1
|
Liu Y, Xu C, Gu R, Han R, Li Z, Xu X. Endoplasmic reticulum stress in diseases. MedComm (Beijing) 2024; 5:e701. [PMID: 39188936 PMCID: PMC11345536 DOI: 10.1002/mco2.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
The endoplasmic reticulum (ER) is a key organelle in eukaryotic cells, responsible for a wide range of vital functions, including the modification, folding, and trafficking of proteins, as well as the biosynthesis of lipids and the maintenance of intracellular calcium homeostasis. A variety of factors can disrupt the function of the ER, leading to the aggregation of unfolded and misfolded proteins within its confines and the induction of ER stress. A conserved cascade of signaling events known as the unfolded protein response (UPR) has evolved to relieve the burden within the ER and restore ER homeostasis. However, these processes can culminate in cell death while ER stress is sustained over an extended period and at elevated levels. This review summarizes the potential role of ER stress and the UPR in determining cell fate and function in various diseases, including cardiovascular diseases, neurodegenerative diseases, metabolic diseases, autoimmune diseases, fibrotic diseases, viral infections, and cancer. It also puts forward that the manipulation of this intricate signaling pathway may represent a novel target for drug discovery and innovative therapeutic strategies in the context of human diseases.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| | - Chunling Xu
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Renjun Gu
- School of Chinese MedicineNanjing University of Chinese MedicineNanjingChina
- Department of Gastroenterology and HepatologyJinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Ruiqin Han
- State Key Laboratory of Medical Molecular BiologyDepartment of Biochemistry and Molecular BiologyInstitute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziyu Li
- School of Acupuncture and TuinaSchool of Regimen and RehabilitationNanjing University of Chinese MedicineNanjingChina
| | - Xianrong Xu
- Department of Aviation Clinical Medicine, Air Force Medical CenterPLABeijingChina
| |
Collapse
|
2
|
Liu C, Ju R. Potential Role of Endoplasmic Reticulum Stress in Modulating Protein Homeostasis in Oligodendrocytes to Improve White Matter Injury in Preterm Infants. Mol Neurobiol 2024; 61:5295-5307. [PMID: 38180617 DOI: 10.1007/s12035-023-03905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Preterm white matter injury (WMI) is a demyelinating disease with high incidence and mortality in premature infants. Oligodendrocyte cells (OLs) are a specialized glial cell that produces myelin proteins and adheres to the axons providing energy and metabolic support which susceptible to endoplasmic reticulum protein quality control. Disruption of cellular protein homeostasis led to OLs dysfunction and cell death, immediately, the unfolded protein response (UPR) activated to attempt to restore the protein homeostasis via IRE1/XBP1s, PERK/eIF2α and ATF6 pathway that reduced protein translation, strengthen protein-folding capacity, and degraded unfolding/misfolded protein. Moreover, recent works have revealed the conspicuousness function of ER signaling pathways in regulating influenced factors such as calcium homeostasis, mitochondrial reactive oxygen generation, and autophagy activation to regulate protein hemostasis and improve the myelination function of OLs. Each of the regulation modes and their corresponding molecular mechanisms provides unique opportunities and distinct perspectives to obtain a deep understanding of different actions of ER stress in maintaining OLs' health and function. Therefore, our review focuses on summarizing the current understanding of ER stress on OLs' protein homeostasis micro-environment in myelination during white matter development, as well as the pathophysiology of WMI, and discussing the further potential experimental therapeutics targeting these factors that restore the function of the UPR in OLs myelination function.
Collapse
Affiliation(s)
- Chang Liu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Rong Ju
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
3
|
Rasetto NB, Giacomini D, Berardino AA, Waichman TV, Beckel MS, Di Bella DJ, Brown J, Davies-Sala MG, Gerhardinger C, Lie DC, Arlotta P, Chernomoretz A, Schinder AF. Transcriptional dynamics orchestrating the development and integration of neurons born in the adult hippocampus. SCIENCE ADVANCES 2024; 10:eadp6039. [PMID: 39028813 PMCID: PMC11259177 DOI: 10.1126/sciadv.adp6039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 07/21/2024]
Abstract
The adult hippocampus generates new granule cells (aGCs) with functional capabilities that convey unique forms of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like cells (RGLs) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to study aGC differentiation using single-nuclei RNA sequencing. Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple immature stages bearing increasing levels of effector genes supporting growth, excitability, and synaptogenesis. Analysis of differential gene expression, pseudo-time trajectory, and transcription factors (TFs) revealed critical transitions defining four cellular states: quiescent RGLs, proliferative progenitors, immature aGCs, and mature aGCs. Becoming mature aGCs involved a transcriptional switch that shuts down pathways promoting cell growth, such SoxC TFs, to activate programs that likely control neuronal homeostasis. aGCs overexpressing Sox4 or Sox11 remained immature. Our results unveil precise molecular mechanisms driving adult RGLs through the pathway of neuronal differentiation.
Collapse
Affiliation(s)
- Natalí B. Rasetto
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Damiana Giacomini
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Ariel A. Berardino
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Tomás Vega Waichman
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Maximiliano S. Beckel
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Daniela J. Di Bella
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Juliana Brown
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - M. Georgina Davies-Sala
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Chiara Gerhardinger
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dieter Chichung Lie
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paola Arlotta
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ariel Chernomoretz
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
- University of Buenos Aires, School of Science, Phys Dept and INFINA (CONICET-UBA), Buenos Aires, Argentina
| | - Alejandro F. Schinder
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| |
Collapse
|
4
|
Niesman IR. Stress and the domestic cat: have humans accidentally created an animal mimic of neurodegeneration? Front Neurol 2024; 15:1429184. [PMID: 39099784 PMCID: PMC11294998 DOI: 10.3389/fneur.2024.1429184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Many neurodegenerative diseases (NDD) appear to share commonality of origin, chronic ER stress. The endoplasmic reticulum (ER) is a dynamic organelle, functioning as a major site of protein synthesis and protein posttranslational modifications, required for proper folding. ER stress can occur because of external stimuli, such as oxidative stress or neuroinflammatory cytokines, creating the ER luminal environment permissive for the accumulation of aggregated and misfolded proteins. Unresolvable ER stress upregulates a highly conserved pathway, the unfolded protein response (UPR). Maladaptive chronic activation of UPR components leads to apoptotic neuronal death. In addition to other factors, physiological responses to stressors are emerging as a significant risk factor in the etiology and pathogenesis of NDD. Owned cats share a common environment with people, being exposed to many of the same stressors as people and additional pressures due to their "quasi" domesticated status. Feline Cognitive Dysfunction Syndrome (fCDS) presents many of the same disease hallmarks as human NDD. The prevalence of fCDS is rapidly increasing as more people welcome cats as companions. Barely recognized 20 years ago, veterinarians and scientists are in infancy stages in understanding what is a very complex disease. This review will describe how cats may represent an unexplored animal mimetic phenotype for human NDD with stressors as potential triggering mechanisms. We will consider how multiple variations of stressful events over the short-life span of a cat could affect neuronal loss or glial dysfunction and ultimately tip the balance towards dementia.
