1
|
Akbary Moghaddam V, Acharya S, Schwaiger-Haber M, Liao S, Jung WJ, Thyagarajan B, Shriver LP, Warwick Daw E, Saccone NL, An P, Brent MR, Patti GJ, Province MA. Construction of Multi-Modal Transcriptome-Small Molecule Interaction Networks from High-Throughput Measurements to Study Human Complex Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634403. [PMID: 39896668 PMCID: PMC11785221 DOI: 10.1101/2025.01.22.634403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Small molecules (SMs) are integral to biological processes, influencing metabolism, homeostasis, and regulatory networks. Despite their importance, a significant knowledge gap exists regarding their downstream effects on biological pathways and gene expression, largely due to differences in scale, variability, and noise between untargeted metabolomics and sequencing-based technologies. To address these challenges, we developed a multi-omics framework comprising a machine learning-based protocol for data processing, a semi-supervised network inference approach, and network-guided analysis of complex traits. The ML protocol harmonized metabolomic, lipidomic, and transcriptomic data through batch correction, principal component analysis, and regression-based adjustments, enabling unbiased and effective integration. Building on this, we proposed a semi-supervised method to construct transcriptome-SM interaction networks (TSI-Nets) by selectively integrating SM profiles into gene-level networks using a meta-analytic approach that accounts for scale differences and missing data across omics layers. Benchmarking against three conventional unsupervised methods demonstrated the superiority of our approach in generating diverse, biologically relevant, and robust networks. While single-omics analyses identified 18 significant genes and 3 significant SMs associated with insulin sensitivity (IS), network-guided analysis revealed novel connections between these markers. The top-ranked module highlighted a cross-talk between fiber-degrading gut microbiota and immune regulatory pathways, inferred by the interaction of the protective SM, N-acetylglycine (NAG), with immune genes ( FCER1A , HDC , MS4A2 , and CPA3 ), linked to improved IS and reduced obesity and inflammation. Together, this framework offers a robust and scalable solution for multi-modal network inference and analysis, advancing SM pathway discovery and their implications for human health. Leveraging data from a population of thousands of individuals with extended longevity, the inferred TSI-Nets demonstrate generalizability across diverse conditions and complex traits. These networks are publicly available as a resource for the research community.
Collapse
|
2
|
Nakano M, Okada N, Inoue N, Hatano A, Yamaguchi S, Inoue H, Yoshikawa M. Elevated MS4A2 and IgE interaction in nasal polyps contributing to poor postoperative prognosis in patients with eosinophilic chronic rhinosinusitis. Allergol Int 2025:S1323-8930(24)00127-8. [PMID: 39828458 DOI: 10.1016/j.alit.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a persistent inflammatory disease of various endotypes, including eosinophilic CRS (eCRS), which is characterized by marked eosinophilic infiltration and high refractory rates despite treatment. Recent findings suggest the interaction between local IgE and mast cells in nasal polyps (NPs) is key to eCRS pathogenesis; however, the details remain unclear. This study investigated the involvement of MS4A2, a component of the IgE receptor, in the pathogenesis of refractory eCRS. METHODS NP tissue samples were collected from 47 patients with eCRS who underwent sinus surgery and classified into refractory and nonrefractory groups based on postoperative outcomes. Quantitative PCR was used to analyze the mRNA expression of IgE receptor components (MS4A2, FCER1A, and FCER1G) and cell-specific markers (CLC, TPSAB1, and GPR56) in NP tissues. Immunofluorescence staining was used to confirm MS4A2 expression and colocalization with tryptase, ProMBP1, and IgE. ROC analysis was conducted to assess MS4A2 mRNA levels as a predictor of refractory eCRS. RESULTS MS4A2 mRNA expression was significantly elevated in the refractory group, whereas FCER1A and FCER1G mRNA expression levels showed no significant differences. Immunofluorescence revealed an increased number of MS4A2-positive cells, particularly those colocalized with tryptase-positive mast cells, in the refractory group. Cells coexpressing MS4A2 and IgE were more prevalent in this group. ROC analysis indicated that MS4A2 mRNA expression can predict prognosis with high specificity. CONCLUSIONS Our findings suggest the significance of the interaction between MS4A2-expressing mast cells and local IgE in the pathogenesis of refractory eCRS, highlighting MS4A2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Mika Nakano
- Department of Otorhinolaryngology, Toho University Graduate School of Medicine, Tokyo, Japan; Department of Otorhinolaryngology, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Naoko Okada
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan.
| | - Natsuki Inoue
- Department of Otorhinolaryngology, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Akihiro Hatano
- Department of Otorhinolaryngology, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Sota Yamaguchi
- Department of Otorhinolaryngology, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Hiroko Inoue
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan
| | - Mamoru Yoshikawa
- Department of Otorhinolaryngology, Toho University Graduate School of Medicine, Tokyo, Japan; Department of Otorhinolaryngology, Toho University Ohashi Medical Center, Tokyo, Japan
| |
Collapse
|
3
|
Eggel A, Pennington LF, Jardetzky TS. Therapeutic monoclonal antibodies in allergy: Targeting IgE, cytokine, and alarmin pathways. Immunol Rev 2024; 328:387-411. [PMID: 39158477 PMCID: PMC11659931 DOI: 10.1111/imr.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The etiology of allergy is closely linked to type 2 inflammatory responses ultimately leading to the production of allergen-specific immunoglobulin E (IgE), a key driver of many allergic conditions. At a high level, initial allergen exposure disrupts epithelial integrity, triggering local inflammation via alarmins including IL-25, IL-33, and TSLP, which activate type 2 innate lymphoid cells as well as other immune cells to secrete type 2 cytokines IL-4, IL-5 and IL-13, promoting Th2 cell development and eosinophil recruitment. Th2 cell dependent B cell activation promotes the production of allergen-specific IgE, which stably binds to basophils and mast cells. Rapid degranulation of these cells upon allergen re-exposure leads to allergic symptoms. Recent advances in our understanding of the molecular and cellular mechanisms underlying allergic pathophysiology have significantly shaped the development of therapeutic intervention strategies. In this review, we highlight key therapeutic targets within the allergic cascade with a particular focus on past, current and future treatment approaches using monoclonal antibodies. Specific targeting of alarmins, type 2 cytokines and IgE has shown varying degrees of clinical benefit in different allergic indications including asthma, chronic spontaneous urticaria, atopic dermatitis, chronic rhinosinusitis with nasal polyps, food allergies and eosinophilic esophagitis. While multiple therapeutic antibodies have been approved for clinical use, scientists are still working on ways to improve on current treatment approaches. Here, we provide context to understand therapeutic targeting strategies and their limitations, discussing both knowledge gaps and promising future directions to enhancing clinical efficacy in allergic disease management.
Collapse
Affiliation(s)
- Alexander Eggel
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
- Department of Rheumatology and ImmunologyUniversity Hospital BernBernSwitzerland
| | | | - Theodore S. Jardetzky
- Department of Structural BiologyStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
4
|
Gharailoo Z, Plattner K, Augusto G, Engeroff P, Vogel M, Bachmann MF. Generation of a virus-like particles based vaccine against IgE. Allergy 2024. [PMID: 38445568 DOI: 10.1111/all.16090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Anti-IgE immunotherapy with monoclonal antibodies represents a breakthrough in treatment of severe allergic diseases. However, drawbacks such as short half-life and high price are not negligible. Our objective is to develop an anti-IgE vaccine based on virus-like particles (VLPs) which can induce long-lasting neutralizing IgG anti-IgE antibodies reducing allergic responses without causing intrinsic mast cell activation due to IgE cross-linking. METHODS The vaccines were made by chemically coupling three synthetic mouse IgE-Fc fragments to plant-derived immunologically optimized CuMVTT VLPs. The immunogenicity of the vaccines was tested by immunizing naive or allergic mice either with the coupled vaccines or the VLP control followed by systemic or local allergen challenge. RESULTS Mice immunized with the vaccines exhibited high titers of anti-IgE antibodies in the sera and high levels of anti-IgE secreting plasma cells in lymphoid organs. Moreover, free IgE in serum were reduced by the induced anti-IgE antibodies; therefore, less IgE was bound to FcεRI on the surface of basophils. In line with these reduced IgE levels on effector cells after vaccination, immunized mice were protected from challenge with allergens. Importantly, despite presence of anti-IgE antibodies, no signs of acute or chronic allergic response were seen in immunized allergic mice. CONCLUSION The generated vaccines can effectively induce anti-IgE antibodies that did not cause allergic responses in sensitized mice but were able to decrease the level of free and cell bound IgE and protected sensitized animals from allergic responses upon allergen challenge.
Collapse
Affiliation(s)
- Zahra Gharailoo
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), Bern, Switzerland
| | - Kevin Plattner
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), Bern, Switzerland
| | - Gilles Augusto
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, UK
| | - Paul Engeroff
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
| | - Monique Vogel
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
| | - Martin F Bachmann
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Shichkin VP, Kurchenko OV, Okhotnikova EN, Chopyak VV, Delfino DV. Enterosorbents in complex therapy of food allergies: a focus on digestive disorders and systemic toxicity in children. Front Immunol 2023; 14:1210481. [PMID: 37901242 PMCID: PMC10611465 DOI: 10.3389/fimmu.2023.1210481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
The review analyzes mechanisms and concomitant factors in developing IgE-associated allergic diseases provoked by food allergens and discusses clinical symptoms and current approaches for the treatment of food allergies. The expediency of using enterosorbents in complex therapy of food allergies and skin and respiratory manifestations associated with gastroenterological disorders is substantiated. The review summarizes the experience of using enterosorbents in post-Soviet countries to detoxify the human body. In this regard, special attention is paid to the enterosorbent White Coal (Carbowhite) based on silicon dioxide produced by the Ukrainian company OmniFarma.
Collapse
Affiliation(s)
| | | | - Elena N. Okhotnikova
- Department of Pediatrics, Children’s Infectious Diseases, Immunology and Allergology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
| | - Valentyna V. Chopyak
- Department of Clinical Immunology and Allergology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Domenico V. Delfino
- Master in Musculoskeletal and Rheumatological Physiotherapy, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
6
|
Zorzan M, Castellan M, Gasparotto M, Dias de Melo G, Zecchin B, Leopardi S, Chen A, Rosato A, Angelini A, Bourhy H, Corti D, Cendron L, De Benedictis P. Antiviral mechanisms of two broad-spectrum monoclonal antibodies for rabies prophylaxis and therapy. Front Immunol 2023; 14:1186063. [PMID: 37638057 PMCID: PMC10449259 DOI: 10.3389/fimmu.2023.1186063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Rabies is an acute and lethal encephalomyelitis caused by lyssaviruses, among which rabies virus (RABV) is the most prevalent and important for public health. Although preventable through the post-exposure administration of rabies vaccine and immunoglobulins (RIGs), the disease is almost invariably fatal since the onset of clinical signs. Two human neutralizing monoclonal antibodies (mAbs), RVC20 and RVC58, have been shown to be effective in treating symptomatic rabies. To better understand how these mAbs work, we conducted structural modeling and in vitro assays to analyze their mechanisms of action, including their ability to mediate Fc-dependent effector functions. Our results indicate that both RVC20 and RVC58 recognize and lock the RABV-G protein in its pre-fusion conformation. RVC58 was shown to neutralize more potently the extra-cellular virus, while RVC20 mainly acts by reducing viral spreading from infected cells. Importantly, RVC20 was more effective in promoting effector functions compared to RVC58 and 17C7-RAB1 mAbs, the latter of which is approved for human rabies post-exposure treatment. These results provide valuable insights into the multiple mechanisms of action of RVC20 and RVC58 mAbs, offering relevant information for the development of these mAbs as treatment for human rabies.
Collapse
Affiliation(s)
- Maira Zorzan
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Martina Castellan
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Barbara Zecchin
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Stefania Leopardi
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Alex Chen
- Vir Biotechnology, San Francisco, CA, United States
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology, Padua, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Mestre, Italy
- European Centre for Living Technology (ECLT), Venice, Italy
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Laura Cendron
- Department of Biology, University of Padua, Padova, Italy
| | - Paola De Benedictis
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
7
|
Chen K, Hao Y, Guzmán M, Li G, Cerutti A. Antibody-mediated regulation of basophils: emerging views and clinical implications. Trends Immunol 2023; 44:408-423. [PMID: 37147229 PMCID: PMC10219851 DOI: 10.1016/j.it.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
An increasing number of human diseases, including allergies, infections, inflammation, and cancer, involve roles for basophils. Traditionally viewed as the rarest leukocytes that are present only in the circulation, basophils have recently emerged as important players in systemic as well as tissue-specific immune responses. Their functions are regulated by immunoglobulins (Igs), and this enables basophils to integrate diverse adaptive and innate immunity signals. IgE is well known to regulate basophil responses in the context of type 2 immunity and allergic inflammation; however, growing evidence shows that IgG, IgA, and IgD also shape specific aspects of basophil functions relevant to many human diseases. We discuss recent mechanistic advances underpinning antibody-mediated basophil responses and propose strategies for the treatment of basophil-associated disorders.
