1
|
Vaccaro A, de Alves Pereira B, van de Walle T, Dimberg A. Tertiary Lymphoid Structures in Central Nervous System Disorders. Methods Mol Biol 2025; 2864:21-42. [PMID: 39527215 DOI: 10.1007/978-1-0716-4184-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The central nervous system (CNS) constitutes a tightly regulated milieu, where immune responses are strictly controlled to prevent neurological damage. This poses considerable challenges to the therapeutic management of CNS pathologies, such as autoimmune disorders and cancer. Tertiary lymphoid structures (TLS) are ectopic, lymph node-like structures containing B- and T-cells, often associated with chronic inflammation or cancer, which have been shown to be detrimental in autoimmunity but beneficial in cancer. In-depth studies of TLS induction in CNS disorders, as well as their precise role in regulating adaptive immune responses in this context, will be paramount to the development of novel TLS-targeting therapies. In the present chapter, we review the anatomical and physiological peculiarities shaping TLS formation in the CNS, their relevance in autoimmunity and cancer, as well as their implications for the development of novel therapeutic modalities for these patients.
Collapse
Affiliation(s)
- Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Beatriz de Alves Pereira
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
García-Silva S, Peinado H. Mechanisms of lymph node metastasis: An extracellular vesicle perspective. Eur J Cell Biol 2024; 103:151447. [PMID: 39116620 DOI: 10.1016/j.ejcb.2024.151447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
In several solid tumors such as breast cancer, prostate cancer, colorectal cancer or melanoma, tumor draining lymph nodes are the earliest tissues where colonization by tumor cells is detected. Lymph nodes act as sentinels of metastatic dissemination, the deadliest phase of tumor progression. Besides hematogenous dissemination, lymphatic spread of tumor cells has been demonstrated, adding more complexity to the mechanisms involved in metastasis. A network of blood and lymphatic vessels surrounds tumors providing routes for tumor soluble factors to mediate regional and long-distance effects. Additionally, extracellular vesicles (EVs), particularly small EVs/exosomes, have been shown to circulate through the blood and lymph, favoring the formation of pre-metastatic niches in the tumor-draining lymph nodes (TDLNs) and distant organs. In this review, we present an overview of the relevance of lymph node metastasis, the structural and immune changes occurring in TDLNs during tumor progression, and how extracellular vesicles contribute to modulating some of these alterations while promoting the formation of lymph node pre-metastatic niches.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
3
|
Fry L, Roys H, Bowlin A, Venugopal G, Bird JT, Weaver A, Byrum SD, Weinkopff T. Enhanced translational activity is linked to lymphatic endothelial cell activation in cutaneous leishmaniasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.605632. [PMID: 39211126 PMCID: PMC11361129 DOI: 10.1101/2024.08.07.605632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cutaneous leishmaniasis (CL) is a significant public health problem leading to permanently disfiguring skin lesions caused by Leishmania parasites. Lesion severity stems from an excessive host inflammatory response that prevents healing. Here, we characterized the transcriptional and translational responses of lymphatic endothelial cells (LECs) during murine CL using historical single-cell RNA sequencing data combined with flow cytometry and in vivo puromycin incorporation to assess translational activity. We identified upregulation of antigen presentation pathways including MHC-I, MHC-II, and immunoproteasome transcripts in dermal LECs from Leishmania major -infected mice compared to naive controls. LECs also exhibited increased expression of guanylate binding proteins and interferon-inducible genes, indicative of immune activation. Moreover, our findings demonstrate that LECs in leishmanial lesions displayed heightened translational activity relative to LECs from uninflamed ears, and LEC translational activity was highest in activated LECs. Furthermore, LEC translational activity exceeded that of other cell types within the lesion microenvironment. Validating the transcriptomic data, LECs in lesions expressed elevated MHC-II and programmed death-ligand 1 (PDL-1), supporting their potential role in antigen presentation. Functional assays using DQ-OVA confirmed that LECs from leishmanial lesions efficiently uptake and process antigens, highlighting their capability as antigen presenting cells in the inflamed dermal microenvironment. Overall, our study reveals the activation status of LECs in leishmanial lesions, shedding light on their potential role in shaping local immunity and inflammation in a variety of skin diseases.
Collapse
|
4
|
Creed HA, Kannan S, Tate BL, Godefroy D, Banerjee P, Mitchell BM, Brakenhielm E, Chakraborty S, Rutkowski JM. Single-Cell RNA Sequencing Identifies Response of Renal Lymphatic Endothelial Cells to Acute Kidney Injury. J Am Soc Nephrol 2024; 35:549-565. [PMID: 38506705 PMCID: PMC11149045 DOI: 10.1681/asn.0000000000000325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
SIGNIFICANCE STATEMENT The renal lymphatic vasculature and the lymphatic endothelial cells that make up this network play important immunomodulatory roles during inflammation. How lymphatics respond to AKI may affect AKI outcomes. The authors used single-cell RNA sequencing to characterize mouse renal lymphatic endothelial cells in quiescent and cisplatin-injured kidneys. Lymphatic endothelial cell gene expression changes were confirmed in ischemia-reperfusion injury and in cultured lymphatic endothelial cells, validating renal lymphatic endothelial cells single-cell RNA sequencing data. This study is the first to describe renal lymphatic endothelial cell heterogeneity and uncovers molecular pathways demonstrating lymphatic endothelial cells regulate the local immune response to AKI. These findings provide insights into previously unidentified molecular pathways for lymphatic endothelial cells and roles that may serve as potential therapeutic targets in limiting the progression of AKI. BACKGROUND The inflammatory response to AKI likely dictates future kidney health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Owing to the relative sparsity of lymphatic endothelial cells in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. METHODS Here, we characterized murine renal lymphatic endothelial cell subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI 72 hours postinjury. Data were processed using the Seurat package. We validated our findings by quantitative PCR in lymphatic endothelial cells isolated from both cisplatin-injured and ischemia-reperfusion injury, by immunofluorescence, and confirmation in in vitro human lymphatic endothelial cells. RESULTS We have identified renal lymphatic endothelial cells and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin-injured conditions. After AKI, renal lymphatic endothelial cells alter genes involved in endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models were also identified with renal lymphatic endothelial cells further demonstrating changed gene expression between cisplatin and ischemia-reperfusion injury models, indicating the renal lymphatic endothelial cell response is both specific to where they lie in the lymphatic vasculature and the kidney injury type. CONCLUSIONS In this study, we uncover lymphatic vessel structural features of captured populations and injury-induced genetic changes. We further determine that lymphatic endothelial cell gene expression is altered between injury models. How lymphatic endothelial cells respond to AKI may therefore be key in regulating future kidney disease progression.
Collapse
Affiliation(s)
- Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Saranya Kannan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Brittany L. Tate
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - David Godefroy
- Inserm UMR1239 (Nordic Laboratory), UniRouen, Normandy University, Mont Saint Aignan, France
| | - Priyanka Banerjee
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Ebba Brakenhielm
- INSERM EnVI, UMR1096, University of Rouen Normandy, Rouen, France
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| |
Collapse
|
5
|
Gao KM, Chiang K, Jiang Z, Korkmaz FT, Janardhan HP, Trivedi CM, Quinton LJ, Gingras S, Fitzgerald KA, Marshak-Rothstein A. Endothelial cell expression of a STING gain-of-function mutation initiates pulmonary lymphocytic infiltration. Cell Rep 2024; 43:114114. [PMID: 38625791 PMCID: PMC11108094 DOI: 10.1016/j.celrep.2024.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/18/2024] Open
Abstract
Patients afflicted with Stimulator of interferon gene (STING) gain-of-function mutations frequently present with debilitating interstitial lung disease (ILD) that is recapitulated in mice expressing the STINGV154M mutation (VM). Prior radiation chimera studies revealed an unexpected and critical role for non-hematopoietic cells in initiating ILD. To identify STING-expressing non-hematopoietic cell types required for the development of ILD, we use a conditional knockin (CKI) model and direct expression of the VM allele to hematopoietic cells, fibroblasts, epithelial cells, or endothelial cells. Only endothelial cell-targeted VM expression results in enhanced recruitment of immune cells to the lung associated with elevated chemokine expression and the formation of bronchus-associated lymphoid tissue, as seen in the parental VM strain. These findings reveal the importance of endothelial cells as instigators of STING-driven lung disease and suggest that therapeutic targeting of STING inhibitors to endothelial cells could potentially mitigate inflammation in the lungs of STING-associated vasculopathy with onset in infancy (SAVI) patients or patients afflicted with other ILD-related disorders.
Collapse
Affiliation(s)
- Kevin MingJie Gao
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kristy Chiang
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Zhaozhao Jiang
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Filiz T Korkmaz
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Harish P Janardhan
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Chinmay M Trivedi
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Lee J Quinton
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Ann Marshak-Rothstein
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
6
|
Bai L, Wang Y, Du S, Si Y, Chen L, Li L, Li Y. Lymphangiogenesis: A new strategy for heart disease treatment (Review). Int J Mol Med 2024; 53:35. [PMID: 38391009 PMCID: PMC10903933 DOI: 10.3892/ijmm.2024.5359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Heart disease remains a global health challenge, contributing notably to morbidity and mortality. The lymphatic vasculature, an integral component of the cardiovascular system, plays a crucial role in regulating essential physiological processes, including fluid balance, transportation of extravasated proteins and immune cell trafficking, all of which are important for heart function. Through thorough scientometric analysis and extensive research, the present review identified lymphangiogenesis as a hotspot in cardiovascular disease research, and the mechanisms underlying impaired cardiac lymphangiogenesis and inadequate lymph drainage in various cardiovascular diseases are discussed. Furthermore, the way used to improve lymphangiogenesis to effectively regulate a variety of heart diseases and associated signaling pathways was investigated. Notably, the current review also highlights the impact of Traditional Chinese Medicine (TCM) on lymphangiogenesis, aiming to establish a clinical basis for the potential of TCM to improve cardiovascular diseases by promoting lymphangiogenesis.
Collapse
Affiliation(s)
- Liding Bai
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yanyan Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Siqi Du
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yumeng Si
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lu Chen
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Li
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yuhong Li
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin 301617, P.R. China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
7
|
Long H, Steimle JD, Grisanti Canozo FJ, Kim JH, Li X, Morikawa Y, Park M, Turaga D, Adachi I, Wythe JD, Samee MAH, Martin JF. Endothelial cells adopt a pro-reparative immune responsive signature during cardiac injury. Life Sci Alliance 2024; 7:e202201870. [PMID: 38012001 PMCID: PMC10681909 DOI: 10.26508/lsa.202201870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Modulation of the heart's immune microenvironment is crucial for recovery after ischemic events such as myocardial infarction (MI). Endothelial cells (ECs) can have immune regulatory functions; however, interactions between ECs and the immune environment in the heart after MI remain poorly understood. We identified an EC-specific IFN responsive and immune regulatory gene signature in adult and pediatric heart failure (HF) tissues. Single-cell transcriptomic analysis of murine hearts subjected to MI uncovered an EC population (IFN-ECs) with immunologic gene signatures similar to those in human HF. IFN-ECs were enriched in regenerative-stage mouse hearts and expressed genes encoding immune responsive transcription factors (Irf7, Batf2, and Stat1). Single-cell chromatin accessibility studies revealed an enrichment of these TF motifs at IFN-EC signature genes. Expression of immune regulatory ligand genes by IFN-ECs suggests bidirectional signaling between IFN-ECs and macrophages in regenerative-stage hearts. Our data suggest that ECs may adopt immune regulatory signatures after cardiac injury to accompany the reparative response. The presence of these signatures in human HF and murine MI models suggests a potential role for EC-mediated immune regulation in responding to stress induced by acute injury in MI and chronic adverse remodeling in HF.