Collapse
Affiliation(s)
- Ingrid R. Niesman
- Department of Biology, SDSU Electron Microscopy Facility, San Diego State University, San Diego, CA, United States
| |
Collapse
|
5
|
Liang T, Xu S, Liu R, Xia X. Activating transcription factor 6 alleviates secondary brain injury by increasing cystathionine γ-lyase expression in a rat model of intracerebral hemorrhage. Aging (Albany NY) 2024; 16:6990-7008. [PMID: 38613810 PMCID: PMC11087128 DOI: 10.18632/aging.205737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) comprises primary and secondary injuries, the latter of which induces increased inflammation and apoptosis and is more severe. Activating transcription factor 6 (ATF6) is a type-II transmembrane protein in the endoplasmic reticulum (ER). ATF6 target genes could improve ER homeostasis, which contributes to cryoprotection. Hence, we predict that ATF6 will have a protective effect on brain tissue after ICH. METHOD The ICH rat model was generated through autologous blood injection into the right basal ganglia, the expression of ATF6 after ICH was determined by WB and IF. The expression of ATF6 was effectively controlled by means of intervention, and a series of measures was used to detect cell death, neuroinflammation, brain edema, blood-brain barrier and other indicators after ICH. Finally, the effects on long-term neural function of rats were measured by behavioral means. RESULT ATF6 was significantly increased in the ICH-induced brain tissues. Further, ATF6 was found to modulate the expression of cystathionine γ-lyase (CTH) after ICH. Upregulation of ATF6 attenuated neuronal apoptosis and inflammation in ICH rats, along with mitigation of ICH-induced brain edema, blood-brain barrier deterioration, and cognitive behavior defects. Conversely, ATF6 genetic knockdown induced effects counter to those aforementioned. CONCLUSIONS This study thereby emphasizes the crucial role of ATF6 in secondary brain injury in response to ICH, indicating that ATF6 upregulation may potentially ameliorate ICH-induced secondary brain injury. Consequently, ATF6 could serve as a promising therapeutic target to alleviate clinical ICH-induced secondary brain injuries.
Collapse
Affiliation(s)
- Tianyu Liang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang, China
| | - Sen Xu
- Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Renyang Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang, China
| | - Xiaoping Xia
- Department of Intensive Care Unit, Taizhou Integrated Traditional Chinese and Western Medicine Hospital, Wenling, Zhejiang Province, China
| |
Collapse
|
6
|
Yuan S, She D, Jiang S, Deng N, Peng J, Ma L. Endoplasmic reticulum stress and therapeutic strategies in metabolic, neurodegenerative diseases and cancer. Mol Med 2024; 30:40. [PMID: 38509524 PMCID: PMC10956371 DOI: 10.1186/s10020-024-00808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
The accumulation of unfolded or misfolded proteins within the endoplasmic reticulum (ER), due to genetic determinants and extrinsic environmental factors, leads to endoplasmic reticulum stress (ER stress). As ER stress ensues, the unfolded protein response (UPR), comprising three signaling pathways-inositol-requiring enzyme 1, protein kinase R-like endoplasmic reticulum kinase, and activating transcription factor 6 promptly activates to enhance the ER's protein-folding capacity and restore ER homeostasis. However, prolonged ER stress levels propels the UPR towards cellular demise and the subsequent inflammatory cascade, contributing to the development of human diseases, including cancer, neurodegenerative disorders, and diabetes. Notably, increased expression of all three UPR signaling pathways has been observed in these pathologies, and reduction in signaling molecule expression correlates with decreased proliferation of disease-associated target cells. Consequently, therapeutic strategies targeting ER stress-related interventions have attracted significant research interest. In this review, we elucidate the critical role of ER stress in cancer, metabolic, and neurodegenerative diseases, offering novel therapeutic approaches for these conditions.
Collapse
Affiliation(s)
- Siqi Yuan
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Dan She
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shangming Jiang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Nan Deng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jiayi Peng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
7
|
Lei Y, Yu H, Ding S, Liu H, Liu C, Fu R. Molecular mechanism of ATF6 in unfolded protein response and its role in disease. Heliyon 2024; 10:e25937. [PMID: 38434326 PMCID: PMC10907738 DOI: 10.1016/j.heliyon.2024.e25937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Activating transcription factor 6 (ATF6), an important signaling molecule in unfolded protein response (UPR), plays a role in the pathogenesis of several diseases, including diseases such as congenital retinal disease, liver fibrosis and ankylosing spondylitis. After endoplasmic reticulum stress (ERS), ATF6 is activated after separation from binding immunoglobulin protein (GRP78/BiP) in the endoplasmic reticulum (ER) and transported to the Golgi apparatus to be hydrolyzed by site 1 and site 2 proteases into ATF6 fragments, which localize to the nucleus and regulate the transcription and expression of ERS-related genes. In these diseases, ERS leads to the activation of UPR, which ultimately lead to the occurrence and development of diseases by regulating the physiological state of cells through the ATF6 signaling pathway. Here, we discuss the evidence for the pathogenic importance of ATF6 signaling in different diseases and discuss preclinical results.
Collapse
Affiliation(s)
| | | | - Shaoxue Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
8
|
Singh R, Kaur N, Choubey V, Dhingra N, Kaur T. Endoplasmic reticulum stress and its role in various neurodegenerative diseases. Brain Res 2024; 1826:148742. [PMID: 38159591 DOI: 10.1016/j.brainres.2023.148742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/07/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The Endoplasmic reticulum (ER), a critical cellular organelle, maintains cellular homeostasis by regulating calcium levels and orchestrating essential functions such as protein synthesis, folding, and lipid production. A pivotal aspect of ER function is its role in protein quality control. When misfolded proteins accumulate within the ER due to factors like protein folding chaperone dysfunction, toxicity, oxidative stress, or inflammation, it triggers the Unfolded protein response (UPR). The UPR involves the activation of chaperones like calnexin, calreticulin, glucose-regulating protein 78 (GRP78), and Glucose-regulating protein 94 (GRP94), along with oxidoreductases like protein disulphide isomerases (PDIs). Cells employ the Endoplasmic reticulum-associated degradation (ERAD) mechanism to counteract protein misfolding. ERAD disruption causes the detachment of GRP78 from transmembrane proteins, initiating a cascade involving Inositol-requiring kinase/endoribonuclease 1 (IRE1), Activating transcription factor 6 (ATF6), and Protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathways. The accumulation and deposition of misfolded proteins within the cell are hallmarks of numerous neurodegenerative diseases. These aberrant proteins disrupt normal neuronal signalling and contribute to impaired cellular homeostasis, including oxidative stress and compromised protein degradation pathways. In essence, ER stress is defined as the cellular response to the accumulation of misfolded proteins in the endoplasmic reticulum, encompassing a series of signalling pathways and molecular events that aim to restore cellular homeostasis. This comprehensive review explores ER stress and its profound implications for the pathogenesis and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rimaljot Singh
- Department of Biophysics, Panjab University Chandigarh, India
| | - Navpreet Kaur
- Department of Biophysics, Panjab University Chandigarh, India
| | - Vinay Choubey
- Department of Pharmacology, University of Tartu, Ravila 19, 51014 Tartu, Estonia
| | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University Chandigarh, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University Chandigarh, India.