Collapse
Affiliation(s)
- Kang Chen
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yujing Hao
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mauricio Guzmán
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Genxia Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Andrea Cerutti
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain; Marc and Jennifer Lipschultz Precision Immunology Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona Biomedical Research Park, Barcelona 08003, Spain.
| |
Collapse
|
8
|
Bitting K, Hedgespeth B, Ehrhardt-Humbert LC, Arthur GK, Schubert AG, Bradding P, Tilley SL, Cruse G. Identification of redundancy between human FcεRIβ and MS4A6A proteins points toward additional complex mechanisms for FcεRI trafficking and signaling. Allergy 2023; 78:1204-1217. [PMID: 36424895 PMCID: PMC10159887 DOI: 10.1111/all.15595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Allergic diseases are triggered by signaling through the high-affinity IgE receptor, FcεRI. In both mast cells (MCs) and basophils, FcεRI is a tetrameric receptor complex comprising a ligand-binding α subunit (FcεRIα), a tetraspan β subunit (FcεRIβ, MS4A2) responsible for trafficking and signal amplification, and a signal transducing dimer of single transmembrane γ subunits (FcεRIγ). However, FcεRI also exists as presumed trimeric complexes that lack FcεRIβ and are expressed on several cell types outside the MC and basophil lineages. Despite known differences between humans and mice in the presence of the trimeric FcεRI complex, questions remain as to how it traffics and whether it signals in the absence of FcεRIβ. We have previously reported that targeting FcεRIβ with exon-skipping oligonucleotides eliminates IgE-mediated degranulation in mouse MCs, but equivalent targeting in human MCs was not effective at reducing degranulation. RESULTS Here, we report that the FcεRIβ-like protein MS4A6A exists in human MCs and compensates for FcεRIβ in FcεRI trafficking and signaling. Human MS4A6A promotes surface expression of FcεRI complexes and facilitates degranulation. MS4A6A and FcεRIβ are encoded by highly related genes within the MS4A gene family that cluster within the human gene loci 11q12-q13, a region linked to allergy and asthma susceptibility. CONCLUSIONS Our data suggest the presence of either FcεRIβ or MS4A6A is sufficient for degranulation, indicating that MS4A6A could be an elusive FcεRIβ-like protein in human MCs that performs compensatory functions in allergic disease.
Collapse
Affiliation(s)
- Katie Bitting
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Barry Hedgespeth
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Lauren C. Ehrhardt-Humbert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Greer K. Arthur
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Alicia G. Schubert
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| | - Peter Bradding
- Department of Respiratory Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Stephen L. Tilley
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University. Raleigh, NC 27607, USA
| |
Collapse
|
9
|
Plattner K, Gharailoo Z, Zinkhan S, Engeroff P, Bachmann MF, Vogel M. IgE glycans promote anti-IgE IgG autoantibodies that facilitate IgE serum clearance via Fc Receptors. Front Immunol 2022; 13:1069100. [PMID: 36544773 PMCID: PMC9761184 DOI: 10.3389/fimmu.2022.1069100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Background Recent studies have shown that IgE glycosylation significantly impacts the ability of IgE to bind to its high-affinity receptor FcεRI and exert effector functions. We have recently demonstrated that immunizing mice with IgE in a complex with an allergen leads to a protective, glycan-dependent anti-IgE response. However, to what extent the glycans on IgE determine the induction of those antibodies and how they facilitate serum clearance is unclear.Therefore, we investigated the role of glycan-specific anti-IgE IgG autoantibodies in regulating serum IgE levels and preventing systemic anaphylaxis by passive immunization. Methods Mice were immunized using glycosylated or deglycosylated IgE-allergen-immune complexes (ICs) to induce anti-IgE IgG antibodies. The anti-IgE IgG antibodies were purified and used for passive immunization. Results Glycosylated IgE-ICs induced a significantly higher anti-IgE IgG response and more IgG-secreting plasma cells than deglycosylated IgE-ICs. Passive immunization of IgE-sensitized mice with purified anti-IgE IgG increased the clearance of IgE and prevented systemic anaphylaxis upon allergen challenge. Anti-IgE IgG purified from the serum of mice immunized with deglycosylated IgE-ICs, led to a significantly reduced elimination and protection, confirming that the IgE glycans themselves are the primary drivers of the protectivity induced by the IgE-immune complexes. Conclusion IgE glycosylation is essential for a robust anti-IgE IgG response and might be an important regulator of serum IgE levels.
Collapse
Affiliation(s)
- Kevin Plattner
- Department of Immunology, University Hospital for Rheumatology and Immunology, Bern, Switzerland,Department of Biomedical Research (DBMR), University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
| | - Zahra Gharailoo
- Department of Immunology, University Hospital for Rheumatology and Immunology, Bern, Switzerland,Department of Biomedical Research (DBMR), University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
| | - Simon Zinkhan
- Department of Immunology, University Hospital for Rheumatology and Immunology, Bern, Switzerland,Department of Biomedical Research (DBMR), University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
| | - Paul Engeroff
- Department of Immunology, University Hospital for Rheumatology and Immunology, Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Hospital for Rheumatology and Immunology, Bern, Switzerland,Department of Biomedical Research (DBMR), University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland,Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Monique Vogel
- Department of Immunology, University Hospital for Rheumatology and Immunology, Bern, Switzerland,Department of Biomedical Research (DBMR), University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland,*Correspondence: Monique Vogel,
| |
Collapse
|
10
|
Lai QWS, Fan Q, Zheng BZ, Chen Y, Dong TT, Tsim KWK. Edible bird’s nest, an Asian health food supplement, possesses anti-inflammatory responses in restoring the symptoms of atopic dermatitis: An analysis of signaling cascades. Front Pharmacol 2022; 13:941413. [PMID: 36204219 PMCID: PMC9531170 DOI: 10.3389/fphar.2022.941413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Edible bird’s nest (EBN) is a Chinese delicacy possessing skin rejuvenating functions. To verify skin anti-inflammatory function of EBN, water extract and enzymatic digest of EBN, as well as the major sialic acid, N-acetyl neuraminic acid (NANA), were probed in TNF-α-treated HaCaT keratinocytes. The mRNA expressions of pro-inflammatory cytokines, e.g., IL-1β, IL-6, TNF-α, and an enzyme responsible for inflammatory response, i.e., Cox-2, as well as filaggrin and filaggrin-2, were markedly altered after treating with different preparations of EBN. The EBN-mediated responses could be accounted by its robust reduction of reactive oxygen species (ROS), NF-κB signaling and phosphorylation of p38 MAPK and JNK, as triggered by TNF-α-induced inflammation. The anti-inflammatory response of EBN was further supported in animal model. In 2,4-dinitrochlorobenzene (DNCB)-induced dermatitic mice, the effects on skin thickness, severity level of damage and scratching behavior, exerted by DNCB, were reversed after EBN treatments, in dose-dependent manners. In parallel, the levels of immune cells and pro-inflammatory cytokines in dermatitic skin were markedly reduced by treatment of EBN preparations. In general, NANA and enzymatic digest of EBN showed better anti-inflammatory responses in both models of in vitro and in vivo. These lines of evidence therefore suggest the possible application of EBN in treating atopic dermatitis.
Collapse
Affiliation(s)
- Queenie Wing Sze Lai
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine R&D, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, Hong Kong SAR, China
| | - Qunyan Fan
- Bird’s Nest Research Institute of Yan Palace, Xiamen Yan Palace Seelong Food Co., Ltd., Xiamen, Fujian, China
| | - Brody Zhongyu Zheng
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine R&D, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, Hong Kong SAR, China
| | - Yanxian Chen
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine R&D, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, Hong Kong SAR, China
| | - Tina Tingxia Dong
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine R&D, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, Hong Kong SAR, China
| | - Karl Wah Keung Tsim
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine R&D, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, Hong Kong SAR, China
- *Correspondence: Karl Wah Keung Tsim,
| |
Collapse
|
11
|
Cerutti A, Filipska M, Fa XM, Tachó-Piñot R. Impact of the mucosal milieu on antibody responses to allergens. J Allergy Clin Immunol 2022; 150:503-512. [PMID: 36075636 DOI: 10.1016/j.jaci.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Respiratory and digestive mucosal surfaces are continually exposed to common environmental antigens, which include potential allergens. Although innocuous in healthy individuals, allergens cause allergy in predisposed subjects and do so by triggering a pathologic TH2 cell response that induces IgE class switching and somatic hypermutation in allergen-specific B cells. The ensuing affinity maturation and plasma cell differentiation lead to the abnormal release of high-affinity IgE that binds to powerful FcεRI receptors on basophils and mast cells. When cross-linked by allergen, FcεRI-bound IgE instigates the release of prestored and de novo-induced proinflammatory mediators. Aside from causing type I hypersensitivity reactions underlying allergy, IgE affords protection against nematodes or venoms from insects and snakes, which raises questions as to the fundamental differences between protective and pathogenic IgE responses. In this review, we discuss the impact of the mucosal environment, including the epithelial and mucus barriers, on the induction of protective IgE responses against environmental antigens. We further discuss how perturbations of these barriers may contribute to the induction of pathogenic IgE production.
Collapse
Affiliation(s)
- Andrea Cerutti
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain; Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, New York.
| | - Martyna Filipska
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Xavi Marcos Fa
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Roser Tachó-Piñot
- Lydia Becher Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
The Humanised NPY-mRFP RBL Reporter Cell Line Is a Fast and Inexpensive Tool for Detection of Allergen-Specific IgE in Human Sera. Diagnostics (Basel) 2022; 12:diagnostics12092063. [PMID: 36140465 PMCID: PMC9497870 DOI: 10.3390/diagnostics12092063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Rat basophilic leukaemia (RBL) cells have been used for decades as a model of high-affinity Immunoglobulin E (IgE) receptor (FcεRI) signalling. Here, we describe the generation and use of huNPY-mRFP, a new humanised fluorescent IgE reporter cell line. Fusion of Neuropeptide Y (NPY) with monomeric red fluorescent protein (mRFP) results in targeting of fluorescence to the granules and its fast release into the supernatant upon IgE-dependent stimulation. Following overnight sensitisation with serum, optimal release of fluorescence upon dose-dependent stimulation with allergen-containing extracts could be measured after 45 min, without cell lysis or addition of any reagents. Five substitutions (D194A, K212A, K216A, K226A, and K230A) were introduced into the FcεRIα cDNA used for transfection, which resulted in the removal of known endoplasmic reticulum retention signals and high surface expression of human FcεRIα* in huNPY-mRFP cells (where * denotes the penta-substituted variant), comparable to the ~500,000 FcεRIα molecules per cell in the RS-ATL8 humanised luciferase reporter, which is a human FcεRIα/FcεRIγ double transfectant. The huNPY-mRFP reporter was used to demonstrate engagement of specific IgE in sera of Echinococcus granulosus-infected individuals by E. granulosus elongation factor EgEF-1β and, to a lesser extent, by EgEF-1δ, which had been previously described as IgE-immunoreactive EgEF-1β/δ.
Collapse
|
13
|
Colas L, Magnan A, Brouard S. Immunoglobulin E response in health and disease beyond allergic disorders. Allergy 2022; 77:1700-1718. [PMID: 35073421 DOI: 10.1111/all.15230] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/13/2021] [Accepted: 01/16/2022] [Indexed: 12/24/2022]
Abstract
Immunoglobulin E is the latest discovered of immunoglobulin family and has been long associated with anaphylaxis and worm expulsion. Immunoglobulin E, along with mast cells, basophils, and eosinophils, is also a hallmark of type 2 immunity which is dysregulated in numerous diseases such as asthma, rhinitis, atopic dermatitis, and eosinophilic esophagitis in addition to anaphylaxis as aforementioned. However, recent advances have shed light on IgE regulation and memory explaining the low level of free IgE, the scarcity of IgE plasma cells that are mainly short live and the absence of IgE memory B cells in homeostatic conditions. Furthermore, IgE was implicated in inflammatory conditions beyond allergic disorders where IgE-mediated facilitated antigen presentation can enhance cellular and humoral response against autoantigens in systemic lupus or chronic urticaria leading to more severe disease and even against neoantigen facilitating tumor cell lysis. At last, IgE was unexpectedly associated with allograft rejection or atheromatous cardiovascular diseases where precise mechanisms remain to be deciphered. The purpose of this review is to summarize these recent advances in IgE regulation, biology, and physiopathology beyond allergic diseases opening whole new fields of IgE biology to explore.
