1
|
Zimmer L, Newman-Tancredi A. Serotonin 5-HT 1A receptor biased agonists: The challenge of translating an innovative neuropharmacological concept into therapeutics. Neuropharmacology 2025; 265:110267. [PMID: 39681214 DOI: 10.1016/j.neuropharm.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Serotonin 5-HT1A receptor agonists are prime candidates for CNS drug discovery due to their involvement physiological and pathological processes relevant to neurology and psychiatry. However, the lack of target specificity of many previously characterized agonists has long been a barrier to pharmacological and therapeutic progress. Some of the obstacles may be overcome through the recent concept of biased agonism, which has attracted considerable attention to the development of novel chemical entities at 5-HT, and particularly 5-HT1A receptors, by specifically targeting intracellular signalling pathways that may themselves be linked to specific brain regions and therapeutic indications. There is now abundant translational data demonstrating distinct molecular and functional pharmacological signatures between different 5-HT1A receptor agonists, opening new opportunities for research in neurology and psychiatry. Nevertheless, important limitations need to be overcome, including understanding the precise molecular basis for biased agonism, the need for improved translatable models, and the currently limited clinical data on biased agonists. Here, we review the current limits of our knowledge of 5-HT1A receptor biased agonists and the limitations of available pharmacological tools, counterbalanced by the translational possibilities and therapeutic perspectives opened by novel, highly selective 5-HT1A receptor drug-candidates. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Luc Zimmer
- Université Claude Bernard Lyon 1, Inserm, CNRS, Lyon Neuroscience Research Center, Lyon, France; Hospices Civils de Lyon, Lyon, France.
| | | |
Collapse
|
2
|
Song Y, Lee JH, Kim HK, Lee JH, Ryu YH, Yoo HS, Lyoo CH. Longitudinal Trajectory of Dopamine and Serotonin Transporters in Parkinson Disease. J Nucl Med 2025; 66:286-292. [PMID: 39746754 DOI: 10.2967/jnumed.124.268365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Parkinson disease (PD) is a multisystem disorder marked by progressive dopaminergic neuronal degeneration in the substantia nigra, as well as nondopaminergic systems. Our aim was to investigate longitudinal changes in N-(3-[18F]fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (18F-FP-CIT) binding at the putamen, substantia nigra, and raphe nuclei in PD. Methods: This retrospective cohort study enrolled 127 patients with PD, who underwent 18F-FP-CIT PET scans twice or more, and 71 age- and sex-matched healthy controls. A temporal trajectory model was created to estimate the longitudinal trajectories of 18F-FP-CIT PET specific binding ratios (SBRs) of the putamen, substantia nigra, and raphe nuclei from the prodromal to advanced stages. Associations between SBRs and age and motor severity were evaluated. Results: At baseline, the PD group showed significantly lower 18F-FP-CIT SBR of the putamen and substantia nigra and higher 18F-FP-CIT SBR of the median raphe than did the control group. Longitudinally, 18F-FP-CIT decline of the putamen and substantia nigra began 11.3 and 3.4 y, respectively, before clinical onset on the more affected side. 18F-FP-CIT decline of the raphe nuclei remained constant for up to 20 y of disease duration. Topographically, 18F-FP-CIT SBR of the substantia nigra progressed from the caudal and anterolateral to the rostral and posteromedial regions. Conclusion: These results provide in vivo evidence of decreased striatal synaptic dopamine transporter availability approximately 8 y before decreased nigral neuronal dopamine transporter availability, which is strongly correlated with motor deficit. Serotonin transporter availability in the raphe nuclei was elevated in and remained largely unchanged during the disease span.
Collapse
Affiliation(s)
- Yujin Song
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Hyeok Lee
- Department of Neurology, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Han-Kyeol Kim
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, South Korea; and
| | - Jae Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, South Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, South Korea
| | - Han Soo Yoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea;
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Yang Y, Li X, Lu J, Ge J, Chen M, Yao R, Tian M, Wang J, Liu F, Zuo C. Recent progress in the applications of presynaptic dopaminergic positron emission tomography imaging in parkinsonism. Neural Regen Res 2025; 20:93-106. [PMID: 38767479 PMCID: PMC11246150 DOI: 10.4103/1673-5374.391180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 05/22/2024] Open
Abstract
Nowadays, presynaptic dopaminergic positron emission tomography, which assesses deficiencies in dopamine synthesis, storage, and transport, is widely utilized for early diagnosis and differential diagnosis of parkinsonism. This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism. We conducted a thorough literature search using reputable databases such as PubMed and Web of Science. Selection criteria involved identifying peer-reviewed articles published within the last 5 years, with emphasis on their relevance to clinical applications. The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis. Moreover, when employed in conjunction with other imaging modalities and advanced analytical methods, presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker. This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion. In summary, the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials, ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
Collapse
Affiliation(s)
- Yujie Yang
- Key Laboratory of Arrhythmias, Ministry of Education, Department of Medical Genetics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinyi Li
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaying Lu
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjie Ge
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingjia Chen
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruixin Yao
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Tian
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengtao Liu
- Department of Neurology, National Research Center for Aging and Medicine, National Center for Neurological Disorders, and State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET Center, National Center for Neurological Disorders, and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Sheikh K, Arasteh J, Tajabadi Ebrahimi M, Hesampour A. Membrane vesicles from lactobacillus acidophilus reduce intestinal inflammation and increase 5-HT in the substantia nigra of rats with parkinson's disease. Arch Med Res 2024; 56:103143. [PMID: 39705862 DOI: 10.1016/j.arcmed.2024.103143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND This study aimed to investigate the role of membrane vesicles (MVs) from the probiotic Lactobacillus acidophilus in reducing intestinal inflammation and increasing 5-hydroxytryptamine (5-HT) and tyrosine hydroxylase (TH) in the substantia nigra in the 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease (PD). METHODS Twenty healthy male Wistar rats were randomly assigned to four groups (n = 5 per group), including a) control, b) 6-OHDA, c) 6-OHDA+MV, and d) sham groups. PD was induced by bilateral injection of 6-OHDA. Rats in the 6-OHDA+MV group received MV equivalent to 1 × 107 colony-forming units (CFU)/mL 3 d/wk by oral gavage for 4 wk. At the end of 4 wk, all rats were sacrificed; the brain and small intestine were removed for cellular and molecular analysis. RESULTS The induction of PD by 6-OHDA induced a remarkable decrease in beam-walking (p < 0.0001). In addition, the expression of protein and genes (receptor) of 5-HT (r-5-HT1A) decreased, and that of protein and gene (receptor; GABBR1) of GABA increased in the PD group (p < 0.05 compared with the healthy control group), while MV gavage of 6-OHDA-injected rats controlled these factors in the substantia nigra. In the intestinal tissue, the expression of TLR-4 and α-synuclein gene was significantly increased in the 6-OHDA group compared to the control group (p < 0.0001). CONCLUSION MVs might act as potential beneficial tools to reduce intestinal inflammation, control neurological damage associated with PD, and increase 5-HT neurotransmitters. It seems that MVs from L. acidophilus may have therapeutic potential in Parkinson's neurological disorder by controlling the gut-brain axis.
Collapse
Affiliation(s)
- Khadijeh Sheikh
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Javad Arasteh
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | | | - Ardeshir Hesampour
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Lipari N, Galfano A, Venkatesh S, Grezenko H, Sandoval IM, Manfredsson FP, Bishop C. The effects of chemogenetic targeting of serotonin-projecting pathways on L-DOPA-induced dyskinesia and psychosis in a bilateral rat model of Parkinson's disease. Front Neural Circuits 2024; 18:1463941. [PMID: 39634948 PMCID: PMC11615880 DOI: 10.3389/fncir.2024.1463941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Parkinson's disease (PD) is commonly characterized by severe dopamine (DA) depletion within the substantia nigra (SN) leading to a myriad of motor and non-motor symptoms. One underappreciated and prevalent non-motor symptom, Parkinson's disease-associated psychosis (PDAP), significantly erodes patient and caregiver quality of life yet remains vastly understudied. While the gold standard pharmacotherapy for motor symptoms Levodopa (LD) is initially highly effective, it can lead to motor fluctuations like LD-induced dyskinesia (LID) and non-motor fluctuations such as intermittent PDAP. One source of these fluctuations could be the serotonergic raphe nuclei and their projections. Serotonin (5-HT) neurons possess the machinery necessary to convert and release DA from exogenous LD. In DA-depleted brain regions these 5-HT projections can act as surrogates to the DA system initially compensating but chronically leading to aberrant neuroplasticity which has been linked to LID and may also contribute to non-motor fluctuations. In support, recent work from our lab established a positive relationship between LID and PDAP in parkinsonian rats. Therefore, it was hypothesized that normalizing 5-HT forebrain input would reduce the co-expression of LID and PDAP. Methods To do so, we expressed 5-HT projection specific inhibitory designer receptor exclusively activated by designer drugs (DREADDs) using Cre-dependent AAV9-hM4di in tryptophan hydroxylase 2 (TPH2)-Cre bilaterally 6-OHDA-lesioned rats. Thereafter we used the designer drug Compound 21 to selectively inhibit 5-HT raphe projections during LD treatment to modulate the expression of PDAP, assayed by prepulse inhibition (PPI) and LID, quantified by the abnormal involuntary movements (AIMs) test. Results Our results suggest that chemogenetic inhibition of 5-HT raphe-projecting cells significantly reduces LID without affecting stepping ability or established sensorimotor gating deficits. Discussion Overall, this study provides further evidence for the complex influence of 5-HT raphe-projecting neurons on LD's neurobehavioral effects.
Collapse
Affiliation(s)
- Natalie Lipari
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Ashley Galfano
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Shruti Venkatesh
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Han Grezenko
- Barrow Neurological Institute, Phoenix, AZ, United States
| | | | | | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
6
|
Ballardin D, Makrini-Maleville L, Seper A, Valjent E, Rebholz H. 5-HT4R agonism reduces L-DOPA-induced dyskinesia via striatopallidal neurons in unilaterally 6-OHDA lesioned mice. Neurobiol Dis 2024; 198:106559. [PMID: 38852753 DOI: 10.1016/j.nbd.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Parkinson's disease is caused by a selective vulnerability and cell loss of dopaminergic neurons of the Substantia Nigra pars compacta and, consequently, striatal dopamine depletion. In Parkinson's disease therapy, dopamine loss is counteracted by the administration of L-DOPA, which is initially effective in ameliorating motor symptoms, but over time leads to a burdening side effect of uncontrollable jerky movements, termed L-DOPA-induced dyskinesia. To date, no efficient treatment for dyskinesia exists. The dopaminergic and serotonergic systems are intrinsically linked, and in recent years, a role has been established for pre-synaptic 5-HT1a/b receptors in L-DOPA-induced dyskinesia. We hypothesized that post-synaptic serotonin receptors may have a role and investigated the effect of modulation of 5-HT4 receptor on motor symptoms and L-DOPA-induced dyskinesia in the unilateral 6-OHDA mouse model of Parkinson's disease. Administration of RS 67333, a 5-HT4 receptor partial agonist, reduces L-DOPA-induced dyskinesia without altering L-DOPA's pro-kinetic effect. In the dorsolateral striatum, we find 5-HT4 receptor to be predominantly expressed in D2R-containing medium spiny neurons, and its expression is altered by dopamine depletion and L-DOPA treatment. We further show that 5-HT4 receptor agonism not only reduces L-DOPA-induced dyskinesia, but also enhances the activation of the cAMP-PKA pathway in striatopallidal medium spiny neurons. Taken together, our findings suggest that agonism of the post-synaptic serotonin receptor 5-HT4 may be a novel therapeutic approach to reduce L-DOPA-induced dyskinesia.