| |
Collapse
|
9
|
Yang C, Li Q, Hu F, Liu Y, Wang K. Inhibition of Cardiac Kv4.3/KChIP2 Channels by Sulfonylurea Drug Gliquidone. Mol Pharmacol 2024; 105:224-232. [PMID: 38164605 DOI: 10.1124/molpharm.123.000787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
The Kv4.3 channel features fast N-type inactivation and also undergoes a slow C-type inactivation. The gain-of-function mutations of Kv4.3 channels cause an inherited disease called Brugada syndrome (BrS), characterized by a shortened duration of cardiac action potential repolarization and ventricular arrhythmia. The sulfonylurea drug gliquidone, an ATP-dependent K+ channel antagonist, is widely used for the treatment of type 2 diabetes. Here, we report a novel role of gliquidone in inhibiting Kv4.3 and Kv4.3/KChIP2 channels that encode the cardiac transient outward K+ currents responsible for the initial phase of action potential repolarization. Gliquidone results in concentration-dependent inhibition of both Kv4.3 and Kv4.3/KChIP2 fast or steady-state inactivation currents with an IC50 of approximately 8 μM. Gliquidone also accelerates Kv4.3 channel inactivation and shifts the steady-state activation to a more depolarizing direction. Site-directed mutagenesis and molecular docking reveal that the residues S301 in the S4 and Y312A and L321A in the S4-S5 linker are critical for gliquidone-mediated inhibition of Kv4.3 currents, as mutating those residues to alanine significantly reduces the potency for gliquidone-mediated inhibition. Furthermore, gliquidone also inhibits a gain-of-function Kv4.3 V392I mutant identified in BrS patients in voltage- and concentration-dependent manner. Taken together, our findings demonstrate that gliquidone inhibits Kv4.3 channels by acting on the residues in the S4 and the S4-S5 linker. Therefore, gliquidone may hold repurposing potential for the therapy of Brugada syndrome. SIGNIFICANCE STATEMENT: We describe a novel role of gliquidone in inhibiting cardiac Kv4.3 currents and the channel gain-of-function mutation identified from patients with Brugada syndrome, suggesting its repurposing potential for therapy for the heart disease.
Collapse
Affiliation(s)
- Chenxia Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Qinqin Li
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Fang Hu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| |
Collapse
|
10
|
Rasetto NB, Giacomini D, Berardino AA, Waichman TV, Beckel MS, Di Bella DJ, Brown J, Davies-Sala MG, Gerhardinger C, Lie DC, Arlotta P, Chernomoretz A, Schinder AF. Transcriptional dynamics orchestrating the development and integration of neurons born in the adult hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.03.565477. [PMID: 38260428 PMCID: PMC10802403 DOI: 10.1101/2023.11.03.565477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The adult hippocampus generates new granule cells (aGCs) that exhibit distinct functional capabilities along development, conveying a unique form of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like neural stem cells (RGL) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to follow newborn aGCs along differentiation using single-nuclei RNA sequencing (snRNA-seq). Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple sequential immature stages bearing increasing levels of effector genes supporting growth, excitability and synaptogenesis. Remarkably, four discrete cellular states were defined by the expression of distinct sets of transcription factors (TFs): quiescent neural stem cells, proliferative progenitors, postmitotic immature aGCs, and mature aGCs. The transition from immature to mature aCGs involved a transcriptional switch that shutdown molecular cascades promoting cell growth, such as the SoxC family of TFs, to activate programs controlling neuronal homeostasis. Indeed, aGCs overexpressing Sox4 or Sox11 remained stalled at the immature state. Our results unveil precise molecular mechanisms driving adult neural stem cells through the pathway of neuronal differentiation.
Collapse
|
11
|
Gonzalo-Gobernado R, Moreno-Martínez L, González P, Dopazo XM, Calvo AC, Pidal-Ladrón de Guevara I, Seisdedos E, Díaz-Muñoz R, Mellström B, Osta R, Naranjo JR. Repaglinide Induces ATF6 Processing and Neuroprotection in Transgenic SOD1G93A Mice. Int J Mol Sci 2023; 24:15783. [PMID: 37958767 PMCID: PMC10648964 DOI: 10.3390/ijms242115783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The interaction of the activating transcription factor 6 (ATF6), a key effector of the unfolded protein response (UPR) in the endoplasmic reticulum, with the neuronal calcium sensor Downstream Regulatory Element Antagonist Modulator (DREAM) is a potential therapeutic target in neurodegeneration. Modulation of the ATF6-DREAM interaction with repaglinide (RP) induced neuroprotection in a model of Huntington's disease. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with no cure, characterized by the progressive loss of motoneurons resulting in muscle denervation, atrophy, paralysis, and death. The aim of this work was to investigate the potential therapeutic significance of DREAM as a target for intervention in ALS. We found that the expression of the DREAM protein was reduced in the spinal cord of SOD1G93A mice compared to wild-type littermates. RP treatment improved motor strength and reduced the expression of the ALS progression marker collagen type XIXα1 (Col19α1 mRNA) in the quadriceps muscle in SOD1G93A mice. Moreover, treated SOD1G93A mice showed reduced motoneuron loss and glial activation and increased ATF6 processing in the spinal cord. These results indicate that the modulation of the DREAM-ATF6 interaction ameliorates ALS symptoms in SOD1G93A mice.
Collapse
Affiliation(s)
- Rafael Gonzalo-Gobernado
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Laura Moreno-Martínez
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Paz González
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Xose Manuel Dopazo
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Ana Cristina Calvo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - Isabel Pidal-Ladrón de Guevara
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Elisa Seisdedos
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Rodrigo Díaz-Muñoz
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
| | - Britt Mellström
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| | - Rosario Osta
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
- LAGENBIO, Faculty of Veterinary, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009 Zaragoza, Spain
- AgriFood Institute of Aragon-IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
| | - José Ramón Naranjo
- National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (R.G.-G.); (P.G.); (X.M.D.); (I.P.-L.d.G.); (E.S.); (R.D.-M.); (B.M.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.M.-M.); (A.C.C.)
| |
Collapse
|
12
|
Gebert M, Sławski J, Kalinowski L, Collawn JF, Bartoszewski R. The Unfolded Protein Response: A Double-Edged Sword for Brain Health. Antioxidants (Basel) 2023; 12:1648. [PMID: 37627643 PMCID: PMC10451475 DOI: 10.3390/antiox12081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Efficient brain function requires as much as 20% of the total oxygen intake to support normal neuronal cell function. This level of oxygen usage, however, leads to the generation of free radicals, and thus can lead to oxidative stress and potentially to age-related cognitive decay and even neurodegenerative diseases. The regulation of this system requires a complex monitoring network to maintain proper oxygen homeostasis. Furthermore, the high content of mitochondria in the brain has elevated glucose demands, and thus requires a normal redox balance. Maintaining this is mediated by adaptive stress response pathways that permit cells to survive oxidative stress and to minimize cellular damage. These stress pathways rely on the proper function of the endoplasmic reticulum (ER) and the activation of the unfolded protein response (UPR), a cellular pathway responsible for normal ER function and cell survival. Interestingly, the UPR has two opposing signaling pathways, one that promotes cell survival and one that induces apoptosis. In this narrative review, we discuss the opposing roles of the UPR signaling pathways and how a better understanding of these stress pathways could potentially allow for the development of effective strategies to prevent age-related cognitive decay as well as treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
13
|
Wu LY, Song YJ, Zhang CL, Liu J. K V Channel-Interacting Proteins in the Neurological and Cardiovascular Systems: An Updated Review. Cells 2023; 12:1894. [PMID: 37508558 PMCID: PMC10377897 DOI: 10.3390/cells12141894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
KV channel-interacting proteins (KChIP1-4) belong to a family of Ca2+-binding EF-hand proteins that are able to bind to the N-terminus of the KV4 channel α-subunits. KChIPs are predominantly expressed in the brain and heart, where they contribute to the maintenance of the excitability of neurons and cardiomyocytes by modulating the fast inactivating-KV4 currents. As the auxiliary subunit, KChIPs are critically involved in regulating the surface protein expression and gating properties of KV4 channels. Mechanistically, KChIP1, KChIP2, and KChIP3 promote the translocation of KV4 channels to the cell membrane, accelerate voltage-dependent activation, and slow the recovery rate of inactivation, which increases KV4 currents. By contrast, KChIP4 suppresses KV4 trafficking and eliminates the fast inactivation of KV4 currents. In the heart, IKs, ICa,L, and INa can also be regulated by KChIPs. ICa,L and INa are positively regulated by KChIP2, whereas IKs is negatively regulated by KChIP2. Interestingly, KChIP3 is also known as downstream regulatory element antagonist modulator (DREAM) because it can bind directly to the downstream regulatory element (DRE) on the promoters of target genes that are implicated in the regulation of pain, memory, endocrine, immune, and inflammatory reactions. In addition, all the KChIPs can act as transcription factors to repress the expression of genes involved in circadian regulation. Altered expression of KChIPs has been implicated in the pathogenesis of several neurological and cardiovascular diseases. For example, KChIP2 is decreased in failing hearts, while loss of KChIP2 leads to increased susceptibility to arrhythmias. KChIP3 is increased in Alzheimer's disease and amyotrophic lateral sclerosis, but decreased in epilepsy and Huntington's disease. In the present review, we summarize the progress of recent studies regarding the structural properties, physiological functions, and pathological roles of KChIPs in both health and disease. We also summarize the small-molecule compounds that regulate the function of KChIPs. This review will provide an overview and update of the regulatory mechanism of the KChIP family and the progress of targeted drug research as a reference for researchers in related fields.