Collapse
Affiliation(s)
- Luc Colas
- Plateforme Transversale d'Allergologie et d'immunologie Clinique PFTA Clinique dermatologique CHU de Nantes Nantes France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology Nantes France
| | - Antoine Magnan
- Hôpital Foch, Suresnes; Université de Versailles Saint‐Quentin Paris‐Saclay; INRAe Paris France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology Nantes France
- Labex IGO Nantes France
- Centre d’Investigation Clinique en Biothérapie Centre de ressources biologiques (CRB) Nantes France
| |
Collapse
|
14
|
AlGassim M, Al Seraihi AF, AlShaibani A, Conca W, AlShehri S, Abouzied MM, Hamadah I, AlReshoodi S, Dasouki M, Sheikh F. Familial Emberger Syndrome With Autoimmunity, Hyper-Immunoglobulin E and Lymphatic Impairment Caused by a Novel GATA2 Mutation. Hematol Oncol Stem Cell Ther 2022; 15:63-65. [PMID: 32497548 DOI: 10.1016/j.hemonc.2020.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 01/28/2023] Open
Affiliation(s)
- Moneerah AlGassim
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Ahad F Al Seraihi
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - AlFadel AlShaibani
- Department of Hematology/Oncology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Walter Conca
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Saleem AlShehri
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | | - Issam Hamadah
- Department of Dermatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saleh AlReshoodi
- Department of Radiology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Farrukh Sheikh
- Department of Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Cui H, Liu F, Fang Y, Wang T, Yuan B, Ma C. Neuronal FcεRIα directly mediates ocular itch via IgE-immune complex in a mouse model of allergic conjunctivitis. J Neuroinflammation 2022; 19:55. [PMID: 35197064 PMCID: PMC8867756 DOI: 10.1186/s12974-022-02417-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Background Classical understanding of allergic conjunctivitis (ACJ) suggests that ocular itch results from a mast cell-dependent inflammatory process. However, treatments that target inflammatory mediators or immune cells are often unsatisfying in relieving the stubborn itch symptom. This suggests that additional mechanisms are responsible for ocular itch in ACJ. In this study, we aim to determine the role of neuronal FcεRIa in allergic ocular itch. Methods Calcium imaging was applied to observe the effect of IgE-immune complex in trigeminal neurons. Genomic FcεRIa knockout mice and adeno-associated virus (AAV) mediated sensory neuron FcεRIa knockdown mice were used in conjunction with behavioral tests to determine ocular itch. In addition, immunohistochemistry, Western blot and quantitative RT-PCR were used for in vitro experiments. Results We found that FcεRIα was expressed in a subpopulation of conjunctiva sensory neurons. IgE-IC directly activated trigeminal neurons and evoked acute ocular itch without detectible conjunctival inflammation. These effects were attenuated in both a global FcεRIa-knockout mice and after sensory neuronal-specific FcεRIa-knockdown in the mouse trigeminal ganglion. In an ovalbumin (OVA) induced murine ACJ model, FcεRIα was found upregulated in conjunctiva-innervating CGRP+ sensory neurons. Sensory neuronal-specific knockdown of FcεRIa significantly alleviated ocular itch in the ACJ mice without affecting the immune cell infiltration and mast cell activation in conjunctiva. Although FcεRIα mRNA expression was not increased by IgE in dissociated trigeminal ganglion neurons, FcεRIα protein level was enhanced by IgE in a cycloheximide-resistance manner, with concordant enhancement of neuronal responses to IgE-IC. In addition, incremental sensitization gradually enhanced the expression of FcεRIα in small-sized trigeminal neurons and aggravated OVA induced ocular itch. Conclusions Our study demonstrates that FcεRIα in pruriceptive neurons directly mediates IgE-IC evoked itch and plays an important role in ocular itch in a mouse model of ACJ. These findings reveal another axis of neuroimmune interaction in allergic itch condition independent to the classical IgE-mast cell pathway, and might suggest novel therapeutic strategies for the treatment of pruritus in ACJ and other immune-related disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02417-x.
Collapse
Affiliation(s)
- Huan Cui
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Fan Liu
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yehong Fang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bo Yuan
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China. .,National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China. .,Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
16
|
Arthur GK, Cruse G. Regulation of Trafficking and Signaling of the High Affinity IgE Receptor by FcεRIβ and the Potential Impact of FcεRIβ Splicing in Allergic Inflammation. Int J Mol Sci 2022; 23:ijms23020788. [PMID: 35054974 PMCID: PMC8776166 DOI: 10.3390/ijms23020788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/23/2022] Open
Abstract
Mast cells are tissue-resident immune cells that function in both innate and adaptive immunity through the release of both preformed granule-stored mediators, and newly generated proinflammatory mediators that contribute to the generation of both the early and late phases of the allergic inflammatory response. Although mast cells can be activated by a vast array of mediators to contribute to homeostasis and pathophysiology in diverse settings and contexts, in this review, we will focus on the canonical setting of IgE-mediated activation and allergic inflammation. IgE-dependent activation of mast cells occurs through the high affinity IgE receptor, FcεRI, which is a multimeric receptor complex that, once crosslinked by antigen, triggers a cascade of signaling to generate a robust response in mast cells. Here, we discuss FcεRI structure and function, and describe established and emerging roles of the β subunit of FcεRI (FcεRIβ) in regulating mast cell function and FcεRI trafficking and signaling. We discuss current approaches to target IgE and FcεRI signaling and emerging approaches that could target FcεRIβ specifically. We examine how alternative splicing of FcεRIβ alters protein function and how manipulation of splicing could be employed as a therapeutic approach. Targeting FcεRI directly and/or IgE binding to FcεRI are promising approaches to therapeutics for allergic inflammation. The characteristic role of FcεRIβ in both trafficking and signaling of the FcεRI receptor complex, the specificity to IgE-mediated activation pathways, and the preferential expression in mast cells and basophils, makes FcεRIβ an excellent, but challenging, candidate for therapeutic strategies in allergy and asthma, if targeting can be realized.
Collapse
Affiliation(s)
- Greer K. Arthur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA;
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA
- Correspondence: ; Tel.: +1-919-515-8865
| |
Collapse
|
17
|
Luzuriaga MA, Herbert FC, Brohlin OR, Gadhvi J, Howlett T, Shahrivarkevishahi A, Wijesundara YH, Venkitapathi S, Veera K, Ehrman R, Benjamin CE, Popal S, Burton MD, Ingersoll MA, De Nisco NJ, Gassensmith JJ. Metal-Organic Framework Encapsulated Whole-Cell Vaccines Enhance Humoral Immunity against Bacterial Infection. ACS NANO 2021; 15:17426-17438. [PMID: 34546723 DOI: 10.1021/acsnano.1c03092] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing rate of resistance of bacterial infection against antibiotics requires next generation approaches to fight potential pandemic spread. The development of vaccines against pathogenic bacteria has been difficult owing, in part, to the genetic diversity of bacteria. Hence, there are many potential target antigens and little a priori knowledge of which antigen/s will elicit protective immunity. The painstaking process of selecting appropriate antigens could be avoided with whole-cell bacteria; however, whole-cell formulations typically fail to produce long-term and durable immune responses. These complications are one reason why no vaccine against any type of pathogenic E. coli has been successfully clinically translated. As a proof of principle, we demonstrate a method to enhance the immunogenicity of a model pathogenic E. coli strain by forming a slow releasing depot. The E. coli strain CFT073 was biomimetically mineralized within a metal-organic framework (MOF). This process encapsulates the bacteria within 30 min in water and at ambient temperatures. Vaccination with this formulation substantially enhances antibody production and results in significantly enhanced survival in a mouse model of bacteremia compared to standard inactivated formulations.
Collapse
|
18
|
Man F, Koers A, Karagiannis P, Josephs DH, Bax HJ, Gilbert AE, Dodev TS, Mele S, Chiarruttini G, Crescioli S, Chauhan J, Blower JE, Cooper MS, Spicer J, Karagiannis SN, Blower PJ. In vivo trafficking of a tumor-targeting IgE antibody: molecular imaging demonstrates rapid hepatobiliary clearance compared to IgG counterpart. Oncoimmunology 2021; 10:1966970. [PMID: 34513315 PMCID: PMC8425638 DOI: 10.1080/2162402x.2021.1966970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 11/30/2022] Open
Abstract
IgE antibodies elicit powerful immune responses, recruiting effector cells to tumors more efficiently and with greater cytotoxicity than IgG antibodies. Consequently, IgE antibodies are a promising alternative to conventional IgG-based therapies in oncology (AllergoOncology). As the pharmacokinetics of IgE antibodies are less well understood, we used molecular imaging in mice to compare the distribution and elimination of IgE and IgG antibodies targeting the human tumor-associated antigen chondroitin sulfate proteoglycan 4 (CSPG4). Anti-CSPG4 IgE and IgG1 antibodies with human Fc domains were radiolabeled with 111In. CSPG4-expressing A375 human melanoma xenografts implanted in NOD-scid IL2rg-/- mice were also engrafted with human immune cells by intravenous administration. 111In-anti-CSPG4 antibodies were administered intravenously. Their distribution was determined by single-photon emission computed tomography (SPECT) and ex vivo gamma-counting over 120 h. SPECT imaging was conducted from 0 to 60 min after antibody administration to precisely measure the early phase of IgE distribution. 111In-labeled anti-CSPG4 IgG and IgE showed serum stability in vitro of >92% after 5 days. In A375 xenograft-bearing mice, anti-CSPG4 IgE showed much faster blood clearance and higher accumulation in the liver compared to anti-CSPG4 IgG. However, tumor-to-blood and tumor-to-muscle ratios were similar between the antibody isotypes and higher compared with a non-tumor-targeting isotype control IgE. IgE excretion was much faster than IgG. In non-tumor-bearing animals, early SPECT imaging revealed a blood clearance half-life of 10 min for IgE. Using image-based quantification, we demonstrated that the blood clearance of IgE is much faster than that of IgG while the two isotypes showed comparable tumor-to-blood ratios.
Collapse
Affiliation(s)
- Francis Man
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Alexander Koers
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Panagiotis Karagiannis
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Debra H. Josephs
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
| | - Heather J. Bax
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
| | - Amy E. Gilbert
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Tihomir S. Dodev
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
- School of Basic and Medical Biosciences, Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
- Allergic Mechanisms in Asthma, Asthma UK Centre, King’s College London, London, UK
| | - Silvia Mele
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Giulia Chiarruttini
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Silvia Crescioli
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Jitesh Chauhan
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
| | - Julia E. Blower
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Margaret S. Cooper
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
- Cancer Centre at Guy’s, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Sophia N. Karagiannis
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Breast Cancer Now Research Unit, King’s College London, Guy’s Hospital, London, UK
| | - Philip J. Blower
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
19
|
Tontini C, Bulfone-Paus S. Novel Approaches in the Inhibition of IgE-Induced Mast Cell Reactivity in Food Allergy. Front Immunol 2021; 12:613461. [PMID: 34456900 PMCID: PMC8387944 DOI: 10.3389/fimmu.2021.613461] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
Allergy is an IgE-dependent type-I hypersensitivity reaction that can lead to life-threatening systemic symptoms such as anaphylaxis. In the pathogenesis of the allergic response, the common upstream event is the binding of allergens to specific IgE, inducing cross-linking of the high-affinity FcεRI on mast cells, triggering cellular degranulation and the release of histamine, proteases, lipids mediators, cytokines and chemokines with inflammatory activity. A number of novel therapeutic options to curb mast cell activation are in the pipeline for the treatment of severe allergies. In addition to anti-IgE therapy and allergen-specific immunotherapy, monoclonal antibodies targeted against several key Th2/alarmin cytokines (i.e. IL-4Rα, IL-33, TSLP), active modification of allergen-specific IgE (i.e. inhibitory compounds, monoclonal antibodies, de-sialylation), engagement of inhibitory receptors on mast cells and allergen-specific adjuvant vaccines, are new promising options to inhibit the uncontrolled release of mast cell mediators upon allergen exposure. In this review, we critically discuss the novel approaches targeting mast cells limiting allergic responses and the immunological mechanisms involved, with special interest on food allergy treatment.