Collapse
Affiliation(s)
- Hali Long
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey D Steimle
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Jong Hwan Kim
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Xiao Li
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Yuka Morikawa
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Minjun Park
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Diwakar Turaga
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Iki Adachi
- Section of Cardiothoracic Surgery, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Joshua D Wythe
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - James F Martin
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Jiang Z, Waterbury QT, Malagola E, Fu N, Kim W, Ochiai Y, Wu F, Guha C, Shawber CJ, Yan KS, Wang TC. Microbial-Dependent Recruitment of Immature Myeloid Cells Promotes Intestinal Regeneration. Cell Mol Gastroenterol Hepatol 2023; 17:321-346. [PMID: 37898454 PMCID: PMC10821484 DOI: 10.1016/j.jcmgh.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND & AIMS The intestinal epithelium functions both in nutrient absorption and as a barrier, separating the luminal contents from a network of vascular, fibroblastic, and immune cells underneath. After injury to the intestine, multiple cell populations cooperate to drive regeneration of the mucosal barrier, including lymphatic endothelial cells (LECs). A population of granulocytic immature myeloid cells (IMCs), marked by Hdc, participate in regeneration of multiple organs such as the colon and central nervous system, and their contribution to intestinal regeneration was investigated. METHODS By using male and female histidine decarboxylase (Hdc) green fluorescent reporter (GFP) mice, we investigated the role of Hdc+ IMCs in intestinal regeneration after exposure to 12 Gy whole-body irradiation. The movement of IMCs was analyzed using flow cytometry and immunostaining. Ablation of Hdc+ cells using the HdcCreERT2 tamoxifen-inducible recombinase Cre system, conditional knockout of Prostaglandin-endoperoxidase synthase 2 (Ptgs2) in Hdc+ cells using HdcCre; Ptgs2 floxed mice, and visualization of LECs using Prox1tdTomato mice also was performed. The role of microbial signals was investigated by knocking down mice gut microbiomes using antibiotic cocktail gavages. RESULTS We found that Hdc+ IMCs infiltrate the injured intestine after irradiation injury and promote epithelial regeneration in part by modulating LEC activity. Hdc+ IMCs express Ptgs2 (encoding cyclooxygenase-2/COX-2), and enables them to produce prostaglandin E2. Prostaglandin E2 acts on the prostaglandin E2 receptor 4 receptor (EP4) on LECs to promote lymphangiogenesis and induce the expression of proregenerative factors including R-spondin 3. Depletion of gut microbes leads to reduced intestinal regeneration by impaired recruitment of IMCs. CONCLUSIONS Altogether, our results unveil a critical role for IMCs in intestinal repair by modulating LEC activity and implicate gut microbes as mediators of intestinal regeneration.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Quin T Waterbury
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Institute of Human Nutrition, Columbia University Medical Center, New York, New York
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Na Fu
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Woosook Kim
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Feijing Wu
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Carrie J Shawber
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - Kelley S Yan
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Columbia Center for Human Development, Columbia University, New York, NY, USA; Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Timothy C Wang
- Division of Digestive and Liver Diseases Medicine, Irving Cancer Research Center, Department of Medicine, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| |
Collapse
|
9
|
Kim D, Tian W, Wu TTH, Xiang M, Vinh R, Chang JL, Gu S, Lee S, Zhu Y, Guan T, Schneider EC, Bao E, Dixon JB, Kao P, Pan J, Rockson SG, Jiang X, Nicolls MR. Abnormal Lymphatic Sphingosine-1-Phosphate Signaling Aggravates Lymphatic Dysfunction and Tissue Inflammation. Circulation 2023; 148:1231-1249. [PMID: 37609838 PMCID: PMC10592179 DOI: 10.1161/circulationaha.123.064181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Lymphedema is a global health problem with no effective drug treatment. Enhanced T-cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T-cell activation. Characterizing this biology is relevant for developing much needed therapies. METHODS Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1-deficient (S1pr1LECKO) mice were generated. Disease progression was quantified by tail-volumetric and -histopathologic measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then cocultured with CD4 T cells, followed by an analysis of CD4 T-cell activation and pathway signaling. Last, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T-cell activation. RESULTS Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1P receptor 1 (S1PR1). LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T-cell infiltration in mouse lymphedema. LECs, isolated from S1pr1LECKO mice and cocultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs promoted T-helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. Human dermal LECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro, P-selectin blockade reduced the activation and differentiation of Th cells cocultured with shS1PR1-treated human dermal LECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSIONS This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T-cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition.
Collapse
Affiliation(s)
- Dongeon Kim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Timothy Ting-Hsuan Wu
- Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford Bio-X, Stanford, California, USA
| | - Menglan Xiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Ryan Vinh
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Jason Lon Chang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Shenbiao Gu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Seunghee Lee
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Yu Zhu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Torrey Guan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Emilie Claire Schneider
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Evan Bao
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Peter Kao
- Stanford University School of Medicine, Stanford, California, USA
| | - Junliang Pan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Mark Robert Nicolls
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Liu P, Ding P, Sun C, Chen S, Lowe S, Meng L, Zhao Q. Lymphangiogenesis in gastric cancer: function and mechanism. Eur J Med Res 2023; 28:405. [PMID: 37803421 PMCID: PMC10559534 DOI: 10.1186/s40001-023-01298-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/18/2023] [Indexed: 10/08/2023] Open
Abstract
Increased lymphangiogenesis and lymph node (LN) metastasis are thought to be important steps in cancer metastasis, and are associated with patient's poor prognosis. There is increasing evidence that the lymphatic system may play a crucial role in regulating tumor immune response and limiting tumor metastasis, since tumor lymphangiogenesis is more prominent in tumor metastasis and diffusion. Lymphangiogenesis takes place in embryonic development, wound healing, and a variety of pathological conditions, including tumors. Tumor cells and tumor microenvironment cells generate growth factors (such as lymphangiogenesis factor VEGF-C/D), which can promote lymphangiogenesis, thereby inducing the metastasis and diffusion of tumor cells. Nevertheless, the current research on lymphangiogenesis in gastric cancer is relatively scattered and lacks a comprehensive understanding. Therefore, in this review, we aim to provide a detailed perspective on molecules and signal transduction pathways that regulate gastric cancer lymphogenesis, which may provide new insights for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Pengpeng Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Shuya Chen
- Newham University Hospital, Glen Road, Plaistow, London, E13 8SL, England, UK
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
- Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
| |
Collapse
|
11
|
Cooke EJ, Joseph BC, Nasamran CA, Fisch KM, von Drygalski A. Maladaptive lymphangiogenesis is associated with synovial iron accumulation and delayed clearance in factor VIII-deficient mice after induced hemarthrosis. J Thromb Haemost 2023; 21:2390-2404. [PMID: 37116753 PMCID: PMC10792547 DOI: 10.1016/j.jtha.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Mechanisms of iron clearance from hemophilic joints are unknown. OBJECTIVES To better understand mechanisms of iron clearance following joint bleeding in a mouse model of hemophilia. METHODS Hemarthrosis was induced by subpatellar puncture in factor VIII (FVIII)-deficient (FVII-/-) mice, +/- periprocedural recombinant human FVIII, and hypocoagulable (HypoBALB/c) mice. HypoBALB/c mice experienced transient FVIII deficiency (anti-FVIII antibody) at the time of injury combined with warfarin-induced hypocoagulability. Synovial tissue was harvested weekly up to 6 weeks after injury for histological analysis, ferric iron and macrophage accumulation (CD68), blood and lymphatic vessel remodeling (αSMA; LYVE1). Synovial RNA sequencing was performed for FVIII-/- mice at days 0, 3, and 14 after injury to quantify expression changes of iron regulators and lymphatic markers. RESULTS Bleed volumes were similar in FVIII-/- and HypoBALB/c mice. However, pronounced and prolonged synovial iron accumulation colocalizing with macrophages and impaired lymphangiogenesis were detected only in FVIII-/- mice and were prevented by periprocedural FVIII. Gene expression changes involved in iron handling (some genes with dual roles in inflammation) and lymphatic markers supported proinflammatory milieu with iron retention and disturbed lymphangiogenesis. CONCLUSION Accumulation and delayed clearance of iron-laden macrophages were associated with defective lymphangiogenesis after hemarthrosis in FVIII-/- mice. The absence of such findings in HypoBALB/c mice suggests that intact lymphatics are required for removal of iron-laden macrophages and that these processes depend on FVIII availability. Studies to elucidate the biological mechanisms of disturbed lymphangiogenesis in hemophilia appear critical to develop new therapeutic targets.
Collapse
Affiliation(s)
- Esther J Cooke
- Division of Hematology/Oncology, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Bilgimol C Joseph
- Division of Hematology/Oncology, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Chanond A Nasamran
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California, USA
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California, USA
| | - Annette von Drygalski
- Division of Hematology/Oncology, Department of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
12
|
Jung YJ, Lee Y, Kwon H, Kim HP, Kwon HS, Park E, Lee J, Kim YH, Maeng YS, Kwon JY. Decidual lymphatic endothelial cell-derived granulocyte-macrophage colony-stimulating factor induces M1 macrophage polarization via the NF-κB pathway in severe pre-eclampsia. Am J Reprod Immunol 2023; 90:e13744. [PMID: 37491916 DOI: 10.1111/aji.13744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
PROBLEM Direct interactions between macrophages and lymphatic vessels have been shown previously. In pre-eclampsia (PE), macrophages are dominantly polarized into a proinflammatory M1 phenotype and lymphangiogenesis is defective in the decidua. Here, we investigated whether decidual lymphatic endothelial cells (dLECs) affect macrophage polarization in PE. METHOD OF STUDY THP-1 macrophages were cocultured with dLECs or cultured in the conditioned medium (CM) of dLECs. Macrophage polarization was measured using flow cytometry. Granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in dLECs was measured using qRT-PCR and ELISA. The activation of nuclear translocation of nuclear factor-κ (NF-κB), an upstream signaling molecule of GM-CSF, was assessed by immunocytochemical localization of p65. Through GM-CSF knockdown and NF-κB inhibition in dLEC, we evaluated whether the GM-CSF/NF-κB pathway of PE dLEC affects decidual macrophage polarization. RESULTS The ratio of inflammatory M1 macrophages with HLA-DR+ /CD80+ markers significantly increased following coculturing with PE dLECs or culturing in PE dLEC CM, indicating that the PE dLEC-derived soluble factor acts in a paracrine manner. GM-CSF expression was significantly upregulated in PE dLECs. Recombinant human GM-CSF induced macrophage polarization toward an M1-like phenotype, whereas its knockdown in PE dLECs suppressed it, suggesting PE dLECs induce M1 macrophage polarization by secreting GM-CSF. The NF-κB p65 significantly increased in PE dLECs compared to the control, and pretreatment with an NF-κB inhibitor significantly suppressed GM-CSF production from PE dLECs. CONCLUSIONS In PE, dLECs expressing high levels of GM-CSF via the NF-κB-dependent pathway play a role in inducing decidual M1 macrophage polarization.