Collapse
Affiliation(s)
- Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yu-Juan Song
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
14
|
Huseby CJ, Delvaux E, Brokaw DL, Coleman PD. Blood RNA transcripts reveal similar and differential alterations in fundamental cellular processes in Alzheimer's disease and other neurodegenerative diseases. Alzheimers Dement 2023; 19:2618-2632. [PMID: 36541444 DOI: 10.1002/alz.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dysfunctional processes in Alzheimer's disease and other neurodegenerative diseases lead to neural degeneration in the central and peripheral nervous system. Research demonstrates that neurodegeneration of any kind is a systemic disease that may even begin outside of the region vulnerable to the disease. Neurodegenerative diseases are defined by the vulnerabilities and pathology occurring in the regions affected. METHOD A random forest machine learning analysis on whole blood transcriptomes from six neurodegenerative diseases generated unbiased disease-classifying RNA transcripts subsequently subjected to pathway analysis. RESULTS We report that transcripts of the blood transcriptome selected for each of the neurodegenerative diseases represent fundamental biological cell processes including transcription regulation, degranulation, immune response, protein synthesis, apoptosis, cytoskeletal components, ubiquitylation/proteasome, and mitochondrial complexes that are also affected in the brain and reveal common themes across six neurodegenerative diseases. CONCLUSION Neurodegenerative diseases share common dysfunctions in fundamental cellular processes. Identifying regional vulnerabilities will reveal unique disease mechanisms. HIGHLIGHTS Transcriptomics offer information about dysfunctional processes. Comparing multiple diseases will expose unique malfunctions within diseases. Blood RNA can be used ante mortem to track expression changes in neurodegenerative diseases. Protocol standardization will make public datasets compatible.
Collapse
Affiliation(s)
- Carol J Huseby
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Elaine Delvaux
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Danielle L Brokaw
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paul D Coleman
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
15
|
Molinaro P, Sanguigno L, Casamassa A, Valsecchi V, Sirabella R, Pignataro G, Annunziato L, Formisano L. Emerging Role of DREAM in Healthy Brain and Neurological Diseases. Int J Mol Sci 2023; 24:ijms24119177. [PMID: 37298129 DOI: 10.3390/ijms24119177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
The downstream regulatory element antagonist modulator (DREAM) is a multifunctional Ca2+-sensitive protein exerting a dual mechanism of action to regulate several Ca2+-dependent processes. Upon sumoylation, DREAM enters in nucleus where it downregulates the expression of several genes provided with a consensus sequence named dream regulatory element (DRE). On the other hand, DREAM could also directly modulate the activity or the localization of several cytosolic and plasma membrane proteins. In this review, we summarize recent advances in the knowledge of DREAM dysregulation and DREAM-dependent epigenetic remodeling as a central mechanism in the progression of several diseases affecting central nervous system, including stroke, Alzheimer's and Huntington's diseases, amyotrophic lateral sclerosis, and neuropathic pain. Interestingly, DREAM seems to exert a common detrimental role in these diseases by inhibiting the transcription of several neuroprotective genes, including the sodium/calcium exchanger isoform 3 (NCX3), brain-derived neurotrophic factor (BDNF), pro-dynorphin, and c-fos. These findings lead to the concept that DREAM might represent a pharmacological target to ameliorate symptoms and reduce neurodegenerative processes in several pathological conditions affecting central nervous system.
Collapse
Affiliation(s)
- Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Luca Sanguigno
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | | | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | | | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
16
|
Tandon S, Sarkar S. Glipizide ameliorates human poly(Q) mediated neurotoxicity by upregulating insulin signalling in Drosophila disease models. Biochem Biophys Res Commun 2023; 645:88-96. [PMID: 36680941 DOI: 10.1016/j.bbrc.2023.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Increasing reports suggest insulin signalling pathway as a putative drug target against polyglutamine [poly(Q)] disorders, such as Huntington's disease (HD), Spinocerebellar ataxias (SCA) 1, 2, 3 etc. However, studies on drug-based stimulation of insulin signalling cascade to mitigate poly(Q) pathogenesis are lacking. In our study, we adopted an evidence-based approach to examine if some established insulin stimulating drug can be utilized to restrict poly(Q) aetiology in Drosophila disease models. For the first time, we report that glipizide, an FDA approved anti-diabetic drug upregulates insulin signalling in poly(Q) expressing tissues and restricts formation of inclusion bodies and neurodegeneration. Moreover, it reinstates the chromatin architecture by improving histone acetylation, which is otherwise abrogated due to poly(Q) toxicity. In view of the functional conservation of insulin signalling pathway in Drosophila and humans, our finding strongly suggests that glipizide can be repurposed as an effective treatment strategy against the neurodegenerative poly(Q) disorders. Also, with appropriate validation studies in mammalian disease models, glipizide could be subsequently considered for the clinical trials in human patients.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India.
| |
Collapse
|
17
|
Masanetz RK, Baum W, Schett G, Winkler J, Süß P. Cellular plasticity and myeloid inflammation in the adult brain are independent of the transcriptional modulator DREAM. Neurosci Lett 2023; 796:137061. [PMID: 36626960 DOI: 10.1016/j.neulet.2023.137061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
The downstream regulatory element antagonist modulator (DREAM) modulates ion channel function and gene transcription. Functionally, DREAM is implicated in physiological and pathological processes including cell proliferation, inflammation, and nociception. Despite its multiple functions and robust expression in forebrain tissue, neurons and glial cells, the role of DREAM in regard to cellular plasticity and tumor necrosis factor (TNF)-mediated inflammation is largely unexplored. Here, we demonstrate that adult hippocampal neurogenesis as well as the density and plasticity of glial cells in the hippocampus and thalamus are independent of the presence of DREAM. Further, DREAM deletion does not alter the regional myeloid response and inflammatory gene expression induced by chronic peripheral inflammation in mice overexpressing human TNF. Our data suggest that despite their highly dynamic regulation, neural cell plasticity and adult neurogenesis in the hippocampus do not depend on the multifunctional protein DREAM. Furthermore, TNF-mediated myeloid inflammation in the brain persists in the absence of DREAM.
