2004; 72:4628-36. [PMID: 15271923 PMCID: PMC470662 DOI: 10.1128/iai.72.8.4628-4636.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis species remain an important cause of life-threatening pneumonia in immunocompromised hosts, including those with AIDS. Responses of the organism to environmental cues both within the lung and elsewhere have been poorly defined. Herein, we report the identification of a cell wall biosynthesis kinase gene (CBK1) homologue in Pneumocystis carinii, isolated by differential display PCR, that is expressed optimally at physiological pH (7 to 8) as opposed to more acidic environments. Expression of Pneumocystis CBK1 was also induced by contact with lung epithelial cells and extracellular matrix. Translation of this gene revealed extensive homology to other fungal CBK1 kinases. Pneumocystis CBK1 expression was equal in the cyst and trophic life forms of the organisms. We further demonstrate that Pneumocystis CBK1 expressed in cbk1 Delta Saccharomyces cerevisiae cells restored defective cell wall separation during proliferation. Consistent with this, Pneumocystis CBK1 expression also stimulated transcription of the CTS1 chitinase in cbk1 Delta mutant yeast cells, an event necessary for cell wall separation. In addition, Pneumocystis CBK1 cDNA supported normal mating projection formation in response to alpha-factor in the cbk1 Delta yeast cells. Site-directed mutations of serine-303 and threonine-494, potential regulatory phosphorylation sites in Pneumocystis CBK1, abolished mating projection formation, indicating a role for these amino acid residues in CBK1 activity. These findings indicate that Pneumocystis CBK1 is an environmentally responsive gene that may function in signaling pathways necessary for cell growth and mating.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
19
|
Affiliation(s)
- Charles F Thomas
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minn, USA
| | | |
Collapse
|
20
|
Kottom TJ, Limper AH. Microarray analysis of lung epithelial responses to Pneumocystis carinii. J Eukaryot Microbiol 2004; 50 Suppl:629. [PMID: 14736190 DOI: 10.1111/j.1550-7408.2003.tb00657.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
21
|
Kottom TJ, Köhler JR, Thomas CF, Fink GR, Limper AH. Lung epithelial cells and extracellular matrix components induce expression of Pneumocystis carinii STE20, a gene complementing the mating and pseudohyphal growth defects of STE20 mutant yeast. Infect Immun 2003; 71:6463-71. [PMID: 14573668 PMCID: PMC219549 DOI: 10.1128/iai.71.11.6463-6471.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Revised: 04/21/2003] [Accepted: 08/11/2003] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis carinii causes severe pneumonia in immunocompromised hosts. The binding of P. carinii to alveolar epithelial cells and extracellular matrix constituents such as fibronectin and vitronectin is a central feature of infection, which initiates proliferation of the organism. Herein, we demonstrate that P. carinii binding to lung cells specifically alters the gene expression of the organism, regulating fungal growth. Subtractive hybridization was performed to isolate P. carinii genes expressed following binding to mammalian extracellular matrix constituents. P. carinii STE20 (PCSTE20), a gene participating in mating and pseudohyphal growth of other fungi, was identified following adherence to the extracellular matrix constituents fibronectin, vitronectin, collagen, and lung epithelial cells. The expression of PCSTE20 and a related P. carinii mitogen-activated protein kinase (MAPK) kinase gene, also implicated in signaling of mating, were both specifically upregulated by binding to matrix protein. The expression of general cyclin-dependent kinases and other MAPKs not involved in mating pathways were not altered by organism binding. PCSTE20 expression was also strongly enhanced following organism attachment to A549 lung epithelial cells. When expressed in a Saccharomyces cerevisiae ste20Delta mutant, PCSTE20 suppressed defects in both mating and pseudohyphal growth. These findings are consistent with the observed proliferation and filopodial extension of Pneumocystis organisms adherent to the epithelium in the lungs of immunocompromised hosts. PCSTE20 expression appears to represent a significant component in the regulation of the life cycle of this intractable opportunistic pathogen.