Collapse
Affiliation(s)
- Demetra Ballardin
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014 Paris, France
| | | | - Alexander Seper
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria
| | - Emmanuel Valjent
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - Heike Rebholz
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014 Paris, France; Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria; GHU-Paris Psychiatrie et Neuroscience, Hôpital Sainte Anne, F-75014 Paris, France.
| |
Collapse
|
7
|
Marano M, Pilotto A, Padovani A, Gupta D, Vivacqua G, Magliozzi A, Di Lazzaro V, Carta M, Meloni M. The chronic use of serotonin norepinephrine reuptake inhibitors facilitates dyskinesia priming in early Parkinson's disease. J Neurol 2024; 271:3711-3720. [PMID: 38720139 DOI: 10.1007/s00415-024-12400-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Parkinson's disease (PD) patients are frequently exposed to antidepressant medications (ADMs). Norepinephrine (NE) and serotonin (5HT) systems have a role in levodopa-induced dyskinesias (LID) pathophysiology. METHODS We performed a longitudinal analysis on the PPMI cohort including drug-naïve PD patients, who are progressively exposed to dopamine replacement therapies (DRTs) to test the effect of ADM exposure on LID development by the 4th year of follow-up. RESULTS LID prevalence (according to MDS UPDRS score 4.1 ≥ 1) was 16% (42/251); these patients were more likely women (p = 0.01), had higher motor (p < 0.001) and depression scores (p = 0.01) and lower putaminal DAT binding ratio (p = 0.01). LID were associated with the exposure time to L-DOPA (2.2 ± 1.07 vs 2.6 ± 0.9, p = 0.02) and to the exposure to ADMs, in particular to SNRI (4.8% vs 21.4%, p < 0.001). The latter persisted after correcting for significant covariates (e.g., disease duration, cognitive status, motor impairment, depression, dopaminergic denervation). A similar difference in LID prevalence in PD patients exposed vs non-exposed to SNRI was observed on matched data by the real-world TriNetX repository (22% vs 13%, p < 0.001). DISCUSSION This study supports the presence of an effect of SNRI on LID priming in patients with early PD. Independent prospective cohort studies are warranted to further verify such association.
Collapse
Affiliation(s)
- Massimo Marano
- Neurology, Neurophysiology, Neurobiology and Psychiatry Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy.
- Fondazione Policlinico Universitario Campus Bio-Medico, Viale Alvaro del Portillo 200, 00128, Rome, Italy.
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy
- Brain Health Center, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy
- Brain Health Center, University of Brescia, Brescia, Italy
| | - Deepak Gupta
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Giorgio Vivacqua
- Laboratory of Microscopic and Ultrastructural Anatomy, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Alessandro Magliozzi
- Neurology, Neurophysiology, Neurobiology and Psychiatry Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Viale Alvaro del Portillo 200, 00128, Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology, Neurobiology and Psychiatry Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Viale Alvaro del Portillo 200, 00128, Rome, Italy
| | - Manolo Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, CA, Italy
| | - Mario Meloni
- Neurology Unit, Azienda Ospedaliera Universitaria di Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Aslam S, Manfredsson F, Stokes A, Shill H. "Advanced" Parkinson's disease: A review. Parkinsonism Relat Disord 2024; 123:106065. [PMID: 38418318 DOI: 10.1016/j.parkreldis.2024.106065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
There is no consensus driven definition of "advanced" Parkinson's disease (APD) currently. APD has been described in terms of emergence of specific clinical features and clinical milestones of the disease e.g., motor fluctuations, time to increasing falls, emergence of cognitive decline, etc. The pathological burden of disease has been used to characterize various stages of the disease. Imaging markers have been associated with various motor and nonmotor symptoms of advancing disease. In this review, we present an overview of clinical, pathologic, and imaging markers of APD. We also propose a model of disease definition involving longitudinal assessments of these markers as well as quality of life metrics to better understand and predict disease progression in those with Parkinson's disease.
Collapse
Affiliation(s)
- Sana Aslam
- Barrow Neurological Institute, Phoenix, AZ, United States.
| | | | - Ashley Stokes
- Barrow Neurological Institute, Phoenix, AZ, United States
| | - Holly Shill
- Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
9
|
Buchanan AM, Mena S, Choukari I, Vasa A, Crawford JN, Fadel J, Maxwell N, Reagan L, Cruikshank A, Best J, Nijhout HF, Reed M, Hashemi P. Serotonin as a biomarker of toxin-induced Parkinsonism. Mol Med 2024; 30:33. [PMID: 38429661 PMCID: PMC10908133 DOI: 10.1186/s10020-023-00773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/18/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Loss of dopaminergic neurons underlies the motor symptoms of Parkinson's disease (PD). However stereotypical PD symptoms only manifest after approximately 80% of dopamine neurons have died making dopamine-related motor phenotypes unreliable markers of the earlier stages of the disease. There are other non-motor symptoms, such as depression, that may present decades before motor symptoms. METHODS Because serotonin is implicated in depression, here we use niche, fast electrochemistry paired with mathematical modelling and machine learning to, for the first time, robustly evaluate serotonin neurochemistry in vivo in real time in a toxicological model of Parkinsonism, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). RESULTS Mice treated with acute MPTP had lower concentrations of in vivo, evoked and ambient serotonin in the hippocampus, consistent with the clinical comorbidity of depression with PD. These mice did not chemically respond to SSRI, as strongly as control animals did, following the clinical literature showing that antidepressant success during PD is highly variable. Following L-DOPA administration, using a novel machine learning analysis tool, we observed a dynamic shift from evoked serotonin release in the hippocampus to dopamine release. We hypothesize that this finding shows, in real time, that serotonergic neurons uptake L-DOPA and produce dopamine at the expense of serotonin, supporting the significant clinical correlation between L-DOPA and depression. Finally, we found that this post L-DOPA dopamine release was less regulated, staying in the synapse for longer. This finding is perhaps due to lack of autoreceptor control and may provide a ground from which to study L-DOPA induced dyskinesia. CONCLUSIONS These results validate key prior hypotheses about the roles of serotonin during PD and open an avenue to study to potentially improve therapeutics for levodopa-induced dyskinesia and depression.
Collapse
Affiliation(s)
- Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Iman Choukari
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Aditya Vasa
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Jesseca N Crawford
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Jim Fadel
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Nick Maxwell
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
| | - Lawrence Reagan
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, SC, 29209, USA
- Columbia VA Health Care System, Columbia, SC, 29208, USA
| | | | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | | | - Michael Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
10
|
LeWitt PA, Stebbins GT, Christensen KV, Tan R, Pretorius A, Thomsen M. Buspirone and Zolmitriptan Combination for Dyskinesia: A Randomized, Controlled, Crossover Study. Mov Disord 2024; 39:613-618. [PMID: 38314643 DOI: 10.1002/mds.29713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Preclinical evidence suggests that co-administration of the 5-HT1A agonist buspirone and the 5-HT1B/1D agonist zolmitriptan act synergistically to reduce dyskinesia to a greater extent than that achieved by either drug alone. OBJECTIVES Assess the therapeutic potential of a fixed-dose buspirone and zolmitriptan combination in Parkinson's disease (PD) patients with levodopa-induced dyskinesia. METHODS Single-center, randomized, placebo-controlled, two-way crossover study (NCT02439203) of a fixed-dose buspirone/zolmitriptan regimen (10/1.25 mg three times a day) in 30 patients with PD experiencing at least moderately disabling peak-effect dyskinesia. RESULTS Seven days of treatment with buspirone/zolmitriptan added to levodopa significantly reduced dyskinesia as assessed by Abnormal Involuntary Movement Scale scores versus placebo (mean treatment effect vs. placebo: -4.2 [-6.1, -2.3]) without significantly worsening Unified Parkinson's Disease Rating Scale (UPDRS) Part III (ON) scores (mean treatment effect vs. placebo: 0.6 [-0.1, 1.3]). No serious adverse events were reported. CONCLUSIONS In this proof-of-concept study, addition of buspirone/zolmitriptan to the patients' PD medication regimen significantly reduced dyskinesia severity without worsening motor function. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Peter A LeWitt
- Department of Neurology, Wayne State University School of Medicine and Henry Ford Hospital, Detroit, Michigan, USA
| | - Glenn T Stebbins
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Riswanto Tan
- Bukwang Pharmaceutical Co., Ltd, Seoul, South Korea
| | | | | |
Collapse
|
11
|
Chen YH, Kuo TT, Wang V, Cheng PW, Huang EYK, Ma KH, Greig NH, Olson L, Hoffer BJ, Tseng KY. Serotonergic Regulation of Synaptic Dopamine Levels Mitigates L-DOPA-Induced Dyskinesia in a Mouse Model of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:941-964. [PMID: 38905058 PMCID: PMC11307072 DOI: 10.3233/jpd-240080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/23/2024]
Abstract
Background The serotonin (5-HT) system can manipulate the processing of exogenous L-DOPA in the DA-denervated striatum, resulting in the modulation of L-DOPA-induced dyskinesia (LID). Objective To characterize the effects of the serotonin precursor 5-hydroxy-tryptophan (5-HTP) or the serotonin transporter (SERT) inhibitor, Citalopram on L-DOPA-induced behavior, neurochemical signals, and underlying protein expressions in an animal model of Parkinson's disease. Methods MitoPark (MP) mice at 20 weeks of age, subjected to a 14-day administration of L-DOPA/Carbidopa, displayed dyskinesia, referred to as LID. Subsequent investigations explored the effects of 5-HT-modifying agents, such as 5-HTP and Citalopram, on abnormal involuntary movements (AIMs), locomotor activity, neurochemical signals, serotonin transporter activity, and protein expression in the DA-denervated striatum of LID MP mice. Results 5-HTP exhibited duration-dependent suppressive effects on developing and established LID, especially related to abnormal limb movements observed in L-DOPA-primed MP mice. However, Citalopram, predominantly suppressed abnormal axial movement induced by L-DOPA in LID MP mice. We demonstrated that 5-HTP could decrease L-DOPA-upregulation of DA turnover rates while concurrently upregulating 5-HT metabolism. Additionally, 5-HTP was shown to reduce the expressions of p-ERK and p-DARPP-32 in the striatum of LID MP mice. The effect of Citalopram in alleviating LID development may be attributed to downregulation of SERT activity in the dorsal striatum of LID MP mice. Conclusions While both single injection of 5-HTP and Citalopram effectively mitigated the development of LID, the difference in mitigation of AIM subtypes may be linked to the unique effects of these two serotonergic agents on L-DOPA-derived DA and 5-HT metabolism.