Collapse
Affiliation(s)
- Yun Ji Jung
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Placenta-derived Stem Cell and Genomic Research Lab, Yonsei University College of Medicine, Yonsei University Health System, Seoul, The Republic of Korea
| | - Yeji Lee
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Placenta-derived Stem Cell and Genomic Research Lab, Yonsei University College of Medicine, Yonsei University Health System, Seoul, The Republic of Korea
| | - Hayan Kwon
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Placenta-derived Stem Cell and Genomic Research Lab, Yonsei University College of Medicine, Yonsei University Health System, Seoul, The Republic of Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, The Republic of Korea
| | - Han-Sung Kwon
- Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, The Republic of Korea
| | - Eunhyang Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, The Republic of Korea
| | - JoonHo Lee
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Placenta-derived Stem Cell and Genomic Research Lab, Yonsei University College of Medicine, Yonsei University Health System, Seoul, The Republic of Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Placenta-derived Stem Cell and Genomic Research Lab, Yonsei University College of Medicine, Yonsei University Health System, Seoul, The Republic of Korea
| | - Yong-Sun Maeng
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Placenta-derived Stem Cell and Genomic Research Lab, Yonsei University College of Medicine, Yonsei University Health System, Seoul, The Republic of Korea
| | - Ja-Young Kwon
- Department of Obstetrics and Gynecology, Institute of Women's Medical Life Science, Placenta-derived Stem Cell and Genomic Research Lab, Yonsei University College of Medicine, Yonsei University Health System, Seoul, The Republic of Korea
| |
Collapse
|
13
|
Gao KM, Chiang K, Korkmaz FT, Janardhan HP, Trivedi CM, Quinton LJ, Gingras S, Fitzgerald KA, Marshak-Rothstein A. Expression of a STING Gain-of-function Mutation in Endothelial Cells Initiates Lymphocytic Infiltration of the Lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550897. [PMID: 37547024 PMCID: PMC10402179 DOI: 10.1101/2023.07.27.550897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Patients afflicted with STING gain-of-function mutations frequently present with debilitating interstitial lung disease ( ILD ) that is recapitulated in mice expressing the STING V154M mutation ( VM ). Prior radiation chimera studies revealed an unexpected and critical role for non-hematopoietic cells in the initiation of ILD. To identify STING-expressing non-hematopoietic cell types relevant to ILD, we generated a conditional knock-in ( CKI ) model in which expression of the VM allele was directed to hematopoietic cells, fibroblasts, epithelial cells, or endothelial cells. Only endothelial cell-targeted expression of the mutant allele resulted in the recruitment of immune cells to the lung and the formation of bronchus-associated lymphoid tissue, as seen in the parental VM strain. These findings reveal the importance of endothelial cells as instigators of STING-driven lung disease and suggest that therapeutic targeting of STING inhibitors to endothelial cells could potentially mitigate inflammation in the lungs of SAVI patients or patients afflicted with other ILD-related disorders. Summary Patients with STING gain-of-function (GOF) mutations develop life-threatening lung autoinflammation. In this study, Gao et al. utilize a mouse model of conditional STING GOF to demonstrate a role for endothelial STING GOF in initiating immune cell recruitment into lung tissues of SAVI mice.
Collapse
|
14
|
Creed HA, Kannan S, Tate BL, Banerjee P, Mitchell BM, Chakraborty S, Rutkowski JM. Single-cell RNA sequencing identifies response of renal lymphatic endothelial cells to acute kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544380. [PMID: 37333313 PMCID: PMC10274866 DOI: 10.1101/2023.06.09.544380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The inflammatory response to acute kidney injury (AKI) likely dictates future renal health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Due to the relative sparsity of lymphatic endothelial cells (LECs) in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. Here we characterized murine renal LEC subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI. We validated our findings by qPCR in LECs isolated from both cisplatin-injured and ischemia reperfusion injury, by immunofluorescence, and confirmation in in vitro human LECs. We have identified renal LECs and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin injured conditions. Following AKI, renal LECs alter genes involved endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models are also identified with renal LECs further demonstrating changed gene expression between cisplatin and ischemia reperfusion injury models, indicating the renal LEC response is both specific to where they lie in the lymphatic vasculature and the renal injury type. How LECs respond to AKI may therefore be key in regulating future kidney disease progression.
Collapse
|
15
|
Kim D, Tian W, Wu TTH, Xiang M, Vinh R, Chang J, Gu S, Lee S, Zhu Y, Guan T, Schneider EC, Bao E, Dixon JB, Kao P, Pan J, Rockson SG, Jiang X, Nicolls MR. Abnormal lymphatic S1P signaling aggravates lymphatic dysfunction and tissue inflammation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.08.23291175. [PMID: 37398237 PMCID: PMC10312855 DOI: 10.1101/2023.06.08.23291175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Lymphedema is a global health problem with no effective drug treatment. Enhanced T cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T cell activation. Characterizing this biology is relevant for developing much-needed therapies. METHODS Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1 -deficient ( S1pr1 LECKO ) mice were generated. Disease progression was quantified by tail-volumetric and -histopathological measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then co-cultured with CD4 T cells, followed by an analysis of CD4 T cell activation and pathway signaling. Finally, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T cell activation. RESULTS Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1PR1. LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T cell infiltration in mouse lymphedema. LECs, isolated from S1pr1 LECKO mice and co-cultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs (HDLECs) promoted T helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. HDLECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro , P-selectin blockade reduced the activation and differentiation of Th cells co-cultured with sh S1PR1 -treated HDLECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSION This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition. Clinical Perspective What is New?: Lymphatic-specific S1pr1 deletion exacerbates lymphatic vessel malfunction and Th1/Th2 immune responses during lymphedema pathogenesis. S1pr1 -deficient LECs directly induce Th1/Th2 cell differentiation and decrease anti-inflammatory Treg populations. Peripheral dermal LECs affect CD4 T cell immune responses through direct cell contact.LEC P-selectin, regulated by S1PR1 signaling, affects CD4 T cell activation and differentiation.P-selectin blockade improves lymphedema tail swelling and decreases Th1/Th2 population in the diseased skin.What Are the Clinical Implications?: S1P/S1PR1 signaling in LECs regulates inflammation in lymphedema tissue.S1PR1 expression levels on LECs may be a useful biomarker for assessing predisposition to lymphatic disease, such as at-risk women undergoing mastectomyP-selectin Inhibitors may be effective for certain forms of lymphedema.
Collapse
Affiliation(s)
- Dongeon Kim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Timothy Ting-Hsuan Wu
- Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford Bio-X, Stanford, California, USA
| | - Menglan Xiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Ryan Vinh
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Jason Chang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Shenbiao Gu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Seunghee Lee
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Yu Zhu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Torrey Guan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Emilie Claire Schneider
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Evan Bao
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Peter Kao
- Stanford University School of Medicine, Stanford, California, USA
| | - Junliang Pan
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Mark Robert Nicolls
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
16
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
17
|
Miyazaki T, Taketomi Y, Higashi T, Ohtaki H, Takaki T, Ohnishi K, Hosonuma M, Kono N, Akasu R, Haraguchi S, Kim-Kaneyama JR, Otsu K, Arai H, Murakami M, Miyazaki A. Hypercholesterolemic Dysregulation of Calpain in Lymphatic Endothelial Cells Interferes With Regulatory T-Cell Stability and Trafficking. Arterioscler Thromb Vasc Biol 2023; 43:e66-e82. [PMID: 36519468 DOI: 10.1161/atvbaha.122.317781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Although hypercholesterolemia reportedly counteracts lymphocyte trafficking across lymphatic vessels, the roles of lymphatic endothelial cells (LECs) in the lymphocyte regulations remain unclear. Previous studies showed that calpain-an intracellular modulatory protease-interferes with leukocyte dynamics in the blood microcirculation and is associated with hypercholesterolemic dysfunction in vascular endothelial cells. METHODS This study investigated whether the calpain systems in LECs associate with the LEC-lymphocyte interaction under hypercholesterolemia using gene-targeted mice. RESULTS Lipidomic analysis in hypercholesterolemic mice showed that several lysophospholipids, including lysophosphatidic acid, accumulated in the lymphatic environment. Lysophosphatidic acid enables the potentiation of calpain systems in cultured LECs, which limits their ability to stabilize regulatory T cells (Treg) without altering Th1/Th2 (T helper type1/2) subsets. This occurs via the proteolytic degradation of MEKK1 (mitogen-activated protein kinase kinase kinase 1) and the subsequent inhibition of TGF (transforming growth factor)-β1 production in LECs. Targeting calpain systems in LECs expanded Tregs in the blood circulation and reduced aortic atherosclerosis in hypercholesterolemic mice, concomitant with the reduction of proinflammatory macrophages in the lesions. Treg expansion in the blood circulation and atheroprotection in calpain-targeted mice was prevented by the administration of TGF-β type-I receptor inhibitor. Moreover, lysophosphatidic acid-induced calpain overactivation potentiated the IL (interleukin)-18/NF-κB (nuclear factor κB)/VCAM1 (vascular cell adhesion molecule 1) axis in LECs, thereby inhibiting lymphocyte mobility on the cells. Indeed, VCAM1 in LECs was upregulated in hypercholesterolemic mice and human cases of coronary artery disease. Neutralization of VCAM1 or targeting LEC calpain systems recovered afferent Treg transportation via lymphatic vessels in mice. CONCLUSIONS Calpain systems in LECs have a key role in controlling Treg stability and trafficking under hypercholesterolemia.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine (Y.T., T.H., M.M.), the University of Tokyo, Japan
| | - Takayoshi Higashi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine (Y.T., T.H., M.M.), the University of Tokyo, Japan
| | - Hirokazu Ohtaki
- Department of Anatomy (H.O.), Showa University School of Medicine, Tokyo, Japan
| | - Takashi Takaki
- Division of Electron Microscopy (T.T.), Showa University School of Medicine, Tokyo, Japan
| | - Koji Ohnishi
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan (K. Ohnishi)
| | - Masahiro Hosonuma
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan (M.H.)
| | - Nozomu Kono
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Graduate School of Medicine (N.K., H.A.), the University of Tokyo, Japan
| | - Risako Akasu
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| | - Shogo Haraguchi
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| | - Joo-Ri Kim-Kaneyama
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| | - Kinya Otsu
- The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, London, United Kingdom (K. Otsu)
| | - Hiroyuki Arai
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Graduate School of Medicine (N.K., H.A.), the University of Tokyo, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine (Y.T., T.H., M.M.), the University of Tokyo, Japan
| | - Akira Miyazaki
- Department of Biochemistry (T.M., R.A., S.H., J.-R.K.-K., A.M.), Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Phan TT, Chakraborty A, Tatum MA, Lima-Orellana A, Reyna AJ, Rutkowski JM. Increased adipose tissue lymphatic vessel density inhibits thermogenesis through elevated neurotensin levels. Front Cell Dev Biol 2023; 11:1100788. [PMID: 36776563 PMCID: PMC9911872 DOI: 10.3389/fcell.2023.1100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
During cold exposure, white adipose tissue can remodel to dissipate energy as heat under cold similar to thermogenic brown adipose tissue. This "browning" and the regulation of body temperature is under the control of neural and hormonal signaling. It was recently discovered that neurotensin, a small neuropeptide, not only acts to inhibit thermogenesis, but also that lymphatic vessels may be a surprisingly potent source of neurotensin production. We hypothesized that the induction of adipose tissue lymphangiogenesis would therefore increase tissue neurotensin levels and impair thermogenesis. Methods: We utilized AdipoVD mice that have inducible expression of vascular endothelial growth factor (VEGF)-D, a potent lymphangiogenic stimulator, specifically in adipose tissue. Overexpression of VEGF-D induced significant lymphangiogenesis in both white and brown adipose tissues of AdipoVD mice. Results: Obese Adipo-VD mice demonstrated no differences in adipose morphology or browning under room temperature conditions compared to controls but did express significantly higher levels of neurotensin in their adipose tissues. Upon acute cold exposure, AdipoVD mice were markedly cold intolerant; inhibition of neurotensin signaling ameliorated this cold intolerance as AdipoVD mice were then able to maintain body temperature on cold challenge equivalent to their littermates. Conclusion: In total, these data demonstrate that adipose tissue lymphatic vessels are a potent paracrine source of neurotensin and that lymphangiogenesis therefore impairs the tissues' thermogenic ability.