Collapse
Affiliation(s)
- Rebecca Katharina Masanetz
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Wolfgang Baum
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Department of Neurology, Friedrich-Alexander-Universität Erlangen Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
| |
Collapse
|
18
|
Motawi TK, Al-Kady RH, Senousy MA, Abdelraouf SM. Repaglinide Elicits a Neuroprotective Effect in Rotenone-Induced Parkinson's Disease in Rats: Emphasis on Targeting the DREAM-ER Stress BiP/ATF6/CHOP Trajectory and Activation of Mitophagy. ACS Chem Neurosci 2023; 14:180-194. [PMID: 36538285 DOI: 10.1021/acschemneuro.2c00656] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Repaglinide, a meglitinide insulinotropic antidiabetic, was unraveled as a promising therapeutic agent for Huntington's disease by targeting the neuronal calcium sensor downstream regulatory element antagonist modulator (DREAM). However, its mechanistic profile in Parkinson's disease (PD) especially its impact on endoplasmic reticulum (ER) stress, mitophagy, and their interconnections is poorly elucidated. This study is the first to examine the neuroprotective potential of repaglinide in rotenone-induced PD in rats by exploring its effects on DREAM, BiP/ATF6/CHOP ER stress pathway, apoptosis, mitophagy/autophagy, oxidative stress, astrogliosis/microgliosis, and neuroinflammation. Male Wistar rats were randomly assigned to four groups: groups 1 and 2 received the vehicle or repaglinide (0.5 mg/kg/day p.o). Groups 3 and 4 received rotenone (1.5 mg/kg/48 h s.c) for 21 days; meanwhile, group 4 additionally received repaglinide (0.5 mg/kg/day p.o) for 15 days starting from day 11. Interestingly, repaglinide lessened striatal ER stress and apoptosis as evidenced by reduced BiP/ATF6/CHOP and caspase-3 levels; however, it augmented striatal DREAM mRNA expression. Repaglinide triggered the expression of the mitophagy marker PINK1 and the autophagy protein beclin1 and alleviated striatal oxidative stress through escalating catalase activity. In addition, repaglinide halted astrocyte/microglial activation and neuroinflammation in the striatum as expressed by reducing glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor protein 1 (Iba1) immunostaining and decreasing interleukin (IL)-6 and IL-1β levels. Repaglinide restored striatum morphological alterations, intact neuron count, and neurobehavioral motor performance in rats examined by an open field, grip strength, and footprint gait analysis. Conclusively, repaglinide modulates the DREAM-ER stress BiP/ATF6/CHOP cascade, increases mitophagy/autophagy, inhibits apoptosis, and lessens oxidative stress, astrocyte/microglial activation, and neuroinflammation in PD.
Collapse
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rawan H Al-Kady
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo 44971, Egypt
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.,Biochemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Sahar M Abdelraouf
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo 44971, Egypt
| |
Collapse
|
19
|
Wang W, Bale S, Wei J, Yalavarthi B, Bhattacharyya D, Yan JJ, Abdala-Valencia H, Xu D, Sun H, Marangoni RG, Herzog E, Berdnikovs S, Miller SD, Sawalha AH, Tsou PS, Awaji K, Yamashita T, Sato S, Asano Y, Tiruppathi C, Yeldandi A, Schock BC, Bhattacharyya S, Varga J. Fibroblast A20 governs fibrosis susceptibility and its repression by DREAM promotes fibrosis in multiple organs. Nat Commun 2022; 13:6358. [PMID: 36289219 PMCID: PMC9606375 DOI: 10.1038/s41467-022-33767-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/29/2022] [Indexed: 02/04/2023] Open
Abstract
In addition to autoimmune and inflammatory diseases, variants of the TNFAIP3 gene encoding the ubiquitin-editing enzyme A20 are also associated with fibrosis in systemic sclerosis (SSc). However, it remains unclear how genetic factors contribute to SSc pathogenesis, and which cell types drive the disease due to SSc-specific genetic alterations. We therefore characterize the expression, function, and role of A20, and its negative transcriptional regulator DREAM, in patients with SSc and disease models. Levels of A20 are significantly reduced in SSc skin and lungs, while DREAM is elevated. In isolated fibroblasts, A20 mitigates ex vivo profibrotic responses. Mice haploinsufficient for A20, or harboring fibroblasts-specific A20 deletion, recapitulate major pathological features of SSc, whereas DREAM-null mice with elevated A20 expression are protected. In DREAM-null fibroblasts, TGF-β induces the expression of A20, compared to wild-type fibroblasts. An anti-fibrotic small molecule targeting cellular adiponectin receptors stimulates A20 expression in vitro in wild-type but not A20-deficient fibroblasts and in bleomycin-treated mice. Thus, A20 has a novel cell-intrinsic function in restraining fibroblast activation, and together with DREAM, constitutes a critical regulatory network governing the fibrotic process in SSc. A20 and DREAM represent novel druggable targets for fibrosis therapy.
Collapse
Affiliation(s)
- Wenxia Wang
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Swarna Bale
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jun Wei
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Bharath Yalavarthi
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dibyendu Bhattacharyya
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jing Jing Yan
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Dan Xu
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hanshi Sun
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roberta G Marangoni
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA
| | - Erica Herzog
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Amr H Sawalha
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pei-Suen Tsou
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kentaro Awaji
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Chinnaswamy Tiruppathi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Anjana Yeldandi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bettina C Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, UK
| | - Swati Bhattacharyya
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA.
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - John Varga
- Northwestern Scleroderma Program, Department of Medicine, Feinberg School of Medicine, Chicago, IL, USA.
- Michigan Scleroderma Program, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
20
|
Kukharsky MS, Everett MW, Lytkina OA, Raspopova MA, Kovrazhkina EA, Ovchinnikov RK, Antohin AI, Moskovtsev AA. Protein Homeostasis Dysregulation in Pathogenesis of Neurodegenerative Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893322060115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Maity S, Komal P, Kumar V, Saxena A, Tungekar A, Chandrasekar V. Impact of ER Stress and ER-Mitochondrial Crosstalk in Huntington's Disease. Int J Mol Sci 2022; 23:780. [PMID: 35054963 PMCID: PMC8775980 DOI: 10.3390/ijms23020780] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Accumulation of misfolded proteins is a common phenomenon of several neurodegenerative diseases. The misfolding of proteins due to abnormal polyglutamine (PolyQ) expansions are linked to the development of PolyQ diseases including Huntington's disease (HD). Though the genetic basis of PolyQ repeats in HD remains prominent, the primary molecular basis mediated by PolyQ toxicity remains elusive. Accumulation of misfolded proteins in the ER or disruption of ER homeostasis causes ER stress and activates an evolutionarily conserved pathway called Unfolded protein response (UPR). Protein homeostasis disruption at organelle level involving UPR or ER stress response pathways are found to be linked to HD. Due to dynamic intricate connections between ER and mitochondria, proteins at ER-mitochondria contact sites (mitochondria associated ER membranes or MAMs) play a significant role in HD development. The current review aims at highlighting the most updated information about different UPR pathways and their involvement in HD disease progression. Moreover, the role of MAMs in HD progression has also been discussed. In the end, the review has focused on the therapeutic interventions responsible for ameliorating diseased states via modulating either ER stress response proteins or modulating the expression of ER-mitochondrial contact proteins.