Collapse
Affiliation(s)
- Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | - Tung-Tai Kuo
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Vicki Wang
- Doctoral Degree Program in Translational Medicine, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
| | - Pin-Wen Cheng
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | | | - Kuo-Hsing Ma
- Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD, USA
| | - Lars Olson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Barry J. Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
12
|
Holmes S, Tinaz S. Neuroimaging Biomarkers in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2024; 40:617-663. [PMID: 39562459 DOI: 10.1007/978-3-031-69491-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Idiopathic Parkinson's disease (PD) is a neurodegenerative disorder that affects multiple systems in the body and is characterized by a variety of motor and non-motor (e.g., psychiatric, autonomic) symptoms. As the fastest growing neurological disorder expected to affect over 12 million people globally by 2040 (Dorsey, Bloem JAMA Neurol 75(1):9-10. https://doi.org/10.1001/jamaneurol.2017.3299 . PMID: 29131880, 2018), PD poses an enormous individual and public health burden. Currently, there are no therapies that can slow down the disease progression in PD, and existing therapies are limited to symptomatic treatment. Importantly, people in the prodromal phase who are at high risk of developing PD can now be identified, which makes disease prevention an achievable goal. An in-depth understanding of the pathological processes in PD is crucial for prevention and treatment development. Advanced multimodal neuroimaging techniques provide unique biomarkers that can further our understanding of PD at multiple levels ranging from neurotransmitters to neural networks. These neuroimaging biomarkers also have value in clinical application, for example, in the differential diagnosis of PD. As the field continues to advance, neuroimaging biomarkers are expected to become more specific, more widely accessible, and can be readily incorporated into translational research for treatment development in PD.
Collapse
Affiliation(s)
- Sophie Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Sule Tinaz
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
14
|
Majumdar M, Badwaik H. Trends on Novel Targets and Nanotechnology-Based Drug Delivery System in the Treatment of Parkinson's disease: Recent Advancement in Drug Development. Curr Drug Targets 2024; 25:987-1011. [PMID: 39313872 DOI: 10.2174/0113894501312703240826070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that impacts a significant portion of the population. Despite extensive research, an effective cure for PD remains elusive, and conventional pharmacological treatments often face limitations in efficacy and management of symptoms. There has been a lot of discussion about using nanotechnology to increase the bioavailability of small- molecule drugs to target cells in recent years. It is possible that PD treatment might become far more effective and have fewer side effects if medication delivery mechanisms were to be improved. Potential alternatives to pharmacological therapy for molecular imaging and treatment of PD may lie in abnormal proteins such as parkin, α-synuclein, leucine-rich repeat serine and threonine protein kinase 2. Published research has demonstrated encouraging outcomes when nanomedicine-based approaches are used to address the challenges of PD therapy. So, to address the present difficulties of antiparkinsonian treatment, this review outlines the key issues and limitations of antiparkinsonian medications, new therapeutic strategies, and the breadth of delivery based on nanomedicine. This review covers a wide range of subjects, including drug distribution in the brain, the efficacy of drug-loaded nano-carriers in crossing the blood-brain barrier, and their release profiles. In PD, the nano-carriers are also used. Novel techniques of pharmaceutical delivery are currently made possible by vesicular carriers, which eliminate the requirement to cross the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Manisha Majumdar
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| | - Hemant Badwaik
- Department of Pharmacy, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India
| |
Collapse
|
15
|
van Wamelen DJ, Leta V, Chaudhuri KR, Jenner P. Future Directions for Developing Non-dopaminergic Strategies for the Treatment of Parkinson's Disease. Curr Neuropharmacol 2024; 22:1606-1620. [PMID: 37526188 PMCID: PMC11284721 DOI: 10.2174/1570159x21666230731110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 08/02/2023] Open
Abstract
The symptomatic treatment of Parkinson's disease (PD) has been dominated by the use of dopaminergic medication, but significant unmet need remains, much of which is related to non-motor symptoms and the involvement of non-dopaminergic transmitter systems. As such, little has changed in the past decades that has led to milestone advances in therapy and significantly improved treatment paradigms and patient outcomes, particularly in relation to symptoms unresponsive to levodopa. This review has looked at how pharmacological approaches to treatment are likely to develop in the near and distant future and will focus on two areas: 1) novel non-dopaminergic pharmacological strategies to control motor symptoms; and 2) novel non-dopaminergic approaches for the treatment of non-motor symptoms. The overall objective of this review is to use a 'crystal ball' approach to the future of drug discovery in PD and move away from the more traditional dopamine-based treatments. Here, we discuss promising non-dopaminergic and 'dirty drugs' that have the potential to become new key players in the field of Parkinson's disease treatment.
Collapse
Affiliation(s)
- Daniel J. van Wamelen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
- Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Valentina Leta
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - K. Ray Chaudhuri
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Peter Jenner
- School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| |
Collapse
|
16
|
Touati I, Abdalla M, Boulaamane Y, Al-Hoshani N, Alouffi A, Britel MR, Maurady A. Identification of novel dual acting ligands targeting the adenosine A2A and serotonin 5-HT1A receptors. J Biomol Struct Dyn 2023; 42:12580-12595. [PMID: 37850444 DOI: 10.1080/07391102.2023.2270753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
GPCRs are a family of transmembrane receptors that are profoundly linked to various neurological disorders, among which is Parkinson's disease (PD). PD is the second most ubiquitous neurological disorder after Alzheimer's disease, characterized by the depletion of dopamine in the central nervous system due to the impairment of dopaminergic neurons, leading to involuntary movements or dyskinesia. The current standard of care for PD is Levodopa, a dopamine precursor, yet the chronic use of this agent can exacerbate motor symptoms. Recent studies have investigated the effects of combining A2AR antagonist and 5-HT1A agonist on dyskinesia and motor complications in animal models of PD. It has been proved that the drug combination has significantly improved involuntary movements while maintaining motor activity, highlighting as a result new lines of therapy for PD treatments, through the regulation of both receptors. Using a combination of ligand-based pharmacophore modelling, virtual screening, and molecular dynamics simulation, this study intends on identifying potential dual-target compounds from IBScreen. Results showed that the selected models displayed good enrichment metrics with a near perfect receiver operator characteristic (ROC) and Area under the accumulation curve (AUAC) values, signifying that the models are both specific and sensitive. Molecular docking and ADMET analysis revealed that STOCK2N-00171 could be potentially active against A2AR and 5-HT1A. Post-MD analysis confirmed that the ligand exhibits a stable behavior throughout the simulation while maintaining crucial interactions. These results imply that STOCK2N-00171 can serve as a blueprint for the design of novel and effective dual-acting ligands targeting A2AR and 5-HT1A.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Iman Touati
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yassir Boulaamane
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
17
|
Chaib S, Vidal B, Bouillot C, Depoortere R, Newman-Tancredi A, Zimmer L, Levigoureux E. Multimodal imaging study of the 5-HT 1A receptor biased agonist, NLX-112, in a model of L-DOPA-induced dyskinesia. Neuroimage Clin 2023; 39:103497. [PMID: 37632990 PMCID: PMC10474496 DOI: 10.1016/j.nicl.2023.103497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
INTRODUCTION The leading treatment for motor signs of Parkinson's disease is L-DOPA, but, upon extended use, it can lead to levodopa-induced dyskinesia (LID). Serotonergic neurons are involved in LID etiology and previous pre-clinical studies have shown that NLX-112, a 5-HT1A biased agonist, has robust antidyskinetic effects. Here, we investigated its effects in hemiparkinsonian (HPK) rats with a unilateral nigrostriatal 6-OHDA lesion. METHODS We compared HPK rats with LID (i.e., sensitized to the dyskinetic effects of chronic L-DOPA) and without LID (HPK-non-LID), using [18F]FDG PET imaging and fMRI functional connectivity following systemic treatment with saline, L-DOPA, NLX-112 or L-DOPA + NLX-112. RESULTS In HPK-non-LID rats, [18F]FDG PET experiments showed that L-DOPA led to hypermetabolism in motor areas (cerebellum, brainstem, and mesencephalic locomotor region) and to hypometabolism in cortical regions. L-DOPA effects were also observed in HPK-LID rats, with the additional emergence of hypermetabolism in raphe nuclei and hypometabolism in hippocampus and striatum. NLX-112 attenuated L-DOPA-induced raphe hypermetabolism and cingulate cortex hypometabolism in HPK-LID rats. Moreover, in fMRI experiments NLX-112 partially corrected the altered neural circuit connectivity profile in HPK-LID rats, through activity in regions rich in 5-HT1A receptors. CONCLUSION This neuroimaging study sheds light for the first time on the brain activation patterns of HPK-LID rats. The 5-HT1A receptor agonist, NLX-112, prevents occurrence of LID, likely by activating pre-synaptic autoreceptors in the raphe nuclei, resulting in a partial restoration of brain metabolic and connectivity profiles. In addition, NLX-112 also rescues L-DOPA-induced deficits in cortical activation, suggesting potential benefit against non-motor symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Sarah Chaib
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Benjamin Vidal
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Lyon, France; CERMEP-Imaging Platform, Bron, France.
| | - Elise Levigoureux
- Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS, INSERM, Lyon, France; Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
18
|
Conti Mazza MM, Centner A, Werner DF, Bishop C. Striatal serotonin transporter gain-of-function in L-DOPA-treated, hemi-parkinsonian rats. Brain Res 2023; 1811:148381. [PMID: 37127174 PMCID: PMC10562932 DOI: 10.1016/j.brainres.2023.148381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
L-DOPA is the standard treatment for Parkinson's disease (PD), but chronic treatment typically leads to L-DOPA-induced dyskinesia (LID). LID involves a complex interaction between the remaining dopamine (DA) system and the semi-homologous serotonin (5-HT) system. Since serotonin transporters (SERT) have some affinity for DA uptake, they may serve as a functional compensatory mechanism when DA transporters (DAT) are scant. DAT and SERT's functional contributions in the dyskinetic brain have not been well delineated. The current investigation sought to determine how DA depletion and L-DOPA treatment affect DAT and SERT transcriptional processes, translational processes, and functional DA uptake in the 6-hydroxydopamine-lesioned hemi-parkinsonian rat. Rats were counterbalanced for motor impairment into equally lesioned treatment groups then given daily L-DOPA (0 or 6 mg/kg) for 2 weeks. At the end of treatment, the substantia nigra was processed for tyrosine hydroxylase (TH) and DAT gene expression and dorsal raphe was processed for SERT gene expression. The striatum was processed for synaptosomal DAT and SERT protein expression and ex vivo DA uptake. Nigrostriatal DA loss severely reduced DAT mRNA and protein expression in the striatum with minimal changes in SERT. L-DOPA treatment, while not significantly affecting DAT or SERT alone, did increase striatal SERT:DAT protein ratios. Using ex vivo microdialysis, L-DOPA treatment increased DA uptake via SERT when DAT was depleted. Overall, these results suggest that DA loss and L-DOPA treatment uniquely alter DAT and SERT, revealing implications for monoamine transporters as potential biomarkers and therapeutic targets in the hemi-parkinsonian model and dyskinetic PD patients.
