1
|
Folestad E, Mehlem A, Ning FC, Oosterveld T, Palombo I, Singh J, Olauson H, Witasp A, Thorell A, Stenvinkel P, Ebefors K, Nyström J, Eriksson U, Falkevall A. Vascular endothelial growth factor B-mediated fatty acid flux in the adipose-kidney axis contributes to lipotoxicity in diabetic kidney disease. Kidney Int 2024:S0085-2538(24)00872-X. [PMID: 39689809 DOI: 10.1016/j.kint.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
A common observation in diabetic kidney disease is lipid accumulation, but the mechanism(s) underlying this pathology is unknown. Inhibition of Vascular endothelial growth factor B (VEGF-B) signaling was shown to prevent glomerular lipid accumulation and ameliorated diabetic kidney disease in experimental models. Here, we examined kidney biopsies from patients with Type 2 (84 %) and Type 1 diabetes (16 %), combined with data mining of RNA-seq dataset analyses in patients with diabetic kidney disease. In glomeruli, mesangial cell-derived VEGF-B expression was increased, and glomerular lipid accumulation positively correlated with impaired kidney function. Tubular lipid accumulation also associated with kidney dysfunction but was independent of tubular-derived VEGF-B expression. In vitro, the uptake of the fatty acid analogue, BODIPY-FA, was quantified. VEGF-B treatment increased BODIPY-FA uptake in endothelial cells, whilst pre-incubation with neutralizing antibodies against VEGF-B and its receptor VEGFR1 abolished this uptake. Transcriptome analyses of kidney and white adipose tissue from diabetic macaques showed that VEGF-B expression was higher in white adipose tissue than in kidney, and expression of VEGF-B was increased in white adipose tissue from patients with diabetic kidney disease. Analyzes in diabetic transgenic mice demonstrated that expression of VEGF-B in adipocytes determined the lipolytic activity, dyslipidemia, kidney lipid accumulation and the development of diabetic kidney disease. Overall, VEGF-B is a regulator of kidney lipotoxicity in diabetic kidney disease, by controlling white adipose tissue lipolysis as well as endothelial fatty acid transport in glomeruli. Our data propose that assessment of kidney lipid accumulation, and VEGF-B expression can serve as biomarkers for early diabetic kidney disease.
Collapse
Affiliation(s)
- Erika Folestad
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Annika Mehlem
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Frank Chenfei Ning
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Timo Oosterveld
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Isolde Palombo
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jaskaran Singh
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Olauson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Sciences, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Thorell
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden; Department of Surgery and Anaesthesiology, Ersta Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Sciences, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Ebefors
- Lundberg Laboratory for Kidney Research, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nyström
- Lundberg Laboratory for Kidney Research, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Eriksson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Falkevall
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Fogo AB, Harris RC. Crosstalk between glomeruli and tubules. Nat Rev Nephrol 2024:10.1038/s41581-024-00907-0. [PMID: 39643696 DOI: 10.1038/s41581-024-00907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Models of kidney injury have classically concentrated on glomeruli as the primary site of injury leading to glomerulosclerosis or on tubules as the primary site of injury leading to tubulointerstitial fibrosis. However, current evidence on the mechanisms of progression of chronic kidney disease indicates that a complex interplay between glomeruli and tubules underlies progressive kidney injury. Primary glomerular injury can clearly lead to subsequent tubule injury. For example, damage to the glomerular filtration barrier can expose tubular cells to serum proteins, including complement and cytokines, that would not be present in physiological conditions and can promote the development of tubulointerstitial fibrosis and progressive decline in kidney function. In addition, although less well-studied, increasing evidence suggests that tubule injury, whether primary or secondary, can also promote glomerular damage. This feedback from the tubule to the glomerulus might be mediated by changes in the reabsorptive capacity of the tubule, which can affect the glomerular filtration rate, or by mediators released by injured proximal tubular cells that can induce damage in both podocytes and parietal epithelial cells. Examining the crosstalk between the various compartments of the kidney is important for understanding the mechanisms underlying kidney pathology and identifying potential therapeutic interventions.
Collapse
Affiliation(s)
- Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Tennessee Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
3
|
Cortinovis M, Perico N, Remuzzi G. Tubulointerstitial injury in proteinuric chronic kidney diseases. Front Med (Lausanne) 2024; 11:1478697. [PMID: 39529801 PMCID: PMC11550959 DOI: 10.3389/fmed.2024.1478697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Proteinuria is an independent risk factor for chronic kidney disease progression and cardiovascular diseases. Apart from its prognostic role, the load of proteins that pass across the disrupted glomerular capillary wall trigger multiple pathophysiologic processes. These include, among others, intratubular complement activation and excessive proximal tubular reabsorption of filtered proteins, especially albumin and albumin-bound free fatty acids, which can set off several pathways of cellular damage. The activation of these pathways can cause apoptosis of proximal tubular cells and paracrine effects that incite the development of interstitial inflammation and fibrosis, ultimately leading to irreversible kidney injury. In this review, we provide a comprehensive overview of the current understanding on the mechanisms underlying the tubular toxicity of ultrafiltered proteins in the setting of proteinuric chronic kidney diseases. The acquired knowledge is expected to be instrumental for the development of novel therapeutic classes of medications to be tested on top of standard of care with optimized renin-angiotensin-aldosterone blockade and sodium-glucose cotransporter-2 inhibition, in order to further improve the clinical outcomes of patients with proteinuric chronic kidney diseases.
Collapse
Affiliation(s)
- Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | | |
Collapse
|
4
|
Du L, Wang X, Guo Y, Tao T, Wu H, Xu X, Zhang B, Chen T, Xu Q, Guo X. Altered lipid metabolism promoting cardiac fibrosis is mediated by CD34 + cell-derived FABP4 + fibroblasts. Exp Mol Med 2024; 56:1869-1886. [PMID: 39198543 PMCID: PMC11372182 DOI: 10.1038/s12276-024-01309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 09/01/2024] Open
Abstract
Hyperlipidemia and hypertension might play a role in cardiac fibrosis, in which a heterogeneous population of fibroblasts seems important. However, it is unknown whether CD34+ progenitor cells are involved in the pathogenesis of heart fibrosis. This study aimed to explore the mechanism of CD34+ cell differentiation in cardiac fibrosis during hyperlipidemia. Through the analysis of transcriptomes from 50,870 single cells extracted from mouse hearts and 76,851 single cells from human hearts, we have effectively demonstrated the evolving cellular landscape throughout cardiac fibrosis. Disturbances in lipid metabolism can accelerate the development of fibrosis. Through the integration of bone marrow transplantation models and lineage tracing, our study showed that hyperlipidemia can expedite the differentiation of non-bone marrow-derived CD34+ cells into fibroblasts, particularly FABP4+ fibroblasts, in response to angiotensin II. Interestingly, the partial depletion of CD34+ cells led to a notable reduction in triglycerides in the heart, mitigated fibrosis, and improved cardiac function. Furthermore, immunostaining of human heart tissue revealed colocalization of CD34+ cells and fibroblasts. Mechanistically, our investigation of single-cell RNA sequencing data through pseudotime analysis combined with in vitro cellular studies revealed the crucial role of the PPARγ/Akt/Gsk3β pathway in orchestrating the differentiation of CD34+ cells into FABP4+ fibroblasts. Through our study, we generated valuable insights into the cellular landscape of CD34+ cell-derived cells in the hypertrophic heart with hyperlipidemia, indicating that the differentiation of non-bone marrow-derived CD34+ cells into FABP4+ fibroblasts during this process accelerates lipid accumulation and promotes heart failure via the PPARγ/Akt/Gsk3β pathway.
Collapse
Affiliation(s)
- Luping Du
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Guo
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tingting Tao
- Department of Cardiovascular Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Wu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaodong Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bohuan Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Health care, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Nie H, Yang H, Cheng L, Yu J. Identification of Lipotoxicity-Related Biomarkers in Diabetic Nephropathy Based on Bioinformatic Analysis. J Diabetes Res 2024; 2024:5550812. [PMID: 38774257 PMCID: PMC11108700 DOI: 10.1155/2024/5550812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 05/24/2024] Open
Abstract
Objective: This study is aimed at investigating diagnostic biomarkers associated with lipotoxicity and the molecular mechanisms underlying diabetic nephropathy (DN). Methods: The GSE96804 dataset from the Gene Expression Omnibus (GEO) database was utilized to identify differentially expressed genes (DEGs) in DN patients. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the DEGs. A protein-protein interaction (PPI) network was established to identify key genes linked to lipotoxicity in DN. Immune infiltration analysis was employed to identify immune cells with differential expression in DN and to assess the correlation between these immune cells and lipotoxicity-related hub genes. The findings were validated using the external dataset GSE104954. ROC analysis was performed to assess the diagnostic performance of the hub genes. The Gene set enrichment analysis (GSEA) enrichment method was utilized to analyze the key genes associated with lipotoxicity as mentioned above. Result: In this study, a total of 544 DEGs were identified. Among them, extracellular matrix (ECM), fatty acid metabolism, AGE-RAGE, and PI3K-Akt signaling pathways were significantly enriched. Combining the PPI network and lipotoxicity-related genes (LRGS), LUM and ALB were identified as lipotoxicity-related diagnostic biomarkers for DN. ROC analysis showed that the AUC values for LUM and ALB were 0.882 and 0.885, respectively. The AUC values for LUM and ALB validated in external datasets were 0.98 and 0.82, respectively. Immune infiltration analysis revealed significant changes in various immune cells during disease progression. Macrophages M2, mast cells activated, and neutrophils were significantly associated with all lipotoxicity-related hub genes. These key genes were enriched in fatty acid metabolism and extracellular matrix-related pathways. Conclusion: The identified lipotoxicity-related hub genes provide a deeper understanding of the development mechanisms of DN, potentially offering new theoretical foundations for the development of diagnostic biomarkers and therapeutic targets related to lipotoxicity in DN.