Collapse
Affiliation(s)
- Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad 500078, Telangana, India; (P.K.); (V.K.); (A.S.); (A.T.); (V.C.)
| | | | | | | | | | | |
Collapse
|
22
|
Sönmez A, Mustafa R, Ryll ST, Tuorto F, Wacheul L, Ponti D, Litke C, Hering T, Kojer K, Koch J, Pitzer C, Kirsch J, Neueder A, Kreiner G, Lafontaine DLJ, Orth M, Liss B, Parlato R. Nucleolar stress controls mutant Huntington toxicity and monitors Huntington's disease progression. Cell Death Dis 2021; 12:1139. [PMID: 34880223 PMCID: PMC8655027 DOI: 10.1038/s41419-021-04432-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022]
Abstract
Transcriptional and cellular-stress surveillance deficits are hallmarks of Huntington's disease (HD), a fatal autosomal-dominant neurodegenerative disorder caused by a pathological expansion of CAG repeats in the Huntingtin (HTT) gene. The nucleolus, a dynamic nuclear biomolecular condensate and the site of ribosomal RNA (rRNA) transcription, is implicated in the cellular stress response and in protein quality control. While the exact pathomechanisms of HD are still unclear, the impact of nucleolar dysfunction on HD pathophysiology in vivo remains elusive. Here we identified aberrant maturation of rRNA and decreased translational rate in association with human mutant Huntingtin (mHTT) expression. The protein nucleophosmin 1 (NPM1), important for nucleolar integrity and rRNA maturation, loses its prominent nucleolar localization. Genetic disruption of nucleolar integrity in vulnerable striatal neurons of the R6/2 HD mouse model decreases the distribution of mHTT in a disperse state in the nucleus, exacerbating motor deficits. We confirmed NPM1 delocalization in the gradually progressing zQ175 knock-in HD mouse model: in the striatum at a presymptomatic stage and in the skeletal muscle at an early symptomatic stage. In Huntington's patient skeletal muscle biopsies, we found a selective redistribution of NPM1, similar to that in the zQ175 model. Taken together, our study demonstrates that nucleolar integrity regulates the formation of mHTT inclusions in vivo, and identifies NPM1 as a novel, readily detectable peripheral histopathological marker of HD progression.
Collapse
Affiliation(s)
- Aynur Sönmez
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Rasem Mustafa
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Salome T Ryll
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim and Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Donatella Ponti
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Rome, Italy
| | - Christian Litke
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Tanja Hering
- Department of Neurology, Ulm University, Ulm, Germany
| | - Kerstin Kojer
- Department of Neurology, Ulm University, Ulm, Germany
| | - Jenniver Koch
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core (INBC), Heidelberg University, Heidelberg, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | - Grzegorz Kreiner
- Maj Institute of Pharmacology, Department of Brain Biochemistry, Polish Academy of Sciences, Krakow, Poland
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Michael Orth
- Department of Neurology, Ulm University, Ulm, Germany
| | - Birgit Liss
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Linacre & New College, University of Oxford, Oxford, UK
| | - Rosanna Parlato
- Institute of Applied Physiology, Ulm University, Ulm, Germany.
- Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
- Division for Neurodegenerative Diseases, Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
23
|
Xia H, Zhao H, Yang W, Luo X, Wei J, Xia H. MiR-195-5p represses inflammation, apoptosis, oxidative stress, and endoplasmic reticulum stress in sepsis-induced myocardial injury by targeting activating transcription factor 6. Cell Biol Int 2021; 46:243-254. [PMID: 34816499 DOI: 10.1002/cbin.11726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022]
Abstract
Myocardial injury (MI) is a common complication of sepsis. MicroRNAs (miRNAs) have been suggested as potential biomarkers of MI; however, their mechanisms in sepsis-induced MI remain unclear. A sepsis rat model was constructed by use of cecal ligation and puncture (CLP). The levels of miR-195-5p and activating transcription factor 6 (ATF6) expression were determined by quantitative reverse-transcription polymerase chain reaction, and cytokine levels were detected by ELISA. The levels of oxidative stress (OS)-related indicators and endoplasmic reticulum stress (ERS)-related proteins were examined, and the regulatory effect of miR-195-5p on ATF6 was determined by using the luciferase reporter assay. Our results showed that miR-195-5p expression was downregulated and ATF6 expression was upregulated in lipopolysaccharide-induced cardiomyocytes and mice with CLP-induced sepsis. We also found that miR-195-5p could markedly attenuate the inflammation, apoptosis, OS, and ERS associated with sepsis-induced MI. Additionally, we verified that miR-195-5p could relieve sepsis-induced MI by targeting ATF6. This study identified potential targets for treating MI after sepsis.
Collapse
Affiliation(s)
- Hongxia Xia
- Department of Emergency, East Campus, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hui Zhao
- Department of Interventional Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weize Yang
- Department of Emergency, East Campus, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Luo
- Department of Emergency, East Campus, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wei
- Department of Emergency, East Campus, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Pogoda A, Chmielewska N, Maciejak P, Szyndler J. Transcriptional Dysregulation in Huntington's Disease: The Role in Pathogenesis and Potency for Pharmacological Targeting. Curr Med Chem 2021; 28:2783-2806. [PMID: 32628586 DOI: 10.2174/0929867327666200705225821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by a mutation in the gene that encodes a critical cell regulatory protein, huntingtin (Htt). The expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats causes improper folding of functional proteins and is an initial trigger of pathological changes in the brain. Recent research has indicated that the functional dysregulation of many transcription factors underlies the neurodegenerative processes that accompany HD. These disturbances are caused not only by the loss of wild-type Htt (WT Htt) function but also by the occurrence of abnormalities that result from the action of mutant Htt (mHtt). In this review, we aim to describe the role of transcription factors that are currently thought to be strongly associated with HD pathogenesis, namely, RE1-silencing transcription factor, also known as neuron-restrictive silencer factor (REST/NRSF), forkhead box proteins (FOXPs), peroxisome proliferator-activated receptor gamma coactivator-1a (PGC1α), heat shock transcription factor 1 (HSF1), and nuclear factor κ light-chain-enhancer of activated B cells (NF- κB). We also take into account the role of these factors in the phenotype of HD as well as potential pharmacological interventions targeting the analyzed proteins. Furthermore, we considered whether molecular manipulation resulting in changes in transcription factor function may have clinical potency for treating HD.
Collapse
Affiliation(s)
- Aleksandra Pogoda
- Faculty of Medicine, Medical University of Warsaw, Zwirki i Wigury Street 61, 02-097 Warsaw, Poland
| | - Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha Street 1B, 02-097 Warsaw, Poland
| |
Collapse
|
25
|
Nargeh H, Aliabadi F, Ajami M, Pazoki-Toroudi H. Role of Polyphenols on Gut Microbiota and the Ubiquitin-Proteasome System in Neurodegenerative Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6119-6144. [PMID: 34038102 DOI: 10.1021/acs.jafc.1c00923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Today, neurodegenerative diseases have become a remarkable public health challenge due to their direct relation with aging. Accordingly, understanding the molecular and cellular mechanisms occurring in the pathogenesis of them is essential. Both protein aggregations as a result of the ubiquitin-proteasome system (UPS) inefficiency and gut microbiota alternation are the main pathogenic hallmarks. Polyphenols upregulating this system may decrease the developing rate of neurodegenerative diseases. Most of the dietary intake of polyphenols is converted into other microbial metabolites, which have completely different biological properties from the original polyphenols and should be thoroughly investigated. Herein, several prevalent neurodegenerative diseases are pinpointed to explain the role of gut microbiota alternations and the role of molecular changes, especially UPS down-regulation in their pathogenesis. Some of the most important polyphenols found in our diet are explained along with their microbial metabolites in the body.