Collapse
Affiliation(s)
- Thien T. Phan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| | - Adri Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States,Currently the Arthritis and Autoimmune Disease Research Center, Boston University School of Medicine, Boston, MA, United States
| | - Madison A. Tatum
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| | - Ana Lima-Orellana
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| | - Andrea J. Reyna
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States,*Correspondence: Joseph M. Rutkowski,
| |
Collapse
|
19
|
Mansour S, Josephs KS, Ostergaard P, Gordon K, Van Zanten M, Pearce J, Jeffery S, Keeley V, Riches K, Kreuter A, Wieland U, Hägerling R, Ratnam L, Sackey E, Grigoriadis D, Ho B, Smith F, Rauter E, Mortimer P, Macallan D. Redefining WILD syndrome: a primary lymphatic dysplasia with congenital multisegmental lymphoedema, cutaneous lymphovascular malformation, CD4 lymphopaenia and warts. J Med Genet 2023; 60:84-90. [PMID: 34916230 PMCID: PMC9811088 DOI: 10.1136/jmedgenet-2021-107820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/10/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Primary lymphoedema (PL) syndromes are increasingly recognised as presentations of complex genetic disease, with at least 20 identified causative genes. Recognition of clinical patterns is key to diagnosis, research and therapeutics. The defining criteria for one such clinical syndrome, 'WILD syndrome' (Warts, Immunodeficiency, Lymphoedema and anogenital Dysplasia), have previously depended on a single case report. METHODS AND RESULTS We present 21 patients (including the first described case) with similar clinical and immunological phenotypes. All had PL affecting multiple segments, with systemic involvement (intestinal lymphangiectasia/pleural or pericardial effusions) in 70% (n=14/20). Most (n=20, 95%) had a distinctive cutaneous lymphovascular malformation on the upper anterior chest wall. Some (n=10, 48%) also had hyperpigmented lesions resembling epidermal naevi (but probably lymphatic in origin). Warts were common (n=17, 81%) and often refractory. In contrast to the previous case report, anogenital dysplasia was uncommon-only found in two further cases (total n=3, 14%). Low CD4 counts and CD4:CD8 ratios typified the syndrome (17 of 19, 89%), but monocyte counts were universally normal, unlike GATA2 deficiency. CONCLUSION WILD syndrome is a previously unrecognised, underdiagnosed generalised PL syndrome. Based on this case series, we redefine WILD as 'Warts, Immunodeficiency, andLymphatic Dysplasia' and suggest specific diagnostic criteria. The essential criterion is congenital multisegmental PL in a 'mosaic' distribution. The major diagnostic features are recurrent warts, cutaneous lymphovascular malformations, systemic involvement (lymphatic dysplasia), genital swelling and CD4 lymphopaenia with normal monocyte counts. The absence of family history suggests a sporadic condition, and the random distribution of swelling implicates mosaic postzygotic mutation as the cause.
Collapse
Affiliation(s)
- Sahar Mansour
- Lymphovascular Research Unit, Molecular and Clinical Sciences Research Institute, University of London St George's, London, UK
- SW Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Katherine S Josephs
- Lymphovascular Research Unit, Molecular and Clinical Sciences Research Institute, University of London St George's, London, UK
- SW Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Pia Ostergaard
- Lymphovascular Research Unit, Molecular and Clinical Sciences Research Institute, University of London St George's, London, UK
| | - Kristiana Gordon
- Dermatology and Lymphovascular Medicine, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Malou Van Zanten
- Lymphovascular Research Unit, Molecular and Clinical Sciences Research Institute, University of London St George's, London, UK
| | - Julian Pearce
- Dermatology and Lymphovascular Medicine, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Steve Jeffery
- Lymphovascular Research Unit, Molecular and Clinical Sciences Research Institute, University of London St George's, London, UK
| | - Vaughan Keeley
- Lymphedema Clinic, Derby Hospitals NHS Foundation Trust, Derby, UK
| | - Katie Riches
- Lymphedema Clinic, Derby Hospitals NHS Foundation Trust, Derby, UK
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, Helios St Elisabeth Hospital Oberhausen, University Witten-Herdecke, Oberhausen, Germany
| | - Ulrike Wieland
- National Reference Center for Papilloma and Polyomaviruses, Institute of Virology, Uniklinik Koln, University of Cologne, Cologne, Germany
| | - René Hägerling
- Institute of Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lakshmi Ratnam
- Radiology Department, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Ege Sackey
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Dionysios Grigoriadis
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Bernard Ho
- Dermatology and Lymphovascular Medicine, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Frances Smith
- Viapath Haematology Laboratory, King's College Hospital NHS Foundation Trust, London, UK
| | - Elisabeth Rauter
- Viapath Haematology Laboratory, King's College Hospital NHS Foundation Trust, London, UK
| | - Peter Mortimer
- Dermatology and Lymphovascular Medicine, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Derek Macallan
- Infection Care Group, St George's University Hospitals NHS Foundation Trust, London, UK
- Institute for Infection and Immunity, St George's University of London, London, UK
| |
Collapse
|
20
|
Chen K, Gao M, Dong W, Liu H, Lin Y, Xie Y, Zhong W, Chen J, Huang X, He W, Lin T, Wang B, Huang J. A Novel Lymphangiogenesis-Related Gene Signature can Predict Prognosis and Immunosuppressive Microenvironment in Patients with Clear Cell Renal Cell Carcinoma. Int J Med Sci 2023; 20:754-770. [PMID: 37213667 PMCID: PMC10198139 DOI: 10.7150/ijms.81078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/04/2023] [Indexed: 05/23/2023] Open
Abstract
Background: Lymphangiogenesis represents a key event in the progression and metastasis of patients with clear cell renal cell carcinoma (ccRCC). Nevertheless, the prognostic value of lymphangiogenesis-related genes (LRGs) in ccRCC patients remains unknown. Method: Differential analyses were performed to identify differentially expressed LRGs between normal and tumor tissues. A univariate Cox analysis was performed to identify differently expressed LRGs associated with overall survival (OS). LASSO and multivariate Cox analyses were performed to construct and optimize the LRG signature. To further explore the molecular characterization of the LRG signature, a functional enrichment analysis, immune signature, somatic mutations, and drug sensitivity were assessed. Immunohistochemistry (IHC) and immunofluorescence staining were performed to validate the relationship between lymphangiogenesis and immunity using our ccRCC samples. Results: Four candidate genes (IL4, CSF2, PROX1, and TEK) were eventually available to construct the LRG signature in the training set. Patients in the high-risk group had a shorter survival than those in the low-risk group. The LRG signature was an independent prognostic factor of OS. These results were confirmed in the validation group. The LRG signature was correlated with immunosuppressive cell infiltration, T cell exhaustion markers, somatic mutations, and drug sensitivity. The IHC and immunofluorescence staining results confirmed the correlation between lymphangiogenesis and CD163+ macrophages, exhausted CD8+PD-1+, and CD8+ LAG3+ T cells. Conclusion: A novel prognostic signature based on LRGs could provide insight into the prognostic evaluation and treatment of ccRCC patients.
Collapse
Affiliation(s)
- Ke Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Mingchao Gao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Wen Dong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Hao Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Yi Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Yuxia Xie
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Wenlong Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Junyu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Xiaodong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Wang He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
- ✉ Corresponding author: Jian Huang, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou 510120, PR China; Phone: 86-20-81332146; Fax: 86-20-81332336; E-mail: ; Bo Wang, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou 510120, PR China; Phone: 86-20-81332146; Fax: 86-20-81332336; E-mail: ; Tianxin Lin, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou 510120, PR China; Phone: 86-20-81332146; Fax: 86-20-81332336; E-mail:
| | - Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
- ✉ Corresponding author: Jian Huang, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou 510120, PR China; Phone: 86-20-81332146; Fax: 86-20-81332336; E-mail: ; Bo Wang, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou 510120, PR China; Phone: 86-20-81332146; Fax: 86-20-81332336; E-mail: ; Tianxin Lin, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou 510120, PR China; Phone: 86-20-81332146; Fax: 86-20-81332336; E-mail:
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
- ✉ Corresponding author: Jian Huang, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou 510120, PR China; Phone: 86-20-81332146; Fax: 86-20-81332336; E-mail: ; Bo Wang, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou 510120, PR China; Phone: 86-20-81332146; Fax: 86-20-81332336; E-mail: ; Tianxin Lin, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou 510120, PR China; Phone: 86-20-81332146; Fax: 86-20-81332336; E-mail:
| |
Collapse
|
21
|
Kim KS, Lee S, Na K, Bae YH. Ovalbumin and Poly(i:c) Encapsulated Dendritic Cell-Targeted Nanoparticles for Immune Activation in the Small Intestinal Lymphatic System. Adv Healthc Mater 2022; 11:e2200909. [PMID: 35835068 PMCID: PMC9633451 DOI: 10.1002/adhm.202200909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/24/2022] [Indexed: 01/28/2023]
Abstract
Here, antigen and adjuvant encapsulated dendritic cell-targeted nanoparticles for immune activation in the small intestinal lymphatic system to inhibit melanoma development are described. This strategy is demonstrated using chondroitin sulfate-coated nanoparticles (OPGMN) grafted with glycocholic acid and mannose for cationic liposomes encapsulated with ovalbumin as an antigen and polyinosine-polycytidylic acid as a cancer-specific adjuvant. OPGMN is absorbed in the gastrointestinal tract and delivered to the lymph nodes when orally administered. Oral delivery of OPGMN induces increased dendritic cell maturation compared to the intradermal route in the lymph node and induces T helper type 1 and type 2 responses, such as immunoglobulin G1 and G2c, interferon-gamma, and interleukin-2, in the blood. Repeated oral administration of OPGMN increases the population of CD3+ CD8+ T cells, CD44high CD62Llow memory T cells, and CD11b+ CD27+ natural killer cells in the blood. OPGMN completely prevents melanoma development in the B16F10-bearing C57BL/6 mouse model by reducing the population of CD4+ CD25+ Foxp3+ regulatory T cells in the blood. This strategy is expected to prevent the recurrence of tumors after various cancer treatments.