Collapse
Affiliation(s)
- Chiara Tontini
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Silvia Bulfone-Paus
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Haile S, Corbett RD, LeBlanc VG, Wei L, Pleasance S, Bilobram S, Nip KM, Brown K, Trinh E, Smith J, Trinh DL, Bala M, Chuah E, Coope RJN, Moore RA, Mungall AJ, Mungall KL, Zhao Y, Hirst M, Aparicio S, Birol I, Jones SJM, Marra MA. A Scalable Strand-Specific Protocol Enabling Full-Length Total RNA Sequencing From Single Cells. Front Genet 2021; 12:665888. [PMID: 34149808 PMCID: PMC8209500 DOI: 10.3389/fgene.2021.665888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
RNA sequencing (RNAseq) has been widely used to generate bulk gene expression measurements collected from pools of cells. Only relatively recently have single-cell RNAseq (scRNAseq) methods provided opportunities for gene expression analyses at the single-cell level, allowing researchers to study heterogeneous mixtures of cells at unprecedented resolution. Tumors tend to be composed of heterogeneous cellular mixtures and are frequently the subjects of such analyses. Extensive method developments have led to several protocols for scRNAseq but, owing to the small amounts of RNA in single cells, technical constraints have required compromises. For example, the majority of scRNAseq methods are limited to sequencing only the 3' or 5' termini of transcripts. Other protocols that facilitate full-length transcript profiling tend to capture only polyadenylated mRNAs and are generally limited to processing only 96 cells at a time. Here, we address these limitations and present a novel protocol that allows for the high-throughput sequencing of full-length, total RNA at single-cell resolution. We demonstrate that our method produced strand-specific sequencing data for both polyadenylated and non-polyadenylated transcripts, enabled the profiling of transcript regions beyond only transcript termini, and yielded data rich enough to allow identification of cell types from heterogeneous biological samples.
Collapse
Affiliation(s)
- Simon Haile
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Richard D Corbett
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Veronique G LeBlanc
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Lisa Wei
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Stephen Pleasance
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Steve Bilobram
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Ka Ming Nip
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Kirstin Brown
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Eva Trinh
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Jillian Smith
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Diane L Trinh
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Miruna Bala
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Robin J N Coope
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Samuel Aparicio
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Engeroff P, Plattner K, Storni F, Thoms F, Frias Boligan K, Muerner L, Eggel A, von Gunten S, Bachmann MF, Vogel M. Glycan-specific IgG anti-IgE autoantibodies are protective against allergic anaphylaxis in a murine model. J Allergy Clin Immunol 2021; 147:1430-1441. [PMID: 33309740 DOI: 10.1016/j.jaci.2020.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 09/23/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND IgE causes anaphylaxis in type I hypersensitivity diseases by activating degranulation of effector cells such as mast cells and basophils. The mechanisms that control IgE activity and prevent anaphylaxis under normal conditions are still enigmatic. OBJECTIVE We aimed to unravel how anti-IgE autoantibodies are induced and we aimed to understand their role in regulating serum IgE level and allergic anaphylaxis. METHODS We immunized mice with different forms of IgE and tested anti-IgE autoantibody responses and their specificities. We then analyzed the effect of those antibodies on serum kinetics and their in vitro and in vivo impact on anaphylaxis. Finally, we investigated anti-IgE autoantibodies in human sera. RESULTS Immunization of mice with IgE-immune complexes induced glycan-specific anti-IgE autoantibodies. The anti-IgE autoantibodies prevented effector cell sensitization, reduced total IgE serum levels, protected mice from passive and active IgE sensitization, and resulted in cross-protection against different allergens. Furthermore, glycan-specific anti-IgE autoantibodies were present in sera from subjects with allergy and subjects without allergy. CONCLUSION In conclusion, this study provided the first evidence that in the murine model, the serum level and anaphylactic activity of IgE may be downregulated by glycan-specific IgG anti-IgE autoantibodies.
Collapse
Affiliation(s)
- Paul Engeroff
- University Hospital for Rheumatology, Immunology, and Allergology, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Kevin Plattner
- University Hospital for Rheumatology, Immunology, and Allergology, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Federico Storni
- University Hospital for Rheumatology, Immunology, and Allergology, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Franziska Thoms
- Department of Dermatology, Zurich University Hospital, Zurich, Switzerland
| | | | - Lukas Muerner
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Alexander Eggel
- University Hospital for Rheumatology, Immunology, and Allergology, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Martin F Bachmann
- University Hospital for Rheumatology, Immunology, and Allergology, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland; Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Monique Vogel
- University Hospital for Rheumatology, Immunology, and Allergology, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
22
|
SoRelle JA, Chen Z, Wang J, Yue T, Choi JH, Wang K, Zhong X, Hildebrand S, Russell J, Scott L, Xu D, Zhan X, Bu CH, Wang T, Choi M, Tang M, Ludwig S, Zhan X, Li X, Moresco EMY, Beutler B. Dominant atopy risk mutations identified by mouse forward genetic analysis. Allergy 2021; 76:1095-1108. [PMID: 32810290 DOI: 10.1111/all.14564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Atopy, the overall tendency to become sensitized to an allergen, is heritable but seldom ascribed to mutations within specific genes. Atopic individuals develop abnormally elevated IgE responses to immunization with potential allergens. To gain insight into the genetic causes of atopy, we carried out a forward genetic screen for atopy in mice. METHODS We screened mice carrying homozygous and heterozygous N-ethyl-N-nitrosourea (ENU)-induced germline mutations for aberrant antigen-specific IgE and IgG1 production in response to immunization with the model allergen papain. Candidate genes were validated by independent gene mutation. RESULTS Of 31 candidate genes selected for investigation, the effects of mutations in 23 genes on papain-specific IgE or IgG1 were verified. Among the 20 verified genes influencing the IgE response, eight were necessary for the response, while 12 repressed IgE. Nine genes were not previously implicated in the IgE response. Fifteen genes encoded proteins contributing to IgE class switch recombination or B-cell receptor signaling. The precise roles of the five remaining genes (Flcn, Map1lc3b, Me2, Prkd2, and Scarb2) remain to be determined. Loss-of-function mutations in nine of the 12 genes limiting the IgE response were dominant or semi-dominant for the IgE phenotype but did not cause immunodeficiency in the heterozygous state. Using damaging allele frequencies for the corresponding human genes and in silico simulations (Monte Carlo) of undiscovered atopy mutations, we estimated the percentage of humans with heterozygous atopy risk mutations. CONCLUSIONS Up to 37% of individuals may be heterozygous carriers for at least one dominant atopy risk mutation.
Collapse
Affiliation(s)
- Jeffrey A. SoRelle
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
- Department of Pathology University of Texas Southwestern Medical Center Dallas TX USA
| | - Zhe Chen
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Jianhui Wang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Tao Yue
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
- Department of Immunology University of Texas Southwestern Medical Center Dallas TX USA
| | - Kuan‐wen Wang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xue Zhong
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Jamie Russell
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Lindsay Scott
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Darui Xu
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xiaowei Zhan
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Chun Hui Bu
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Tao Wang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
- Department of Population and Data Sciences Quantitative Biomedical Research Center University of Texas Southwestern Medical Center Dallas TX USA
| | - Mihwa Choi
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Miao Tang
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense University of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
23
|
Andiappan AK, Puan KJ, Lee B, Yeow PT, Yusof N, Merid SK, Kumar D, Lum J, Foo S, Koh G, Poidinger M, Zolezzi F, Wang DY, Melén E, Rotzschke O. Inverse association of FCER1A allergy variant in monocytes and plasmacytoid dendritic cells. J Allergy Clin Immunol 2020; 147:1510-1513.e8. [PMID: 33160967 DOI: 10.1016/j.jaci.2020.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Anand Kumar Andiappan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Kia Joo Puan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Poh Tuang Yeow
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Nurhashikin Yusof
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Simon Kebede Merid
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Dilip Kumar
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Josephine Lum
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Shihui Foo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Geraldine Koh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Michael Poidinger
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore; Murdoch Children's Research Institute, Victoria, Australia
| | - Francesca Zolezzi
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | | | | | - De Yun Wang
- Department of Otalaryngology, National University of Singapore, Singapore
| | - Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Department of Paediatrics, Sachs' Children's Hospital, Stockholm, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olaf Rotzschke
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
24
|
El Ansari YS, Kanagaratham C, Lewis OL, Oettgen HC. IgE and mast cells: The endogenous adjuvant. Adv Immunol 2020; 148:93-153. [PMID: 33190734 DOI: 10.1016/bs.ai.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells and IgE are most familiar as the effectors of type I hypersensitivity reactions including anaphylaxis. It is becoming clear however that this pair has important immunomodulatory effects on innate and adaptive cells of the immune system. In this purview, they act as endogenous adjuvants to ignite evolving immune responses, promote the transition of allergic disease into chronic illness and disrupt the development of active mechanisms of tolerance to ingested foods. Suppression of IgE-mediated mast cell activation can be exerted by molecules targeting IgE, FcɛRI or signaling kinases including Syk, or by IgG antibodies acting via inhibitory Fcγ receptors. In 2015 we reviewed the evidence for the adjuvant functions of mast cells. This update includes the original text, incorporates some important developments in the field over the past five years and discusses how interventions targeting these pathways might have promise in the development of strategies to treat allergic disease.
Collapse
Affiliation(s)
- Yasmeen S El Ansari
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Cynthia Kanagaratham
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Owen L Lewis
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
25
|
Rowe RK, Pyle DM, Farrar JD, Gill MA. IgE-mediated regulation of IL-10 and type I IFN enhances rhinovirus-induced Th2 differentiation by primary human monocytes. Eur J Immunol 2020; 50:1550-1559. [PMID: 32383224 DOI: 10.1002/eji.201948396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/18/2020] [Accepted: 05/04/2020] [Indexed: 11/08/2022]
Abstract
Rhinovirus (RV) infections are linked to the development and exacerbation of allergic diseases including allergic asthma. IgE, another contributor to atopic disease pathogenesis, has been shown to regulate DC antiviral functions and influence T cell priming by monocytes. We previously demonstrated that IgE-mediated stimulation of monocytes alters multiple cellular functions including cytokine secretion, phagocytosis, and influenza-induced Th1 development. In this study, we investigate the effects of IgE-mediated stimulation on monocyte-driven, RV-induced T cell development utilizing primary human monocyte-T cell co-cultures. We demonstrate that IgE crosslinking of RV-exposed monocytes enhances monocyte-driven Th2 differentiation. This increase in RV-induced Th2 development was regulated by IgE-mediated inhibition of virus-induced type I IFN and induction of IL-10. These findings suggest an additional mechanism by which two clinically significant risk factors for allergic disease exacerbations-IgE-mediated stimulation and rhinovirus infection-may synergistically promote Th2 differentiation and allergic inflammation.
Collapse
Affiliation(s)
- Regina K Rowe
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Departments of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - David M Pyle
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
- Departments of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - J David Farrar
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michelle A Gill
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Departments of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
26
|
Lázaro-Gorines R, López-Rodríguez JC, Benedé S, González M, Mayorga C, Vogel L, Martínez-Del-Pozo Á, Lacadena J, Villalba M. Der p 1-based immunotoxin as potential tool for the treatment of dust mite respiratory allergy. Sci Rep 2020; 10:12255. [PMID: 32703972 PMCID: PMC7378242 DOI: 10.1038/s41598-020-69166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 11/25/2022] Open
Abstract
Immunotoxins appear as promising therapeutic molecules, alternative to allergen-specific-immunotherapy. In this work, we achieved the development of a protein chimera able to promote specific cell death on effector cells involved in the allergic reaction. Der p 1 allergen was chosen as cell-targeting domain and the powerful ribotoxin α-sarcin as the toxic moiety. The resultant construction, named proDerp1αS, was produced and purified from the yeast Pichia pastoris. Der p 1-protease activity and α-sarcin ribonucleolytic action were effectively conserved in proDerp1αS. Immunotoxin impact was assayed by using effector cells sensitized with house dust mite-allergic sera. Cell degranulation and death, triggered by proDerp1αS, was exclusively observed on Der p 1 sera sensitized-humRBL-2H3 cells, but not when treated with non-allergic sera. Most notably, equivalent IgE-binding and degranulation were observed with both proDerp1αS construct and native Der p 1 when using purified basophils from sensitized patients. However, proDerp1αS did not cause any cytotoxic effect on these cells, apparently due to its lack of internalization after their surface IgE-binding, showing the complex in vivo panorama governing allergic reactions. In conclusion, herein we present proDerp1αS as a proof of concept for a potential and alternative new designs of therapeutic tools for allergies. Development of new, and more specific, second-generation of immunotoxins following proDerp1αS, is further discussed.