Collapse
Affiliation(s)
- Han Nie
- Department of Endocrinology, Affiliated Hospital of Jiujiang University, No. 57, East Road, Xunyang District, Jiujiang, Jiangxi, China 332000
| | - Huan Yang
- Department of Endocrinology, Affiliated Hospital of Jiujiang University, No. 57, East Road, Xunyang District, Jiujiang, Jiangxi, China 332000
| | - Lidan Cheng
- Department of Endocrinology, Affiliated Hospital of Jiujiang University, No. 57, East Road, Xunyang District, Jiujiang, Jiangxi, China 332000
| | - Jianxin Yu
- Department of Endocrinology, Affiliated Hospital of Jiujiang University, No. 57, East Road, Xunyang District, Jiujiang, Jiangxi, China 332000
| |
Collapse
|
6
|
Leyland B, Novichkova E, Dolui AK, Jallet D, Daboussi F, Legeret B, Li Z, Li-Beisson Y, Boussiba S, Khozin-Goldberg I. Acyl-CoA binding protein is required for lipid droplet degradation in the diatom Phaeodactylum tricornutum. PLANT PHYSIOLOGY 2024; 194:958-981. [PMID: 37801606 DOI: 10.1093/plphys/kiad525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 10/08/2023]
Abstract
Diatoms (Bacillariophyceae) accumulate neutral storage lipids in lipid droplets during stress conditions, which can be rapidly degraded and recycled when optimal conditions resume. Since nutrient and light availability fluctuate in marine environments, storage lipid turnover is essential for diatom dominance of marine ecosystems. Diatoms have garnered attention for their potential to provide a sustainable source of omega-3 fatty acids. Several independent proteomic studies of lipid droplets isolated from the model oleaginous pennate diatom Phaeodactylum tricornutum have identified a previously uncharacterized protein with an acyl-CoA binding (ACB) domain, Phatrdraft_48778, here referred to as Phaeodactylum tricornutum acyl-CoA binding protein (PtACBP). We report the phenotypic effects of CRISPR-Cas9 targeted genome editing of PtACBP. ptacbp mutants were defective in lipid droplet and triacylglycerol degradation, as well as lipid and eicosapentaenoic acid synthesis, during recovery from nitrogen starvation. Transcription of genes responsible for peroxisomal β-oxidation, triacylglycerol lipolysis, and eicosapentaenoic acid synthesis was inhibited. A lipid-binding assay using a synthetic ACB domain from PtACBP indicated preferential binding specificity toward certain polar lipids. PtACBP fused to eGFP displayed an endomembrane-like pattern, which surrounded the periphery of lipid droplets. PtACBP is likely responsible for intracellular acyl transport, affecting cell division, development, photosynthesis, and stress response. A deeper understanding of the molecular mechanisms governing storage lipid turnover will be crucial for developing diatoms and other microalgae as biotechnological cell factories.
Collapse
Affiliation(s)
- Ben Leyland
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Ekaterina Novichkova
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Achintya Kumar Dolui
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Denis Jallet
- Toulouse Biotechnology Institute Bio & Chemical Engineering, Institut National de la Recherche Agronomique, Institute National Des Sciences Appliquees, Le Centre national de la recherche scientifique, Toulouse 31077, France
| | - Fayza Daboussi
- Toulouse Biotechnology Institute Bio & Chemical Engineering, Institut National de la Recherche Agronomique, Institute National Des Sciences Appliquees, Le Centre national de la recherche scientifique, Toulouse 31077, France
| | - Bertrand Legeret
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Zhongze Li
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Yonghua Li-Beisson
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Sammy Boussiba
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Inna Khozin-Goldberg
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| |
Collapse
|
7
|
Zhu W, Chen M, Wang Y, Chen Y, Zhang Y, Wang Y, Liu P, Li P. Regulation of renal lipid deposition in diabetic nephropathy on morroniside via inhibition of NF-KB/TNF-a/SREBP1c signaling pathway. Chem Biol Interact 2023; 385:110711. [PMID: 37769864 DOI: 10.1016/j.cbi.2023.110711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Morroniside (MOR), a cyclic enol ether terpene glycoside isolated from Cornus officinalis, has been shown to inhibit lipid accumulation, although the mechanism of action is uncertain. The aim of this study was to investigate the potential pathways by which MOR affects renal lipid deposition in diabetic nephropathy (DN). In vitro and in vivo experiments were performed using the PA-induced HK-2 cell model and a KKAy animal model, respectively. Network pharmacological analysis was used to identify potential MOR signaling pathways for DN therapy, with results verified via Western blotting and immunofluorescence experiments. The effect of MOR on lipid metabolism was investigated using BODIPY 493/503 staining. Our results indicate that MOR significantly reduces lipid accumulation both in vitro and in vivo. According to network pharmacology studies, the NF-κB/TNF-α/SREBP1c signaling pathway may be the mechanism of action of MOR in DN. MOR was found to inhibit this pathway by reducing the phosphorylation of NF-κB p65 and the expression of TNF-α and SREBP1c, similar to the effects of Bay11-7082. Additionally, MOR significantly inhibited the expression of lipid factors such as ACC, FAS, and SCD1. In conclusion, MOR can regulate the disruption of lipid metabolism in DN and reduce renal lipid deposition via suppression of the NF-κB/TNF-α/SREBP1c signaling pathway.
Collapse
Affiliation(s)
- Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Ming Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yonggang Zhang
- First People's Hospital of Qiqihaer City, Heilongjiang Province, China
| | - Yan Wang
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
8
|
Xu C, Ha X, Yang S, Tian X, Jiang H. Advances in understanding and treating diabetic kidney disease: focus on tubulointerstitial inflammation mechanisms. Front Endocrinol (Lausanne) 2023; 14:1232790. [PMID: 37859992 PMCID: PMC10583558 DOI: 10.3389/fendo.2023.1232790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes that can lead to end-stage kidney disease. Despite its significant impact, most research has concentrated on the glomerulus, with little attention paid to the tubulointerstitial region, which accounts for the majority of the kidney volume. DKD's tubulointerstitial lesions are characterized by inflammation, fibrosis, and loss of kidney function, and recent studies indicate that these lesions may occur earlier than glomerular lesions. Evidence has shown that inflammatory mechanisms in the tubulointerstitium play a critical role in the development and progression of these lesions. Apart from the renin-angiotensin-aldosterone blockade, Sodium-Glucose Linked Transporter-2(SGLT-2) inhibitors and new types of mineralocorticoid receptor antagonists have emerged as effective ways to treat DKD. Moreover, researchers have proposed potential targeted therapies, such as inhibiting pro-inflammatory cytokines and modulating T cells and macrophages, among others. These therapies have demonstrated promising results in preclinical studies and clinical trials, suggesting their potential to treat DKD-induced tubulointerstitial lesions effectively. Understanding the immune-inflammatory mechanisms underlying DKD-induced tubulointerstitial lesions and developing targeted therapies could significantly improve the treatment and management of DKD. This review summarizes the latest advances in this field, highlighting the importance of focusing on tubulointerstitial inflammation mechanisms to improve DKD outcomes.
Collapse
Affiliation(s)
- Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaowen Ha
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
9
|
Kumar M, Gaivin RJ, Khan S, Fedorov Y, Adams DJ, Zhao W, Lee HY, Dai X, Dealwis CG, Schelling JR. Definition of fatty acid transport protein-2 (FATP2) structure facilitates identification of small molecule inhibitors for the treatment of diabetic complications. Int J Biol Macromol 2023; 244:125328. [PMID: 37307967 PMCID: PMC10527240 DOI: 10.1016/j.ijbiomac.2023.125328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Diabetes is a major public health problem due to morbidity and mortality associated with end organ complications. Uptake of fatty acids by Fatty Acid Transport Protein-2 (FATP2) contributes to hyperglycemia, diabetic kidney and liver disease pathogenesis. Because FATP2 structure is unknown, a homology model was constructed, validated by AlphaFold2 prediction and site-directed mutagenesis, and then used to conduct a virtual drug discovery screen. In silico similarity searches to two low-micromolar IC50 FATP2 inhibitors, followed by docking and pharmacokinetics predictions, narrowed a diverse 800,000 compound library to 23 hits. These candidates were further evaluated for inhibition of FATP2-dependent fatty acid uptake and apoptosis in cells. Two compounds demonstrated nanomolar IC50, and were further characterized by molecular dynamic simulations. The results highlight the feasibility of combining a homology model with in silico and in vitro screening, to economically identify high affinity inhibitors of FATP2, as potential treatment for diabetes and its complications.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Robert J Gaivin
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Shenaz Khan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Yuriy Fedorov
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Drew J Adams
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Weiyang Zhao
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Hsueh-Yun Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Chris G Dealwis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States of America; Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Jeffrey R Schelling
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, United States of America; Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States of America.
| |
Collapse
|
10
|
Polynucleotide phosphorylase protects against renal tubular injury via blocking mt-dsRNA-PKR-eIF2α axis. Nat Commun 2023; 14:1223. [PMID: 36869030 PMCID: PMC9984537 DOI: 10.1038/s41467-023-36664-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Renal tubular atrophy is a hallmark of chronic kidney disease. The cause of tubular atrophy, however, remains elusive. Here we report that reduction of renal tubular cell polynucleotide phosphorylase (PNPT1) causes renal tubular translation arrest and atrophy. Analysis of tubular atrophic tissues from renal dysfunction patients and male mice with ischemia-reperfusion injuries (IRI) or unilateral ureteral obstruction (UUO) treatment shows that renal tubular PNPT1 is markedly downregulated under atrophic conditions. PNPT1 reduction leads to leakage of mitochondrial double-stranded RNA (mt-dsRNA) into the cytoplasm where it activates protein kinase R (PKR), followed by phosphorylation of eukaryotic initiation factor 2α (eIF2α) and protein translational termination. Increasing renal PNPT1 expression or inhibiting PKR activity largely rescues IRI- or UUO-induced mouse renal tubular injury. Moreover, tubular-specific PNPT1-knockout mice display Fanconi syndrome-like phenotypes with impaired reabsorption and significant renal tubular injury. Our results reveal that PNPT1 protects renal tubules by blocking the mt-dsRNA-PKR-eIF2α axis.