Collapse
Affiliation(s)
- Kyoung Sub Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, South Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Sanghee Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, South Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, South Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, South Korea
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
22
|
Li YL, Hung WC. Reprogramming of sentinel lymph node microenvironment during tumor metastasis. J Biomed Sci 2022; 29:84. [PMID: 36266717 PMCID: PMC9583492 DOI: 10.1186/s12929-022-00868-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/15/2022] [Indexed: 11/10/2022] Open
Abstract
Metastasis is a major cause of death in patients with cancer. The two main routes for cancer cell dissemination are the blood and lymphatic systems. The underlying mechanism of hematogenous metastasis has been well characterized in the past few decades. However, our understanding of the molecular basis of lymphatic metastasis remains at a premature stage. Conceptually, cancer cells invade into lymphatic capillary, passively move to collecting lymphatic vessels, migrate into sentinel lymph node (SLN;, the first lymph node to which cancer cells spread from the primary tumor), and enter the blood circulatory system via the subclavian vein. Before arriving, cancer cells release specific soluble factors to modulate the microenvironment in SLN to establish a beachhead for successful colonization. After colonization, cancer cells inhibit anti-tumor immunity by inducing the recruitment of regulatory T cell and myeloid-derived suppressor cells, suppressing the function of dendritic cell and CD8+ T cell, and promoting the release of immunosuppressive cytokines. The development of novel strategies to reverse cancer cell-triggered SLN remodeling may re-activate immunity to reduce beachhead buildup and distant metastasis. In addition to being a microanatomic location for metastasis, the SLN is also an important site for immune modulation. Nanotechnology-based approaches to deliver lymph node-tropic antibodies or drug-conjugated nanoparticles to kill cancer cells on site are a new direction for cancer treatment. Conversely, the induction of stronger immunity by promoting antigen presentation in lymph nodes provides an alternate way to enhance the efficacy of immune checkpoint therapy and cancer vaccine. In this review article, we summarize recent findings on the reprogramming of SLN during lymphatic invasion and discuss the possibility of inhibiting tumor metastasis and eliciting anti-tumor immunity by targeting SLN.
Collapse
Affiliation(s)
- Yen-Liang Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan. .,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
23
|
Wilting J, Becker J. The lymphatic vascular system: much more than just a sewer. Cell Biosci 2022; 12:157. [PMID: 36109802 PMCID: PMC9476376 DOI: 10.1186/s13578-022-00898-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Almost 400 years after the (re)discovery of the lymphatic vascular system (LVS) by Gaspare Aselli (Asellius G. De lactibus, sive lacteis venis, quarto vasorum mesaraicorum genere, novo invento Gasparis Asellii Cremo. Dissertatio. (MDCXXIIX), Milan; 1628.), structure, function, development and evolution of this so-called 'second' vascular system are still enigmatic. Interest in the LVS was low because it was (and is) hardly visible, and its diseases are not as life-threatening as those of the blood vascular system. It is not uncommon for patients with lymphedema to be told that yes, they can live with it. Usually, the functions of the LVS are discussed in terms of fluid homeostasis, uptake of chylomicrons from the gut, and immune cell circulation. However, the broad molecular equipment of lymphatic endothelial cells suggests that they possess many more functions, which are also reflected in the pathophysiology of the system. With some specific exceptions, lymphatics develop in all organs. Although basic structure and function are the same regardless their position in the body wall or the internal organs, there are important site-specific characteristics. We discuss common structure and function of lymphatics; and point to important functions for hyaluronan turn-over, salt balance, coagulation, extracellular matrix production, adipose tissue development and potential appetite regulation, and the influence of hypoxia on the regulation of these functions. Differences with respect to the embryonic origin and molecular equipment between somatic and splanchnic lymphatics are discussed with a side-view on the phylogeny of the LVS. The functions of the lymphatic vasculature are much broader than generally thought, and lymphatic research will have many interesting and surprising aspects to offer in the future.
Collapse
Affiliation(s)
- Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany.
| | - Jürgen Becker
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Abstract
The lymphatic vessels play an essential role in maintaining immune and fluid homeostasis and in the transport of dietary lipids. The discovery of lymphatic endothelial cell-specific markers facilitated the visualization and mechanistic analysis of lymphatic vessels over the past two decades. As a result, lymphatic vessels have emerged as a crucial player in the pathogenesis of several cardiovascular diseases, as demonstrated by worsened disease progression caused by perturbations to lymphatic function. In this review, we discuss the major findings on the role of lymphatic vessels in cardiovascular diseases such as hypertension, obesity, atherosclerosis, myocardial infarction, and heart failure.
Collapse
Affiliation(s)
- Dakshnapriya Balasubbramanian
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas 77807, USA
| |
Collapse
|
25
|
Gao KM, Motwani M, Tedder T, Marshak-Rothstein A, Fitzgerald KA. Radioresistant cells initiate lymphocyte-dependent lung inflammation and IFNγ-dependent mortality in STING gain-of-function mice. Proc Natl Acad Sci U S A 2022; 119:e2202327119. [PMID: 35696583 PMCID: PMC9231608 DOI: 10.1073/pnas.2202327119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
Pediatric patients with constitutively active mutations in the cytosolic double-stranded-DNA-sensing adaptor STING develop an autoinflammatory syndrome known as STING-associated vasculopathy with onset in infancy (SAVI). SAVI patients have elevated interferon-stimulated gene expression and suffer from interstitial lung disease (ILD) with lymphocyte predominate bronchus-associated lymphoid tissue (BALT). Mice harboring SAVI mutations (STING V154M [VM]) that recapitulate human disease also develop lymphocyte-rich BALT. Ablation of either T or B lymphocytes prolongs the survival of SAVI mice, but lung immune aggregates persist, indicating that T cells and B cells can independently be recruited as BALT. VM T cells produced IFNγ, and IFNγR deficiency prolonged the survival of SAVI mice; however, T-cell-dependent recruitment of infiltrating myeloid cells to the lung was IFNγ independent. Lethally irradiated VM recipients fully reconstituted with wild type bone-marrow-derived cells still developed ILD, pointing to a critical role for VM-expressing radioresistant parenchymal and/or stromal cells in the recruitment and activation of pathogenic lymphocytes. We identified lung endothelial cells as radioresistant cells that express STING. Transcriptional analysis of VM endothelial cells revealed up-regulation of chemokines, proinflammatory cytokines, and genes associated with antigen presentation. Together, our data show that VM-expressing radioresistant cells play a key role in the initiation of lung disease in VM mice and provide insights for the treatment of SAVI patients, with implications for ILD associated with other connective tissue disorders.
Collapse
Affiliation(s)
- Kevin MingJie Gao
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Mona Motwani
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Thomas Tedder
- Department of Immunology, Duke University School of Medicine, Durham, NC 22710
- Department Pediatrics, Duke University School of Medicine, Durham, NC 22710
| | - Ann Marshak-Rothstein
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
- Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| |
Collapse
|
26
|
Singla B, Aithabathula RV, Kiran S, Kapil S, Kumar S, Singh UP. Reactive Oxygen Species in Regulating Lymphangiogenesis and Lymphatic Function. Cells 2022; 11:1750. [PMID: 35681445 PMCID: PMC9179518 DOI: 10.3390/cells11111750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
The lymphatic system is pivotal for immunosurveillance and the maintenance of tissue homeostasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing vessels, has both physiological and pathological roles. Recent advances in the molecular mechanisms regulating lymphangiogenesis have opened a new area of research on reparative lymphangiogenesis for the treatment of various pathological disorders comprising neurological disorders, cardiac repair, autoimmune disease, obesity, atherosclerosis, etc. Reactive oxygen species (ROS) produced by the various cell types serve as signaling molecules in several cellular mechanisms and regulate various aspects of growth-factor-mediated responses, including lymphangiogenesis. The ROS, including superoxide anion, hydrogen peroxide, and nitric oxide, play both beneficial and detrimental roles depending upon their levels and cellular microenvironment. Low ROS levels are essential for lymphangiogenesis. On the contrary, oxidative stress due to enhanced ROS generation and/or reduced levels of antioxidants suppresses lymphangiogenesis via promoting lymphatic endothelial cell apoptosis and death. In this review article, we provide an overview of types and sources of ROS, discuss the role of ROS in governing lymphangiogenesis and lymphatic function, and summarize the role of lymphatics in various diseases.
Collapse
Affiliation(s)
- Bhupesh Singla
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Shweta Kapil
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children′s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| |
Collapse
|
27
|
Juneja P, Tripathi DM, Kaur S. Revisiting the gut-liver axis: gut lymphatic system in liver cirrhosis and portal hypertension. Am J Physiol Gastrointest Liver Physiol 2022; 322:G473-G479. [PMID: 35195034 DOI: 10.1152/ajpgi.00271.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The lymphatic vascular system runs parallel to the blood vascular system, comprising a network of lymphatic vessels and secondary lymphoid organs. The intestinal lymphatic capillaries (lacteals) and the associated collecting vessels in the mesentery form the gut lymphatic system. The gut lymphatic vasculature comprises the longest-studied lymphatic vessel bed and plays a significant role in the uptake and transport of dietary fat, abdominal fluid balance, and gut immunosurveillance. Gut is closely connected to liver through the portal circulation. In several experimental and clinical studies, the "gut-liver-axis" has been demonstrated to contribute to the pathogenesis of portal hypertension, liver cirrhosis, and its complications. Given a significant impact of gut health on the liver, in the current review, we highlight "gut-liver axis" in context to the circulatory physiology of gut lymphatic vessels. Despite their paramount importance in maintaining fluid and immune homeostasis in the gut, gut lymphatic vessels remain one of the most understudied physiological systems in liver disease pathology. In the current review, we delineate the connections of gut lymphatics with abdominal fluid homeostasis and bacterial translocation in the pathogenesis of liver cirrhosis and portal hypertension. We describe mechanisms and factors that drive gut lymphangiogenesis and lymphatic vessel dysfunction during inflammation. The review also underscores the role of gut lymphatic endothelial cells in regulating gut and liver immunity. We finally discuss the prognostic and therapeutic prospects of studying gut lymphatic vessels in advanced liver cirrhosis.
Collapse
Affiliation(s)
- Pinky Juneja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Dinesh M Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
28
|
Towards Understanding the Lymph Node Response to Skin Infection with Saprophytic Staphylococcus epidermidis. Biomedicines 2022; 10:biomedicines10051021. [PMID: 35625758 PMCID: PMC9138836 DOI: 10.3390/biomedicines10051021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
In individuals with lymphedema, diabetic foot, or other diseases, infections with saprophytes are common. The response of major cell subpopulations in the draining lymph nodes to skin infection with Staphylococcus epidermidis was assessed using the rat model. After massive subepidermal infection, a cytometric evaluation showed an increase in cytotoxic and helper T lymphocytes and major subpopulations of the innate immune response. Three weeks later, signs of inflammation reduction with an increase in the content of memory T helper lymphocytes and effector memory T cytotoxic lymphocytes were observed. After skin re-infection, a rapid response of cytotoxic, helper, and memory T lymphocytes, memory B lymphocytes and plasmablasts, and macrophages was detected. In addition, a reduction in the number of naïve B lymphocytes, activated MHC class II+ cells, and some cells of the innate immune system was observed. T regulatory lymphocyte response after the initial and secondary S. epidermidis skin infection was not detected. The morphometric evaluation showed significant changes in the main cell subpopulations in each functional zone of the node and then confirmed the efficient elimination of the administered antigen, as evidenced by the observations on day 28. Notably, after re-infection, the cellular response did not exceed the level after the initial infection and was reduced in many cell subpopulations. Understanding how the lymph nodes eliminate S. epidermidis can provide valuable insights into creating immunological therapies against infections with saprophytes.