Collapse
Affiliation(s)
- Rodrigo Lázaro-Gorines
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Juan Carlos López-Rodríguez
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Sara Benedé
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Miguel González
- Allergy Research Laboratory, IBIMA, Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - Cristobalina Mayorga
- Allergy Research Laboratory, IBIMA, Hospital Regional Universitario de Málaga, UMA, Málaga, Spain.,U.G.C. Allergy, IBIMA, Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - Lothar Vogel
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Álvaro Martínez-Del-Pozo
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Javier Lacadena
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain.
| | - Mayte Villalba
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain.
| |
Collapse
|
27
|
Galeotti C, Karnam A, Das M, Kaveri SV, Bayry J. Acid Stripping of Surface IgE Antibodies Bound to FcεRI is Unsuitable for the Functional Assays that Require Long-Term Culture of Basophils and Entire Removal of Surface IgE. Int J Mol Sci 2020; 21:ijms21020510. [PMID: 31941161 PMCID: PMC7014331 DOI: 10.3390/ijms21020510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Basophils are rare granulocytes and dysregulated functions of these cells are associated with several atopic and non-atopic allergic diseases of skin, respiratory system and gastrointestinal tract. Both cytokines and immunoglobulin E (IgE) are implicated in mediating the basophil activation and pathogenesis of these disorders. Several reports have shown that healthy individuals, and patients with allergic disorders display IgG autoantibodies to IgE and hence functional characterization of these anti-IgE IgG autoantibodies is critical. In general, anti-IgE IgG autoantibodies modulate basophil activation irrespective of allergen specificity by interacting with constant domains of IgE. Therefore, an ideal solution to prove the functions of such anti-IgE IgG autoantibodies would be to completely eliminate type I high affinity immunoglobulin E receptor (FcɛRI)-bound IgE from the surface of basophils and to demonstrate in an unequivocal manner the role of anti-IgE IgG autoantibodies. In line with previous reports, our data show that FcɛRI on peripheral blood basophils are almost saturated with IgE. Further, acetic acid buffer (pH 4) efficiently removes these FcɛRI-bound IgE. Although immediately following acetic acid-elution of IgE had no repercussion on the viability of basophils, following 24 h culture with interleukin-3 (IL-3), the viability and yield of basophils were drastically reduced in acid-treated cells and had repercussion on the induction of activation markers. Lactic acid treatment on the other hand though had no adverse effects on the viability of basophils and IL-3-induced activation, it removed only a small fraction of the cell surface bound IgE. Thus, our results show that acid buffers could be used for the elution of FcɛRI-bound IgE on the basophil surface for the biochemical characterization of IgE antibodies or for the immediate use of basophils to determine their sensitivity to undergo degranulation by specific allergens. However, these methods are not utile for the functional assays of basophils that require longer duration of culture and entire removal of surface IgE to validate the role of anti-IgE IgG autoantibodies that interact with FcɛRI-bound IgE irrespective of allergen specificity.
Collapse
Affiliation(s)
- Caroline Galeotti
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
- Service de Rhumatologie Pédiatrique, Centre de Référence des Maladies Auto-Inflammatoires Rares et des Amyloses, CHU de Bicêtre, le Kremlin Bicêtre, F-94270 Paris, France
| | - Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
| | - Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
- Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, F-75006, France
- Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| |
Collapse
|
28
|
The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab. Nat Commun 2020; 11:165. [PMID: 31913280 PMCID: PMC6949303 DOI: 10.1038/s41467-019-13815-w] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/30/2019] [Indexed: 01/21/2023] Open
Abstract
Targeting of immunoglobulin E (IgE) represents an interesting approach for the treatment of allergic disorders. A high-affinity monoclonal anti-IgE antibody, ligelizumab, has recently been developed to overcome some of the limitations associated with the clinical use of the therapeutic anti-IgE antibody, omalizumab. Here, we determine the molecular binding profile and functional modes-of-action of ligelizumab. We solve the crystal structure of ligelizumab bound to IgE, and report epitope differences between ligelizumab and omalizumab that contribute to their qualitatively distinct IgE-receptor inhibition profiles. While ligelizumab shows superior inhibition of IgE binding to FcεRI, basophil activation, IgE production by B cells and passive systemic anaphylaxis in an in vivo mouse model, ligelizumab is less potent in inhibiting IgE:CD23 interactions than omalizumab. Our data thus provide a structural and mechanistic foundation for understanding the efficient suppression of FcεRI-dependent allergic reactions by ligelizumab in vitro as well as in vivo. Immunoglobulin E (IgE) plays a central role in allergic responses, yet therapeutic targeting of IgE with antibodies such as omalizumab is met with various limitations. Here the authors characterize the molecular properties and crystal structure of a new anti-IgE antibody, ligelizumab, for mechanistic insights related to its enhanced suppression activity.
Collapse
|
29
|
Leffler J, Read JF, Jones AC, Mok D, Hollams EM, Laing IA, Le Souef PN, Sly PD, Kusel MMH, de Klerk NH, Bosco A, Holt PG, Strickland DH. Progressive increase of FcεRI expression across several PBMC subsets is associated with atopy and atopic asthma within school-aged children. Pediatr Allergy Immunol 2019; 30:646-653. [PMID: 30985951 DOI: 10.1111/pai.13063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Antigen-specific IgE binds the Fcε receptor I (FcεRI) expressed on several types of immune cells, including dendritic cells (DCs). Activation of FcεRI on DCs in atopics has been shown to modulate immune responses that potentially contribute to asthma development. However, the extent to which DC subsets differ in FcεRI expression between atopic children with or without asthma is currently not clear. This study aimed to analyse the expression of FcεRI on peripheral blood mononuclear cells (PBMCs) from atopic children with and without asthma, and non-atopic/non-asthmatic age-matched healthy controls. METHODS We performed multiparameter flow cytometry on PBMC from 391 children across three community cohorts and one clinical cohort based in Western Australia. RESULTS We confirmed expression of FcεRI on basophils, monocytes, plasmacytoid and conventional DCs, with higher proportions of all cell populations expressing FcεRI in atopic compared to non-atopic children. Further, we observed that levels of FcεRI expression were elevated across plasmacytoid and conventional DC as well as basophils in atopic asthmatic compared to atopic non-asthmatic children also after adjusting for serum IgE levels. CONCLUSION Our data suggest that the expression pattern of FcεRI on DC and basophils differentiates asthmatic from non-asthmatic atopic children. Given the significant immune modulatory effects observed as a consequence of FcεRI expression, this altered expression pattern is likely to contribute to asthma pathology in children.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - James F Read
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia.,School of Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Anya C Jones
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia.,School of Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Danny Mok
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Elysia M Hollams
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Ingrid A Laing
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia.,School of Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Peter N Le Souef
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia.,School of Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Merci M H Kusel
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Nicholas H de Klerk
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia.,Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Deborah H Strickland
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
30
|
Méndez-Enríquez E, Hallgren J. Mast Cells and Their Progenitors in Allergic Asthma. Front Immunol 2019; 10:821. [PMID: 31191511 PMCID: PMC6548814 DOI: 10.3389/fimmu.2019.00821] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Mast cells and their mediators have been implicated in the pathogenesis of asthma and allergy for decades. Allergic asthma is a complex chronic lung disease in which several different immune cells, genetic factors and environmental exposures influence the pathology. Mast cells are key players in the asthmatic response through secretion of a multitude of mediators with pro-inflammatory and airway-constrictive effects. Well-known mast cell mediators, such as histamine and bioactive lipids are responsible for many of the physiological effects observed in the acute phase of allergic reactions. The accumulation of mast cells at particular sites of the allergic lung is likely relevant to the asthma phenotype, severity and progression. Mast cells located in different compartments in the lung and airways have different characteristics and express different mediators. According to in vivo experiments in mice, lung mast cells develop from mast cell progenitors induced by inflammatory stimuli to migrate to the airways. Human mast cell progenitors have been identified in the blood circulation. A high frequency of circulating human mast cell progenitors may reflect ongoing pathological changes in the allergic lung. In allergic asthma, mast cells become activated mainly via IgE-mediated crosslinking of the high affinity receptor for IgE (FcεRI) with allergens. However, mast cells can also be activated by numerous other stimuli e.g. toll-like receptors and MAS-related G protein-coupled receptor X2. In this review, we summarize research with implications on the role and development of mast cells and their progenitors in allergic asthma and cover selected activation pathways and mast cell mediators that have been implicated in the pathogenesis. The review places an emphasis on describing mechanisms identified using in vivo mouse models and data obtained by analysis of clinical samples.
Collapse
Affiliation(s)
- Erika Méndez-Enríquez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Narasimhan PB, Marcovecchio P, Hamers AA, Hedrick CC. Nonclassical Monocytes in Health and Disease. Annu Rev Immunol 2019; 37:439-456. [DOI: 10.1146/annurev-immunol-042617-053119] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monocytes are innate blood cells that maintain vascular homeostasis and are early responders to pathogens in acute infections. There are three well-characterized classes of monocytes: classical (CD14+CD16−in humans and Ly6Chiin mice), intermediate (CD14+CD16+in humans and Ly6C+Treml4+in mice), and nonclassical (CD14−CD16+in humans and Ly6Cloin mice). Classical monocytes are critical for the initial inflammatory response. Classical monocytes can differentiate into macrophages in tissue and can contribute to chronic disease. Nonclassical monocytes have been widely viewed as anti-inflammatory, as they maintain vascular homeostasis. They are a first line of defense in recognition and clearance of pathogens. However, their roles in chronic disease are less clear. They have been shown to be protective as well as positively associated with disease burden. This review focuses on the state of the monocyte biology field and the functions of monocytes, particularly nonclassical monocytes, in health and disease.
Collapse
Affiliation(s)
- Prakash Babu Narasimhan
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| | - Paola Marcovecchio
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| | - Anouk A.J. Hamers
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| | - Catherine C. Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| |
Collapse
|
32
|
Abebayehu D, Spence AJ, Caslin H, Taruselli M, Haque TT, Kiwanuka KN, Kolawole EM, Chumanevich AP, Sell SA, Oskeritzian CA, Ryan J, Kee SA. Lactic acid suppresses IgE-mediated mast cell function in vitro and in vivo. Cell Immunol 2019; 341:103918. [PMID: 31030957 DOI: 10.1016/j.cellimm.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/21/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Mast cells have functional plasticity affected by their tissue microenvironment, which greatly impacts their inflammatory responses. Because lactic acid (LA) is abundant in inflamed tissues and tumors, we investigated how it affects mast cell function. Using IgE-mediated activation as a model system, we found that LA suppressed inflammatory cytokine production and degranulation in mouse peritoneal mast cells, data that were confirmed with human skin mast cells. In mouse peritoneal mast cells, LA-mediated cytokine suppression was dependent on pH- and monocarboxylic transporter-1 expression. Additionally, LA reduced IgE-induced Syk, Btk, and ERK phosphorylation, key signals eliciting inflammation. In vivo, LA injection reduced IgE-mediated hypothermia in mice undergoing passive systemic anaphylaxis. Our data suggest that LA may serve as a feedback inhibitor that limits mast cell-mediated inflammation.
Collapse
Affiliation(s)
- Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States
| | - Andrew J Spence
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States
| | - Heather Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States
| | - Marcela Taruselli
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States
| | - Tamara T Haque
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States
| | - Kasalina N Kiwanuka
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States
| | | | - Alena P Chumanevich
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - Scott A Sell
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, MO 63103, United States
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - John Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States.
| | - Sydney Ann Kee
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States
| |
Collapse
|
33
|
Fang L, Wang X, Sun Q, Papakonstantinou E, S'ng C, Tamm M, Stolz D, Roth M. IgE Downregulates PTEN through MicroRNA-21-5p and Stimulates Airway Smooth Muscle Cell Remodeling. Int J Mol Sci 2019; 20:ijms20040875. [PMID: 30781615 PMCID: PMC6412688 DOI: 10.3390/ijms20040875] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
The patho-mechanism leading to airway wall remodeling in allergic asthma is not well understood and remodeling is resistant to therapies. This study assessed the effect of immunoglobulin E (IgE) in the absence of allergens on human primary airway smooth muscle cell (ASMC) remodeling in vitro. ASMCs were obtained from five allergic asthma patients and five controls. Proliferation was determined by direct cell counts, mitochondrial activity by expression of cytochrome c, protein expression by immunoblotting and immuno-fluorescence, cell migration by microscopy imaging, and collagen deposition by cell based ELISA and RNA expression by real time PCR. Non-immune IgE activated two signaling pathways: (i) signal transducer and activator of transcription 3 (STAT3)→miR-21-5p→downregulating phosphatase and tensin homolog (PTEN) expression, and (ii) phosphatidylinositol 3-kinases (PI3K)→protein kinase B (Akt)→mammalian target of rapamycin (mTOR)→ribosomal protein S6 kinase beta-1 (p70s6k)→peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1-α)→peroxisome proliferator-activated receptor-γ (PPAR-γ)→cyclooxygenase-2 (COX-2)→mitochondrial activity, proliferation, migration, and extracellular matrix deposition. Reduced PTEN expression correlated with enhanced PI3K signaling, which upregulated ASMC remodeling. The inhibition of microRNA-21-5p increased PTEN and reduced mTOR signaling and remodeling. Mimics of microRNA-21-5p had opposing effects. IgE induced ASMC remodeling was significantly reduced by inhibition of mTOR or STAT3. In conclusion, non-immune IgE alone is sufficient for stimulated ASMC remodeling by upregulating microRNA-21-5p. Our findings suggest that the suppression of micoRNA-21-5p may present a therapeutic target to reduce airway wall remodeling.