Collapse
Affiliation(s)
- Theodore J Kottom
- Departments of Internal Medicine and Biochemistry, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
22
|
Thomas CF, Vohra PK, Park JG, Puri V, Limper AH, Kottom TJ. Pneumocystis carinii BCK1 functions in a mitogen-activated protein kinase cascade regulating fungal cell-wall assembly. FEBS Lett 2003; 548:59-68. [PMID: 12885408 DOI: 10.1016/s0014-5793(03)00730-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pneumocystis pneumonia remains the most common AIDS-defining opportunistic infection in people with HIV. The process by which Pneumocystis carinii constructs its cell wall is not well known, although recent studies reveal that molecules such as beta-1-3-glucan synthetase (GSC1) and environmental pH-responsive genes such as PHR1 are important for cell-wall integrity. In closely related fungi, a specific mitogen-activated protein kinase (MAPK) cascade regulates cell-wall assembly in response to elevated temperature. The upstream mitogen-activated protein kinase kinase kinase (MAPKKK, or MEKK), BCK1, is an essential component in this pathway for maintaining cell-wall integrity and preventing fungal cell lysis. We have identified a P. carinii MEKK gene and have expressed it in Saccharomyces cerevisiae to gain insights into its function. The P. carinii MEKK, PCBCK1, corrects the temperature-sensitive cell lysis defect of bck1Delta yeast. Further, at elevated temperature PCBCK1 restored the signaling defect in bck1Delta yeast to maintain expression of the temperature-inducible beta-1-3-glucan synthetase gene, FKS2. PCBCK1, as a functional kinase, is capable of autophosphorylation and substrate phosphorylation. Since glucan machinery is not present in mammals, a better understanding of this pathway in P. carinii might aid in the development of novel medications which interfere with the integrity of the Pneumocystis cell wall.
Collapse
Affiliation(s)
- Charles F Thomas
- Thoracic Diseases Research Unit, Division of Pulmonary, Critical Care and Internal Medicine, Department of Medicine, 826 Stabile Building, Mayo Clinic and Foundation, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Hahn PY, Evans SE, Kottom TJ, Standing JE, Pagano RE, Limper AH. Pneumocystis carinii cell wall beta-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism. J Biol Chem 2003; 278:2043-50. [PMID: 12419803 DOI: 10.1074/jbc.m209715200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Infiltration of the lungs with neutrophils promotes respiratory failure during severe Pneumocystis carinii (PC) pneumonia. Recent studies have shown that alveolar epithelial cells (AECs), in addition to promoting PC attachment, also participate in lung inflammation by the release of cytokines and chemokines. Herein, we demonstrate that a PC beta-glucan rich cell wall isolate (PCBG) stimulates the release of macrophage inflammatory protein-2 (MIP-2) from isolated AECs through a lactosylceramide-dependent mechanism. The results demonstrate that MIP-2 mRNA and protein production is significantly increased at both early and late time points after PCBG challenge. Although CD11b/CD18 (Mac-1, CR3) is the most widely studied beta-glucan receptor, we demonstrate that CD11b/CD18 is not present on AECs. This study instead demonstrates that preincubation of AECs with an antibody directed against the membrane glycosphingolipid lactosylceramide (CDw17) results in a significant decrease in MIP-2 secretion. Preincubation of the anti-CDw17 antibody with solubilized lactosylceramide reverses this effect. Furthermore, incubation of AECs with inhibitors of glycosphingolipid biosynthesis, including N-butyldeoxyno jirimycin and d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol-HCl, also results in a significant decrease in AEC MIP-2 production following challenge with PCBG. These data demonstrate that PC beta-glucan induces significant production of MIP-2 from AECs and that CDw17 participates in the glucan-induced inflammatory signaling in lung epithelial cells during PC infection.