Collapse
|
29
|
Enhanced T-Cell Priming and Improved Anti-Tumor Immunity through Lymphatic Delivery of Checkpoint Blockade Immunotherapy. Cancers (Basel) 2022; 14:cancers14071823. [PMID: 35406595 PMCID: PMC8997812 DOI: 10.3390/cancers14071823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
An infusion of checkpoint blockade immunotherapy (CBI) has revolutionized cancer treatments for some patients, but the majority of patients experience disappointing responses. Because adaptive immune responses are mounted by the concentrated assembly of antigens, immune cells, and mediators in the secluded and protective environment of draining lymph nodes (dLNs), we hypothesize that lymphatic delivery of CBI (αCTLA-4 and αPD-1) to tumor dLNs (tdLNs) improves anti-tumor responses over intravenous (i.v.) administration, and that vaccination against tumor associated antigen (TAA) further enhances these responses. Mono- and combination CBI were administered i.v. or through image-guided intradermal (i.d.) injection to reach tdLNs in vaccinated and unvaccinated animals bearing either primary or orthotopically metastasizing B16F10 melanoma. Vaccination and boost against TAA, Melan-A, was accomplished with virus-like particles (VLP) directed to tdLNs followed by VLP boost after CBI administration. Lymphatic delivery of CBIs reduced primary tumor size and metastatic tumor burden, alleviated the pro-tumorigenic immune environment, and improved survival over systemic administration of CBIs. Animals receiving CBIs lymphatically exhibited significantly enhanced survival over those receiving therapies administered partially or completely through systemic routes. By combining vaccination and CBI for effective T-cell priming in the protected environment of dLNs, anti-tumor responses may be improved.
Collapse
|
30
|
Magold AI, Swartz MA. Pathogenic Exploitation of Lymphatic Vessels. Cells 2022; 11:979. [PMID: 35326430 PMCID: PMC8946894 DOI: 10.3390/cells11060979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Lymphatic vessels provide a critical line of communication between peripheral tissues and their draining lymph nodes, which is necessary for robust immune responses against infectious agents. At the same time, lymphatics help shape the nature and kinetics of immune responses to ensure resolution, limit tissue damage, and prevent autoimmune responses. A variety of pathogens have developed strategies to exploit these functions, from multicellular organisms like nematodes to bacteria, viruses, and prions. While lymphatic vessels serve as transport routes for the dissemination of many pathogens, their hypoxic and immune-suppressive environments can provide survival niches for others. Lymphatics can be exploited as perineural niches, for inter-organ distribution among highly motile carrier cells, as effective replicative niches, and as alternative routes in response to therapy. Recent studies have broadened our understanding of lymphatic involvement in pathogenic spread to include a wider range of pathogens, as well as new mechanisms of exploitation, which we summarize here.
Collapse
Affiliation(s)
- Alexandra I. Magold
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA;
| | - Melody A. Swartz
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA;
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
31
|
Wysmołek ME, Długosz E, Wiśniewski M. The Immunological Role of Vascular and Lymphatic Endothelial Cells in Filarial Infections. Animals (Basel) 2022; 12:ani12040426. [PMID: 35203133 PMCID: PMC8868237 DOI: 10.3390/ani12040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary The endothelium is a monolayer of cells forming a thin membrane that lines the inside of blood vessels. These cells release molecules that regulate vascular relaxation, contraction, and can control blood clotting and the immune response. During infections with filarial nematodes, common parasites of humans and animals, the endothelium is believed to play a key role in the communication between the host and the parasite, since the embryonic stage of filaroids is distributed in the bloodstream. Therefore, this review aims to gather research from different scientists in order to better understand the host immune response in infections with filarial nematodes. Abstract The embryonic stage of filarial nematodes, or microfilariae (Mf), shows daily and seasonal periodicity that requires their migration through blood vessels into the lungs, where they are sequestered when not circulating in the peripheral blood. Therefore, Mf and the host endothelium are likely in a permanent state of hide and seek. Interestingly, filarial nematodes co-cultured in media with a murine endothelial cell line survive eight times longer than those cultured in media alone. This suggests that the endothelium is an important element of the immune response in filarial nematodes, perversely promoting their survival in the host. In this review, we will focus on potential pathways involved in the relationship between filarial nematodes and the host endothelium, including the role of endothelial ICAM/VCAM/PECAM adhesion molecules, surface markers involved in the passage of Mf through host tissue, anti-thrombolic effects caused by the presence of filarial nematodes (including plasmins), endothelial cell proliferation (VEGF), and other aspects of the immune activation of the endothelium. The aim of this review is to merge the knowledge about the cross-talk between Mf of different filarial nematode species and endothelial cells (EC), thus allowing a better understanding of the mechanism of these parasitic infections.
Collapse
|
32
|
Cakala-Jakimowicz M, Kolodziej-Wojnar P, Puzianowska-Kuznicka M. Aging-Related Cellular, Structural and Functional Changes in the Lymph Nodes: A Significant Component of Immunosenescence? An Overview. Cells 2021; 10:cells10113148. [PMID: 34831371 PMCID: PMC8621398 DOI: 10.3390/cells10113148] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aging affects all tissues and organs. Aging of the immune system results in the severe disruption of its functions, leading to an increased susceptibility to infections, an increase in autoimmune disorders and cancer incidence, and a decreased response to vaccines. Lymph nodes are precisely organized structures of the peripheral lymphoid organs and are the key sites coordinating innate and long-term adaptive immune responses to external antigens and vaccines. They are also involved in immune tolerance. The aging of lymph nodes results in decreased cell transport to and within the nodes, a disturbance in the structure and organization of nodal zones, incorrect location of individual immune cell types and impaired intercellular interactions, as well as changes in the production of adequate amounts of chemokines and cytokines necessary for immune cell proliferation, survival and function, impaired naïve T- and B-cell homeostasis, and a diminished long-term humoral response. Understanding the causes of these stromal and lymphoid microenvironment changes in the lymph nodes that cause the aging-related dysfunction of the immune system can help to improve long-term immune responses and the effectiveness of vaccines in the elderly.
Collapse
Affiliation(s)
- Marta Cakala-Jakimowicz
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Correspondence: (M.C.-J.); (M.P.-K.)
| | - Paulina Kolodziej-Wojnar
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
- Correspondence: (M.C.-J.); (M.P.-K.)
| |
Collapse
|
33
|
Abstract
Cardiac lymphangiogenesis plays an important physiological role in the regulation of interstitial fluid homeostasis, inflammatory, and immune responses. Impaired or excessive cardiac lymphatic remodeling and insufficient lymph drainage have been implicated in several cardiovascular diseases including atherosclerosis and myocardial infarction (MI). Although the molecular mechanisms underlying the regulation of functional lymphatics are not fully understood, the interplay between lymphangiogenesis and immune regulation has recently been explored in relation to the initiation and development of these diseases. In this field, experimental therapeutic strategies targeting lymphangiogenesis have shown promise by reducing myocardial inflammation, edema and fibrosis, and improving cardiac function. On the other hand, however, whether lymphangiogenesis is beneficial or detrimental to cardiac transplant survival remains controversial. In the light of recent evidence, cardiac lymphangiogenesis, a thriving and challenging field has been summarized and discussed, which may improve our knowledge in the pathogenesis of cardiovascular diseases and transplant biology.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita, 870-1192, Japan.
| |
Collapse
|
34
|
Donnan MD, Kenig-Kozlovsky Y, Quaggin SE. The lymphatics in kidney health and disease. Nat Rev Nephrol 2021; 17:655-675. [PMID: 34158633 DOI: 10.1038/s41581-021-00438-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The mammalian vascular system consists of two networks: the blood vascular system and the lymphatic vascular system. Throughout the body, the lymphatic system contributes to homeostatic mechanisms by draining extravasated interstitial fluid and facilitating the trafficking and activation of immune cells. In the kidney, lymphatic vessels exist mainly in the kidney cortex. In the medulla, the ascending vasa recta represent a hybrid lymphatic-like vessel that performs lymphatic-like roles in interstitial fluid reabsorption. Although the lymphatic network is mainly derived from the venous system, evidence supports the existence of lymphatic beds that are of non-venous origin. Following their development and maturation, lymphatic vessel density remains relatively stable; however, these vessels undergo dynamic functional changes to meet tissue demands. Additionally, new lymphatic growth, or lymphangiogenesis, can be induced by pathological conditions such as tissue injury, interstitial fluid overload, hyperglycaemia and inflammation. Lymphangiogenesis is also associated with conditions such as polycystic kidney disease, hypertension, ultrafiltration failure and transplant rejection. Although lymphangiogenesis has protective functions in clearing accumulated fluid and immune cells, the kidney lymphatics may also propagate an inflammatory feedback loop, exacerbating inflammation and fibrosis. Greater understanding of lymphatic biology, including the developmental origin and function of the lymphatics and their response to pathogenic stimuli, may aid the development of new therapeutic agents that target the lymphatic system.
Collapse
Affiliation(s)
- Michael D Donnan
- Feinberg Cardiovascular & Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Susan E Quaggin
- Feinberg Cardiovascular & Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
35
|
Alderfer L, Hall E, Hanjaya-Putra D. Harnessing biomaterials for lymphatic system modulation. Acta Biomater 2021; 133:34-45. [PMID: 34118451 PMCID: PMC9113193 DOI: 10.1016/j.actbio.2021.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
The lymphatic system plays an integral part in regulating immune cell trafficking and the transport of macromolecules. However, its influence on disease progression and drug uptake is understood less than that of the vascular system. To bridge this knowledge gap, biomaterials can be used to investigate the lymphatic system and to provide novel understanding into complex disease processes, including cancer metastasis and inflammation. Insight gained from these mechanistic studies can be further used to design innovative biomaterials to modulate the immune system, improve drug delivery, and promote tissue regeneration. This review article focuses on recent advances in (i) biomaterials used for lymphatic vessel formation, (ii) models for studying lymphatic-immune cells interactions, (iii) pharmaceuticals and their interactions with the lymphatic system, (iv) and strategies for drug delivery via the lymphatic system. Finally, several challenges regarding adopting biomaterials for immunomodulation and future perspectives are discussed. STATEMENT OF SIGNIFICANCE: The lymphatic system plays an integral part in regulating immune cell trafficking and the transport of macromolecules. However, its influence on disease progression and drug uptake is understood less than that of the vascular system. This review article focuses on recent progresses in biomaterials to investigate the lymphatic system and to provide novel understanding into complex disease states. Insight gained from these mechanistic studies can be further used to design innovative biomaterials to modulate the immune system, improve drug delivery, and promote tissue regeneration. Finally, a number of challenges in adopting biomaterials for immunomodulation and future perspectives are discussed.