Collapse
|
11
|
Chen L, Sha ML, Chen FT, Jiang CY, Li D, Xu CL, Pan DS, Xu ZJ, Tang QL, Xia SJ, Sun LH, Fan GJ, Shao Y. Upregulation of KLF14 expression attenuates kidney fibrosis by inducing PPARα-mediated fatty acid oxidation. Free Radic Biol Med 2023; 195:132-144. [PMID: 36584797 DOI: 10.1016/j.freeradbiomed.2022.12.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Tubulointerstitial fibrosis (TIF) is essential during the development of end-stage kidney disease (ESKD) and is associated with the impairment of fatty acid oxidation (FAO). Kruppel-like factor 14 (KLF14) is an important gene in lipid metabolism, but its role in TIF remains unknown. TGF-β-stimulated HK-2 cells and mouse unilateral ureteral obstruction (UUO) were used as renal fibrosis models. The role of KLF14 in the process of renal fibrosis was verified by gene knockout mice, genetic or pharmacological interference in animal model and cell model respectively. In the current study, we found that KLF14 expression increased after activation of the TGF-β signaling pathway during TIF. In KLF14-/- mice, more severe fibrosis was observed after unilateral ureteral obstruction (UUO) was induced. In human HK2 cells, knockdown of KLF14 led to more severe fibrosis induced by TGF-β1, while overexpression of KLF14 partially attenuated this process. Specifically, KLF14 deficiency decreased mitochondrial FAO activity, resulting in lipid accumulation. Thus, the energy supply to the cells was insufficient, finally resulting in TIF. We further proved that KLF14 could target peroxisome proliferator activated receptor alpha (PPARα) as a transcriptional activator. This study identified the upregulation of KLF14 expression in response to kidney stress during the process of fibrosis. Upon TIF, the activated TGF-β signaling pathway can enhance KLF14 expression, while the upregulation of KLF14 expression can decrease the degree of TIF by improving FAO activity in tubular epithelial cells and recovering the energy supply mediated by PPARα.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Lei Sha
- Department of Geriatric, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fei-Teng Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao-Liang Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - De-Shen Pan
- Laboratory of Cancer Genomics and Biology, Department of Urology, And Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zi-Jie Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi-Lin Tang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China
| | - Lian-Hui Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Guang-Jian Fan
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Yi Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Chen Y, Lu S, Zhang Y, Chen B, Zhou H, Jiang H. Examination of the emerging role of transporters in the assessment of nephrotoxicity. Expert Opin Drug Metab Toxicol 2022; 18:787-804. [PMID: 36420583 DOI: 10.1080/17425255.2022.2151892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The kidney is vulnerable to various injuries based on its function in the elimination of many xenobiotics, endogenous substances and metabolites. Since transporters are critical for the renal elimination of those substances, it is urgent to understand the emerging role of transporters in nephrotoxicity. AREAS COVERED This review summarizes the contribution of major renal transporters to nephrotoxicity induced by some drugs or toxins; addresses the role of transporter-mediated endogenous metabolic disturbances in nephrotoxicity; and discusses the advantages and disadvantages of in vitro models based on transporter expression and function. EXPERT OPINION Due to the crucial role of transporters in the renal disposition of xenobiotics and endogenous substances, it is necessary to further elucidate their renal transport mechanisms and pay more attention to the underlying relationship between the transport of endogenous substances and nephrotoxicity. Considering the species differences in the expression and function of transporters, and the low expression of transporters in general cell models, in vitro humanized models, such as humanized 3D organoids, shows significant promise in nephrotoxicity prediction and mechanism study.
Collapse
Affiliation(s)
- Yujia Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Shuanghui Lu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yingqiong Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| |
Collapse
|
13
|
The Contribution of Lipotoxicity to Diabetic Kidney Disease. Cells 2022; 11:cells11203236. [PMID: 36291104 PMCID: PMC9601125 DOI: 10.3390/cells11203236] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Lipotoxicity is a fundamental pathophysiologic mechanism in diabetes and non-alcoholic fatty liver disease and is now increasingly recognized in diabetic kidney disease (DKD) pathogenesis. This review highlights lipotoxicity pathways in the podocyte and proximal tubule cell, which are arguably the two most critical sites in the nephron for DKD. The discussion focuses on membrane transporters and lipid droplets, which represent potential therapeutic targets, as well as current and developing pharmacologic approaches to reduce renal lipotoxicity.
Collapse
|
14
|
Zhao C, Li L, Li C, Tang C, Cai J, Liu Y, Yang J, Xi Y, Yang M, Jiang N, Han Y, Liu Y, Luo S, Xiao L, Sun L. PACS-2 deficiency in tubular cells aggravates lipid-related kidney injury in diabetic kidney disease. Mol Med 2022; 28:117. [PMID: 36138342 PMCID: PMC9502582 DOI: 10.1186/s10020-022-00545-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background Lipid accumulation in tubular cells plays a key role in diabetic kidney disease (DKD). Targeting lipid metabolism disorders has clinical value in delaying the progression of DKD, but the precise mechanism by which molecules mediate lipid-related kidney injury remains unclear. Phosphofurin acidic cluster sorting protein 2 (PACS-2) is a multifunctional sorting protein that plays a role in lipid metabolism. This study determined the role of PACS-2 in lipid-related kidney injury in DKD. Methods Diabetes was induced by a high-fat diet combined with intraperitoneal injections of streptozotocin (HFD/STZ) in proximal tubule-specific knockout of Pacs-2 mice (PT-Pacs-2−/− mice) and the control mice (Pacs-2fl/fl mice). Transcriptomic analysis was performed between Pacs-2fl/fl mice and PT-Pacs-2−/− mice. Results Diabetic PT-Pacs-2−/− mice developed more severe tubule injury and proteinuria compared to diabetic Pacs-2fl/fl mice, which accompanied with increasing lipid synthesis, uptake and decreasing cholesterol efflux as well as lipid accumulation in tubules of the kidney. Furthermore, transcriptome analysis showed that the mRNA level of sterol O-acyltransferase 1 (Soat1) was up-regulated in the kidney of control PT-Pacs-2−/− mice. Transfection of HK2 cells with PACS-2 siRNA under high glucose plus palmitic acid (HGPA) condition aggravated lipid deposition and increased the expression of SOAT1 and sterol regulatory element-binding proteins (SREBPs), while the effect was blocked partially in that of co-transfection of SOAT1 siRNA. Conclusions PACS-2 has a protective role against lipid-related kidney injury in DKD through SOAT1/SREBPs signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00545-x.
Collapse
Affiliation(s)
- Chanyue Zhao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Chenrui Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jinfei Yang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ming Yang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Na Jiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yachun Han
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yan Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shilu Luo
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Xiao
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Lin Sun
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
15
|
Molitoris BA, Sandoval RM, Yadav SPS, Wagner MC. Albumin Uptake and Processing by the Proximal Tubule: Physiologic, Pathologic and Therapeutic Implications. Physiol Rev 2022; 102:1625-1667. [PMID: 35378997 PMCID: PMC9255719 DOI: 10.1152/physrev.00014.2021] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.
Collapse
Affiliation(s)
- Bruce A. Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Dept.of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ruben M. Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shiv Pratap S. Yadav
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Mark C. Wagner
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
16
|
Ito M, Gurumani MZ, Merscher S, Fornoni A. Glucose- and Non-Glucose-Induced Mitochondrial Dysfunction in Diabetic Kidney Disease. Biomolecules 2022; 12:biom12030351. [PMID: 35327540 PMCID: PMC8945149 DOI: 10.3390/biom12030351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial dysfunction plays an important role in the pathogenesis and progression of diabetic kidney disease (DKD). In this review, we will discuss mitochondrial dysfunction observed in preclinical models of DKD as well as in clinical DKD with a focus on oxidative phosphorylation (OXPHOS), mitochondrial reactive oxygen species (mtROS), biogenesis, fission and fusion, mitophagy and urinary mitochondrial biomarkers. Both glucose- and non-glucose-induced mitochondrial dysfunction will be discussed. In terms of glucose-induced mitochondrial dysfunction, the energetic shift from OXPHOS to aerobic glycolysis, called the Warburg effect, occurs and the resulting toxic intermediates of glucose metabolism contribute to DKD-induced injury. In terms of non-glucose-induced mitochondrial dysfunction, we will review the roles of lipotoxicity, hypoxia and vasoactive pathways, including endothelin-1 (Edn1)/Edn1 receptor type A signaling pathways. Although the relative contribution of each of these pathways to DKD remains unclear, the goal of this review is to highlight the complexity of mitochondrial dysfunction in DKD and to discuss how markers of mitochondrial dysfunction could help us stratify patients at risk for DKD.
Collapse
Affiliation(s)
| | | | - Sandra Merscher
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-7745 (A.F.)
| | - Alessia Fornoni
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-7745 (A.F.)
| |
Collapse
|
17
|
Chen S, Chen J, Li S, Guo F, Li A, Wu H, Chen J, Pan Q, Liao S, Liu HF, Pan Q. High-Fat Diet-Induced Renal Proximal Tubular Inflammatory Injury: Emerging Risk Factor of Chronic Kidney Disease. Front Physiol 2021; 12:786599. [PMID: 34950058 PMCID: PMC8688947 DOI: 10.3389/fphys.2021.786599] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Nowadays, with the improvements in living standards and changes in living habits, high-fat diet (HFD) has become much more common in the populations worldwide. Recent studies have shown that HFD could induce lipid accumulation, and structural and functional abnormalities, accompanied by the release of large amounts of pro-inflammatory cytokines, in proximal tubular epithelial cells (PTECs). These findings indicate that, as an emerging risk factor, PTEC injury-induced by HFD may be closely related to inflammation; however, the potential mechanisms underlying this phenomenon is still not well-known, but may involve the several inflammatory pathways, including oxidative stress-related signaling pathways, mitochondrial dysfunction, the myeloid differentiation factor 2/Toll like receptor 4 (MD2/TLR4) signaling pathway, the ERK1/2-kidney injury molecule 1 (KIM-1)-related pathway, and nuclear factor-κB (NF-κB) activation, etc., and the detailed molecular mechanisms underlying these pathways still need further investigated in the future. Based on lipid abnormalities-induced inflammation is closely related to the development and progression of chronic kidney disease (CKD), to summarize the potential mechanisms underlying HFD-induced renal proximal tubular inflammatory injury, may provide novel approaches for CKD treatment.
Collapse
Affiliation(s)
- Shuxian Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinxia Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shangmei Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fengbiao Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Han Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaxuan Chen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Quanren Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
18
|
Ventricular arrhythmias in mouse models of diabetic kidney disease. Sci Rep 2021; 11:20570. [PMID: 34663875 PMCID: PMC8523538 DOI: 10.1038/s41598-021-99891-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022] Open
Abstract
Chronic kidney disease (CKD) affects more than 20 million people in the US, and it is associated with a significantly increased risk of sudden cardiac death (SCD). Despite the significance, the mechanistic relationship between SCD and CKD is not clear and there are few effective therapies. Using optical mapping techniques, we tested the hypothesis that mouse models of progressive diabetic kidney disease (DKD) exhibit enhanced ventricular arrhythmia incidence and underlying arrhythmia substrates. Compared to wild-type mice, both Leprdb/db eNOS−/− (2KO) and high fat diet plus low dose streptozotocin (HFD + STZ) mouse models of DKD experienced sudden death and greater arrhythmia inducibility, which was more common with isoproterenol than programmed electrical stimulation. 2KO mice demonstrated slowed conduction velocity, prolonged action potential duration (APD), and myocardial fibrosis; both 2KO and HFD + STZ mice exhibited arrhythmias and calcium dysregulation with isoproterenol challenge. Finally, circulating concentrations of the uremic toxin asymmetric dimethylarginine (ADMA) were elevated in 2KO mice. Incubation of human cardiac myocytes with ADMA prolonged APD, as also observed in 2KO mice hearts ex vivo. The present study elucidates an arrhythmia-associated mechanism of sudden death associated with DKD, which may lead to more effective treatments in the vulnerable DKD patient population.