Collapse
Affiliation(s)
- Hanieh Nargeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1417466191, Iran
| | - Fatemeh Aliabadi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Marjan Ajami
- Faculty of Nutrition Sciences & Food Technology, Shahid Beheshti University of Medical Sciences, 7th Floor, Bldg No. 2 SBUMS, Arabi Avenue, Daneshjoo Boulevard, Velenjak, Tehran 19839-63113, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Physiology and Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| |
Collapse
|
26
|
Vidal RL, Sepulveda D, Troncoso-Escudero P, Garcia-Huerta P, Gonzalez C, Plate L, Jerez C, Canovas J, Rivera CA, Castillo V, Cisternas M, Leal S, Martinez A, Grandjean J, Sonia D, Lashuel HA, Martin AJM, Latapiat V, Matus S, Sardi SP, Wiseman RL, Hetz C. Enforced dimerization between XBP1s and ATF6f enhances the protective effects of the UPR in models of neurodegeneration. Mol Ther 2021; 29:1862-1882. [PMID: 33545358 PMCID: PMC8116614 DOI: 10.1016/j.ymthe.2021.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/14/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Alteration to endoplasmic reticulum (ER) proteostasis is observed in a variety of neurodegenerative diseases associated with abnormal protein aggregation. Activation of the unfolded protein response (UPR) enables an adaptive reaction to recover ER proteostasis and cell function. The UPR is initiated by specialized stress sensors that engage gene expression programs through the concerted action of the transcription factors ATF4, ATF6f, and XBP1s. Although UPR signaling is generally studied as unique linear signaling branches, correlative evidence suggests that ATF6f and XBP1s may physically interact to regulate a subset of UPR target genes. In this study, we designed an ATF6f/XBP1s fusion protein termed UPRplus that behaves as a heterodimer in terms of its selective transcriptional activity. Cell-based studies demonstrated that UPRplus has a stronger effect in reducing the abnormal aggregation of mutant huntingtin and α-synuclein when compared to XBP1s or ATF6 alone. We developed a gene transfer approach to deliver UPRplus into the brain using adeno-associated viruses (AAVs) and demonstrated potent neuroprotection in vivo in preclinical models of Parkinson's disease and Huntington's disease. These results support the concept in which directing UPR-mediated gene expression toward specific adaptive programs may serve as a possible strategy to optimize the beneficial effects of the pathway in different disease conditions.
Collapse
Affiliation(s)
- René L Vidal
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| | - Denisse Sepulveda
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Paulina Troncoso-Escudero
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Paula Garcia-Huerta
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Constanza Gonzalez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Lars Plate
- Department of Chemistry, Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Carolina Jerez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - José Canovas
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudia A Rivera
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Valentina Castillo
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Marisol Cisternas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Sirley Leal
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Alexis Martinez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Julia Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Donzelli Sonia
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alberto J M Martin
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Veronica Latapiat
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Soledad Matus
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Fundacion Ciencia Vida, Santiago 7780272, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia 7510157, Santiago, Chile
| | - S Pablo Sardi
- Rare and Neurological Diseases Therapeutic Area, Sanofi, 49 New York Avenue, Framingham, MA, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
27
|
Caengprasath N, Theerapanon T, Porntaveetus T, Shotelersuk V. MBTPS2, a membrane bound protease, underlying several distinct skin and bone disorders. J Transl Med 2021; 19:114. [PMID: 33743732 PMCID: PMC7981912 DOI: 10.1186/s12967-021-02779-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
The MBTPS2 gene on the X-chromosome encodes the membrane-bound transcription factor protease, site-2 (MBTPS2) or site-2 protease (S2P) which cleaves and activates several signaling and regulatory proteins from the membrane. The MBTPS2 is critical for a myriad of cellular processes, ranging from the regulation of cholesterol homeostasis to unfolded protein responses. While its functional role has become much clearer in the recent years, how mutations in the MBTPS2 gene lead to several human disorders with different phenotypes including Ichthyosis Follicularis, Atrichia and Photophobia syndrome (IFAP) with or without BRESHECK syndrome, Keratosis Follicularis Spinulosa Decalvans (KFSD), Olmsted syndrome, and Osteogenesis Imperfecta type XIX remains obscure. This review presents the biological role of MBTPS2 in development, summarizes its mutations and implicated disorders, and discusses outstanding unanswered questions.
Collapse
Affiliation(s)
- Natarin Caengprasath
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
28
|
Cercós P, Peraza DA, de Benito-Bueno A, Socuéllamos PG, Aziz-Nignan A, Arrechaga-Estévez D, Beato E, Peña-Acevedo E, Albert A, González-Vera JA, Rodríguez Y, Martín-Martínez M, Valenzuela C, Gutiérrez-Rodríguez M. Pharmacological Approaches for the Modulation of the Potassium Channel K V4.x and KChIPs. Int J Mol Sci 2021; 22:ijms22031419. [PMID: 33572566 PMCID: PMC7866805 DOI: 10.3390/ijms22031419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Ion channels are macromolecular complexes present in the plasma membrane and intracellular organelles of cells. Dysfunction of ion channels results in a group of disorders named channelopathies, which represent an extraordinary challenge for study and treatment. In this review, we will focus on voltage-gated potassium channels (KV), specifically on the KV4-family. The activation of these channels generates outward currents operating at subthreshold membrane potentials as recorded from myocardial cells (ITO, transient outward current) and from the somata of hippocampal neurons (ISA). In the heart, KV4 dysfunctions are related to Brugada syndrome, atrial fibrillation, hypertrophy, and heart failure. In hippocampus, KV4.x channelopathies are linked to schizophrenia, epilepsy, and Alzheimer's disease. KV4.x channels need to assemble with other accessory subunits (β) to fully reproduce the ITO and ISA currents. β Subunits affect channel gating and/or the traffic to the plasma membrane, and their dysfunctions may influence channel pharmacology. Among KV4 regulatory subunits, this review aims to analyze the KV4/KChIPs interaction and the effect of small molecule KChIP ligands in the A-type currents generated by the modulation of the KV4/KChIP channel complex. Knowledge gained from structural and functional studies using activators or inhibitors of the potassium current mediated by KV4/KChIPs will better help understand the underlying mechanism involving KV4-mediated-channelopathies, establishing the foundations for drug discovery, and hence their treatments.
Collapse
Affiliation(s)
- Pilar Cercós
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (P.C.); (M.M.-M.)
| | - Diego A. Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.A.P.); (A.d.B.-B.); (P.G.S.)
- Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angela de Benito-Bueno
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.A.P.); (A.d.B.-B.); (P.G.S.)
- Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula G. Socuéllamos
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.A.P.); (A.d.B.-B.); (P.G.S.)
- Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Abdoul Aziz-Nignan
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | - Dariel Arrechaga-Estévez
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | - Escarle Beato
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | - Emilio Peña-Acevedo
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | - Armando Albert
- Instituto de Química Física Rocasolano (IQFR-CSIC), 28006 Madrid, Spain;
| | - Juan A. González-Vera
- Departamento de Físicoquímica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain;
| | - Yoel Rodríguez
- Department of Natural Sciences, Hostos Community College of CUNY, New York, NY 10451, USA; (A.A.-N.); (D.A.-E.); (E.B.); (E.P.-A.); (Y.R.)
| | | | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, 28029 Madrid, Spain; (D.A.P.); (A.d.B.-B.); (P.G.S.)
- Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; (C.V.); (M.G.-R.); Tel.: +34-91-585-4493 (C.V.); +34-91-258-7493 (M.-G.R.)
| | - Marta Gutiérrez-Rodríguez
- Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain; (P.C.); (M.M.-M.)