Collapse
Affiliation(s)
- Lei Fang
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| | - Xinggang Wang
- Gynecological Endocrinology, Department of Biomedicine, University & University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Qingzhu Sun
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Eleni Papakonstantinou
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
- Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | - Michael Tamm
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| | - Daiana Stolz
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| | - Michael Roth
- Pneumology & Pulmonary Cell Research, Departments of Internal Medicine & Biomedicine, University & University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland.
| |
Collapse
|
34
|
Gomez G. Current Strategies to Inhibit High Affinity FcεRI-Mediated Signaling for the Treatment of Allergic Disease. Front Immunol 2019; 10:175. [PMID: 30792720 PMCID: PMC6374298 DOI: 10.3389/fimmu.2019.00175] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Allergies and asthma are a major cause of chronic disease whose prevalence has been on the rise. Allergic disease including seasonal rhinitis, atopic dermatitis, urticaria, anaphylaxis, and asthma, are associated with activation of tissue-resident mast cells and circulating basophils. Although these cells can be activated in different ways, allergic reactions are normally associated with the crosslinking of the high affinity Fc receptor for Immunoglobulin E, FcεRI, with multivalent antigen. Inflammatory mediators released from cytoplasmic granules, or biosynthesized de novo, following FcεRI crosslinking induce immediate hypersensitivity reactions, including life-threatening anaphylaxis, and contribute to prolonged inflammation leading to chronic diseases like asthma. Thus, inappropriate or unregulated activation of mast cells and basophils through antigenic crosslinking of FcεRI can have deleterious, sometimes deadly, consequences. Accordingly, FcεRI has emerged as a viable target for the development of biologics that act to inhibit or attenuate the activation of mast cells and basophils. At the forefront of these strategies are (1) Anti-IgE monoclonal antibody, namely omalizumab, which has the secondary effect of reducing FcεRI surface expression, (2) Designed Ankyrin Repeat Proteins (DARPins), which take advantage of the most common structural motifs in nature involved in protein-protein interactions, to inhibit FcεRI-IgE interactions, and (3) Fusion proteins to co-aggregate FcεRI with the inhibitory FcγRIIb. This review presents the published research studies that support omalizumab, DARPins, and fusion proteins as, arguably, the three most currently viable strategies for inhibiting the expression and activation of the high affinity FcεRI on mast cells and basophils.
Collapse
Affiliation(s)
- Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
35
|
Moñino-Romero S, Erkert L, Schmidthaler K, Diesner SC, Sallis BF, Pennington L, Jardetzky T, Oettgen HC, Bohle B, Fiebiger E, Szépfalusi Z. The soluble isoform of human FcɛRI is an endogenous inhibitor of IgE-mediated mast cell responses. Allergy 2019; 74:236-245. [PMID: 30030936 DOI: 10.1111/all.13567] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The soluble isoform of FcɛRI, the high-affinity IgE receptor (sFcεRI), is a protein of the IgE network with poorly defined functions. OBJECTIVE To define cellular sources and signals that result in the production of human sFcεRI and study its in vivo functions. METHODS FcεRI-transfected human cell lines (MelJuso), human monocyte-derived dendritic cells (moDCs), and murine bone marrow-derived mast cells (MC) were stimulated by FcεRI cross-linking and release of sFcεRI was analyzed (ELISA, Western Blot). Lysosomal-associated membrane protein 1 degranulation assays and human basophil activation tests (BATs) were used to study IgE-dependent activation. Recombinant sFcεRI (rsFcεRI) was used to assess its role in murine models of anaphylaxis with WT (wild-type) and IgE-/- (IgE-deficient) mice. RESULTS Antigen-specific cross-linking of IgE-loaded FcɛRI on MelJuso cells that express the trimeric or tetrameric receptor isoform induced the production of sFcεRI. Using MCs and moDCs, we confirmed that IgE/FcɛRI activation induces sFcɛRI release. We demonstrated that generation of sFcɛRI requires Src phosphorylation and endo/lysosomal acidification. In experimental mouse models, sFcɛRI diminishes the severity of IgE-mediated anaphylaxis. BATs confirmed that, comparable to the anti-IgE monoclonal antibody omalizumab, sFcɛRI is an inhibitor of the human innate IgE effector axis, implying that sFcɛRI and omalizumab potentially inhibit each other in vivo. CONCLUSION sFcɛRI is produced after antigen-specific IgE/FcɛRI-mediated activation signals and functions as an endogenous inhibitor of IgE loading to FcɛRI and IgE-mediated activation. Our results imply, therefore, that sFcɛRI contributes to a negative regulatory feedback loop that aims at preventing overshooting responses after IgE-mediated immune activation.
Collapse
Affiliation(s)
- S. Moñino-Romero
- Department of Pediatrics and Adolescent Medicine; Medical University Vienna; Vienna Austria
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Boston Children's Hospital; Boston Massachusetts
| | - L. Erkert
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Boston Children's Hospital; Boston Massachusetts
| | - K. Schmidthaler
- Department of Pediatrics and Adolescent Medicine; Medical University Vienna; Vienna Austria
| | - S. C. Diesner
- Department of Pediatrics and Adolescent Medicine; Medical University Vienna; Vienna Austria
| | - B. F. Sallis
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Boston Children's Hospital; Boston Massachusetts
- Department of Pediatrics; Harvard Medical School; Boston Massachusetts
| | - L. Pennington
- Department of Structural Biology; School of Medicine; Stanford University; Stanford California
| | - T. Jardetzky
- Department of Structural Biology; School of Medicine; Stanford University; Stanford California
| | - H. C. Oettgen
- Department of Pediatrics; Harvard Medical School; Boston Massachusetts
- Division of Immunology; Department of Medicine; Boston Children's Hospital; Boston Massachusetts
| | - B. Bohle
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| | - E. Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine; Boston Children's Hospital; Boston Massachusetts
- Department of Pediatrics; Harvard Medical School; Boston Massachusetts
| | - Z. Szépfalusi
- Department of Pediatrics and Adolescent Medicine; Medical University Vienna; Vienna Austria
| |
Collapse
|
36
|
Lyons DO, Plewes MR, Pullen NA. Soluble transforming growth factor beta-1 enhances murine mast cell release of Interleukin 6 in IgE-independent and Interleukin 13 in IgE-dependent settings in vitro. PLoS One 2018; 13:e0207704. [PMID: 30444930 PMCID: PMC6239331 DOI: 10.1371/journal.pone.0207704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/03/2018] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION For immune cells transforming growth factor beta-1 (TGF-β1) can enhance or repress effector functions. Here, we characterize the effects of TGF-β1 on IgE-mediated and IL-33-mediated activation of primary murine mast cells derived from hematopoietic stem cells (bone marrow derived mast cells; BMMC). We also investigated potential interactions between TGF-β1 and stem cell factor (SCF). We conclude TGF-β1 plays a selectively stimulatory role for mast cell cultures in vitro. METHODS BMMCs from C57BL/6 mice were differentiated with IL-3 and then treated with TGF-β1. BMMCs were exposed to TGF-β1, primed with IgE, activated with antigen, and then IL-6 and IL-13 cytokine release was quantified using ELISA. Additionally, the effects of TGF-β1 on both IgE and IL-33-mediated short term activation were observed via flow cytometric analysis of both surface LAMP-1 expression and intracellular IL-6. Receptor colocalization was visualized using fluorescence confocal microscopy and individual receptor expression levels were also quantified. RESULTS Resting IL-6 production increased with TGF-β1 but significance was lost following BMMC activation via IgE receptor (FcεRI) crosslinking. This was similar to a comparison effect due to SCF treatment alone, which also enhanced resting levels of IL-6. TGF-β1 treatment enhanced release of IL-13 only with FcεRI-IgE-mediated activation. TGF-β1 suppressed mobilization of IL-6 with short-term BMMC activation when stimulated with IL-33. Lastly, colocalization patterns of the SCF receptor (CD117) and FcεRI with IgE crosslinking were unaffected by TGF-β1 treatment, but individual expression levels for FcεRI, CD117, and TGFβRII were all reduced following either IgE activation or TGF-β1 treatment; this reduction was partially recovered in BMMCs that were both activated by IgE and treated with TGF-β1. DISCUSSION These data reveal a novel positive effect of soluble TGF-β1 on mast cell activation in vitro, suggesting mast cells may be activated through a non-canonical pathway by TGF-β1. Understanding this interaction will provide insight into the potential role of mast cells in settings where TGF-β1 is produced in an aberrant manner, such as in and around high grade tumors.
Collapse
Affiliation(s)
- David O. Lyons
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, United States of America
| | - Michele R. Plewes
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Nicholas A. Pullen
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, United States of America
| |
Collapse
|
37
|
Maggi L, Rossettini B, Montaini G, Matucci A, Vultaggio A, Mazzoni A, Palterer B, Parronchi P, Maggi E, Liotta F, Annunziato F, Cosmi L. Omalizumab dampens type 2 inflammation in a group of long-term treated asthma patients and detaches IgE from FcεRI. Eur J Immunol 2018; 48:2005-2014. [PMID: 30252930 DOI: 10.1002/eji.201847668] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022]
Abstract
Even if omalizumab is broadly used in the treatment of severe, allergic asthma, the immunological effects in long-term treated patients have not been fully elucidated. To this aim, a cohort of 15 allergic asthmatic patients treated with omalizumab for at least three years was compared with 12 allergic asthma patients treated with standard therapy. Omalizumab treated asthmatic patients showed lower frequencies of circulating plasmacytoid DCs, and lower CD154 expression on CD4 T-helper cells than the control group. Moreover, basophils and DCs from omalizumab-treated patients had lower surface expression of IgE compared to the control group. In a longitudinal evaluation of two patients that started omalizumab treatment, we show that FcεRI free of IgE were evident on basophils just after four weeks of drug administration. Finally, in vitro experiments with basophils obtained from healthy donors confirm that omalizumab is able to detach IgE from high affinity IgE receptors. Collectively these data indicate that long-term omalizumab treatment dampens type 2 inflammation acting on different cell types that play a pivotal role in the pathogenesis of allergic asthma. Moreover, we have identified a further mechanism of action of omalizumab, such as the ability to detach IgE from its receptor.
Collapse
Affiliation(s)
- Laura Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Beatrice Rossettini
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Gianni Montaini
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Andrea Matucci
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Alessandra Vultaggio
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy
| | - Boaz Palterer
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy.,Diagnostic Center of Flow Cytometry and Immunotherapy, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Paola Parronchi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy.,Immunology and Cell Therapy Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Enrico Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy.,Immunology and Cell Therapy Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy.,Diagnostic Center of Flow Cytometry and Immunotherapy, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Immunology and Cell Therapy Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy.,Diagnostic Center of Flow Cytometry and Immunotherapy, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, Florence, Italy.,Immunology and Cell Therapy Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
38
|
Jordakieva G, Jensen-Jarolim E. The impact of allergen exposure and specific immunotherapy on circulating blood cells in allergic rhinitis. World Allergy Organ J 2018; 11:19. [PMID: 30128065 PMCID: PMC6092783 DOI: 10.1186/s40413-018-0197-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
Allergic rhinitis (AR) is an IgE-mediated inflammatory disease of the nasal mucosa with well described local immune responses during allergen exposure. The frequent association of AR with general extra-nasal symptoms and other allergic conditions, such as conjunctivitis and asthma, however, support a more systemic disease impact. In addition to acute elevation of soluble inflammatory mediators in periphery blood, a growing number of studies have reported changes in circulating blood cells after specific nasal allergen challenge or environmental allergen exposure. These findings imply an involvement of specific blood leukocyte subsets, thrombocytes and recently, erythrocytes. This review summarizes the circulating blood cell dynamics associated with allergen exposure in AR subjects reported so far. Additionally, the impact of therapy, particularly allergen-specific immunotherapy (AIT), the only currently available causal treatment reducing AR-related symptoms, is further considered in this context.
Collapse
Affiliation(s)
- Galateja Jordakieva
- 1Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090 Austria
| | - Erika Jensen-Jarolim
- 2Department of Pathophysiology and Allergy Research, Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria.,The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Veterinaerplatz 1, Vienna, 1210 Austria.,AllergyCare, Allergy Diagnosis and Study Center Vienna, Vienna, Austria
| |
Collapse
|
39
|
Gasser P, Eggel A. Targeting IgE in allergic disease. Curr Opin Immunol 2018; 54:86-92. [PMID: 29986302 DOI: 10.1016/j.coi.2018.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022]
Abstract
Immunoglobulin E (IgE) represents the least abundant antibody isotype in human serum. Nevertheless, it has the ability to induce potent allergic reactions. As a key component in the development and manifestation of hypersensitivity responses against usually non-hazardous foreign substances, IgE has become a major target of investigation and the subject of multiple therapeutic approaches for the treatment of allergies. Recent advances in the understanding of pathophysiologic mechanisms underlying IgE-associated allergic disorders have led to the generation of new drug candidates that are currently in development or under clinical evaluation. In this review, we highlight molecular and structural mechanisms underlying the different anti-IgE molecules and suggest a concept of multi-level targeting using a new class of disruptive IgE inhibitors to potentially optimize treatment efficacy.