Collapse
|
19
|
Mori Y, Ajay AK, Chang JH, Mou S, Zhao H, Kishi S, Li J, Brooks CR, Xiao S, Woo HM, Sabbisetti VS, Palmer SC, Galichon P, Li L, Henderson JM, Kuchroo VK, Hawkins J, Ichimura T, Bonventre JV. KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease. Cell Metab 2021; 33:1042-1061.e7. [PMID: 33951465 PMCID: PMC8132466 DOI: 10.1016/j.cmet.2021.04.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/03/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022]
Abstract
Tubulointerstitial abnormalities are predictive of the progression of diabetic kidney disease (DKD), and their targeting may be an effective means for prevention. Proximal tubular (PT) expression of kidney injury molecule (KIM)-1, as well as blood and urinary levels, are increased early in human diabetes and can predict the rate of disease progression. Here, we report that KIM-1 mediates PT uptake of palmitic acid (PA)-bound albumin, leading to enhanced tubule injury with DNA damage, PT cell-cycle arrest, interstitial inflammation and fibrosis, and secondary glomerulosclerosis. Such injury can be ameliorated by genetic ablation of the KIM-1 mucin domain in a high-fat-fed streptozotocin mouse model of DKD. We also identified TW-37 as a small molecule inhibitor of KIM-1-mediated PA-albumin uptake and showed in vivo in a kidney injury model in mice that it ameliorates renal inflammation and fibrosis. Together, our findings support KIM-1 as a new therapeutic target for DKD.
Collapse
Affiliation(s)
- Yutaro Mori
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Amrendra K Ajay
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jae-Hyung Chang
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shan Mou
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Renal Division, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Huiping Zhao
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Nephrology, Peking University People's Hospital, Beijing 100044, China
| | - Seiji Kishi
- Department of Nephrology, Graduate School of Biomedical Science, Tokushima University, Tokushima 770-8503, Japan
| | - Jiahua Li
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Craig R Brooks
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sheng Xiao
- Center for Neurologic Disease, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Celsius Therapeutics, Cambridge, MA 02139, USA
| | - Heung-Myong Woo
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; School of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Venkata S Sabbisetti
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suetonia C Palmer
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pierre Galichon
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Li Li
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Vijay K Kuchroo
- Center for Neurologic Disease, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Hawkins
- Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT 06877, USA
| | - Takaharu Ichimura
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph V Bonventre
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Schwarz T, Shorten E, Gennace M, Saunders J, Longo M, Costa FS, Parys M, Gunn-Moore D. CT features of feline lipiduria and renal cortical lipid deposition. J Feline Med Surg 2021; 23:357-363. [PMID: 32960133 PMCID: PMC8008399 DOI: 10.1177/1098612x20957161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aims of this study were to document the presence and prevalence of feline lipiduria and renal lipid deposition on CT, and to search for associations between the presence of lipiduria and sex, urinary tract abnormalities and urolithiasis. METHODS The CT examinations of 252 cats were reviewed for the presence of an antigravitational hypodense bubble in the urinary bladder with density values between -180 Hounsfield units (HU) and -20 HU. To identify associations between lipiduria and sex, urinary tract abnormalities and urolithiasis, Fisher's exact test was used. Renal cortical density measurement was performed in all cats. The Mann-Whitney test was performed to compare renal cortical density between lipiduric and unaffected cats. RESULTS A total of 27 domestic cats (10.7%) had CT evidence of lipiduria. Lipiduric cats had a significantly lower renal cortical density than unaffected cats (P <0.01). Male neutered cats had a significantly higher frequency of lipiduria and lower renal cortical density compared with female neutered cats (P <0.01). There was no significant difference between the groups regarding renal, ureteral or urethral abnormalities. CONCLUSIONS AND RELEVANCE Lipiduria is a common physiological phenomenon in cats that can be detected on routine CT examinations. Decreased renal cortical density is associated with lipiduria. This may aid in the diagnosis of feline lipiduria and help to differentiate its presence from other pathological depositions and excretions.
Collapse
Affiliation(s)
- Tobias Schwarz
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Eimear Shorten
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | | | - Jimmy Saunders
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maurizio Longo
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - Fabiano Séllos Costa
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, Brazil
| | - Maciej Parys
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Roslin, UK
| | - Danièlle Gunn-Moore
- Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Roslin, UK
| |
Collapse
|
21
|
Abstract
Apocynin is a naturally occurring acetophenone, found in the roots of Apocynum cannabinum and Picrorhiza kurroa. Various chemical and pharmaceutical modifications have been carried out to enhance the absorption and duration of action of apocynin, like, formulation of chitosan-based apocynin-loaded solid lipid nanoparticles, chitosan-oligosaccharide based nanoparticles, and biodegradable polyanhydride nanoparticles. Apocynin has been subjected to a wide range of experimental screening and has proved to be useful for amelioration of a variety of disorders, like diabetic complications, neurodegeneration, cardiovascular disorders, lung cancer, hepatocellular cancer, pancreatic cancer, and pheochromocytoma. Apocynin has been primarily reported as an NADPH oxidase (NOX) inhibitor and prevents translocation of its p47phox subunit to the plasma membrane, observed in neurodegeneration and hypertension. However, recent studies highlight its off-target effects that it is able to function as a scavenger of non-radical oxidant species, which is relevant for its activity against NOX 4 mediated production of hydrogen peroxide. Additionally, apocynin has shown inhibition of eNOS-dependent superoxide production in diabetic cardiomyopathy, reduction of NLRP3 activation and TGFβ/Smad signaling in diabetic nephropathy, diminished VEGF expression and decreased retinal NF-κB activation in diabetic retinopathy, inhibition of P38/MAPK/Caspase3 pathway in pheochromocytoma, inhibition of AKT-GSK3β and ERK1/2 pathways in pancreatic cancer, and decreased FAK/PI3K/Akt signaling in hepatocellular cancer. This review aims to discuss the pharmacokinetics and mechanisms of the pharmacological actions of apocynin.
Collapse
Affiliation(s)
- Shreya R Savla
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
22
|
Khundmiri SJ, Chen L, Lederer ED, Yang CR, Knepper MA. Transcriptomes of Major Proximal Tubule Cell Culture Models. J Am Soc Nephrol 2021; 32:86-97. [PMID: 33122286 PMCID: PMC7894662 DOI: 10.1681/asn.2020010009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/16/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cultured cell lines are widely used for research in the physiology, pathophysiology, toxicology, and pharmacology of the renal proximal tubule. The lines that are most appropriate for a given use depend upon the genes expressed. New tools for transcriptomic profiling using RNA sequencing (RNA-Seq) make it possible to catalog expressed genes in each cell line. METHODS Fourteen different proximal tubule cell lines, representing six species, were grown on permeable supports under conditions specific for the respective lines. RNA-Seq followed standard procedures. RESULTS Transcripts expressed in cell lines variably matched transcripts selectively expressed in native proximal tubule. Opossum kidney (OK) cells displayed the highest percentage match (45% of proximal marker genes [TPM threshold =15]), with pig kidney cells (LLC-PK1) close behind (39%). Lower-percentage matches were seen for various human lines, including HK-2 (26%), and lines from rodent kidneys, such as NRK-52E (23%). Nominally, identical OK cells from different sources differed substantially in expression of proximal tubule markers. Mapping cell line transcriptomes to gene sets for various proximal tubule functions (sodium and water transport, protein transport, metabolic functions, endocrine functions) showed that different lines may be optimal for experimentally modeling each function. An online resource (https://esbl.nhlbi.nih.gov/JBrowse/KCT/) has been created to interrogate cell line transcriptome data. Proteomic analysis of NRK-52E cells confirmed low expression of many proximal tubule marker proteins. CONCLUSIONS No cell line fully matched the transcriptome of native proximal tubule cells. However, some of the lines tested are suitable for the study of particular metabolic and transport processes seen in the proximal tubule.
Collapse
Affiliation(s)
- Syed J. Khundmiri
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Eleanor D. Lederer
- Division of Nephrology and Hypertension, School of Medicine, University of Louisville and Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
23
|
Cansby E, Caputo M, Gao L, Kulkarni NM, Nerstedt A, Ståhlman M, Borén J, Porosk R, Soomets U, Pedrelli M, Parini P, Marschall HU, Nyström J, Howell BW, Mahlapuu M. Depletion of protein kinase STK25 ameliorates renal lipotoxicity and protects against diabetic kidney disease. JCI Insight 2020; 5:140483. [PMID: 33170807 PMCID: PMC7819747 DOI: 10.1172/jci.insight.140483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of severe renal disease worldwide and the single strongest predictor of mortality in diabetes patients. Kidney steatosis has emerged as a critical trigger in the pathogenesis of DKD; however, the molecular mechanism of renal lipotoxicity remains largely unknown. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase 25 (STK25) as a critical regulator of ectopic lipid storage in several metabolic organs prone to diabetic damage. Here, we demonstrate that overexpression of STK25 aggravates renal lipid accumulation and exacerbates structural and functional kidney injury in a mouse model of DKD. Reciprocally, inhibiting STK25 signaling in mice ameliorates diet-induced renal steatosis and alleviates the development of DKD-associated pathologies. Furthermore, we find that STK25 silencing in human kidney cells protects against lipid deposition, as well as oxidative and endoplasmic reticulum stress. Together, our results suggest that STK25 regulates a critical node governing susceptibility to renal lipotoxicity and that STK25 antagonism could mitigate DKD progression.
Collapse
Affiliation(s)
| | - Mara Caputo
- Department of Chemistry and Molecular Biology and
| | - Lei Gao
- Department of Chemistry and Molecular Biology and
| | | | | | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia
| | - Ursel Soomets
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia
| | | | - Paolo Parini
- Department of Laboratory Medicine and.,Metabolism Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Theme Inflammation and Infection, Karolinska University Hospital, Stockholm, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Brian W Howell
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | | |
Collapse
|
24
|
Hendus-Altenburger R, Vogensen J, Pedersen ES, Luchini A, Araya-Secchi R, Bendsoe AH, Prasad NS, Prestel A, Cardenas M, Pedraz-Cuesta E, Arleth L, Pedersen SF, Kragelund BB. The intracellular lipid-binding domain of human Na +/H + exchanger 1 forms a lipid-protein co-structure essential for activity. Commun Biol 2020; 3:731. [PMID: 33273619 PMCID: PMC7713384 DOI: 10.1038/s42003-020-01455-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/03/2020] [Indexed: 12/03/2022] Open
Abstract
Dynamic interactions of proteins with lipid membranes are essential regulatory events in biology, but remain rudimentarily understood and particularly overlooked in membrane proteins. The ubiquitously expressed membrane protein Na+/H+-exchanger 1 (NHE1) regulates intracellular pH (pHi) with dysregulation linked to e.g. cancer and cardiovascular diseases. NHE1 has a long, regulatory cytosolic domain carrying a membrane-proximal region described as a lipid-interacting domain (LID), yet, the LID structure and underlying molecular mechanisms are unknown. Here we decompose these, combining structural and biophysical methods, molecular dynamics simulations, cellular biotinylation- and immunofluorescence analysis and exchanger activity assays. We find that the NHE1-LID is intrinsically disordered and, in presence of membrane mimetics, forms a helical αα-hairpin co-structure with the membrane, anchoring the regulatory domain vis-a-vis the transport domain. This co-structure is fundamental for NHE1 activity, as its disintegration reduced steady-state pHi and the rate of pHi recovery after acid loading. We propose that regulatory lipid-protein co-structures may play equally important roles in other membrane proteins.