Collapse
|
36
|
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev 2021; 101:1809-1871. [PMID: 33507128 DOI: 10.1152/physrev.00006.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
37
|
Maulloo CD, Cao S, Watkins EA, Raczy MM, Solanki AS, Nguyen M, Reda JW, Shim HN, Wilson DS, Swartz MA, Hubbell JA. Lymph Node-Targeted Synthetically Glycosylated Antigen Leads to Antigen-Specific Immunological Tolerance. Front Immunol 2021; 12:714842. [PMID: 34630389 PMCID: PMC8498032 DOI: 10.3389/fimmu.2021.714842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Inverse vaccines that tolerogenically target antigens to antigen-presenting cells (APCs) offer promise in prevention of immunity to allergens and protein drugs and treatment of autoimmunity. We have previously shown that targeting hepatic APCs through intravenous injection of synthetically glycosylated antigen leads to effective induction of antigen-specific immunological tolerance. Here, we demonstrate that targeting these glycoconjugates to lymph node (LN) APCs under homeostatic conditions leads to local and increased accumulation in the LNs compared to unmodified antigen and induces a tolerogenic state both locally and systemically. Subcutaneous administration directs the polymeric glycoconjugate to the draining LN, where the glycoconjugated antigen generates robust antigen-specific CD4+ and CD8+ T cell tolerance and hypo-responsiveness to antigenic challenge via a number of mechanisms, including clonal deletion, anergy of activated T cells, and expansion of regulatory T cells. Lag-3 up-regulation on CD4+ and CD8+ T cells represents an essential mechanism of suppression. Additionally, presentation of antigen released from the glycoconjugate to naïve T cells is mediated mainly by LN-resident CD8+ and CD11b+ dendritic cells. Thus, here we demonstrate that antigen targeting via synthetic glycosylation to impart affinity for APC scavenger receptors generates tolerance when LN dendritic cells are the cellular target.
Collapse
Affiliation(s)
- Chitavi D. Maulloo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Elyse A. Watkins
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Michal M. Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Ani. S. Solanki
- Animal Resources Center, University of Chicago, Chicago, IL, United States
| | - Mindy Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Joseph W. Reda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Ha-Na Shim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - D. Scott Wilson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, United States
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- Committee on Immunology, University of Chicago, Chicago, IL, United States
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, United States
- Committee on Cancer Biology, University of Chicago, Chicago, IL, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
- Committee on Immunology, University of Chicago, Chicago, IL, United States
- Committee on Cancer Biology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
38
|
Mustapha R, Ng K, Monypenny J, Ng T. Insights Into Unveiling a Potential Role of Tertiary Lymphoid Structures in Metastasis. Front Mol Biosci 2021; 8:661516. [PMID: 34568423 PMCID: PMC8455920 DOI: 10.3389/fmolb.2021.661516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Tertiary lymphoid structures (TLSs) develop in non-lymphatic tissue in chronic inflammation and cancer. TLS can mature to lymph node (LN) like structures with germinal centers and associated vasculature. TLS neogenesis in cancer is highly varied and tissue dependent. The role of TLS in adaptive antitumor immunity is of great interest. However, data also show that TLS can play a role in cancer metastasis. The importance of lymphatics in cancer distant metastasis is clear yet the precise detail of how various immunosurveillance mechanisms interplay within TLS and/or draining LN is still under investigation. As part of the tumor lymphatics, TLS vasculature can provide alternative routes for the establishment of the pre-metastatic niche and cancer dissemination. The nature of the cytokine and chemokine signature at the heart of TLS induction can be key in determining the success of antitumor immunity or in promoting cancer invasiveness. Understanding the biochemical and biomechanical factors underlying TLS formation and the resulting impact on the primary tumor will be key in deciphering cancer metastasis and in the development of the next generation of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Rami Mustapha
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Medical School Campus, London, United Kingdom
- Cancer Research UK King’s Health Partners Centre, London, United Kingdom
| | - Kenrick Ng
- UCL Cancer Institute, University College London, London, United Kingdom
- Department of Medical Oncology, University College Hospitals NHS Foundation Trust, London, United Kingdom
| | - James Monypenny
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Medical School Campus, London, United Kingdom
| | - Tony Ng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Medical School Campus, London, United Kingdom
- Cancer Research UK King’s Health Partners Centre, London, United Kingdom
- UCL Cancer Institute, University College London, London, United Kingdom
- Cancer Research UK City of London Centre, London, United Kingdom
| |
Collapse
|
39
|
Byun KA, Oh S, Son M, Park CH, Son KH, Byun K. Dieckol Decreases Caloric Intake and Attenuates Nonalcoholic Fatty Liver Disease and Hepatic Lymphatic Vessel Dysfunction in High-Fat-Diet-Fed Mice. Mar Drugs 2021; 19:495. [PMID: 34564157 PMCID: PMC8469311 DOI: 10.3390/md19090495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Increased inflammation is the main pathophysiology of nonalcoholic fatty liver disease (NAFLD). Inflammation affects lymphatic vessel function that contributes to the removal of immune cells or macromolecules. Dysfunctional lymphatic vessels with decreased permeability are present in NAFLD. High-fat diet (HFD) is known to increase body weight, food intake, and inflammation in the liver. Previously, it was reported that Ecklonia cava extracts (ECE) decreased food intake or weight gain, and low-calorie diet and weight loss is known as a treatment for NAFLD. In this study, the effects of ECE and dieckol (DK)-which is one component of ECE that decreases inflammation and increases lymphangiogenesis and lymphatic drainage by controlling lymphatic permeability in high-fat diet (HFD)-fed mice-on weight gain and food intake were investigated. ECE and DK decreased weight gain and food intake in the HFD-fed mice. NAFLD activities such as steatosis, lobular inflammation, and ballooning were increased by HFD and attenuated by ECE and DK. The expression of inflammatory cytokines such as IL-6 and TNF-α and infiltration of M1 macrophages were increased by HFD, and they were decreased by ECE or DK. The signaling pathways of lymphangiogenesis, VEGFR-3, PI3K/pAKT, and pERK were decreased by HFD, and they were restored by either ECE or DK. The expression of VE-cadherin (which represents lymphatic junctional function) was increased by HFD, although it was restored by either ECE or DK. In conclusion, ECE and DK attenuated NAFLD by decreasing weight gain and food intake, decreasing inflammation, and increasing lymphangiogenesis, as well as modulating lymphatic vessel permeability.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Korea; (K.-A.B.); (M.S.)
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea;
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea;
| | - Myeongjoo Son
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Korea; (K.-A.B.); (M.S.)
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea;
| | - Chul-Hyun Park
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Korea; (K.-A.B.); (M.S.)
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea;
| |
Collapse
|
40
|
Presence of Donor Lymph Nodes Within Vascularized Composite Allotransplantation Ameliorates VEGF-C-mediated Lymphangiogenesis and Delays the Onset of Acute Rejection. Transplantation 2021; 105:1747-1759. [PMID: 34291766 DOI: 10.1097/tp.0000000000003601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The lymphatic system plays an active role in modulating inflammation in autoimmune diseases and organ rejection. In this work, we hypothesized that the transfer of donor lymph node (LN) might be used to promote lymphangiogenesis and influence rejection in vascularized composite allotransplantation (VCA). METHODS Hindlimb transplantations were performed in which (1) recipient rats received VCA containing donor LN (D:LN+), (2) recipient rats received VCA depleted of all donor LN (D:LN-), and (3) D:LN+ transplantations were followed by lymphangiogenesis inhibition using a vascular endothelial growth factor receptor-3 (VEGFR3) blocker. RESULTS Our data show that graft rejection started significantly later in D:LN+ transplanted rats as compared to the D:LN- group. Moreover, we observed a higher level of VEGF-C and a quicker and more efficient lymphangiogenesis in the D:LN+ group as compared to the D:LN- group. The presence of donor LN within the graft was associated with reduced immunoactivation in the draining LN and increased frequency of circulating and skin-resident donor T regulatory cells. Blocking of the VEGF-C pathway using a VEGFR3 blocker disrupts the lymphangiogenesis process, accelerates rejection onset, and interferes with donor T-cell migration. CONCLUSIONS This study demonstrates that VCA LNs play a pivotal role in the regulation of graft rejection and underlines the potential of specifically targeting the LN component of a VCA to control graft rejection.
Collapse
|
41
|
Hammel JH, Cook SR, Belanger MC, Munson JM, Pompano RR. Modeling Immunity In Vitro: Slices, Chips, and Engineered Tissues. Annu Rev Biomed Eng 2021; 23:461-491. [PMID: 33872520 PMCID: PMC8277680 DOI: 10.1146/annurev-bioeng-082420-124920] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modeling immunity in vitro has the potential to be a powerful tool for investigating fundamental biological questions, informing therapeutics and vaccines, and providing new insight into disease progression. There are two major elements to immunity that are necessary to model: primary immune tissues and peripheral tissues with immune components. Here, we systematically review progress made along three strategies to modeling immunity: ex vivo cultures, which preserve native tissue structure; microfluidic devices, which constitute a versatile approach to providing physiologically relevant fluid flow and environmental control; and engineered tissues, which provide precise control of the 3D microenvironment and biophysical cues. While many models focus on disease modeling, more primary immune tissue models are necessary to advance the field. Moving forward, we anticipate that the expansion of patient-specific models may inform why immunity varies from patient to patient and allow for the rapid comprehension and treatment of emerging diseases, such as coronavirus disease 2019.
Collapse
Affiliation(s)
- Jennifer H Hammel
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA;
| | - Sophie R Cook
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Maura C Belanger
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jennifer M Munson
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA;
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;
- Carter Immunology Center and UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| |
Collapse
|
42
|
Gillot L, Baudin L, Rouaud L, Kridelka F, Noël A. The pre-metastatic niche in lymph nodes: formation and characteristics. Cell Mol Life Sci 2021; 78:5987-6002. [PMID: 34241649 PMCID: PMC8316194 DOI: 10.1007/s00018-021-03873-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/10/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
Lymph node metastasis is a crucial prognostic parameter in many different types of cancers and a gateway for further dissemination to distant organs. Prior to metastatic dissemination, the primary tumor prepares for the remodeling of the draining (sentinel) lymph node by secreting soluble factors or releasing extracellular vesicles that are transported by lymphatic vessels. These important changes occur before the appearance of the first metastatic cell and create what is known as a pre-metastatic niche giving rise to the subsequent survival and growth of metastatic cells. In this review, the lymph node structure, matrix composition and the emerging heterogeneity of cells forming it are described. Current knowledge of the major cellular and molecular processes associated with nodal pre-metastatic niche formation, including lymphangiogenesis, extracellular matrix remodeling, and immunosuppressive cell enlisting in lymph nodes are additionally summarized. Finally, future directions that research could possibly take and the clinical impact are discussed.
Collapse
Affiliation(s)
- Lionel Gillot
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| | - Louis Baudin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| | - Loïc Rouaud
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| | - Frédéric Kridelka
- Department of Obstetrics and Gynecology, CHU of Liege, 4000 Liege, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| |
Collapse
|
43
|
Monaghan RM, Page DJ, Ostergaard P, Keavney BD. The physiological and pathological functions of VEGFR3 in cardiac and lymphatic development and related diseases. Cardiovasc Res 2021; 117:1877-1890. [PMID: 33067626 PMCID: PMC8262640 DOI: 10.1093/cvr/cvaa291] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/07/2019] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial growth factor receptors (VEGFRs) are part of the evolutionarily conserved VEGF signalling pathways that regulate the development and maintenance of the body's cardiovascular and lymphovascular systems. VEGFR3, encoded by the FLT4 gene, has an indispensable and well-characterized function in development and establishment of the lymphatic system. Autosomal dominant VEGFR3 mutations, that prevent the receptor functioning as a homodimer, cause one of the major forms of hereditary primary lymphoedema; Milroy disease. Recently, we and others have shown that FLT4 variants, distinct to those observed in Milroy disease cases, predispose individuals to Tetralogy of Fallot, the most common cyanotic congenital heart disease, demonstrating a novel function for VEGFR3 in early cardiac development. Here, we examine the familiar and emerging roles of VEGFR3 in the development of both lymphovascular and cardiovascular systems, respectively, compare how distinct genetic variants in FLT4 lead to two disparate human conditions, and highlight the research still required to fully understand this multifaceted receptor.