Collapse
Affiliation(s)
- Melissa M Conti Mazza
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - Ashley Centner
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - David F Werner
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
19
|
di Biase L, Pecoraro PM, Carbone SP, Caminiti ML, Di Lazzaro V. Levodopa-Induced Dyskinesias in Parkinson's Disease: An Overview on Pathophysiology, Clinical Manifestations, Therapy Management Strategies and Future Directions. J Clin Med 2023; 12:4427. [PMID: 37445461 DOI: 10.3390/jcm12134427] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Since its first introduction, levodopa has become the cornerstone for the treatment of Parkinson's disease and remains the leading therapeutic choice for motor control therapy so far. Unfortunately, the subsequent appearance of abnormal involuntary movements, known as dyskinesias, is a frequent drawback. Despite the deep knowledge of this complication, in terms of clinical phenomenology and the temporal relationship during a levodopa regimen, less is clear about the pathophysiological mechanisms underpinning it. As the disease progresses, specific oscillatory activities of both motor cortical and basal ganglia neurons and variation in levodopa metabolism, in terms of the dopamine receptor stimulation pattern and turnover rate, underlie dyskinesia onset. This review aims to provide a global overview on levodopa-induced dyskinesias, focusing on pathophysiology, clinical manifestations, therapy management strategies and future directions.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Simona Paola Carbone
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Maria Letizia Caminiti
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Vincenzo Di Lazzaro
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
20
|
Grigoriou S, Espa E, Odin P, Timpka J, von Grothusen G, Jakobsson A, Cenci MA. Comparison of dyskinesia profiles after L-DOPA dose challenges with or without dopamine agonist coadministration. Neuropharmacology 2023:109630. [PMID: 37315840 DOI: 10.1016/j.neuropharm.2023.109630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Many patients with Parkinson's disease (PD) experiencing l-DOPA-induced dyskinesia (LID) receive adjunct treatment with dopamine agonists, whose functional impact on LID is unknown. We set out to compare temporal and topographic profiles of abnormal involuntary movements (AIMs) after l-DOPA dose challenges including or not the dopamine agonist ropinirole. Twenty-five patients with PD and a history of dyskinesias were sequentially administered either l-DOPA alone (150% of usual morning dose) or an equipotent combination of l-DOPA and ropinirole in random order. Involuntary movements were assessed by two blinded raters prior and every 30 min after drug dosing using the Clinical Dyskinesia Rating Scale (CDRS). A sensor-recording smartphone was secured to the patients' abdomen during the test sessions. The two raters' CDRS scores were highly reliable and concordant with models of hyperkinesia presence and severity trained on accelerometer data. The dyskinesia time curves differed between treatments as the l-DOPA-ropinirole combination resulted in lower peak severity but longer duration of the AIMs compared with l-DOPA alone. At the peak of the AIMs curve (60-120 min), l-DOPA induced a significantly higher total hyperkinesia score, whereas in the end phase (240-270 min), both hyperkinesia and dystonia tended to be more severe after the l-DOPA-ropinirole combination (though reaching statistical significance only for the item, arm dystonia). Our results pave the way for the introduction of a combined l-DOPA-ropinirole challenge test in the early clinical evaluation of antidyskinetic treatments. Furthermore, we propose a machine-learning method to predict CDRS hyperkinesia severity using accelerometer data.
Collapse
Affiliation(s)
- Sotirios Grigoriou
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Neurology, Rehabilitation Medicine, Memory and Geriatrics, Skane University Hospital, Sweden.
| | - Elena Espa
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Per Odin
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Neurology, Rehabilitation Medicine, Memory and Geriatrics, Skane University Hospital, Sweden
| | - Jonathan Timpka
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Neurology, Rehabilitation Medicine, Memory and Geriatrics, Skane University Hospital, Sweden
| | - Gustaf von Grothusen
- Division of Mathematical Statistics, Center for Mathematical Sciences, Lund University, Lund, Sweden
| | - Andreas Jakobsson
- Division of Mathematical Statistics, Center for Mathematical Sciences, Lund University, Lund, Sweden
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Wolff A, Schumacher NU, Pürner D, Machetanz G, Demleitner AF, Feneberg E, Hagemeier M, Lingor P. Parkinson's disease therapy: what lies ahead? J Neural Transm (Vienna) 2023; 130:793-820. [PMID: 37147404 PMCID: PMC10199869 DOI: 10.1007/s00702-023-02641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
The worldwide prevalence of Parkinson's disease (PD) has been constantly increasing in the last decades. With rising life expectancy, a longer disease duration in PD patients is observed, further increasing the need and socioeconomic importance of adequate PD treatment. Today, PD is exclusively treated symptomatically, mainly by dopaminergic stimulation, while efforts to modify disease progression could not yet be translated to the clinics. New formulations of approved drugs and treatment options of motor fluctuations in advanced stages accompanied by telehealth monitoring have improved PD patients care. In addition, continuous improvement in the understanding of PD disease mechanisms resulted in the identification of new pharmacological targets. Applying novel trial designs, targeting of pre-symptomatic disease stages, and the acknowledgment of PD heterogeneity raise hopes to overcome past failures in the development of drugs for disease modification. In this review, we address these recent developments and venture a glimpse into the future of PD therapy in the years to come.
Collapse
Affiliation(s)
- Andreas Wolff
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Nicolas U Schumacher
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Dominik Pürner
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Gerrit Machetanz
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Antonia F Demleitner
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Emily Feneberg
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Maike Hagemeier
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Paul Lingor
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
22
|
Pinna A, Parekh P, Morelli M. Serotonin 5-HT 1A receptors and their interactions with adenosine A 2A receptors in Parkinson's disease and dyskinesia. Neuropharmacology 2023; 226:109411. [PMID: 36608814 DOI: 10.1016/j.neuropharm.2023.109411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
The dopamine neuronal loss that characterizes Parkinson's Disease (PD) is associated to changes in neurotransmitters, such as serotonin and adenosine, which contribute to the symptomatology of PD and to the onset of dyskinetic movements associated to levodopa treatment. The present review describes the role played by serotonin 5-HT1A receptors and the adenosine A2A receptors on dyskinetic movements induced by chronic levodopa in PD. The focus is on preclinical and clinical results showing the interaction between serotonin 5-HT1A receptors and other receptors such as 5-HT1B receptors and adenosine A2A receptors. 5-HT1A/1B receptor agonists and A2A receptor antagonists, administered in combination, contrast dyskinetic movements induced by chronic levodopa without impairing motor behaviour, suggesting that this drug combination might be a useful therapeutic approach for counteracting the PD motor deficits and dyskinesia associated with chronic levodopa treatment. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, c/o Department of Biomedical Sciences, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy.
| | - Pathik Parekh
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy
| | - Micaela Morelli
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, c/o Department of Biomedical Sciences, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy; Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy.
| |
Collapse
|
23
|
Budrow C, Elder K, Coyle M, Centner A, Lipari N, Cohen S, Glinski J, Kinzonzi N, Wheelis E, McManus G, Manfredsson F, Bishop C. Broad Serotonergic Actions of Vortioxetine as a Promising Avenue for the Treatment of L-DOPA-Induced Dyskinesia. Cells 2023; 12:837. [PMID: 36980178 PMCID: PMC10047495 DOI: 10.3390/cells12060837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder characterized by motor symptoms that result from loss of nigrostriatal dopamine (DA) cells. While L-DOPA provides symptom alleviation, its chronic use often results in the development of L-DOPA-induced dyskinesia (LID). Evidence suggests that neuroplasticity within the serotonin (5-HT) system contributes to LID onset, persistence, and severity. This has been supported by research showing 5-HT compounds targeting 5-HT1A/1B receptors and/or the 5-HT transporter (SERT) can reduce LID. Recently, vortioxetine, a multimodal 5-HT compound developed for depression, demonstrated acute anti-dyskinetic effects. However, the durability and underlying pharmacology of vortioxetine's anti-dyskinetic actions have yet to be delineated. To address these gaps, we used hemiparkinsonian rats in Experiment 1, examining the effects of sub-chronic vortioxetine on established LID and motor performance. In Experiment 2, we applied the 5-HT1A antagonist WAY-100635 or 5-HT1B antagonist SB-224289 in conjunction with L-DOPA and vortioxetine to determine the contributions of each receptor to vortioxetine's effects. The results revealed that vortioxetine consistently and dose-dependently attenuated LID while independently, 5-HT1A and 5-HT1B receptors each partially reversed vortioxetine's effects. Such findings further support the promise of pharmacological strategies, such as vortioxetine, and indicate that broad 5-HT actions may provide durable responses without significant side effects.
Collapse
Affiliation(s)
- Carla Budrow
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Kayla Elder
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Michael Coyle
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Ashley Centner
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Natalie Lipari
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Sophie Cohen
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - John Glinski
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - N’Senga Kinzonzi
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Emily Wheelis
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Grace McManus
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Fredric Manfredsson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| |
Collapse
|
24
|
Hsam O, Kohl Z. Serotonin in synucleinopathies. Behav Brain Res 2023; 445:114367. [PMID: 36863462 DOI: 10.1016/j.bbr.2023.114367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Dysfunction of the serotonergic system represents an important feature in synucleinopathies like Parkinson disease (PD), dementia with Lewy bodies (DLB) and Multiple system atrophy (MSA). Serotonergic fibers from the raphe nuclei (RN) extend broadly throughout the central nervous system, innervating several brain areas affected in synucleinopathies. Alterations of the serotonergic system are associated with non-motor symptoms or motor complications in PD as well as with autonomic features of MSA. Postmortem studies, data from transgenic animal models and imaging techniques greatly contributed to the understanding of this serotonergic pathophysiology in the past, even leading to preclinical and clinical candidate drug tests targeting different parts of the serotonergic system. In this article, we review most recent work extending the knowledge of the serotonergic system and highlighting its relevance for the pathophysiology of synucleinopathies.
Collapse
Affiliation(s)
- Ohnmar Hsam
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Zacharias Kohl
- Department of Neurology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
25
|
Su D, Gan Y, Zhang Z, Cui Y, Zhang Z, Liu Z, Wang Z, Zhou J, Sossi V, Stoessl AJ, Wu T, Jing J, Feng T. Multimodal Imaging of Substantia Nigra in Parkinson's Disease with Levodopa-Induced Dyskinesia. Mov Disord 2023; 38:616-625. [PMID: 36799459 DOI: 10.1002/mds.29320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Degeneration of the substantia nigra (SN) may contribute to levodopa-induced dyskinesia (LID) in Parkinson's disease (PD), but the exact characteristics of SN in LID remain unclear. OBJECTIVE To further understand the pathogenesis of patients with PD with LID (PD-LID), we explored the structural and functional characteristics of SN in PD-LID using multimodal magnetic resonance imaging (MRI). METHODS Twenty-nine patients with PD-LID, 37 patients with PD without LID (PD-nLID), and 28 healthy control subjects underwent T1-weighted MRI, quantitative susceptibility mapping, neuromelanin-sensitive MRI, multishell diffusion MRI, and resting-state functional MRI. Different measures characterizing the SN were obtained using a region of interest-based approach. RESULTS Compared with patients with PD-nLID and healthy control subjects, the quantitative susceptibility mapping values of SN pars compacta (SNpc) were significantly higher (P = 0.049 and P = 0.00002), and the neuromelanin contrast-to-noise ratio values in SNpc were significantly lower (P = 0.012 and P = 0.000002) in PD-LID. The intracellular volume fraction of the posterior SN in PD-LID was significantly higher compared with PD-nLID (P = 0.037). Resting-state fMRI indicated that PD-LID in the medication off state showed higher functional connectivity between the SNpc and putamen compared with PD-nLID (P = 0.031), and the functional connectivity changes in PD-LID were positively correlated with Unified Dyskinesia Rating Scale total scores (R = 0.427, P = 0.042). CONCLUSIONS Our multimodal imaging findings highlight greater neurodegeneration in SN and the altered nigrostriatal connectivity in PD-LID. These characteristics provide a new perspective into the role of SN in the pathophysiological mechanisms underlying PD-LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dongning Su
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yawen Gan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhe Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yusha Cui
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhijin Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhu Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada.,Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tao Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
26
|
The Role of α-Synuclein in the Regulation of Serotonin System: Physiological and Pathological Features. Biomedicines 2023; 11:biomedicines11020541. [PMID: 36831077 PMCID: PMC9953742 DOI: 10.3390/biomedicines11020541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
In patients affected by Parkinson's disease (PD), up to 50% of them experience cognitive changes, and psychiatric disturbances, such as anxiety and depression, often precede the onset of motor symptoms and have a negative impact on their quality of life. Pathologically, PD is characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and the presence of intracellular inclusions, called Lewy bodies and Lewy neurites, composed mostly of α-synuclein (α-Syn). Much of PD research has focused on the role of α-Syn aggregates in the degeneration of SNc DA neurons due to the impact of striatal DA deficits on classical motor phenotypes. However, abundant Lewy pathology is also found in other brain regions including the midbrain raphe nuclei, which may contribute to non-motor symptoms. Indeed, dysfunction of the serotonergic (5-HT) system, which regulates mood and emotional pathways, occurs during the premotor phase of PD. However, little is known about the functional consequences of α-Syn inclusions in this neuronal population other than DA neurons. Here, we provide an overview of the current knowledge of α-Syn and its role in regulating the 5-HT function in health and disease. Understanding the relative contributions to α-Syn-linked alterations in the 5-HT system may provide a basis for identifying PD patients at risk for developing depression and could lead to a more targeted therapeutic approach.