Collapse
Affiliation(s)
- Peter Y Hahn
- Thoracic Diseases Research Unit, Division of Pulmonary, Critical Care, and Internal Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
24
|
Kottom TJ, Limper AH. Cell wall assembly by Pneumocystis carinii. Evidence for a unique gsc-1 subunit mediating beta -1,3-glucan deposition. J Biol Chem 2000; 275:40628-34. [PMID: 11013231 DOI: 10.1074/jbc.m002103200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pneumocystis carinii remains a persistent cause of severe pneumonia in immune compromised patients. Recent studies indicate that P. carinii is a fungal species possessing a glucan-rich cyst wall. Pneumocandin antagonists of beta-1,3-glucan synthesis rapidly suppress infection in animal models of P. carinii pneumonia. We, therefore, sought to define the molecular mechanisms of beta-glucan cell wall assembly by P. carinii. Membrane extracts derived from freshly purified P. carinii incorporate uridine 5'-diphosphoglucose into insoluble carbohydrate, in a manner that was completely inhibited by the pneumocandin L733-560, an antagonist of Gsc-1-type beta-glucan synthetases. Using degenerative polymerase chain reaction and library screening, the P. carinii Gsc-1 catalytic subunit of beta-1,3-glucan synthetase was cloned and characterized. P. carinii gsc1 exhibited homology to phylogenetically related fungal beta-1,3-glucan synthetases, encoding a predicted 214-kDa integral membrane protein with 12 transmembrane domain structure. Immunoprecipitation of P. carinii extracts, with a synthetic peptide anti-Gsc-1 antibody, specifically yielded a protein of 219.4 kDa, which was also capable of incorporating 5'-diphosphoglucose into insoluble glucan carbohydrate. As opposed to other fungi, the expression of gsc-1 mRNA is uniquely regulated over P. carinii's life cycle, having minimal expression in trophic forms, but substantial expression in the thick-walled cystic form of the organism. These results indicate that P. carinii contains a unique catalytic subunit of beta-1,3-glucan synthetase utilized in cyst wall formation. Because synthesis of beta-1,3-glucan is absent in mammalian cells, inhibition of the P. carinii Gsc-1 represents an attractive molecular target for therapeutic exploitation.
Collapse
Affiliation(s)
- T J Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
25
|
Kottom TJ, Thomas CF, Mubarak KK, Leof EB, Limper AH. Pneumocystis carinii uses a functional cdc13 B-type cyclin complex during its life cycle. Am J Respir Cell Mol Biol 2000; 22:722-31. [PMID: 10837370 DOI: 10.1165/ajrcmb.22.6.3838] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pneumocystis carinii causes severe pneumonia in immunocompromised patients. Recent studies indicate that P. carinii uses a Cdc2 cyclin-dependent kinase to control its proliferation. To further study the regulation of the life cycle of P. carinii, we characterized the P. carinii B-type cyclin termed Cdc13, whose binding to Cdc2 is necessary for kinase activity. Antibodies to B-type cyclins (Cdc13) specifically immunoprecipitated Cdc2/ Cdc13 complexes with associated kinase activity from P. carinii extracts. To clone P. carinii cdc13, degenerate polymerase chain reaction was undertaken using primers generated from amino-acid motifs conserved in fungal Cdc13 proteins. This amplicon was used to obtain full-length genomic and complementary DNA (cDNA) clones. A specific synthetic peptide antibody generated to P. carinii Cdc13 further demonstrated differential Cdc2/Cdc13 activity over the life cycle of P. carinii, with greater activity in cysts compared with trophic forms of the organism. Finally, P. carinii cdc13 cDNA was used to rescue mutant Schizosaccharomyces pombe strains containing temperature-sensitive deficiencies of endogenous Cdc13 activity, thus verifying function of the P. carinii Cdc13 protein. Therefore, P. carinii contains a Cdc13 cyclin, which is variably active over its life cycle and which promotes fungal proliferation.