Collapse
Affiliation(s)
- Ruth Hendus-Altenburger
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Jens Vogensen
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Emilie Skotte Pedersen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Raul Araya-Secchi
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Anne H Bendsoe
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Nanditha Shyam Prasad
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Marité Cardenas
- Biofilms Research Center for Biointerfaces, Malmö University, Per Albin Hanssons Väg 35, 214 32, Malmö, Sweden
| | - Elena Pedraz-Cuesta
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark.
| | - Stine F Pedersen
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
25
|
FATP2-targeted therapies - A role beyond fatty liver disease. Pharmacol Res 2020; 161:105228. [PMID: 33027714 DOI: 10.1016/j.phrs.2020.105228] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/31/2022]
Abstract
Fatty acid transport protein 2 (FATP2) is a multifunctional protein whose specific function is determined by the type of located cell, its intracellular location, or organelle-specific interactions. In the different diseases setting, a newfound appreciation for the biological function of FATP2 has come into view. Two main functions of FATP2 are to activate long-chain fatty acids (LCFAs) as a very long-chain acyl-coenzyme A (CoA) synthetase (ACSVL) and to transport LCFAs as a fatty acid transporter. FATP2 is not only involved in the occurrence of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), but also plays an important role in lithogenic diet-induced cholelithiasis, the formation of cancer tumor immunity, the progression of chronic kidney disease (CKD), and the regulation of zoledronate-induced nephrotoxicity. Herein, we review the updated information on the role of FATP2 in related diseases. In particular, we discuss the new functions of FATP2 and propose that FATP2 is a potential clinical biomarker and therapeutic target. In conclusion, regulatory strategies for FATP2 may bring new treatment options for cancer and lipid metabolism-related disorders.
Collapse
|
26
|
Khan S, Gaivin R, Abramovich C, Boylan M, Calles J, Schelling JR. Fatty acid transport protein-2 regulates glycemic control and diabetic kidney disease progression. JCI Insight 2020; 5:136845. [PMID: 32614804 DOI: 10.1172/jci.insight.136845] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022] Open
Abstract
Kidney disease is one of the most devastating complications of diabetes, and tubular atrophy predicts diabetic kidney disease (DKD) progression to end-stage renal disease. We have proposed that fatty acids bound to albumin contribute to tubular atrophy by inducing lipotoxicity, after filtration across damaged glomeruli, and subsequent proximal tubule reabsorption by a fatty acid transport protein-2-dependent (FATP2-dependent) mechanism. To address this possibility, genetic (Leprdb/db eNOS-/-) and induced (high-fat diet plus low-dose streptozotocin) mouse models of obesity and DKD were bred with global FATP2 gene-deleted mice (Slc27a2) and then phenotyped. DKD-prone mice with the Slc27a2-/- genotype demonstrated normalization of glomerular filtration rate, reduced albuminuria, improved kidney histopathology, and longer life span compared with diabetic Slc27a2+/+ mice. Genetic and induced DKD-prone Slc27a2-/- mice also exhibited markedly reduced fasting plasma glucose, with mean values approaching euglycemia, despite increased obesity and decreased physical activity. Glucose lowering in DKD-prone Slc27a2-/- mice was accompanied by β cell hyperplasia and sustained insulin secretion. Together, our data indicate that FATP2 regulates DKD pathogenesis by a combined lipotoxicity and glucotoxicity (glucolipotoxicity) mechanism.
Collapse
Affiliation(s)
- Shenaz Khan
- Department of Medicine, Division of Nephrology
| | | | | | | | - Jorge Calles
- Department of Medicine, Division of Endocrinology, MetroHealth Campus, and
| | - Jeffrey R Schelling
- Department of Medicine, Division of Nephrology.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Imafuku T, Watanabe H, Satoh T, Matsuzaka T, Inazumi T, Kato H, Tanaka S, Nakamura Y, Nakano T, Tokumaru K, Maeda H, Mukunoki A, Takeo T, Nakagata N, Tanaka M, Matsushita K, Tsuchiya S, Sugimoto Y, Shimano H, Fukagawa M, Maruyama T. Advanced Oxidation Protein Products Contribute to Renal Tubulopathy via Perturbation of Renal Fatty Acids. ACTA ACUST UNITED AC 2020; 1:781-796. [DOI: 10.34067/kid.0000772019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/01/2020] [Indexed: 11/27/2022]
Abstract
BackgroundRenal proximal tubulopathy plays a crucial role in kidney disease, but its molecular mechanism is incompletely understood. Because proximal tubular cells consume a lot of energy during reabsorption, the relationship between fatty acids (FAs) and proximal tubulopathy has been attracting attention. The purpose of this study is to investigate the association between change in renal FA composition and tubulopathy.MethodsMice with cisplatin-induced nephrotoxicity were used as a model of AKI and 5/6-nephrectomized mice were used as a model of CKD. Renal FA composition in mice was measured by GC-MS. Human tubular epithelial cells (HK-2 cells) were used for in vitro studies.ResultsIn kidneys of AKI mice, increased stearic acid (C18:0) and decreased palmitic acid (C16:0) were observed, accompanied by increased expression of the long-chain FA elongase Elovl6. Similar results were also obtained in CKD mice. We show that C18:0 has higher tubular toxicity than C16:0 via induction of ER stress. Using adenovirus-expressing Elovl6 or siRNA for Elovl6 in HK-2 cells, we demonstrated that increased Elovl6 expression contributes to tubulopathy via increasing C18:0. Elovl6 knockout suppressed the increased serum creatinine levels, renal ER stress, and inflammation that would usually result after 5/6 nephrectomy. Advanced oxidation protein products (AOPPs), specifically an oxidized albumin, was found to induce Elovl6 via the mTORC1/SREBP1 pathway.ConclusionsAOPPs may contribute to renal tubulopathy via perturbation of renal FAs through induction of Elovl6. The perturbation of renal FAs induced by the AOPPs-Elovl6 system could be a potential target for the treatment of tubulopathy.
Collapse
|
28
|
Pei K, Gui T, Li C, Zhang Q, Feng H, Li Y, Wu J, Gai Z. Recent Progress on Lipid Intake and Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3680397. [PMID: 32382547 PMCID: PMC7196967 DOI: 10.1155/2020/3680397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022]
Abstract
The incidence of chronic kidney disease (CKD) is associated with major abnormalities in circulating lipoproteins and renal lipid metabolism. This article elaborates on the mechanisms of CKD and lipid uptake abnormalities. The viewpoint we supported is that lipid abnormalities directly cause CKD, resulting in forming a vicious cycle. On the theoretical and experiment fronts, this inference has been verified by elaborately elucidating the role of lipid intake and accumulation as well as their influences on CKD. Taken together, these findings suggest that further understanding of lipid metabolism in CKD may lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Ke Pei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Li
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huichao Feng
- Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunlun Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
29
|
Chen Y, He L, Yang Y, Chen Y, Song Y, Lu X, Liang Y. The inhibition of Nrf2 accelerates renal lipid deposition through suppressing the ACSL1 expression in obesity-related nephropathy. Ren Fail 2020; 41:821-831. [PMID: 31488013 PMCID: PMC6735294 DOI: 10.1080/0886022x.2019.1655450] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Obesity has become a worldwide epidemic, and the incidence of obesity is increasing year by year. Obesity-related nephropathy (ORN) is a common kidney complication of obesity. Long-chain acyl-CoA synthetases-1, (ACSL1), is a key enzyme in the oxidative metabolism of fatty acids in mitochondria and ACSL1 may play a direct role in renal lipid deposition and promote the progress of ORN. In this study, we focus on the renoprotective role of ACSL1 in ORN. Methods: Electron microscopy, immunohistochemical (IHC) staining, Western blot, and real-time PCR were used to detect the expression of ACSL1and Nrf2 in ORN patients, ob/ob mice and palmitic acid (PA)-treated HK-2 cells. Oil red staining and Elisa Kit were used to detect the intracellular FFA and TG contents in ob/ob mice and PA-treated HK-2 cells. Dihydroethidium (DHE) staining and the MDA/SOD measurement were used to detect the ROS production. In order to demonstrate the role of ACSL1 and the interaction between ACSL1 and Nrf2 in ORN, related siRNA and plasmid were transfected into HK-2 cells. Results: More ROS production and renal lipid deposition have been found in ORN patients, ob/ob mice and PA-treated HK-2 cells. Compared with control, all the expression of ACSL1and Nrf2 were down-regulated in ORN patients, ob/ob mice and PA-treated HK-2 cells. The Nrf2 could regulate the expression of ACSL1 and the ACSL1 played the direct role in renal lipid deposition. Conclusions: The Nrf2 is inhibited in ORN, resulting more ROS production and oxidative stress. Increased oxidative stress will suppress the expression of ACSL1, which could increase the intracellular FFA and TG contents, ultimately leading to renal lipid deposition in renal tubulars and accelerating the development of ORN.