Collapse
|
27
|
Lipari N, Centner A, Glinski J, Cohen S, Manfredsson FP, Bishop C. Characterizing the relationship between L-DOPA-induced-dyskinesia and psychosis-like behaviors in a bilateral rat model of Parkinson's disease. Neurobiol Dis 2023; 176:105965. [PMID: 36526089 DOI: 10.1016/j.nbd.2022.105965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease associated psychosis (PDAP) is a prevalent non-motor symptom (NMS) that significantly erodes patients' and caregivers' quality of life yet remains vastly understudied. One potential source of PDAP in late-stage Parkinson's disease (PD) is the common dopamine (DA) replacement therapy for motor symptoms, Levodopa (L-DOPA). Given the high incidence of L-DOPA-induced dyskinesia (LID) in later phases of PD, this study sought to characterize the relationship between PDAP and LID in a bilateral medial forebrain bundle 6-hydroxydopamine hydrobromide (6-OHDA) lesion rat model. To assess PDAP in this model, prepulse inhibition (PPI), a well-validated assay of sensorimotor gating, was employed. First, we tested whether a bilateral lesion alone or after chronic L-DOPA treatment was sufficient to induce PPI dysfunction. Rats were also monitored for LID development, using the abnormal involuntary movements (AIMs) test, to examine PPI and LID associations. In experiment 2, Vilazodone (VZD), a serotonin transporter (SERT) blocker and 1A receptor (5-HT1A) partial agonist was administered to test its potential efficacy in reducing LID and PPI dysfunction. Once testing was complete, tissue was collected for high performance liquid chromatography (HPLC) to examine the monoamine levels in motor and non-motor circuits. Results indicate that bilateral DA lesions produced motor deficits and that chronic L-DOPA induced moderate AIMs; importantly, rats that developed more severe AIMs were more likely to display sensorimotor gating dysfunction. In addition, VZD treatment dose-dependently reduced L-DOPA-induced AIMs without impairing L-DOPA efficacy, although VZD's effects on PPI were limited. Altogether, this project established the bilateral 6-OHDA lesion model accurately portrayed LID and PDAP-like behaviors, uncovered their potential relationship, and finally, demonstrated the utility of VZD for reducing LID.
Collapse
Affiliation(s)
- Natalie Lipari
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Ashley Centner
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - John Glinski
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Sophie Cohen
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | | | | |
Collapse
|
28
|
LeWitt P, Ellenbogen A, Burdick D, Gunzler S, Gil R, Dhall R, Banisadr G, D'Souza R. Improving levodopa delivery: IPX203, a novel extended-release carbidopa-levodopa formulation. Clin Park Relat Disord 2023; 8:100197. [PMID: 37181100 PMCID: PMC10172697 DOI: 10.1016/j.prdoa.2023.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction IPX203 is a novel oral extended-release (ER) formulation of carbidopa (CD) and levodopa (LD) developed to address the short half-life and limited area for absorption of LD in the gastrointestinal tract. This paper presents the formulation strategy of IPX203 and its relationship to the pharmacokinetics (PK) and pharmacodynamic profile of IPX203 in Parkinson's disease (PD) patients. Methods IPX203 was developed with an innovative technology containing immediate-release (IR) granules and ER beads that provides rapid LD absorption to achieve desired plasma concentration and maintaining it within the therapeutic range for longer than can be achieved with current oral LD formulations. The PK and pharmacodynamics of IPX203 were compared with IR CD-LD in a Phase 2, open-label, rater-blinded, multicenter, crossover study in patients with advanced PD. Results Pharmacokinetic data showed that on Day 15, LD concentrations were sustained above 50% of peak for 6.2 h with IPX203 vs. 3.9 h with IR CD-LD (P = 0.0002). Pharmacodynamic analysis demonstrated that mean MDS-UPDRS Part III scores prior to administration of the first daily dose were significantly lower among patients receiving IPX203 than IR CD-LD (LS mean difference -8.1 [25.0], P = 0.0255). In a study conducted in healthy volunteers, a high-fat, high-calorie meal delayed plasma LD Tmax by 2 h, and increased Cmax and AUCtau by approximately 20% compared with a fasted state. Sprinkling capsule contents on applesauce did not affect PK parameters. Conclusion These data confirm that the unique design of IPX203 addresses some of the limitations of oral LD delivery.
Collapse
Affiliation(s)
- Peter LeWitt
- Departments of Neurology, Wayne State University School of Medicine and Henry Ford Hospital, Sastry Foundation Endowed Chair in Neurology, 4201 St. Antoine, Detroit, MI 48201, United States
| | - Aaron Ellenbogen
- Michigan Institute for Neurological Disorders and Quest Research Institute, 28595 Orchard Lake Road, #200, Farmington Hills, MI 48334, United States
| | - Daniel Burdick
- Booth Gardner Parkinson’s Care Center, EvergreenHealth Medical Center, 12039 NE 128th Street #300, Kirkland, WA 98034, United States
| | - Steven Gunzler
- Parkinson’s and Movement Disorders Center, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, United States
| | - Ramon Gil
- Parkinson’s Disease Treatment Center of Southwest Florida, 4235 Kings Highway, #102, Port Charlotte, FL 33980, United States
| | - Rohit Dhall
- University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR 72205, United States
| | - Ghazal Banisadr
- Amneal Pharmaceuticals, LLC, 400 Crossing Boulevard, Bridgewater, NJ 08807, United States
- Corresponding author at: Amneal Pharmaceuticals, 400 Crossing Boulevard, 3rd Floor, Bridgewater, NJ 08807, United States.
| | - Richard D'Souza
- Amneal Pharmaceuticals, LLC, 400 Crossing Boulevard, Bridgewater, NJ 08807, United States
| |
Collapse
|
29
|
Si Q, Gan C, Zhang H, Cao X, Sun H, Wang M, Wang L, Yuan Y, Zhang K. Altered dynamic functional network connectivity in levodopa-induced dyskinesia of Parkinson's disease. CNS Neurosci Ther 2022; 29:192-201. [PMID: 36229900 PMCID: PMC9804048 DOI: 10.1111/cns.13994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS The aim of this study was to clarify the dynamic neural activity of levodopa-induced dyskinesia (LID) in Parkinson's disease (PD). METHODS Using dynamic functional network connectivity (dFNC) analysis, we evaluated 41 PD patients with LID (LID group) and 34 PD patients without LID (No-LID group). Group spatial independent component analysis and sliding-window approach were employed. Moreover, we applied a k-means clustering algorithm on windowed functional connectivity (FC) matrices to identify reoccurring FC patterns (i.e., states). RESULTS The optimal number of states was determined to be five, the so-called State 1, 2, 3, 4, and 5. In ON phase, compared with No-LID group, LID group occurred more frequently and dwelled longer in strongly connected State 1, characterized by strong positive connections between visual network (VIS) and sensorimotor network (SMN). When switching from OFF to ON phase, LID group occurred less frequently in State 3 and State 4. Meanwhile, LID group dwelled longer in State 2 and shorter in State 3. No-LID group occurred more frequently in State 5 and less frequently in State 3. Additionally, correlation analysis demonstrated that dyskinesia's severity was associated with frequency of occurrence and dwell time in State 2, dominated by inferior frontal cortex in cognitive executive network (CEN). CONCLUSION Using dFNC analysis, we found that dyskinesia may be related to the dysfunctional inhibition of CEN on motor loops and excessive excitation of VIS and SMN, which provided evidence of the changes in brain dynamics associated with the occurrence of dyskinesia.
Collapse
Affiliation(s)
- Qianqian Si
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Caiting Gan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Heng Zhang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xingyue Cao
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Huimin Sun
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Min Wang
- Department of RadiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lina Wang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yongsheng Yuan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kezhong Zhang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
30
|
Vegas-Suárez S, Morera-Herreras T, Requejo C, Lafuente JV, Moratalla R, Miguélez C, Ugedo L. Motor cortico-nigral and cortico-entopeduncular information transmission and its modulation by buspirone in control and after dopaminergic denervation. Front Pharmacol 2022; 13:953652. [PMID: 36133803 PMCID: PMC9483552 DOI: 10.3389/fphar.2022.953652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical information is transferred to the substantia nigra pars reticulata (SNr) and the entopeduncular nucleus (EP), the output structures of the basal ganglia (BG), through three different pathways: the hyperdirect trans-subthalamic and the direct and indirect trans-striatal pathways. The nigrostriatal dopamine (DA) and the activation of 5-HT1A receptors, distributed all along the BG, may modulate cortical information transmission. We aimed to investigate the effect of buspirone (5-HT1A receptor partial agonist) and WAY-100635 (5-HT1A receptor antagonist) on cortico-nigral and cortico-entopeduncular transmission in normal and DA loss conditions. Herein, simultaneous electrical stimulation of the motor cortex and single-unit extracellular recordings of SNr or EP neurons were conducted in urethane-anesthetized sham and 6-hydroxydopamine (6-OHDA)-lesioned rats before and after drug administrations. Motor cortex stimulation evoked monophasic, biphasic, or triphasic responses, combination of an early excitation, an inhibition, and a late excitation in both the SNr and EP, while an altered pattern of evoked response was observed in the SNr after 6-OHDA lesion. Systemic buspirone potentiated the direct cortico-SNr and cortico-EP transmission in sham animals since increased duration of the inhibitory response was observed. In DA denervated animals, buspirone administration enhanced early excitation amplitude in the cortico-SNr transmission. In both cases, the observed effects were mediated via a 5-HT1A-dependent mechanism as WAY-100635 administration blocked buspirone's effect. These findings suggest that in control condition, buspirone potentiates direct pathway transmission and DA loss modulates responses related to the hyperdirect pathway. Overall, the results may contribute to understanding the role of 5-HT1A receptors and DA in motor cortico-BG circuitry functionality.