Collapse
Affiliation(s)
- T J Kottom
- Thoracic Diseases Research Unit, Division of Pulmonary, Critical Care, and Internal Medicine, and Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
26
|
Vassallo R, Standing JE, Limper AH. Isolated Pneumocystis carinii cell wall glucan provokes lower respiratory tract inflammatory responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3755-63. [PMID: 10725735 DOI: 10.4049/jimmunol.164.7.3755] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophage-induced lung inflammation contributes substantially to respiratory failure during Pneumocystis carinii pneumonia. We isolated a P. carinii cell wall fraction rich in glucan carbohydrate, which potently induces TNF-alpha and macrophage-inflammatory protein-2 generation from alveolar macrophages. Instillation of this purified P. carinii carbohydrate cell wall fraction into healthy rodents is accompanied by substantial increases in whole lung TNF-alpha generation and is associated with neutrophilic infiltration of the lungs. Digestion of the P. carinii cell wall isolate with zymolyase, a preparation containing predominantly beta-1,3 glucanase, substantially reduces the ability of this P. carinii cell wall fraction to activate alveolar macrophages, thus suggesting that beta-glucan components of the P. carinii cell wall largely mediate TNF-alpha release. Furthermore, the soluble carbohydrate beta-glucan receptor antagonists laminariheptaose and laminarin also substantially reduce the ability of the P. carinii cell wall isolate to stimulate macrophage-inflammatory activation. In contrast, soluble alpha-mannan, a preparation that antagonizes macrophage mannose receptors, had minimal effect on TNF-alpha release induced by the P. carinii cell wall fraction. P. carinii beta-glucan-induced TNF-alpha release from alveolar macrophages was also inhibited by both dexamethasone and pentoxifylline, two pharmacological agents with potential activity in controlling P. carinii-induced lung inflammation. These data demonstrate that P. carinii beta-glucan cell wall components can directly stimulate alveolar macrophages to release proinflammatory cytokines mainly through interaction with cognate beta-glucan receptors on the phagocyte.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Binding, Competitive/immunology
- Cell Wall/chemistry
- Cell Wall/enzymology
- Cell Wall/immunology
- Cells, Cultured
- Chemokine CXCL2
- Chemokines/metabolism
- Dexamethasone/pharmacology
- Female
- Glucan Endo-1,3-beta-D-Glucosidase/metabolism
- Glucans/administration & dosage
- Glucans/immunology
- Glucans/isolation & purification
- Glucans/metabolism
- Inflammation/immunology
- Inflammation/metabolism
- Intubation, Intratracheal
- Lectins, C-Type
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Mannose/metabolism
- Mannose Receptor
- Mannose-Binding Lectins
- Pentoxifylline/pharmacology
- Pneumocystis/chemistry
- Pneumocystis/enzymology
- Pneumocystis/immunology
- Rats
- Rats, Sprague-Dawley
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Immunologic/antagonists & inhibitors
- Solubility
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- R Vassallo
- Thoracic Diseases Research Unit, Division of Pulmonary Medicine, Department of Biochemistry, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
27
|
Kaiser K, Rabodonirina M, Mayençon M, Picot S. Evidence for cdc2 gene in pneumocystis carinii hominis and its implication for culture. AIDS 1999; 13:419-20. [PMID: 10199234 DOI: 10.1097/00002030-199902250-00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Abstract
Cellular microbiology is a newly developing science born from the realization that many different aspects of eukaryotic cell biology are targeted by microbial virulence mechanisms. One example of this is the emerging evidence that several bacteria can interfere, directly or indirectly, with the eukaryotic cell cycle. This article discusses the cell-cycle effects of bacterially generated molecules, their role in virulence and their possible therapeutic potential.
Collapse
Affiliation(s)
- B Henderson
- Cellular Microbiology Research Group, Eastman Dental Institute, London, UK.
| | | | | |
Collapse
|