Collapse
Affiliation(s)
- Pascal Gasser
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland; Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland
| | - Alexander Eggel
- Department of BioMedical Research, University of Bern, Bern, Switzerland; Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland.
| |
Collapse
|
40
|
Balbino B, Conde E, Marichal T, Starkl P, Reber LL. Approaches to target IgE antibodies in allergic diseases. Pharmacol Ther 2018; 191:50-64. [PMID: 29909239 DOI: 10.1016/j.pharmthera.2018.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022]
Abstract
IgE is the antibody isotype found at the lowest concentration in the circulation. However IgE can undeniably play an important role in mediating allergic reactions; best exemplified by the clinical benefits of anti-IgE monoclonal antibody (omalizumab) therapy for some allergic diseases. This review will describe our current understanding of the interactions between IgE and its main receptors FcεRI and CD23 (FcεRII). We will review the known and potential functions of IgE in health and disease: in particular, its detrimental roles in allergic diseases and chronic spontaneous urticaria, and its protective functions in host defense against parasites and venoms. Finally, we will present an overview of the drugs that are in clinical development or have therapeutic potential for IgE-mediated allergic diseases.
Collapse
Affiliation(s)
- Bianca Balbino
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Eva Conde
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France; Université Pierre et Marie Curie, Paris, France; Neovacs SA, Paris, France
| | - Thomas Marichal
- GIGA-Research and Faculty of Veterinary Medicine, University of Liege, 4000, Liege, Belgium; Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| | - Philipp Starkl
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria; Department of Medicine I, Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Laurent L Reber
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France.
| |
Collapse
|
41
|
Abstract
Immunoglobulin E-mediated food allergy is rapidly developing into a global health problem. Publicly available therapeutic intervention strategies are currently restricted to allergen avoidance and emergency treatments. To gain a better understanding of the disease pathophysiology so that new therapies can be developed, major research efforts have been put into studying food allergy in mice. Animal models should reflect the human pathology as closely as possible to allow for a rapid translation of basic science observations to the bedside. In this regard, experimental models of food allergy provide significant challenges for research because of discrepancies between the presentation of disease in humans and mice. The goal of this review is to give a summary of commonly used murine disease models and to discuss how they relate to the human condition. We will focus on epicutaneous sensitization models, on mouse strains that sensitize spontaneously to food as seen in humans, and on models in humanized animals. In summary, expanding the research toolbox of experimental food allergy provides an important step toward closing gaps in our understanding of the derailing immune mechanism that underlies the human disease. The availability of additional experimental models will provide exciting opportunities to discover new intervention points for the treatment of food allergies. (Cell Mol Gastroenterol Hepatol 2018;x:x).
Collapse
Key Words
- Allergen Challenge
- Allergen Sensitization
- Anaphylaxis
- EPIT, epicutaneous immunotherapy
- Epictutaneous Sensitization
- FCER1A, high-affinity immunoglobulin epsilon receptor subunit alpha
- FCERIA
- FcεRI, high-affinity immunoglobulin E receptor
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HSC, hematopoietic stem cell
- Humanized Model
- IL, interleukin
- Ig, immunoglobulin
- IgE
- LCT, long chain triglycerides
- MCPT, mouse mast cell protease
- MCT, medium chain triglycerides
- Murine Models of Food Allergy
- OIT, oral immunotherapy
- PBMC, peripheral blood mononuclear cell
- Spontaneous Sensitization
- TSLP, thymic stromal lymphopoietin
- Th, T helper
- Treg, regulatory T cell
- WASP, Wiskott–Aldrich syndrome protein
Collapse
|
42
|
Berings M, Gevaert P, De Ruyck N, Derycke L, Holtappels G, Pilette C, Bachert C, Lambrecht BN, Dullaers M. FcεRI expression and IgE binding by dendritic cells and basophils in allergic rhinitis and upon allergen immunotherapy. Clin Exp Allergy 2018; 48:970-980. [PMID: 29682789 DOI: 10.1111/cea.13157] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND In humans, both basophils and dendritic cells (DCs) express the high-affinity IgE receptor (FcεRI). OBJECTIVE To gain more insight into the relation between serum IgE levels and FcεRI expression and IgE binding by DCs and basophils in house dust mite (HDM) allergy and during subcutaneous immunotherapy (SCIT). METHODS We measured FcεRI, IgE and HDM allergen on DCs (conventional type 2 DCs, cDC2s; plasmacytoid dendritic cells, pDCs) and basophils by flow cytometry in 22 non-allergic vs 52 allergic subjects and upon HDM SCIT in 28 allergic subjects. IgE levels were measured in serum. RESULTS Serum IgE correlated differentially with FcεRI expression and IgE binding depending on cell type and allergic status. In non-allergic subjects, FcεRI/IgE surface densities increased with serum IgE to a significantly stronger degree on basophils compared to cDC2s. By contrast, in allergic subjects FcεRI/IgE surface densities increased with serum IgE to a slightly stronger degree on cDC2s compared to basophils. In addition, the data set suggests sequential loading of IgE onto FcεRI expressed by these cells (basophils>cDC2s>pDCs). Finally, HDM SCIT induced a temporary increase in serum IgE, which was paralleled by a peak in FcεRI and IgE on DCs, but not on basophils. CONCLUSIONS & CLINICAL RELEVANCE This study provides a comprehensive insight into the relation between serum IgE and FcεRI/IgE on basophils and DC subsets. The novel finding that HDM SCIT induces a temporary increase in FcεRI expression on DCs, but not on basophils, can be an incentive for future research on the potential tolerogenic role of IgE/FcεRI signalling in DCs in the setting of allergen immunotherapy.
Collapse
Affiliation(s)
- M Berings
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium
| | - P Gevaert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - N De Ruyck
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - L Derycke
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - G Holtappels
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - C Pilette
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - C Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - B N Lambrecht
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - M Dullaers
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium.,Clinical Immunology Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
43
|
Maurer M, Altrichter S, Schmetzer O, Scheffel J, Church MK, Metz M. Immunoglobulin E-Mediated Autoimmunity. Front Immunol 2018; 9:689. [PMID: 29686678 PMCID: PMC5900004 DOI: 10.3389/fimmu.2018.00689] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/20/2018] [Indexed: 12/13/2022] Open
Abstract
The study of autoimmunity mediated by immunoglobulin E (IgE) autoantibodies, which may be termed autoallergy, is in its infancy. It is now recognized that systemic lupus erythematosus, bullous pemphigoid (BP), and chronic urticaria, both spontaneous and inducible, are most likely to be mediated, at least in part, by IgE autoantibodies. The situation in other conditions, such as autoimmune uveitis, rheumatoid arthritis, hyperthyroid Graves’ disease, autoimmune pancreatitis, and even asthma, is far less clear but evidence for autoallergy is accumulating. To be certain of an autoallergic mechanism, it is necessary to identify both IgE autoantibodies and their targets as has been done with the transmembrane protein BP180 and the intracellular protein BP230 in BP and IL-24 in chronic spontaneous urticaria. Also, IgE-targeted therapies, such as anti-IgE, must have been shown to be of benefit to patients as has been done with both of these conditions. This comprehensive review of the literature on IgE-mediated autoallergy focuses on three related questions. What do we know about the prevalence of IgE autoantibodies and their targets in different diseases? What do we know about the relevance of IgE autoantibodies in different diseases? What do we know about the cellular and molecular effects of IgE autoantibodies? In addition to providing answers to these questions, based on a broad review of the literature, we outline the current gaps of knowledge in our understanding of IgE autoantibodies and describe approaches to address them.
Collapse
Affiliation(s)
- Marcus Maurer
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Altrichter
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Schmetzer
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg Scheffel
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin K Church
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Metz
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
44
|
Dar SA, Rai G, Ansari MA, Akhter N, Gupta N, Sharma S, Haque S, Ramachandran VG, Wahid M, Rudramurthy SM, Chakrabarti A, Das S. FcɛR1α gene polymorphism shows association with high IgE and anti‐FcɛR1α in Chronic Rhinosinusitis with Nasal Polyposis. J Cell Biochem 2018; 119:4142-4149. [DOI: 10.1002/jcb.26619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Sajad A. Dar
- Department of MicrobiologyUniversity College of Medical Sciences (University of Delhi) & Guru Teg Bahadur HospitalDelhiIndia
- Research and Scientific Studies UnitCollege of Nursing & Allied Health SciencesUniversity of JazanJazanSaudi Arabia
| | - Gargi Rai
- Department of MicrobiologyUniversity College of Medical Sciences (University of Delhi) & Guru Teg Bahadur HospitalDelhiIndia
| | - Mohammad A. Ansari
- Department of MicrobiologyUniversity College of Medical Sciences (University of Delhi) & Guru Teg Bahadur HospitalDelhiIndia
| | - Naseem Akhter
- Department of Laboratory MedicineFaculty of Applied Medical SciencesAlbaha UniversityAlbahaSaudi Arabia
| | - Neelima Gupta
- Department of OtorhinolaryngologyUniversity College of Medical Sciences (University of Delhi) & Guru Teg Bahadur HospitalDelhiIndia
| | - Sonal Sharma
- Department of PathologyUniversity College of Medical Sciences (University of Delhi) & Guru Teg Bahadur HospitalDelhiIndia
| | - Shafiul Haque
- Research and Scientific Studies UnitCollege of Nursing & Allied Health SciencesUniversity of JazanJazanSaudi Arabia
- Department of BiosciencesFaculty of Natural SciencesJamia Millia Islamia (A Central University)New DelhiIndia
| | - Vishnampettai G. Ramachandran
- Department of MicrobiologyUniversity College of Medical Sciences (University of Delhi) & Guru Teg Bahadur HospitalDelhiIndia
| | - Mohd Wahid
- Research and Scientific Studies UnitCollege of Nursing & Allied Health SciencesUniversity of JazanJazanSaudi Arabia
- Department of BiosciencesFaculty of Natural SciencesJamia Millia Islamia (A Central University)New DelhiIndia
| | - Shivprakash M. Rudramurthy
- Department of Medical MicrobiologyPost Graduate Institute of Medical Education & ResearchChandigarhIndia
| | - Arunaloke Chakrabarti
- Department of Medical MicrobiologyPost Graduate Institute of Medical Education & ResearchChandigarhIndia
| | - Shukla Das
- Department of MicrobiologyUniversity College of Medical Sciences (University of Delhi) & Guru Teg Bahadur HospitalDelhiIndia
| |
Collapse
|
45
|
Hellman LT, Akula S, Thorpe M, Fu Z. Tracing the Origins of IgE, Mast Cells, and Allergies by Studies of Wild Animals. Front Immunol 2017; 8:1749. [PMID: 29312297 PMCID: PMC5742104 DOI: 10.3389/fimmu.2017.01749] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/24/2017] [Indexed: 12/23/2022] Open
Abstract
In most industrialized countries, allergies have increased in frequency quite dramatically during the past 50 years. Estimates show that 20–30% of the populations are affected. Allergies have thereby become one of the major medical challenges of the twenty-first century. Despite several theories including the hygiene hypothesis, there are still very few solid clues concerning the causes of this increase. To trace the origins of allergies, we have studied cells and molecules of importance for the development of IgE-mediated allergies, including the repertoire of immunoglobulin genes. These studies have shown that IgE and IgG most likely appeared by a gene duplication of IgY in an early mammal, possibly 220–300 million years ago. Receptors specific for IgE and IgG subsequently appeared in parallel with the increase in Ig isotypes from a subfamily of the recently identified Fc receptor-like molecules. Circulating IgE levels are generally very low in humans and laboratory rodents. However, when dogs and Scandinavian wolfs were analyzed, IgE levels were found to be 100–200 times higher compared to humans, indicating a generally much more active IgE synthesis in free-living animals, most likely connected to intestinal parasite infections. One of the major effector molecules released upon IgE-mediated activation by mast cells are serine proteases. These proteases, which belong to the large family of hematopoietic serine proteases, are extremely abundant and can account for up to 35% of the total cellular protein. Recent studies show that several of these enzymes, including the chymases and tryptases, are old. Ancestors for these enzymes were most likely present in an early mammal more than 200 million years ago before the separation of the three extant mammalian lineages; monotremes, marsupials, and placental mammals. The aim is now to continue these studies of mast cell biology and IgE to obtain additional clues to their evolutionary conserved functions. A focus concerns why the humoral immune response involving IgE and mast cells have become so dysregulated in humans as well as several of our domestic companion animals.