Collapse
Affiliation(s)
- Richard M Monaghan
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Donna J Page
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Pia Ostergaard
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
44
|
Miyazaki T, Miyazaki A. Hypercholesterolemia and Lymphatic Defects: The Chicken or the Egg? Front Cardiovasc Med 2021; 8:701229. [PMID: 34250049 PMCID: PMC8262609 DOI: 10.3389/fcvm.2021.701229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Lymphatic vessels are necessary for maintaining tissue fluid balance, trafficking of immune cells, and transport of dietary lipids. Growing evidence suggest that lymphatic functions are limited under hypercholesterolemic conditions, which is closely related to atherosclerotic development involving the coronary and other large arteries. Indeed, ablation of lymphatic systems by Chy-mutation as well as depletion of lymphangiogenic factors, including vascular endothelial growth factor-C and -D, in mice perturbs lipoprotein composition to augment hypercholesterolemia. Several investigations have reported that periarterial microlymphatics were attracted by atheroma-derived lymphangiogenic factors, which facilitated lymphatic invasion into the intima of atherosclerotic lesions, thereby modifying immune cell trafficking. In contrast to the lipomodulatory and immunomodulatory roles of the lymphatic systems, the critical drivers of lymphangiogenesis and the details of lymphatic insults under hypercholesterolemic conditions have not been fully elucidated. Interestingly, cholesterol-lowering trials enable hypercholesterolemic prevention of lymphatic drainage in mice; however, a causal relationship between hypercholesterolemia and lymphatic defects remains elusive. In this review, the contribution of aberrant lymphangiogenesis and lymphatic cholesterol transport to hypercholesterolemic atherosclerosis was highlighted. The causal relationship between hypercholesterolemia and lymphatic insults as well as the current achievements in the field were discussed.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
45
|
Wang X, Tian H, Liu H, Liang D, Qin C, Zhu Q, Meng L, Fu Y, Xu S, Zhai Y, Ding X, Wang X. Impaired Meningeal Lymphatic Flow in NMOSD Patients With Acute Attack. Front Immunol 2021; 12:692051. [PMID: 34194440 PMCID: PMC8236891 DOI: 10.3389/fimmu.2021.692051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/25/2021] [Indexed: 12/28/2022] Open
Abstract
The meningeal lymphatic vessels (mLVs) in central nervous system (CNS) have been validated by rodent and human studies. The mLVs play a vital role in draining soluble molecules and trafficking lymphocytes, antigens and antibodies from CNS into cervical lymph nodes (CLNs). This indicates that mLVs may serve as a link between the CNS and peripheral immune system, perhaps involving in the neuroinflammatory disease. However, the morphology and drainage function of mLVs in patients with neuroinflammatory disease, such as neuromyelitis optica spectrum disorders (NMOSD), remains unexplored. Using the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), we found that slower flow through mLVs along superior sagittal sinus in NMOSD patients with acute attack instead of NMOSD patients in chronic phase. The reduced flow in mLVs correlated with the disease severity evaluated by expanded disability status scale (EDSS). The receiver operating characteristic curve (ROC) indicated DCE-MRI might provide objective evidence to predict the acute relapse of NMOSD through evaluating the function of mLVs. Promoting or restoring the function of mLVs might be a new target for the treatment of NMOSD relapse.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Haiyan Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Dongxiao Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Chi Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Qingyong Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Lin Meng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yu Fu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Shuqin Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yanping Zhai
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Xuebing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Zhong J, Yang HC, Yermalitsky V, Shelton EL, Otsuka T, Wiese CB, May-Zhang LS, Banan B, Abumrad N, Huang J, Cavnar AB, Kirabo A, Yancey PG, Fogo AB, Vickers KC, Linton MF, Davies SS, Kon V. Kidney injury-mediated disruption of intestinal lymphatics involves dicarbonyl-modified lipoproteins. Kidney Int 2021; 100:585-596. [PMID: 34102217 DOI: 10.1016/j.kint.2021.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
Kidney disease affects intestinal structure and function. Although intestinal lymphatics are central in absorption and remodeling of dietary and synthesized lipids/lipoproteins, little is known about how kidney injury impacts the intestinal lymphatic network, or lipoproteins transported therein. To study this, we used puromycin aminoglycoside-treated rats and NEP25 transgenic mice to show that proteinuric injury expanded the intestinal lymphatic network, activated lymphatic endothelial cells and increased mesenteric lymph flow. The lymph was found to contain increased levels of cytokines, immune cells, and isolevuglandin (a highly reactive dicarbonyl) and to have a greater output of apolipoprotein AI. Plasma levels of cytokines and isolevuglandin were not changed. However, isolevuglandin was also increased in the ileum of proteinuric animals, and intestinal epithelial cells exposed to myeloperoxidase produced more isolevuglandin. Apolipoprotein AI modified by isolevuglandin directly increased lymphatic vessel contractions, activated lymphatic endothelial cells, and enhanced the secretion of the lymphangiogenic promoter vascular endothelial growth factor-C by macrophages. Inhibition of isolevuglandin synthesis by a carbonyl scavenger reduced intestinal isolevuglandin adduct level and lymphangiogenesis. Thus, our data reveal a novel mediator, isolevuglandin modified apolipoprotein AI, and uncover intestinal lymphatic network structure and activity as a new pathway in the crosstalk between kidney and intestine that may contribute to the adverse impact of kidney disease on other organs.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hai-Chun Yang
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Valery Yermalitsky
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Elaine L Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tadashi Otsuka
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carrie B Wiese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Linda S May-Zhang
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Babak Banan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Naji Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jiansheng Huang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ashley B Cavnar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Patricia G Yancey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - MacRae F Linton
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean S Davies
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
47
|
Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cell Mol Life Sci 2021; 78:5139-5161. [PMID: 33963442 PMCID: PMC11072902 DOI: 10.1007/s00018-021-03842-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/14/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Immunotherapies have been established as safe and efficient modalities for numerous tumor treatments. The lymphatic system, which is an important system, can modulate the immune system via a complex network, which includes lymph nodes, vessels, and lymphocytes. With the deepening understanding of tumor immunology, a plethora of immunotherapies, which include vaccines, photothermal therapy, and photodynamic therapy, have been established for antitumor treatments. However, the deleterious off-target effects and nonspecific targeting of therapeutic agents result in low efficacy of immunotherapy. Fortunately, nanoparticle-based approaches for targeting the lymphatic system afford a unique opportunity to manufacture drugs that can simultaneously tackle both aspects, thereby improving tumor treatments. Over the past decades, great strides have been made in the development of DC vaccines and nanomedicine as antitumor treatments in the field of lymphatic therapeutics and diagnosis. In this review, we summarize the current strategies through which nanoparticle technology has been designed to target the lymphatic system and describe applications of lymphatic imaging for the diagnosis and image-guided surgery of tumor metastasis. Moreover, improvements in the tumor specificity of nanovaccines and medicines, which have been realized through targeting or stimulating the lymphatic system, can provide amplified antitumor immune responses and reduce side effects, thereby promoting the paradigm of antitumor treatment into the clinic to benefit patients.
Collapse
Affiliation(s)
- Xingzhou Peng
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Junjie Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Feifan Zhou
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Qian Liu
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
| | - Zhihong Zhang
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
48
|
Lymphatic Connexins and Pannexins in Health and Disease. Int J Mol Sci 2021; 22:ijms22115734. [PMID: 34072103 PMCID: PMC8199429 DOI: 10.3390/ijms22115734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022] Open
Abstract
This review highlights current knowledge on the expression and function of connexins and pannexins, transmembrane channel proteins that play an important role in intercellular communication, in both the developing and mature lymphatic vasculature. A particular focus is given to the involvement of these proteins in functions of the healthy lymphatic system. We describe their influence on the maintenance of extracellular fluid homeostasis, immune cell trafficking to draining lymph nodes and dietary nutrient absorption by intestinal villi. Moreover, new insights into connexin mutations in primary and secondary lymphedema as well as on the implication of lymphatic connexins and pannexins in acquired cardiovascular diseases are discussed, allowing for a better understanding of the role of these proteins in pathologies linked to dysfunctions in the lymphatic system.
Collapse
|
49
|
Sim JH, Ambler WG, Sollohub IF, Howlader MJ, Li TM, Lee HJ, Lu TT. Immune Cell-Stromal Circuitry in Lupus Photosensitivity. THE JOURNAL OF IMMUNOLOGY 2021; 206:302-309. [PMID: 33397744 DOI: 10.4049/jimmunol.2000905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Photosensitivity is a sensitivity to UV radiation (UVR) commonly found in systemic lupus erythematosus (SLE) patients who have cutaneous disease. Upon even ambient UVR exposure, patients can develop inflammatory skin lesions that can reduce the quality of life. Additionally, UVR-exposed skin lesions can be associated with systemic disease flares marked by rising autoantibody titers and worsening kidney disease. Why SLE patients are photosensitive and how skin sensitivity leads to systemic disease flares are not well understood, and treatment options are limited. In recent years, the importance of immune cell-stromal interactions in tissue function and maintenance is being increasingly recognized. In this review, we discuss SLE as an anatomic circuit and review recent findings in the pathogenesis of photosensitivity with a focus on immune cell-stromal circuitry in tissue health and disease.
Collapse
Affiliation(s)
- Ji Hyun Sim
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021.,Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - William G Ambler
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021.,Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021
| | - Isabel F Sollohub
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021
| | - Mir J Howlader
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021.,Biochemistry and Structural Biology, Cell Biology, Developmental Biology, and Molecular Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065; and
| | - Thomas M Li
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021
| | - Henry J Lee
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10065
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; .,Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065.,Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021
| |
Collapse
|
50
|
Specialized Pro-Resolving Mediators and the Lymphatic System. Int J Mol Sci 2021; 22:ijms22052750. [PMID: 33803130 PMCID: PMC7963193 DOI: 10.3390/ijms22052750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Diminished lymphatic function and abnormal morphology are common in chronic inflammatory diseases. Recent studies are investigating whether it is possible to target chronic inflammation by promoting resolution of inflammation, in order to enhance lymphatic function and attenuate disease. Resolution of inflammation is an active process regulated by bioactive lipids known as specialized pro-resolving mediators (SPMs). SPMs can modulate leukocyte migration and function, alter cytokine/chemokine release, modify autophagy, among other immune-related activities. Here, we summarize the role of the lymphatics in resolution of inflammation and lymphatic impairment in chronic inflammatory diseases. Furthermore, we discuss the current literature describing the connection between SPMs and the lymphatics, and the possibility of targeting the lymphatics with innovative SPM therapy to promote resolution of inflammation and mitigate disease.
Collapse
|