Collapse
Affiliation(s)
- Yinyin Chen
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Liyu He
- Key Lab of Kidney Disease and Blood Purification in Hunan, Department of Nephrology, The Second Xiangya Hospital Central South University , Changsha , Hunan , People's Republic of China
| | - Yiya Yang
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Ying Chen
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Yanran Song
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Xi Lu
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| | - Yumei Liang
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, Hunan Normal University , Changsha , Hunan , P.R. China
| |
Collapse
|
30
|
Wu D, Zhou Y, Pan Y, Li C, Wang Y, Chen F, Chen X, Yang S, Zhou Z, Liao Y, Qiu Z. Vaccine Against PCSK9 Improved Renal Fibrosis by Regulating Fatty Acid β-Oxidation. J Am Heart Assoc 2019; 9:e014358. [PMID: 31870234 PMCID: PMC6988173 DOI: 10.1161/jaha.119.014358] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Defects in the renal fatty acid β‐oxidation pathway have been implicated in the development of renal fibrosis. Our group has developed a therapeutic vaccine targeting PCSK9 (proprotein convertase subtilisin/kexin type 9), named PCSK9Qβ‐003. In this study, we investigated the potential effectiveness of the PCSK9Qβ‐003 vaccine on hypercholesterolemia with renal fibrosis. Methods and Results The low‐density lipoprotein receptor+/− male mice fed with a high‐cholesterol (1%) Western diet were randomly assigned into 4 groups: the sham group (or the control group), the phosphate‐buffered saline group, the Qβ virus‐like particles group and the PCSK9Qβ‐003 vaccine group. Mice of the PCSK9Qβ‐003 group were injected with the PCSK9Qβ‐003 vaccine (100 μg/time) every 2 or 4 weeks. The mice were administered with either unilateral ureteral obstruction for 2 weeks or N‐nitro‐l‐arginine methyl ester (50 mg/kg per day) for 6 weeks to establish a renal fibrosis model. Compared with the other 3 groups, the PCSK9Qβ‐003 vaccine obviously decreased total cholesterol and low‐density lipoprotein cholesterol in low‐density lipoprotein receptor+/− mice with hypercholesterolemia. Compared with the phosphate‐buffered saline and Qβ virus‐like particles groups, the PCSK9Qβ‐003 vaccine improved hepatic steatosis and renal function. Histology analysis showed that the PCSK9Qβ‐003 vaccine significantly ameliorated renal lipid accumulation and renal fibrosis. Moreover, the PCSK9Qβ‐003 vaccine obviously upregulated the expression of low‐density lipoprotein receptor, very‐low‐density lipoprotein receptor, sterol‐regulatory element binding protein 2, and fatty acid β‐oxidation–related factors, and ameliorated renal fibrosis‐related molecules both in the unilateral ureteral obstruction and N‐nitro‐l‐arginine methyl ester models. Conclusions This study suggested that the PCSK9Qβ‐003 vaccine improved renal lipid accumulation and renal fibrosis by regulating fatty acid β‐oxidation, which may provide a promising method for treating hypercholesterolemia with renal fibrosis.
Collapse
Affiliation(s)
- Danyu Wu
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yanzhao Zhou
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yajie Pan
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Chang Li
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yingxuan Wang
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Fen Chen
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xiao Chen
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Shijun Yang
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Zihua Zhou
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yuhua Liao
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Zhihua Qiu
- Department of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Institute of Cardiology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
31
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
32
|
Li X, Zhang T, Geng J, Wu Z, Xu L, Liu J, Tian J, Zhou Z, Nie J, Bai X. Advanced Oxidation Protein Products Promote Lipotoxicity and Tubulointerstitial Fibrosis via CD36/β-Catenin Pathway in Diabetic Nephropathy. Antioxid Redox Signal 2019; 31:521-538. [PMID: 31084358 DOI: 10.1089/ars.2018.7634] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aims: Diabetic nephropathy (DN) is the principal cause of mortality and morbidity in diabetic patients, the progression of which correlates best with tubulointerstitial fibrosis (TIF). Advanced oxidation protein products (AOPPs) have been detected in patients with chronic renal failure, causing injuries to proximal tubular epithelial cells. CD36, a known receptor for AOPP, is an important modulator of lipid homeostasis, predisposing to renal tubular damage. However, whether AOPPs induce lipotoxicity via the CD36 receptor pathway remains unknown. Herein, we tested the hypothesis that AOPPs accumulation in diabetes incurs lipotoxicity, causing renal TIF via the CD36 signaling pathway. Results: In DN patients and diabetic mice in vivo, AOPPs overload induces lipogenesis (upregulation of CD36 and sterol regulatory element-binding protein 1), fibrosis (upregulation of Fibronectin), and renal function decline (increased serum creatinine and N-acetyl-β-d-glucosaminidase, decreased estimated glomerular filtration rate). In HK-2 cells in vitro, high glucose stimulated AOPPs-induced lipotoxicity, apoptosis, and fibrosis via the CD36 receptor pathway. In addition, apocynin abrogated AOPPs-induced lipid accumulation and CD36 inhibition significantly mitigated AOPPs-induced mitochondrial injuries, lipotoxicity, and renal fibrosis. Further, we provide mechanistic evidence that AOPPs overload induces the enrichment of β-catenin binding the CD36 promoter region. Innovation and Conclusion: Our data reveal a major role of AOPPs in triggering lipotoxicity and fibrosis via CD36-dependent Wnt/β-catenin activation, providing new evidence for understanding the role of lipid accumulation in DN.
Collapse
Affiliation(s)
- Xiao Li
- 1Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ting Zhang
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Geng
- 3Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhuguo Wu
- 4Department of Internal Medicine, the Second Clinical Medical College, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Liting Xu
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jixing Liu
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jianwei Tian
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhanmei Zhou
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jing Nie
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaoyan Bai
- 2Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
33
|
Lipotoxicity in Kidney, Heart, and Skeletal Muscle Dysfunction. Nutrients 2019; 11:nu11071664. [PMID: 31330812 PMCID: PMC6682887 DOI: 10.3390/nu11071664] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
Dyslipidemia is a common nutritional and metabolic disorder in patients with chronic kidney disease. Accumulating evidence supports the hypothesis that prolonged metabolic imbalance of lipids leads to ectopic fat distribution in the peripheral organs (lipotoxicity), including the kidney, heart, and skeletal muscle, which accelerates peripheral inflammation and afflictions. Thus, lipotoxicity may partly explain progression of renal dysfunction and even extrarenal complications, including renal anemia, heart failure, and sarcopenia. Additionally, endoplasmic reticulum stress activated by the unfolded protein response pathway plays a pivotal role in lipotoxicity by modulating the expression of key enzymes in lipid synthesis and oxidation. Here, we review the molecular mechanisms underlying lipid deposition and resultant tissue damage in the kidney, heart, and skeletal muscle, with the goal of illuminating the nutritional aspects of these pathologies.
Collapse
|
34
|
Kidney Injury Molecule-1 Is Upregulated in Renal Lipotoxicity and Mediates Palmitate-Induced Tubular Cell Injury and Inflammatory Response. Int J Mol Sci 2019; 20:ijms20143406. [PMID: 31373312 PMCID: PMC6679556 DOI: 10.3390/ijms20143406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy is increasingly recognized as a major contributor to kidney failure in patients with obesity and type 2 diabetes. This study was designed to identify the molecular mediators of kidney injury associated with metabolic syndrome with or without hyperglycemia. We compared renal gene expression profiles in Zucker lean (ZL), Zucker obese (ZO), and Zucker diabetic (ZD) rats using cDNA microarray with quantitative verification of selected transcripts by real-time PCR. Compared to the 20-week-old ZL control (glucose: 110 ± 8 mg/dL), both prediabetic ZO (glucose: 157 ± 11 mg/dL) and diabetic ZD (glucose: 481 ± 37 mg/dL) rats displayed hyperlipidemia and kidney injury with a high degree of proteinuria. cDNA microarray identified 25 inflammation and injury-related transcriptomes whose expression levels were similarly increased in ZO and ZD kidneys. Among them, kidney injury molecule-1 (KIM-1) was found to be the most highly upregulated in both ZO and ZD kidneys. Immunofluorescence staining of kidney sections revealed a strong correlation between lipid overload and KIM-1 upregulation in proximal tubules of ZO and ZD rats. In cultured primary renal tubular epithelial cells (TECs), administration of saturated fatty acid palmitate resulted in an upregulation of KIM-1, osteopontin, and CD44, which was greatly attenuated by U0126, an inhibitor of extracellular signal-regulated kinase (ERK)1/2. Moreover, knockdown of KIM-1 by siRNA interference inhibited palmitate-induced cleaved caspase-3, osteopontin, and CD44 proteins in primary TECs. Our results indicate that KIM-1 expression is upregulated in renal lipotoxicity and may play an important role in fatty acid-induced inflammation and tubular cell damage in obesity and diabetic kidney disease.
Collapse
|
35
|
Yan Q, Song Y, Zhang L, Chen Z, Yang C, Liu S, Yuan X, Gao H, Ding G, Wang H. Autophagy activation contributes to lipid accumulation in tubular epithelial cells during kidney fibrosis. Cell Death Discov 2018; 4:2. [PMID: 30062051 PMCID: PMC6060103 DOI: 10.1038/s41420-018-0065-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022] Open
Abstract
Sustained activation of autophagy and lipid accumulation in tubular epithelial cells (TECs) are both associated with the kidney fibrosis progression. Autophagy has been found involved in the lipid metabolism regulation through a bi-directional mechanism of inducing lipolysis as well as promoting lipid droplet formation. However, whether and how autophagy influences lipid accumulation in kidney fibrosis remain unclear. In the current study, we show that UUO-induced lipid accumulation in tubular cells was significantly reduced when the pharmacological inhibitor 3-MA or CQ was administrated both in vivo and in vitro. Of interest, colocalization of LDs and autophagosomes, as well as colocalization of LDs and lysosomes were undetected in UUO-induced fibrotic kidneys, although lysosome function remained robust, indicating the lipid accumulation is lipophagy-lysosome pathway independent. TGF-β1-induced lipid droplets formation in HK-2 cells were decreased when the Beclin-1 expression was silenced, implying that autophagy-upregulated lipid droplets formation is Beclin-1 dependent. Finally, CQ treatment of UUO-induced fibrotic kidneys reduced the expression of α-SMA and tubular cell apoptosis and rescued the expression of E-cadherin, which was associated with the ameliorated lipid deposition. Therefore, our work documented that autophagy promotes lipid droplet formation in TECs in a Beclin-1-dependent manner, which causes renal lipotoxicity and contributes to the progression of kidney fibrosis.