Collapse
Affiliation(s)
- Lars Torkel Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
46
|
Laffleur B, Debeaupuis O, Dalloul Z, Cogné M. B Cell Intrinsic Mechanisms Constraining IgE Memory. Front Immunol 2017; 8:1277. [PMID: 29180995 PMCID: PMC5694035 DOI: 10.3389/fimmu.2017.01277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
Memory B cells and long-lived plasma cells are key elements of adaptive humoral immunity. Regardless of the immunoglobulin class produced, these cells can ensure long-lasting protection but also long-lasting immunopathology, thus requiring tight regulation of their generation and survival. Among all antibody classes, this is especially true for IgE, which stands as the most potent, and can trigger dramatic inflammatory reactions even when present in minute amounts. IgE responses and memory crucially protect against parasites and toxic components of venoms, conferring selective advantages and explaining their conservation in all mammalian species despite a parallel broad spectrum of IgE-mediated immunopathology. Long-term memory of sensitization and anaphylactic responses to allergens constitute the dark side of IgE responses, which can trigger multiple acute or chronic pathologic manifestations, some punctuated with life-threatening events. This Janus face of the IgE response and memory, both necessary and potentially dangerous, thus obviously deserves the most elaborated self-control schemes.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | | | - Zeinab Dalloul
- UMR 7276 Centre National de la Recherche Scientifique: Contrôle de la Réponse Immune B et des Lymphoproliférations, Université de Limoges, Limoges, France
| | - Michel Cogné
- UMR 7276 Centre National de la Recherche Scientifique: Contrôle de la Réponse Immune B et des Lymphoproliférations, Université de Limoges, Limoges, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
47
|
Sensing and responding to allergic response cytokines through a genetically encoded circuit. Nat Commun 2017; 8:1101. [PMID: 29062109 PMCID: PMC5653676 DOI: 10.1038/s41467-017-01211-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/30/2017] [Indexed: 12/18/2022] Open
Abstract
While constantly rising, the prevalence of allergies is globally one of the highest among chronic diseases. Current treatments of allergic diseases include the application of anti-histamines, immunotherapy, steroids, and anti-immunoglobulin E (IgE) antibodies. Here we report mammalian cells engineered with a synthetic signaling cascade able to monitor extracellular pathophysiological levels of interleukin 4 and interleukin 13, two main cytokines orchestrating allergic inflammation. Upon activation of transgenic cells by these cytokines, designed ankyrin repeat protein (DARPin) E2_79, a non-immunogenic protein binding human IgE, is secreted in a precisely controlled and reversible manner. Using human whole blood cell culturing, we demonstrate that the mammalian dual T helper 2 cytokine sensor produces sufficient levels of DARPin E2_79 to dampen histamine release in allergic subjects exposed to allergens. Hence, therapeutic gene networks monitoring disease-associated cytokines coupled with in situ production, secretion and systemic delivery of immunomodulatory biologics may foster advances in the treatment of allergies. The standard treatment for an allergic response is anti-histamines, steroids and anti-IgE antibodies. Here the authors present a genetic circuit that senses IL-4 and IL-13 and responses with DARPin production to bind IgE.
Collapse
|
48
|
Khoryati L, Augusto JF, Shipley E, Contin-Bordes C, Douchet I, Mitrovic S, Truchetet ME, Lazaro E, Duffau P, Couzi L, Jacquemin C, Barnetche T, Vacher P, Schaeverbeke T, Blanco P, Richez C. IgE Inhibits Toll-like Receptor 7- and Toll-like Receptor 9-Mediated Expression of Interferon-α by Plasmacytoid Dendritic Cells in Patients With Systemic Lupus Erythematosus. Arthritis Rheumatol 2017; 68:2221-31. [PMID: 26991804 DOI: 10.1002/art.39679] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 03/08/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Plasmacytoid dendritic cells (PDCs) play a central role in pathogenesis of systemic lupus erythematosus (SLE) through their unique ability to produce large amounts of type I interferon (IFN) upon Toll-like receptor 7 (TLR-7) and TLR-9 triggering. PDCs express specific surface regulatory receptors involved in negative regulation of IFNα secretion. These receptors use the γ-chain of high-affinity Fc receptor (FcR) for IgE, FcɛRI. We undertook this study to test our hypothesis that IgE engagement of FcɛRI on PDCs may impact IFNα production in SLE patients. METHODS Serum levels of total IgE were measured in healthy volunteers, SLE patients, and patients with IgE-dependent allergic disorders. FcɛRI expression on PDCs from SLE patients was evaluated by flow cytometry. Purified PDCs were incubated with monoclonal IgE for 24 hours, then stimulated for 18 hours with TLR agonists or immune complexes (ICs). IFNα production by PDCs was detected by quantitative real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay. Expression of TLR-7, TLR-9, and IFN regulatory factor 7 (IRF-7) in PDCs was quantified by quantitative real-time PCR. RESULTS We observed significantly higher IgE levels in SLE patients with quiescent disease than in those with active disease. In SLE patients, IgE levels correlated inversely with disease activity. IgE levels were not associated with the presence of antinuclear IgE. Purified PDCs treated for 24 hours with monoclonal IgE up-regulated FcɛRI expression in an IgE dose-dependent manner. IgE-treated PDCs significantly decreased IFNα secretion and down-regulated CCR7 expression upon stimulation with TLR-7 and TLR-9 ligands and ICs from lupus patients. IgE treatment down-regulated expression of TLR-9 and IRF-7. CONCLUSION Our results support the notion that IgE plays a protective role in SLE pathogenesis through the modulation of inflammatory response by PDCs.
Collapse
Affiliation(s)
- Liliane Khoryati
- Université de Bordeaux and Immuno ConcEpT, CNRS-UMR 5164, Bordeaux, France
| | | | - Emilie Shipley
- Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Cécile Contin-Bordes
- Université de Bordeaux, Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | | | - Stéphane Mitrovic
- Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marie-Elise Truchetet
- Université de Bordeaux, Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Estibaliz Lazaro
- Université de Bordeaux, Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Pierre Duffau
- Université de Bordeaux, Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Lionel Couzi
- Université de Bordeaux, Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Clément Jacquemin
- Université de Bordeaux and Immuno ConcEpT, CNRS-UMR 5164, Bordeaux, France
| | | | - Pierre Vacher
- Université de Bordeaux and INSERM U916, Institut Bergonié, Bordeaux, France
| | - Thierry Schaeverbeke
- Université de Bordeaux and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Patrick Blanco
- Université de Bordeaux, Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Christophe Richez
- Université de Bordeaux, Immuno ConcEpT, CNRS-UMR 5164, and Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | | |
Collapse
|
49
|
Oettgen HC. Fifty years later: Emerging functions of IgE antibodies in host defense, immune regulation, and allergic diseases. J Allergy Clin Immunol 2017; 137:1631-1645. [PMID: 27263999 DOI: 10.1016/j.jaci.2016.04.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 01/15/2023]
Abstract
Fifty years ago, after a long search, IgE emerged as the circulating factor responsible for triggering allergic reactions. Its extremely low concentration in plasma created significant hurdles for scientists working to reveal its identity. We now know that IgE levels are invariably increased in patients affected by atopic conditions and that IgE provides the critical link between the antigen recognition role of the adaptive immune system and the effector functions of mast cells and basophils at mucosal and cutaneous sites of environmental exposure. This review discusses the established mechanisms of action of IgE in pathologic immediate hypersensitivity, as well as its multifaceted roles in protective immunity, control of mast cell homeostasis, and its more recently revealed immunomodulatory functions.
Collapse
Affiliation(s)
- Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, and the Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
50
|
Josephs DH, Bax HJ, Dodev T, Georgouli M, Nakamura M, Pellizzari G, Saul L, Karagiannis P, Cheung A, Herraiz C, Ilieva KM, Correa I, Fittall M, Crescioli S, Gazinska P, Woodman N, Mele S, Chiaruttini G, Gilbert AE, Koers A, Bracher M, Selkirk C, Lentfer H, Barton C, Lever E, Muirhead G, Tsoka S, Canevari S, Figini M, Montes A, Downes N, Dombrowicz D, Corrigan CJ, Beavil AJ, Nestle FO, Jones PS, Gould HJ, Sanz-Moreno V, Blower PJ, Spicer JF, Karagiannis SN. Anti-Folate Receptor-α IgE but not IgG Recruits Macrophages to Attack Tumors via TNFα/MCP-1 Signaling. Cancer Res 2017; 77:1127-1141. [PMID: 28096174 PMCID: PMC6173310 DOI: 10.1158/0008-5472.can-16-1829] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 01/12/2023]
Abstract
IgE antibodies are key mediators of antiparasitic immune responses, but their potential for cancer treatment via antibody-dependent cell-mediated cytotoxicity (ADCC) has been little studied. Recently, tumor antigen-specific IgEs were reported to restrict cancer cell growth by engaging high-affinity Fc receptors on monocytes and macrophages; however, the underlying therapeutic mechanisms were undefined and in vivo proof of concept was limited. Here, an immunocompetent rat model was designed to recapitulate the human IgE-Fcε receptor system for cancer studies. We also generated rat IgE and IgG mAbs specific for the folate receptor (FRα), which is expressed widely on human ovarian tumors, along with a syngeneic rat tumor model expressing human FRα. Compared with IgG, anti-FRα IgE reduced lung metastases. This effect was associated with increased intratumoral infiltration by TNFα+ and CD80+ macrophages plus elevated TNFα and the macrophage chemoattractant MCP-1 in lung bronchoalveolar lavage fluid. Increased levels of TNFα and MCP-1 correlated with IgE-mediated tumor cytotoxicity by human monocytes and with longer patient survival in clinical specimens of ovarian cancer. Monocytes responded to IgE but not IgG exposure by upregulating TNFα, which in turn induced MCP-1 production by monocytes and tumor cells to promote a monocyte chemotactic response. Conversely, blocking TNFα receptor signaling abrogated induction of MCP-1, implicating it in the antitumor effects of IgE. Overall, these findings show how antitumor IgE reprograms monocytes and macrophages in the tumor microenvironment, encouraging the clinical use of IgE antibody technology to attack cancer beyond the present exclusive reliance on IgG. Cancer Res; 77(5); 1127-41. ©2017 AACR.
Collapse
Affiliation(s)
- Debra H Josephs
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, London, United Kingdom
| | - Heather J Bax
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, London, United Kingdom
- Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Tihomir Dodev
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, London, United Kingdom
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
- Division of Asthma, Allergy and Lung Biology, MRC and Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, London, United Kingdom
| | - Mirella Georgouli
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Mano Nakamura
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Giulia Pellizzari
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Louise Saul
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, London, United Kingdom
- Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Panagiotis Karagiannis
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, London, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Cecilia Herraiz
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Kristina M Ilieva
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, London, United Kingdom
- Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Isabel Correa
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, London, United Kingdom
| | - Matthew Fittall
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, London, United Kingdom
- Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, London, United Kingdom
| | - Patrycja Gazinska
- King's Health Partners Cancer Biobank, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Natalie Woodman
- King's Health Partners Cancer Biobank, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Silvia Mele
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Giulia Chiaruttini
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Amy E Gilbert
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, London, United Kingdom
| | - Alexander Koers
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Marguerite Bracher
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Christopher Selkirk
- Biotherapeutics Development Unit, Cancer Research UK, South Mimms, Hertfordshire, United Kingdom
| | - Heike Lentfer
- Biotherapeutics Development Unit, Cancer Research UK, South Mimms, Hertfordshire, United Kingdom
| | - Claire Barton
- Centre for Drug Development, Cancer Research UK, London, United Kingdom
| | - Elliott Lever
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Gareth Muirhead
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Silvana Canevari
- Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione, IRCCS Istituto Nazionale dei Tumori Milano, Milan, Italy
| | - Mariangela Figini
- Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione, IRCCS Istituto Nazionale dei Tumori Milano, Milan, Italy
| | - Ana Montes
- Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Noel Downes
- Sequani, Ledbury, Herefordshire, United Kingdom
| | - David Dombrowicz
- Institut National de la Santé et de la Recherche Médicale U1011, Lille, France
| | - Christopher J Corrigan
- Division of Asthma, Allergy and Lung Biology, MRC and Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, London, United Kingdom
| | - Andrew J Beavil
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, London, United Kingdom
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
- Division of Asthma, Allergy and Lung Biology, MRC and Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, London, United Kingdom
| | - Frank O Nestle
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, London, United Kingdom
- Immunology and Inflammation Therapeutic Research Area, Sanofi US, Cambridge, Massachusetts
| | - Paul S Jones
- Centre for Drug Development, Cancer Research UK, London, United Kingdom
| | - Hannah J Gould
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, London, United Kingdom
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
- Division of Asthma, Allergy and Lung Biology, MRC and Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, London, United Kingdom
| | - Victoria Sanz-Moreno
- Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Philip J Blower
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - James F Spicer
- Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|