Collapse
Affiliation(s)
- Sergio Vegas-Suárez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Catalina Requejo
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Rosario Moratalla
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Cristina Miguélez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
31
|
Synergistic effect of serotonin 1A and serotonin 1B/D receptor agonists in the treatment of L-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned rats. Exp Neurol 2022; 358:114209. [PMID: 35988699 DOI: 10.1016/j.expneurol.2022.114209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The gold standard for symptomatic relief of Parkinson's disease (PD) is L-DOPA. However, long-term treatment often leads to motor complications such as L-DOPA-induced dyskinesia (LID). While amantadine (Gocovri™) is the only approved therapy for dyskinesia in PD patients on the American market, it is associated with neurological side effects and limited efficacy. Thus, there remains a high unmet need for addressing LID in PD patients worldwide. OBJECTIVE The objective of this study was to evaluate the efficacy, safety and performance compared to approved treatments of the serotonin receptor 1A (5-HT1A) and 5-HT1B/D agonists buspirone and zolmitriptan in the 6-hydroxydopamine unilaterally lesioned rat model for PD. METHODS The hemiparkinsonian 6-OHDA-lesioned rats underwent chronic treatment with L-DOPA to induce dyskinesia and were subsequently used for efficacy testing of buspirone, zolmitriptan and comparison with amantadine, measured as abnormal involuntary movement (AIM) scores after L-DOPA challenge. Safety testing was performed in model and naïve animals using forelimb adjusting, rotarod and open field tests. RESULTS 5-HT1A and 5-HT1B/D agonism effectively reduced AIM scores in a synergistic manner. The drug combination of buspirone and zolmitriptan was safe and did not lead to tolerance development following sub-chronic administration. Head-to-head comparison with amantadine showed superior performance of buspirone and zolmitriptan in the model. CONCLUSIONS The strong anti-dyskinetic effect found with combined 5-HT1A and 5-HT1B/D agonism renders buspirone and zolmitriptan together a meaningful treatment for LID in PD.
Collapse
|
32
|
The effects of Vilazodone, YL-0919 and Vortioxetine in hemiparkinsonian rats. Psychopharmacology (Berl) 2022; 239:2119-2132. [PMID: 35275226 DOI: 10.1007/s00213-022-06078-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease is a neurodegenerative disease often characterized by motor deficits and most commonly treated with dopamine replacement therapy. Despite its benefits, chronic use of L-DOPA results in abnormal involuntary movements known as L-DOPA-induced dyskinesia. Growing evidence shows that with burgeoning dopamine cell loss, neuroplasticity in the serotonin system leads to the development of L-DOPA-induced dyskinesia through the unregulated uptake, conversion, and release of L-DOPA-derived dopamine into the striatum. Previous studies have shown that coincident 5-HT1A agonism and serotonin transporter inhibition may have anti-dyskinetic potential. Despite this, few studies have explicitly focused on targeting both 5-HT1A and the serotonin transporter. The present study compares the 5-HT compounds Vilazodone, YL-0919, and Vortioxetine which purportedly work as simultaneous 5-HT1A receptor agonists and SERT blockers. To do so, adult female Sprague Dawley rats were rendered hemiparkinsonian and treated daily for two weeks with L-DOPA to produce stable dyskinesia. The abnormal involuntary movements and forehand adjusting step tests were utilized as measurements for L-DOPA-induced dyskinesia and motor performance in a within-subjects design. Lesion efficacy was determined by analysis of striatal monoamines via high-performance liquid chromatography. Compounds selective for 5-HT1A/SERT target sites including Vilazodone and Vortioxetine significantly reduced L-DOPA-induced dyskinesia without compromising L-DOPA pro-motor efficacy. In contrast, YL-0919 failed to reduce L-DOPA-induced dyskinesia, with no effects on L-DOPA-related improvements. Collectively, this work supports pharmacological targeting of 5-HT1A/SERT to reduce L-DOPA-induced dyskinesia. Additionally, this further provides evidence for Vilazodone and Vortioxetine, FDA-approved compounds, as potential adjunct therapeutics for L-DOPA-induced dyskinesia management in Parkinson's patients.
Collapse
|
33
|
Angela Cenci M, Skovgård K, Odin P. Non-dopaminergic approaches to the treatment of motor complications in Parkinson's disease. Neuropharmacology 2022; 210:109027. [DOI: 10.1016/j.neuropharm.2022.109027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
|
34
|
Miquel-Rio L, Alarcón-Arís D, Torres-López M, Cóppola-Segovia V, Pavia-Collado R, Paz V, Ruiz-Bronchal E, Campa L, Casal C, Montefeltro A, Vila M, Artigas F, Revilla R, Bortolozzi A. Human α-synuclein overexpression in mouse serotonin neurons triggers a depressive-like phenotype. Rescue by oligonucleotide therapy. Transl Psychiatry 2022; 12:79. [PMID: 35210396 PMCID: PMC8873470 DOI: 10.1038/s41398-022-01842-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Anxiety and depression affect 35-50% of patients with Parkinson's disease (PD), often precede the onset of motor symptoms, and have a negative impact on their quality of life. Dysfunction of the serotonergic (5-HT) system, which regulates mood and emotional pathways, occurs during the premotor phase of PD and contributes to a variety of non-motor symptoms. Furthermore, α-synuclein (α-Syn) aggregates were identified in raphe nuclei in the early stages of the disease. However, there are very few animal models of PD-related neuropsychiatric disorders. Here, we develop a new mouse model of α-synucleinopathy in the 5-HT system that mimics prominent histopathological and neuropsychiatric features of human PD. We showed that adeno-associated virus (AAV5)-induced overexpression of wild-type human α-Syn (h-α-Syn) in raphe 5-HT neurons triggers progressive accumulation, phosphorylation, and aggregation of h-α-Syn protein in the 5-HT system. Specifically, AAV5-injected mice displayed axonal impairment in the output brain regions of raphe neurons, and deficits in brain-derived neurotrophic factor (BDNF) expression and 5-HT neurotransmission, resulting in a depressive-like phenotype. Intracerebroventricular treatment with an indatraline-conjugated antisense oligonucleotide (IND-ASO) for four weeks induced an effective and safe reduction of h-α-Syn synthesis in 5-HT neurons and its accumulation in the forebrain, alleviating early deficits of 5-HT function and improving the behavioural phenotype. Altogether, our findings show that α-synucleinopathy in 5-HT neurons negatively affects brain circuits that control mood and emotions, resembling the expression of neuropsychiatric symptoms occurring at the onset of PD. Early preservation of 5-HT function by reducing α-Syn synthesis/accumulation may alleviate PD-related depressive symptoms.
Collapse
Affiliation(s)
- Lluis Miquel-Rio
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28029, Madrid, Spain.,Universitat de Barcelona (UB), 08036, Barcelona, Spain
| | - Diana Alarcón-Arís
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28029, Madrid, Spain
| | - María Torres-López
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Valentín Cóppola-Segovia
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain.,Federal University of Paraná (UFPR), Curitiba, 81531-980, Brazil
| | - Rubén Pavia-Collado
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28029, Madrid, Spain
| | - Verónica Paz
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28029, Madrid, Spain
| | - Esther Ruiz-Bronchal
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Leticia Campa
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28029, Madrid, Spain
| | - Carme Casal
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | | | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, 08035, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28029, Madrid, Spain
| | | | - Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28029, Madrid, Spain.
| |
Collapse
|
35
|
Serotonin-Related Functional Genetic Variants Affect the Occurrence of Psychiatric and Motor Adverse Events of Dopaminergic Treatment in Parkinson’s Disease: A Retrospective Cohort Study. J Pers Med 2022; 12:jpm12020266. [PMID: 35207756 PMCID: PMC8875505 DOI: 10.3390/jpm12020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/02/2022] Open
Abstract
The serotonergic system is important in Parkinson’s disease (PD) pathogenesis as it can take over dopamine production after a large portion of dopaminergic neurons is lost through neurodegeneration. The aim of this study was to evaluate the effect of genetic variability of serotonergic genes on the occurrence of motor complications and psychiatric adverse events (AE) due to dopaminergic treatment. We enrolled 231 patients and their clinical data were collected. Genotyping was performed for eight genetic variants. Logistic regression was used for analysis. Carriers of the HTR1A rs6295 GC genotype (OR = 2.58; 95% CI = 1.15–5.78; p = 0.021), TPH2 rs4290270 AA genotype (OR = 2.78; 95% CI = 1.08–7.03; p = 0.034), and at least one TPH2 rs4570625 T allele (OR = 1.86; 95% CI = 1.00–3.44; p = 0.047) had increased risk for visual hallucinations (VH). Additionally, carriers of at least one SLC6A4 5-HTTPLR rs25531 S (OR = 0.52; 95% CI = 0.28–0.96; p = 0.037) or at least one LG allele (OR = 0.37; 95% CI = 0.14–0.97; p = 0.044) had a decreased chance for VH. Constructed haplotypes of the TPH2 showed increased risk for VH (OR = 1.94; 95% CI = 1.06–3.55; p = 0.032) and impulse control disorders (OR = 5.20; 95% CI = 1.86–14.50; p = 0.002). Finally, individual gene–gene interactions showed decreased odds for the development of motor AE. Our findings suggest that the serotonergic pathway may play an important role in the development of AE resulting from dopaminergic treatment.
Collapse
|
36
|
Seebauer L, Schneider Y, Drobny A, Plötz S, Koudelka T, Tholey A, Prots I, Winner B, Zunke F, Winkler J, Xiang W. Interaction of Alpha Synuclein and Microtubule Organization Is Linked to Impaired Neuritic Integrity in Parkinson's Patient-Derived Neuronal Cells. Int J Mol Sci 2022; 23:1812. [PMID: 35163733 PMCID: PMC8836605 DOI: 10.3390/ijms23031812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) is neuropathologically characterized by the loss of dopaminergic neurons and the deposition of aggregated alpha synuclein (aSyn). Mounting evidence suggests that neuritic degeneration precedes neuronal loss in PD. A possible underlying mechanism could be the interference of aSyn with microtubule organization in the neuritic development, as implied by several studies using cell-free model systems. In this study, we investigate the impact of aSyn on microtubule organization in aSyn overexpressing H4 neuroglioma cells and midbrain dopaminergic neuronal cells (mDANs) generated from PD patient-derived human induced pluripotent stem cells (hiPSCs) carrying an aSyn gene duplication (SNCADupl). An unbiased mass spectrometric analysis reveals a preferential binding of aggregated aSyn conformers to a number of microtubule elements. We confirm the interaction of aSyn with beta tubulin III in H4 and hiPSC-derived mDAN cell model systems, and demonstrate a remarkable redistribution of tubulin isoforms from the soluble to insoluble fraction, accompanied by a significantly increased insoluble aSyn level. Concordantly, SNCADupl mDANs show impaired neuritic phenotypes characterized by perturbations in neurite initiation and outgrowth. In summary, our findings suggest a mechanistic pathway, through which aSyn aggregation interferes with microtubule organization and induces neurite impairments.