Collapse
Affiliation(s)
- Qi Yan
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China.,2Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Song
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Lu Zhang
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Zhaowei Chen
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Cheng Yang
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Shan Liu
- 3Department of Nephrology, University Hospital of Hubei University for Nationalities, Enshi, China
| | - Xiaohan Yuan
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Hongyu Gao
- 2Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohua Ding
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| | - Huiming Wang
- 1Department of Nephrology, Renmin hospital of Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Khan S, Cabral PD, Schilling WP, Schmidt ZW, Uddin AN, Gingras A, Madhavan SM, Garvin JL, Schelling JR. Kidney Proximal Tubule Lipoapoptosis Is Regulated by Fatty Acid Transporter-2 (FATP2). J Am Soc Nephrol 2017; 29:81-91. [PMID: 28993506 DOI: 10.1681/asn.2017030314] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/08/2017] [Indexed: 11/03/2022] Open
Abstract
Albuminuria and tubular atrophy are among the highest risks for CKD progression to ESRD. A parsimonious mechanism involves leakage of albumin-bound nonesterified fatty acids (NEFAs) across the damaged glomerular filtration barrier and subsequent reabsorption by the downstream proximal tubule, causing lipoapoptosis. We sought to identify the apical proximal tubule transporter that mediates NEFA uptake and cytotoxicity. We observed transporter-mediated uptake of fluorescently labeled NEFA in cultured proximal tubule cells and microperfused rat proximal tubules, with greater uptake from the apical surface than from the basolateral surface. Protein and mRNA expression analyses revealed that kidney proximal tubules express transmembrane fatty acid transporter-2 (FATP2), encoded by Slc27a2, but not the other candidate transporters CD36 and free fatty acid receptor 1. Kidney FATP2 localized exclusively to proximal tubule epithelial cells along the apical but not the basolateral membrane. Treatment of mice with lipidated albumin to induce proteinuria caused a decrease in the proportion of tubular epithelial cells and an increase in the proportion of interstitial space in kidneys from wild-type but not Slc27a2-/- mice. Ex vivo microperfusion and in vitro experiments with NEFA-bound albumin at concentrations that mimic apical proximal tubule exposure during glomerular injury revealed significantly reduced NEFA uptake and palmitate-induced apoptosis in microperfused Slc27a2-/- proximal tubules and Slc27a2-/- or FATP2 shRNA-treated proximal tubule cell lines compared with wild-type or scrambled oligonucleotide-treated cells, respectively. We conclude that FATP2 is a major apical proximal tubule NEFA transporter that regulates lipoapoptosis and may be an amenable target for the prevention of CKD progression.
Collapse
Affiliation(s)
- Shenaz Khan
- Department of Medicine, The MetroHealth System and
| | - Pablo D Cabral
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - William P Schilling
- Department of Medicine, The MetroHealth System and.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | | | - Asif N Uddin
- Department of Medicine, The MetroHealth System and
| | | | | | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | | |
Collapse
|
37
|
Iwai T, Kume S, Chin-Kanasaki M, Kuwagata S, Araki H, Takeda N, Sugaya T, Uzu T, Maegawa H, Araki SI. Stearoyl-CoA Desaturase-1 Protects Cells against Lipotoxicity-Mediated Apoptosis in Proximal Tubular Cells. Int J Mol Sci 2016; 17:ijms17111868. [PMID: 27834856 PMCID: PMC5133868 DOI: 10.3390/ijms17111868] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 01/13/2023] Open
Abstract
Saturated fatty acid (SFA)-related lipotoxicity is a pathogenesis of diabetes-related renal proximal tubular epithelial cell (PTEC) damage, closely associated with a progressive decline in renal function. This study was designed to identify a free fatty acid (FFA) metabolism-related enzyme that can protect PTECs from SFA-related lipotoxicity. Among several enzymes involved in FFA metabolism, we identified stearoyl-CoA desaturase-1 (SCD1), whose expression level significantly decreased in the kidneys of high-fat diet (HFD)-induced diabetic mice, compared with non-diabetic mice. SCD1 is an enzyme that desaturates SFAs, converting them to monounsaturated fatty acids (MUFAs), leading to the formation of neutral lipid droplets. In culture, retrovirus-mediated overexpression of SCD1 or MUFA treatment significantly ameliorated SFA-induced apoptosis in PTECs by enhancing intracellular lipid droplet formation. In contrast, siRNA against SCD1 exacerbated the apoptosis. Both overexpression of SCD1 and MUFA treatment reduced SFA-induced apoptosis via reducing endoplasmic reticulum stress in cultured PTECs. Thus, HFD-induced decrease in renal SCD1 expression may play a pathogenic role in lipotoxicity-induced renal injury, and enhancing SCD1-mediated desaturation of SFA and subsequent formation of neutral lipid droplets may become a promising therapeutic target to reduce SFA-induced lipotoxicity. The present study provides a novel insight into lipotoxicity in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Tamaki Iwai
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan.
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan.
| | - Masami Chin-Kanasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan.
| | - Shogo Kuwagata
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan.
| | - Hisazumi Araki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan.
| | - Naoko Takeda
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan.
| | - Takeshi Sugaya
- Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216-8511, Japan.
| | - Takashi Uzu
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan.
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan.
| | - Shin-Ichi Araki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan.
| |
Collapse
|
38
|
Lovisa S, Zeisberg M, Kalluri R. Partial Epithelial-to-Mesenchymal Transition and Other New Mechanisms of Kidney Fibrosis. Trends Endocrinol Metab 2016; 27:681-695. [PMID: 27372267 DOI: 10.1016/j.tem.2016.06.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/24/2022]
Abstract
Kidney fibrosis is the unavoidable consequence of chronic kidney disease irrespective of the primary underlying insult. It is a complex phenomenon governed by the interplay between different cellular components and intricate networks of signaling pathways, which together lead to loss of renal functionality and replacement of kidney parenchyma with scar tissue. An immense effort has recently been made to understand the molecular and cellular mechanisms leading to kidney fibrosis. The cellular protagonists of this process include myofibroblasts, tubular epithelial cells, endothelial cells, and immune cells. We discuss here the most recent findings, including partial epithelial-to-mesenchymal transition (EMT), in the initiation and progression of tissue fibrosis and chronic kidney disease (CKD). A deep understanding of these mechanisms will allow the development of effective therapies.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Cancer Biology, Metastasis Research Center, University of Texas M.D. Anderson Cancer Center, Houston, TX 77054, USA
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas M.D. Anderson Cancer Center, Houston, TX 77054, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Webb BA, White KA, Grillo-Hill BK, Schönichen A, Choi C, Barber DL. A Histidine Cluster in the Cytoplasmic Domain of the Na-H Exchanger NHE1 Confers pH-sensitive Phospholipid Binding and Regulates Transporter Activity. J Biol Chem 2016; 291:24096-24104. [PMID: 27650500 DOI: 10.1074/jbc.m116.736215] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/18/2016] [Indexed: 01/26/2023] Open
Abstract
The Na-H exchanger NHE1 contributes to intracellular pH (pHi) homeostasis in normal cells and the constitutively increased pHi in cancer. NHE1 activity is allosterically regulated by intracellular protons, with greater activity at lower pHi However, the molecular mechanism for pH-dependent NHE1 activity remains incompletely resolved. We report that an evolutionarily conserved cluster of histidine residues located in the C-terminal cytoplasmic domain between two phosphatidylinositol 4,5-bisphosphate binding sites (PI(4,5)P2) of NHE1 confers pH-dependent PI(4,5)P2 binding and regulates NHE1 activity. A GST fusion of the wild type C-terminal cytoplasmic domain of NHE1 showed increased maximum PI(4,5)P2 binding at pH 7.0 compared with pH 7.5. However, pH-sensitive binding is abolished by substitutions of the His-rich cluster to arginine (RXXR3) or alanine (AXXA3), mimicking protonated and neutral histidine residues, respectively, and the RXXR3 mutant had significantly greater PI(4,5)P2 binding than AXXA3. When expressed in cells, NHE1 activity and pHi were significantly increased with NHE1-RXXR3 and decreased with NHE1-AXXA3 compared with wild type NHE1. Additionally, fibroblasts expressing NHE1-RXXR3 had significantly more contractile actin filaments and focal adhesions compared with fibroblasts expressing wild type NHE1, consistent with increased pHi enabling cytoskeletal remodeling. These data identify a molecular mechanism for pH-sensitive PI(4,5)P2 binding regulating NHE1 activity and suggest that the evolutionarily conserved cluster of four histidines in the proximal cytoplasmic domain of NHE1 may constitute a proton modifier site. Moreover, a constitutively activated NHE1-RXXR3 mutant is a new tool that will be useful for studying how increased pHi contributes to cell behaviors, most notably the biology of cancer cells.
Collapse
Affiliation(s)
- Bradley A Webb
- From the Department of Cell and Tissue Biology, University of California, San Francisco, California 94143 and
| | - Katharine A White
- From the Department of Cell and Tissue Biology, University of California, San Francisco, California 94143 and
| | - Bree K Grillo-Hill
- From the Department of Cell and Tissue Biology, University of California, San Francisco, California 94143 and
| | - André Schönichen
- From the Department of Cell and Tissue Biology, University of California, San Francisco, California 94143 and
| | - Changhoon Choi
- the Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea 06351
| | - Diane L Barber
- From the Department of Cell and Tissue Biology, University of California, San Francisco, California 94143 and
| |
Collapse
|
40
|
Burlaka I, Nilsson LM, Scott L, Holtbäck U, Eklöf AC, Fogo AB, Brismar H, Aperia A. Prevention of apoptosis averts glomerular tubular disconnection and podocyte loss in proteinuric kidney disease. Kidney Int 2016; 90:135-48. [PMID: 27217195 PMCID: PMC6101029 DOI: 10.1016/j.kint.2016.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/19/2016] [Accepted: 03/10/2016] [Indexed: 01/09/2023]
Abstract
There is a great need for treatment that arrests progression of chronic kidney disease. Increased albumin in urine leads to apoptosis and fibrosis of podocytes and tubular cells and is a major cause of functional deterioration. There have been many attempts to target fibrosis, but because of the lack of appropriate agents, few have targeted apoptosis. Our group has described an ouabain-activated Na,K-ATPase/IP3R signalosome, which protects from apoptosis. Here we show that albumin uptake in primary rat renal epithelial cells is accompanied by a time- and dose-dependent mitochondrial accumulation of the apoptotic factor Bax, down-regulation of the antiapoptotic factor Bcl-xL and mitochondrial membrane depolarization. Ouabain opposes these effects and protects from apoptosis in albumin-exposed proximal tubule cells and podocytes. The efficacy of ouabain as an antiapoptotic and kidney-protective therapeutic tool was then tested in rats with passive Heymann nephritis, a model of proteinuric chronic kidney disease. Chronic ouabain treatment preserved renal function, protected from renal cortical apoptosis, up-regulated Bax, down-regulated Bcl-xL, and rescued from glomerular tubular disconnection and podocyte loss. Thus we have identified a novel clinically feasible therapeutic tool, which has the potential to protect from apoptosis and rescue from loss of functional tissue in chronic proteinuric kidney disease.