Collapse
Affiliation(s)
- Lukas Seebauer
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.S.); (Y.S.); (A.D.); (S.P.); (F.Z.); (J.W.)
| | - Yanni Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.S.); (Y.S.); (A.D.); (S.P.); (F.Z.); (J.W.)
| | - Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.S.); (Y.S.); (A.D.); (S.P.); (F.Z.); (J.W.)
| | - Sonja Plötz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.S.); (Y.S.); (A.D.); (S.P.); (F.Z.); (J.W.)
| | - Tomas Koudelka
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany; (T.K.); (A.T.)
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany; (T.K.); (A.T.)
| | - Iryna Prots
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (I.P.); (B.W.)
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (I.P.); (B.W.)
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.S.); (Y.S.); (A.D.); (S.P.); (F.Z.); (J.W.)
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.S.); (Y.S.); (A.D.); (S.P.); (F.Z.); (J.W.)
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.S.); (Y.S.); (A.D.); (S.P.); (F.Z.); (J.W.)
| |
Collapse
|
37
|
Scarduzio M, Hess EJ, Standaert DG, Eskow Jaunarajs KL. Striatal synaptic dysfunction in dystonia and levodopa-induced dyskinesia. Neurobiol Dis 2022; 166:105650. [DOI: 10.1016/j.nbd.2022.105650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
|
38
|
Bove F, Calabresi P. Plasticity, genetics, and epigenetics in l-dopa-induced dyskinesias. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:167-184. [PMID: 35034732 DOI: 10.1016/b978-0-12-819410-2.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Dopa-induced dyskinesias (LIDs) are a frequent complication in l-dopa-treated patients affected by Parkinson's disease (PD). In the last years, several progresses in the knowledge of LIDs mechanisms have led to the identification of several molecular and electrophysiologic events. A complex cascade of intracellular events underlies the pathophysiology of LIDs, and, among these, aberrant plasticity in the cortico-basal ganglia system, at striatal and cortical level, plays a key role. Furthermore, several recent studies have investigated genetic susceptibility and epigenetic modifications in LIDs pathophysiology that might have future relevance in clinical practice and pharmacologic research. These progresses might lead to the development of specific strategies not only to treat, but also to prevent or delay the development of LIDs in PD.
Collapse
Affiliation(s)
- Francesco Bove
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Calabresi
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
39
|
Tseng KY, Kuo TT, Wang V, Huang EYK, Ma KH, Olson L, Hoffer BJ, Chen YH. Tetrabenazine Mitigates Aberrant Release and Clearance of Dopamine in the Nigrostriatal System, and Alleviates L-DOPA-Induced Dyskinesia in a Mouse Model of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1545-1565. [PMID: 35599497 DOI: 10.3233/jpd-223195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND L-DOPA-induced dyskinesia (LID), occurring with aberrant processing of exogenous L-DOPA in the dopamine-denervated striatum, is a main complication of levodopa treatment in Parkinson's disease. OBJECTIVE To characterize the effects of the vesicular antagonist tetrabenazine (TBZ) on L-DOPA-induced behavior, neurochemical signals, and underlying protein expressions in an animal model of Parkinson's disease. METHODS 20-week-old MitoPark mice were co-treated or separately administered TBZ and L-DOPA for 14 days. Abnormal involuntary movements (AIMs) and locomotor activity were analyzed. To explore dopamine (DA) transmission, fast scan cyclic voltammetry was used to assess presynaptic DA dynamics in striatal slices following treatments. PET imaging with 4-[18F]-PE2I, ADAM and immunoblotting assays were used to detect receptor protein changes in the DA-denervated striatum. Finally, nigrostriatal tissues were collected for HPLC measures of DA, serotonin and their metabolites. RESULTS A single injection of TBZ given in the interval between the two L-DOPA/Carbidopa treatments significantly attenuated L-DOPA-induced AIMs expression and locomotor hyperactivity. TBZ was shown to reduce tonic and phasic release of DA following L-DOPA treatment in DA-denervated striatal tissue. In the DA-depleted striatum, TBZ decreased the expression of L-DOPA-enhanced D1 receptors and the serotonin reuptake transporter. Neurochemical analysis indicated that TBZ attenuated L-DOPA-induced surges of DA levels by promoting DA turnover in the nigrostriatal system. CONCLUSIONS Our findings demonstrate that TBZ diminishes abnormal striatal DA transmission, which involves the ability of TBZ to modulate the presymptomatic dynamics of DA, and then mitigate aberrant release of exogenous L-DOPA from nerve terminals. The results support the potential of repositioning TBZ to counteract LID development.
Collapse
Affiliation(s)
- Kuan-Yin Tseng
- National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Tung-Tai Kuo
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| | - Vicki Wang
- Ph.D. Program in Translational Medicine, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Kuo-Hsing Ma
- Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Lars Olson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Barry J Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yuan-Hao Chen
- National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| |
Collapse
|
40
|
Endepols H, Zlatopolskiy BD, Zischler J, Alavinejad N, Apetz N, Vus S, Drzezga A, Neumaier B. Imaging of cerebral tryptophan metabolism using 7-[ 18F]FTrp-PET in a unilateral Parkinsonian rat model. Neuroimage 2021; 247:118842. [PMID: 34942366 DOI: 10.1016/j.neuroimage.2021.118842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022] Open
Abstract
Degradation products of the essential amino acid tryptophan (Trp) are important signaling molecules in the mammalian brain. Trp is metabolized either through the kynurenine pathway or enters serotonin and melatonin syntheses. The aim of the present work was to examine the potential of the novel PET tracer 7-[18F]fluorotryptophan ([18F]FTrp) to visualize all three pathways in a unilateral 6-OHDA rat model. [18F]FDOPA-PET scans were performed in nine 6-OHDA-injected and six sham-operated rats to assess unilateral dopamine depletion severity four weeks after lesion placement. Afterwards, 7-[18F]FTrp-PET scans were conducted at different timepoints up to seven months after 6-OHDA injection. In addition, two 6-OHDA-injected rats were examined for neuroinflammation using [18F]DAA1106-PET. 7-[18F]FTrp-PET showed significantly increased tracer uptake at the 6-OHDA injection site which was negatively correlated to time after lesion placement. Accumulation of [18F]DAA1106 at the injection site was increased as well, suggesting that 7-[18F]FTrp uptake in this region may reflect kynurenine pathway activity associated with inflammation. Bilaterally in the dorsal hippocampus, 7-[18F]FTrp uptake was significantly decreased and was inversely correlated to dopamine depletion severity, indicating that it reflects reduced serotonin synthesis. Finally, 7-[18F]FTrp uptake in the pineal gland was significantly increased in relation with dopamine depletion severity, providing evidence that melatonin synthesis is increased in the 6-OHDA rat model. We conclude that 7-[18F]FTrp is able to detect alterations in both serotonin/melatonin and kynurenine metabolic pathways, and can be applied to visualize pathologic changes related to neurodegenerative processes.
Collapse
Affiliation(s)
- Heike Endepols
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Kerpener Str. 62, 50937 Cologne, Germany; Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52425 Jülich, Germany.
| | - Boris D Zlatopolskiy
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Cologne, Germany; Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52425 Jülich, Germany.
| | - Johannes Zischler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Cologne, Germany; Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Nazanin Alavinejad
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Cologne, Germany.
| | - Nadine Apetz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Cologne, Germany.
| | - Stefanie Vus
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Cologne, Germany; Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52425 Jülich, Germany.
| | - Alexander Drzezga
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Kerpener Str. 62, 50937 Cologne, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany; Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Molecular Organization of the Brain (INM-2), Wilhelm-Johnen-Straße, 52425 Jülich, Germany.
| | - Bernd Neumaier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, Kerpener Str. 62, 50937 Cologne, Germany; Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Max Planck Institute for Metabolism Research, Cologne 50931, Germany.
| |
Collapse
|
41
|
Ahmad J, Haider N, Khan MA, Md S, Alhakamy NA, Ghoneim MM, Alshehri S, Sarim Imam S, Ahmad MZ, Mishra A. Novel therapeutic interventions for combating Parkinson's disease and prospects of Nose-to-Brain drug delivery. Biochem Pharmacol 2021; 195:114849. [PMID: 34808125 DOI: 10.1016/j.bcp.2021.114849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disorder prevalent mainly in geriatric population. While, L-DOPA remains one of the major choices for the therapeutic management of PD, various motor and non-motor manifestations complicate the management of PD. In the last two decades, exhaustive research has been carried out to explore novel therapeutic approaches for mitigating motor and non-motor symptoms of PD. These approaches majorly include receptor-based, anti-inflammatory, stem-cell and nucleic acid based. The major limitations of existing therapeutic interventions (of commonly oral route) are low efficacy due to low brain bioavailability and associated side effects. Nanotechnology has been exploited and has gained wide attention in the recent years as an approach for enhancement of bioavailability of various small molecule drugs in the brain. To address the challenges associated with PD therapy, nose-to-brain delivery utilizing nanomedicine-based approaches has been found to be encouraging in published evidence. Therefore, the present work summarises the major challenges and limitations with antiparkinsonian drugs, novel therapeutic interventions, and scope of nanomedicine-based nose-to-brain delivery in addressing the current challenges of antiparkinsonian therapy. The manuscript tries to sensitize the researchers for designing brain-targeted nanomedicine loaded with natural/synthetic scaffolds, biosimilars, and nucleic acids that can bypass the first-pass effect for the effective management of PD.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia.
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia.
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia.
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup Assam-781101, India.
| |
Collapse
|
42
|
Ren J, Du FH, Jia MC, Hu ZN, Chen Z, Zhang C. Ring Expansion Fluorination of Unactivated Cyclopropanes Mediated by a New Monofluoroiodane(III) Reagent. Angew Chem Int Ed Engl 2021; 60:24171-24178. [PMID: 34523779 DOI: 10.1002/anie.202108589] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Indexed: 11/08/2022]
Abstract
Herein, we report a new strategy for carbon-carbon bond scission and intramolecular ring expansion fluorination of unactivated cyclopropanes, which was accomplished with a new hypervalent fluoroiodane(III) reagent 1. This novel method delivers medicinally relevant 4-fully substituted fluoropiperidines in moderate to high yields with excellent regio- and diastereoselectivity. Reagent 1, which has an N-acetylbenziodazole framework, was readily synthesized via three steps in 76 % overall yield and was characterized by NMR spectroscopy and X-ray crystallography. Owing to the presence of a secondary I⋅⋅⋅O bonding interaction between the λ3 -iodane atom and the carbonyl oxygen of the acetyl group of the N-acetylbenziodazole framework, 1 has excellent stability and can be stored at ambient temperature for 6 months without any detectable decomposition. Density functional theory calculations and experimental studies showed that the reaction proceeds via a carbocation intermediate that readily combines with a fluoride ion to generate the product.
Collapse
Affiliation(s)
- Jing Ren
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Feng-Huan Du
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Meng-Cheng Jia
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ze-Nan Hu
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ze Chen
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chi Zhang
- State Key Laboratory of Elemento-Organic Chemistry, The Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
43
|
Ren J, Du F, Jia M, Hu Z, Chen Z, Zhang C. Ring Expansion Fluorination of Unactivated Cyclopropanes Mediated by a New Monofluoroiodane(III) Reagent. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Ren
- State Key Laboratory of Elemento-Organic Chemistry The Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Feng‐Huan Du
- State Key Laboratory of Elemento-Organic Chemistry The Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Meng‐Cheng Jia
- State Key Laboratory of Elemento-Organic Chemistry The Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Ze‐Nan Hu
- State Key Laboratory of Elemento-Organic Chemistry The Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Ze Chen
- State Key Laboratory of Elemento-Organic Chemistry The Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Chi Zhang
- State Key Laboratory of Elemento-Organic Chemistry The Research Institute of Elemento-Organic Chemistry College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
44
|
Altwal F, Padovan-Neto FE, Ritger A, Steiner H, West AR. Role of 5-HT1A Receptor in Vilazodone-Mediated Suppression of L-DOPA-Induced Dyskinesia and Increased Responsiveness to Cortical Input in Striatal Medium Spiny Neurons in an Animal Model of Parkinson's Disease. Molecules 2021; 26:molecules26195790. [PMID: 34641332 PMCID: PMC8510243 DOI: 10.3390/molecules26195790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023] Open
Abstract
L-DOPA therapy in Parkinson’s disease (PD) is limited due to emerging L-DOPA-induced dyskinesia. Research has identified abnormal dopamine release from serotonergic (5-HT) terminals contributing to this dyskinesia. Selective serotonin reuptake inhibitors (SSRIs) or 5-HT receptor (5-HTr) agonists can regulate 5-HT activity and attenuate dyskinesia, but they often also produce a loss of the antiparkinsonian efficacy of L-DOPA. We investigated vilazodone, a novel multimodal 5-HT agent with SSRI and 5-HTr1A partial agonist properties, for its potential to reduce dyskinesia without interfering with the prokinetic effects of L-DOPA, and underlying mechanisms. We assessed vilazodone effects on L-DOPA-induced dyskinesia (abnormal involuntary movements, AIMs) and aberrant responsiveness to corticostriatal drive in striatal medium spiny neurons (MSNs) measured with in vivo single-unit extracellular recordings, in the 6-OHDA rat model of PD. Vilazodone (10 mg/kg) suppressed all subtypes (axial, limb, orolingual) of AIMs induced by L-DOPA (5 mg/kg) and the increase in MSN responsiveness to cortical stimulation (shorter spike onset latency). Both the antidyskinetic effects and reversal in MSN excitability by vilazodone were inhibited by the 5-HTr1A antagonist WAY-100635, demonstrating a critical role for 5-HTr1A in these vilazodone actions. Our results indicate that vilazodone may serve as an adjunct therapeutic for reducing dyskinesia in patients with PD.
Collapse
Affiliation(s)
- Feras Altwal
- Center for Neurodegenerative Disease & Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (F.A.); (A.R.W.)
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| | - Fernando E. Padovan-Neto
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| | - Alexandra Ritger
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Correspondence:
| | - Anthony R. West
- Center for Neurodegenerative Disease & Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (F.A.); (A.R.W.)
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA;
| |
Collapse
|
45
|
Walker M, Kuebler L, Goehring CM, Pichler BJ, Herfert K. Imaging SERT Availability in a Rat Model of L-DOPA-Induced Dyskinesia. Mol Imaging Biol 2021; 22:634-642. [PMID: 31392531 DOI: 10.1007/s11307-019-01418-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE The development of L-DOPA-induced dyskinesia (LID) is one of the most severe side effects of chronic L-DOPA treatment in Parkinson's disease patients. [11C]DASB positron emission tomography (PET) provides a prominent tool to visualize and quantify serotonin transporter (SERT) pathology in vivo in patients and in animal models. To evaluate the effect of chronic L-DOPA treatment on SERT availability in an animal model of LID, we performed a longitudinal PET study. PROCEDURES Rats received a unilateral 6-hydroxydopamine (6-OHDA) lesion, and striatal and extrastriatal SERT expression levels were studied with [11C]DASB, a marker of SERT availability, before and after daily treatment with L-DOPA. Dyskinesias were evaluated at different time points over a period of 21 days. RESULTS [11C]DASB binding was found to be decreased after 6-OHDA lesions in the striatum, cortex, and hippocampus 5 weeks after 6-OHDA injection in the lesioned hemisphere of the rat brain. Chronic L-DOPA priming resulted in a relative preservation of SERT availability in the lesioned and healthy hemisphere compared to baseline measurements. CONCLUSIONS Our longitudinal PET data support a preservation of SERT availability after the induction of L-DOPA-induced dyskinesia, which is in line with previous reports in dyskinetic PD patients.
Collapse
Affiliation(s)
- Michael Walker
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany
| | - Laura Kuebler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany
| | - Chris Marc Goehring
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University of Tuebingen, Röntgenweg 13, Tuebingen, Germany.
| |
Collapse
|
46
|
Vegas‐Suárez S, Aristieta A, Requejo C, Bengoetxea H, Lafuente JV, Miguelez C, Ugedo L. The effect of 5-HT 1A receptor agonists on the entopeduncular nucleus is modified in 6-hydroxydopamine-lesioned rats. Br J Pharmacol 2021; 178:2516-2532. [PMID: 33686657 PMCID: PMC8252460 DOI: 10.1111/bph.15437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE l-DOPA prolonged treatment leads to disabling motor complications as dyskinesia that could be decreased by drugs acting on 5-HT1A receptors. Since the internal segment of the globus pallidus, homologous to the entopeduncular nucleus in rodents, seems to be involved in the etiopathology of l-DOPA-induced dyskinesia, we investigated whether the entopeduncular nucleus is modulated by the 5-HT1A receptor partial and full agonists, buspirone, and 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) in control and 6-hydroxydopamine (6-OHDA)-lesioned rats with or without long-term l-DOPA treatment. EXPERIMENTAL APPROACH Extracellular single-unit electrocorticogram and local field potential recordings under anaesthesia, immunostaining assays and optogenetic manipulation coupled to electrophysiological recordings were performed. KEY RESULTS Systemic buspirone reduced the entopeduncular nucleus firing rate in the sham animals and burst activity in the 6-OHDA-lesioned rats (with or without l-DOPA treatment), while local administration reduced entopeduncular nucleus activity in all the groups, regardless of DA integrity. Systemic 8-OH-DPAT also induced inhibitory effects only in the sham animals. Effects triggered by buspirone and 8-OH-DPAT were reversed by the 5-HT1A receptor antagonist, WAY-100635. Neither buspirone nor 8-OH-DPAT modified the low-frequency oscillatory activity in the entopeduncular nucleus or its synchronization with the motor cortex. Buspirone did not alter the response induced by subthalamic nucleus opto-stimulation in the entopeduncular nucleus. CONCLUSION AND IMPLICATIONS Systemic 5-HT1A receptor activation elicits different effects on the electrophysiological properties of the entopeduncular nucleus depending on the integrity of the nigrostriatal pathway and it does not alter the relationship between subthalamic nucleus and entopeduncular nucleus neuron activity.
Collapse
Affiliation(s)
- Sergio Vegas‐Suárez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoSpain
| | - Asier Aristieta
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghPAUSA
- Center for the Neural Basis of CognitionCarnegie Mellon UniversityPittsburghPAUSA
| | - Catalina Requejo
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Harkaitz Bengoetxea
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - José Vicente Lafuente
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoSpain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoSpain
| |
Collapse
|
47
|
Fabbrini A, Guerra A. Pathophysiological Mechanisms and Experimental Pharmacotherapy for L-Dopa-Induced Dyskinesia. J Exp Pharmacol 2021; 13:469-485. [PMID: 33953618 PMCID: PMC8092630 DOI: 10.2147/jep.s265282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
L-dopa-induced dyskinesia (LID) is the most frequent motor complication associated with chronic L-dopa treatment in Parkinson’s disease (PD). Recent advances in the understanding of the pathophysiological mechanisms underlying LID suggest that abnormalities in multiple neurotransmitter systems, in addition to dopaminergic nigrostriatal denervation and altered dopamine release and reuptake dynamics at the synaptic level, are involved in LID development. Increased knowledge of neurobiological LID substrates has led to the development of several drug candidates to alleviate this motor complication. However, with the exception of amantadine, none of the pharmacological therapies tested in humans have demonstrated clinically relevant beneficial effects. Therefore, LID management is still one of the most challenging problems in the treatment of PD patients. In this review, we first describe the known pathophysiological mechanisms of LID. We then provide an updated report of experimental pharmacotherapies tested in clinical trials of PD patients and drugs currently under study to alleviate LID. Finally, we discuss available pharmacological LID treatment approaches and offer our opinion of possible issues to be clarified and future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
48
|
Brooks DJ. Imaging Familial and Sporadic Neurodegenerative Disorders Associated with Parkinsonism. Neurotherapeutics 2021; 18:753-771. [PMID: 33432494 PMCID: PMC8423977 DOI: 10.1007/s13311-020-00994-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 11/24/2022] Open
Abstract
In this paper, the structural and functional imaging changes associated with sporadic and genetic Parkinson's disease and atypical Parkinsonian variants are reviewed. The role of imaging for supporting diagnosis and detecting subclinical disease is discussed, and the potential use and drawbacks of using imaging biomarkers for monitoring disease progression is debated. Imaging changes associated with nonmotor complications of PD are presented. The similarities and differences in imaging findings in Lewy body dementia, Parkinson's disease dementia, and Alzheimer's disease are discussed.
Collapse
Affiliation(s)
- David J Brooks
- Department of Nuclear Medicine, Aarhus University, Aarhus N, 8200, Denmark.
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
49
|
Serotonin/dopamine interaction in the induction and maintenance of L-DOPA-induced dyskinesia: An update. PROGRESS IN BRAIN RESEARCH 2021; 261:287-302. [PMID: 33785132 DOI: 10.1016/bs.pbr.2021.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ample evidence suggests that the serotonergic system plays a major role in several aspects of Parkinson's disease. In this review, we focus on the interplay between dopamine and serotonin in the appearance of L-DOPA-induced dyskinesia (LID), the most troublesome side effect of L-DOPA therapy. Indeed, while this drug exerts significant amelioration of motor symptoms during the first few years of treatment, eventually, most of patients experience dyskinesias, which limit the use of L-DOPA in advanced stages of disease. Here, we present the mechanisms underlying LID and the role of serotonin neurons, review preclinical and clinical data, and discuss possible therapeutic strategies.
Collapse
|
50
|
de Natale ER, Wilson H, Politis M. Serotonergic imaging in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2021; 261:303-338. [PMID: 33785134 DOI: 10.1016/bs.pbr.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive degeneration of monoaminergic central pathways such as the serotonergic. The degeneration of serotonergic signaling in striatal and extrastriatal brain regions is an early feature of PD and is associated with several motor and non-motor complications of the disease. Molecular imaging techniques with Positron Emission Tomography (PET) have greatly contributed to the investigation of biological changes in vivo and to the understanding of the extent of serotonergic pathology in patients or individuals at risk for PD. Such discoveries provide with opportunities for the identification of new targets that can be used for the development of novel disease-modifying drugs or symptomatic treatments. Future studies of imaging serotonergic molecular targets will better clarify the importance of serotonergic pathology in PD, including progression of pathology, target-identification for pharmacotherapy, and relevance to endogenous synaptic serotonin levels. In this article, we review the current status and understanding of serotonergic imaging in PD.
Collapse
Affiliation(s)
| | - Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, United Kingdom.
| |
Collapse
|