Collapse
Affiliation(s)
- Ievgeniia Burlaka
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Linnéa M Nilsson
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Lena Scott
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| | - Ulla Holtbäck
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Ann-Christine Eklöf
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden; Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Anita Aperia
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
41
|
Ying C, Zhou X, Chang Z, Ling H, Cheng X, Li W. Blood glucose fluctuation accelerates renal injury involved to inhibit the AKT signaling pathway in diabetic rats. Endocrine 2016; 53:81-96. [PMID: 26860515 DOI: 10.1007/s12020-016-0867-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
Abstract
Blood glucose fluctuation is associated with diabetic nephropathy. However, the mechanism by which blood glucose fluctuation accelerates renal injury is not fully understood. The aim of the present study was to assess the effects of blood glucose fluctuation on diabetic nephropathy in rats and investigate its underlying mechanism. Diabetes in the rats was induced by a high sugar, high-fat diet, and a single dose of STZ (35 mg/kg)-injected intraperitoneally. Unstable blood sugar models were induced by subcutaneous insulin injection and intravenous glucose injection alternately. Body weight, glycosylated hemoglobin A1c (HbAlc), blood urea nitrogen (BUN), serum creatinine (Scr), and Creatinine clearance (Ccr) were assessed. T-SOD activity and MDA level were measured by assay kit. Change in renal tissue ultrastructure was observed by light microscopy and electron microscopy. Phosphorylated ser/thr protein kinase (p-AKT) (phosphor-Ser473), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β) (phosphor-Ser9), Bcl-2-associated X protein (BAX), B cell lymphoma/leukemia 2 (BCL-2), and cleaved-cysteinyl aspartate-specific proteinase-3 (caspase-3) levels were detected by immunohistochemistry and Western blot. We observed that BUN and Scr were increased in diabetic rats, and Ccr was decreased. Furthermore, blood glucose fluctuations could exacerbate the Ccr changes. Renal tissue ultrastructure was also seriously injured by glucose variability in diabetic rats. In addition, glucose fluctuation increased the oxidative stress of renal tissue. Moreover, fluctuating blood glucose decreased p-AKT level and BCL-2, and increased p-GSK-3β, BAX, cleaved-caspase-3 levels, and ratio of BAX/BCL-2 in the kidneys of diabetic rats. In conclusion, these results suggest that blood glucose fluctuation accelerated renal injury is due, at least in part to its oxidative stress promoting and inhibiting the AKT signaling pathway in diabetic rats.
Collapse
Affiliation(s)
- Changjiang Ying
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Zhenzhen Chang
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Hongwei Ling
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Xingbo Cheng
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.
| | - Wei Li
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
42
|
Abstract
The longstanding focus in chronic kidney disease (CKD) research has been on the glomerulus, which is sensible because this is where glomerular filtration occurs, and a large proportion of progressive CKD is associated with significant glomerular pathology. However, it has been known for decades that tubular atrophy is also a hallmark of CKD and that it is superior to glomerular pathology as a predictor of glomerular filtration rate decline in CKD. Nevertheless, there are vastly fewer studies that investigate the causes of tubular atrophy, and fewer still that identify potential therapeutic targets. The purpose of this review is to discuss plausible mechanisms of tubular atrophy, including tubular epithelial cell apoptosis, cell senescence, peritubular capillary rarefaction and downstream tubule ischemia, oxidative stress, atubular glomeruli, epithelial-to-mesenchymal transition, interstitial inflammation, lipotoxicity and Na(+)/H(+) exchanger-1 inactivation. Once a a better understanding of tubular atrophy (and interstitial fibrosis) pathophysiology has been obtained, it might then be possible to consider tandem glomerular and tubular therapeutic strategies, in a manner similar to cancer chemotherapy regimens, which employ multiple drugs to simultaneously target different mechanistic pathways.
Collapse
|
43
|
Obesity-Related Chronic Kidney Disease-The Role of Lipid Metabolism. Metabolites 2015; 5:720-32. [PMID: 26690487 PMCID: PMC4693192 DOI: 10.3390/metabo5040720] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/01/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Obesity is an independent risk factor for chronic kidney disease (CKD). The mechanisms linking obesity and CKD include systemic changes such as high blood pressure and hyperglycemia, and intrarenal effects relating to lipid accumulation. Normal lipid metabolism is integral to renal physiology and disturbances of renal lipid and energy metabolism are increasingly being linked with kidney disease. AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) are important regulators of fatty acid oxidation, which is frequently abnormal in the kidney with CKD. A high fat diet reduces renal AMPK activity, thereby contributing to reduced fatty acid oxidation and energy imbalance, and treatments to activate AMPK are beneficial in animal models of obesity-related CKD. Studies have found that the specific cell types affected by excessive lipid accumulation are proximal tubular cells, podocytes, and mesangial cells. Targeting disturbances of renal energy metabolism is a promising approach to addressing the current epidemic of obesity-related kidney disease.
Collapse
|
44
|
Na+-H+ exchanger-1 (NHE1) regulation in kidney proximal tubule. Cell Mol Life Sci 2015; 72:2061-74. [PMID: 25680790 DOI: 10.1007/s00018-015-1848-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 01/17/2023]
Abstract
The ubiquitously expressed plasma membrane Na(+)-H(+) exchanger NHE1 is a 12 transmembrane-spanning protein that directs important cell functions such as homeostatic intracellular volume and pH control. The 315 amino acid cytosolic tail of NHE1 binds plasma membrane phospholipids and multiple proteins that regulate additional, ion-translocation independent functions. This review focuses on NHE1 structure/function relationships, as well as the role of NHE1 in kidney proximal tubule functions, including pH regulation, vectorial Na(+) transport, cell volume control and cell survival. The implications of these functions are particularly critical in the setting of progressive, albuminuric kidney diseases, where the accumulation of reabsorbed fatty acids leads to disruption of NHE1-membrane phospholipid interactions and tubular atrophy, which is a poor prognostic factor for progression to end stage renal disease. This review amplifies the vital role of the proximal tubule NHE1 Na(+)-H(+) exchanger as a kidney cell survival factor.
Collapse
|
45
|
Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, Park ASD, Tao J, Sharma K, Pullman J, Bottinger EP, Goldberg IJ, Susztak K. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 2015; 21:37-46. [PMID: 25419705 PMCID: PMC4444078 DOI: 10.1038/nm.3762] [Citation(s) in RCA: 1030] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/17/2014] [Indexed: 12/20/2022]
Abstract
Renal fibrosis is the histological manifestation of a progressive, usually irreversible process causing chronic and end-stage kidney disease. We performed genome-wide transcriptome studies of a large cohort (n = 95) of normal and fibrotic human kidney tubule samples followed by systems and network analyses and identified inflammation and metabolism as the top dysregulated pathways in the diseased kidneys. In particular, we found that humans and mouse models with tubulointerstitial fibrosis had lower expression of key enzymes and regulators of fatty acid oxidation (FAO) and higher intracellular lipid deposition compared to controls. In vitro experiments indicated that inhibition of FAO in tubule epithelial cells caused ATP depletion, cell death, dedifferentiation and intracellular lipid deposition, phenotypes observed in fibrosis. In contrast, restoring fatty acid metabolism by genetic or pharmacological methods protected mice from tubulointerstitial fibrosis. Our results raise the possibility that correcting the metabolic defect in FAO may be useful for preventing and treating chronic kidney disease.
Collapse
Affiliation(s)
- Hyun Mi Kang
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seon Ho Ahn
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Choi
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-An Ko
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seung Hyeok Han
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frank Chinga
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ae Seo Deok Park
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jianling Tao
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kumar Sharma
- Division of Nephrology, Department of Medicine University of California, San Diego, Veterans Administration San Diego HealthCare System, La Jolla, CA, USA
| | - James Pullman
- Department of Pathology Montefiore Medical Center, Bronx, NY, USA
| | - Erwin P. Bottinger
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - Ira J. Goldberg
- Department of Medicine, New York University Langone Medical Center, New York, NY USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Takahashi T, Harris RC. Role of endothelial nitric oxide synthase in diabetic nephropathy: lessons from diabetic eNOS knockout mice. J Diabetes Res 2014; 2014:590541. [PMID: 25371905 PMCID: PMC4211249 DOI: 10.1155/2014/590541] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/08/2014] [Indexed: 12/29/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in many countries. The animal models that recapitulate human DN undoubtedly facilitate our understanding of this disease and promote the development of new diagnostic markers and therapeutic interventions. Based on the clinical evidence showing the association of eNOS dysfunction with advanced DN, we and others have created diabetic mice that lack eNOS expression and shown that eNOS-deficient diabetic mice exhibit advanced nephropathic changes with distinct features of progressive DN, including pronounced albuminuria, nodular glomerulosclerosis, mesangiolysis, and arteriolar hyalinosis. These studies clearly defined a critical role of eNOS in DN and developed a robust animal model of this disease, which enables us to study the pathogenic mechanisms of progressive DN. Further, recent studies with this animal model have explored the novel mechanisms by which eNOS deficiency causes advanced DN and provided many new insights into the pathogenesis of DN. Therefore, here we summarize the findings obtained with this animal model and discuss the roles of eNOS in DN, unresolved issues, and future investigations of this animal model study.
Collapse
Affiliation(s)
- Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, S-3223, Medical Center North, Nashville, TN 37232, USA
| | - Raymond C. Harris
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, S-3223, Medical Center North, Nashville, TN 37232, USA
| |
Collapse
|
47
|
Zoja C, Abbate M, Remuzzi G. Progression of renal injury toward interstitial inflammation and glomerular sclerosis is dependent on abnormal protein filtration. Nephrol Dial Transplant 2014; 30:706-12. [PMID: 25087196 DOI: 10.1093/ndt/gfu261] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 11/14/2022] Open
Abstract
Chronic proteinuric renal diseases, independent from the type of the initial insult, have in common a loss of selectivity of the glomerular barrier to protein filtration. Glomerular sclerosis is the progressive lesion affecting the glomerular capillary wall, the primary site at which the protein filtration is abnormally enhanced by disease. Dysfunction of podocytes, that serve to maintain the intact barrier, is a central event in lesion development. However, glomerular injury is signalled to tubular and interstitial structures largely in advance of nephron destruction. Glomerular ultrafiltration of excessive amounts of plasma-derived proteins and associated factors incites tubulointerstitial damage and might amplify an inherent susceptibility of the kidney to become dysfunctional in several disease conditions. Thus, noxious substances in the proteinuric ultrafiltrate promote apoptotic responses and multiple changes in the phenotype of tubule cells with generation of inflammatory and fibrogenic mediators. The severity of tubular interstitial damage has long been recognized to be highly correlated to the degree of deterioration of renal failure even better than glomerular lesions. This review focuses on pathways of tubular injury and apoptosis that in turn promote nephron-by-nephron degeneration and interstitial fibrosis during proteinuria contributing to multifaceted processes of kidney scarring and function loss.
Collapse
Affiliation(s)
- Carlamaria Zoja
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Mauro Abbate
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
48
|
Treatment of albuminuria due to diabetic nephropathy: recent trial results. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/cli.14.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|