- Correspondence: ; (C.V.); (M.G.-R.); Tel.: +34-91-585-4493 (C.V.); +34-91-258-7493 (M.-G.R.)
| |
Collapse
|
29
|
Medinas DB, Hazari Y, Hetz C. Disruption of Endoplasmic Reticulum Proteostasis in Age-Related Nervous System Disorders. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:239-278. [PMID: 34050870 DOI: 10.1007/978-3-030-67696-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endoplasmic reticulum (ER) stress is a prominent cellular alteration of diseases impacting the nervous system that are associated to the accumulation of misfolded and aggregated protein species during aging. The unfolded protein response (UPR) is the main pathway mediating adaptation to ER stress, but it can also trigger deleterious cascades of inflammation and cell death leading to cell dysfunction and neurodegeneration. Genetic and pharmacological studies in experimental models shed light into molecular pathways possibly contributing to ER stress and the UPR activation in human neuropathies. Most of experimental models are, however, based on the overexpression of mutant proteins causing familial forms of these diseases or the administration of neurotoxins that induce pathology in young animals. Whether the mechanisms uncovered in these models are relevant for the etiology of the vast majority of age-related sporadic forms of neurodegenerative diseases is an open question. Here, we provide a systematic analysis of the current evidence linking ER stress to human pathology and the main mechanisms elucidated in experimental models. Furthermore, we highlight the recent association of metabolic syndrome to increased risk to undergo neurodegeneration, where ER stress arises as a common denominator in the pathogenic crosstalk between peripheral organs and the nervous system.
Collapse
Affiliation(s)
- Danilo B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| | - Younis Hazari
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
30
|
Bale S, Varga J, Bhattacharyya S. Role of RP105 and A20 in negative regulation of toll-like receptor activity in fibrosis: potential targets for therapeutic intervention. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Abstract
Background A growing body of literature suggests the cell–intrinsic activity of Atf6α during ER stress responses has implications for tissue cell number during growth and development, as well as in adult biology and tumorigenesis [1]. This concept is important, linking the cellular processes of secretory protein synthesis and endoplasmic reticulum stress response with functional tissue capacity and organ size. However, the field contains conflicting observations, especially notable in secretory cell types like the pancreatic beta cell. Scope of review Here we summarize current knowledge of the basic biology of Atf6α, along with the pleiotropic roles Atf6α plays in cell life and death decisions and possible explanations for conflicting observations. We include studies investigating the roles of Atf6α in cell survival, death and proliferation using well-controlled methodology and specific validated outcome measures, with a focus on endocrine and metabolic tissues when information was available. Major conclusions The net outcome of Atf6α on cell survival and cell death depends on cell type and growth conditions, the presence and degree of ER stress, and the duration and intensity of Atf6α activation. It is unquestioned that Atf6α activity influences the cell fate decision between survival and death, although opposite directions of this outcome are reported in different contexts. Atf6α can also trigger cell cycle activity to expand tissue cell number through proliferation. Much work remains to be done to clarify the many gaps in understanding in this important emerging field.
Collapse
Affiliation(s)
- Rohit B Sharma
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jarin T Snyder
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura C Alonso
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
32
|
Clark EM, Nonarath HJT, Bostrom JR, Link BA. Establishment and validation of an endoplasmic reticulum stress reporter to monitor zebrafish ATF6 activity in development and disease. Dis Model Mech 2020; 13:dmm.041426. [PMID: 31852729 PMCID: PMC6994954 DOI: 10.1242/dmm.041426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Induction of endoplasmic reticulum (ER) stress is associated with diverse developmental and degenerative diseases. Modified ER homeostasis causes activation of conserved stress pathways at the ER called the unfolded protein response (UPR). ATF6 is a transcription factor activated during ER stress as part of a coordinated UPR. ATF6 resides at the ER and, upon activation, is transported to the Golgi apparatus, where it is cleaved by proteases to create an amino-terminal cytoplasmic fragment (ATF6f). ATF6f translocates to the nucleus to activate transcriptional targets. Here, we describe the establishment and validation of zebrafish reporter lines for ATF6 activity. These transgenic lines are based on a defined and multimerized ATF6 consensus site, which drives either eGFP or destabilized eGFP, enabling dynamic study of ATF6 activity during development and disease. The results show that the reporter is specific for the ATF6 pathway, active during development and induced in disease models known to engage UPR. Specifically, during development, ATF6 activity is highest in the lens, skeletal muscle, fins and gills. The reporter is also activated by common chemical inducers of ER stress, including tunicamycin, thapsigargin and brefeldin A, as well as by heat shock. In models for amyotrophic lateral sclerosis and cone dystrophy, ATF6 reporter expression is induced in spinal cord interneurons or photoreceptors, respectively, suggesting a role for ATF6 response in multiple neurodegenerative diseases. Collectively our results show that these ATF6 reporters can be used to monitor ATF6 activity changes throughout development and in zebrafish models of disease. This article has an associated First Person interview with the first author of the paper. Summary: In this study, we validate transgenic zebrafish generated to specifically report the activity of ATF6, representing a major branch of the endoplasmic reticulum stress pathway with functions in development and disease.
Collapse
Affiliation(s)
- Eric M Clark
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Hannah J T Nonarath
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53214, USA
| |
Collapse
|
33
|
Sampieri L, Di Giusto P, Alvarez C. CREB3 Transcription Factors: ER-Golgi Stress Transducers as Hubs for Cellular Homeostasis. Front Cell Dev Biol 2019; 7:123. [PMID: 31334233 PMCID: PMC6616197 DOI: 10.3389/fcell.2019.00123] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
CREB3 family of transcription factors are ER localized proteins that belong to the bZIP family. They are transported from the ER to the Golgi, cleaved by S1P and S2P proteases and the released N-terminal domains act as transcription factors. CREB3 family members regulate the expression of a large variety of genes and according to their tissue-specific expression profiles they play, among others, roles in acute phase response, lipid metabolism, development, survival, differentiation, organelle autoregulation, and protein secretion. They have been implicated in the ER and Golgi stress responses as regulators of the cell secretory capacity and cell specific cargos. In this review we provide an overview of the diverse functions of each member of the family (CREB3, CREB3L1, CREB3L2, CREB3L3, CREB3L4) with special focus on their role in the central nervous system.
Collapse
Affiliation(s)
- Luciana Sampieri
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Di Giusto
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia Alvarez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
34
|
Targeting the neuronal calcium sensor DREAM with small-molecules for Huntington's disease treatment. Sci Rep 2019; 9:7260. [PMID: 31086218 PMCID: PMC6514012 DOI: 10.1038/s41598-019-43677-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/27/2019] [Indexed: 02/04/2023] Open
Abstract
DREAM, a neuronal calcium sensor protein, has multiple cellular roles including the regulation of Ca2+ and protein homeostasis. We recently showed that reduced DREAM expression or blockade of DREAM activity by repaglinide is neuroprotective in Huntington’s disease (HD). Here we used structure-based drug design to guide the identification of IQM-PC330, which was more potent and had longer lasting effects than repaglinide to inhibit DREAM in cellular and in vivo HD models. We disclosed and validated an unexplored ligand binding site, showing Tyr118 and Tyr130 as critical residues for binding and modulation of DREAM activity. IQM-PC330 binding de-repressed c-fos gene expression, silenced the DREAM effect on KV4.3 channel gating and blocked the ATF6/DREAM interaction. Our results validate DREAM as a valuable target and propose more effective molecules for HD treatment.
Collapse
|
35
|
Wang Z, Gao G, Duan C, Yang H. Progress of immunotherapy of anti-α-synuclein in Parkinson's disease. Biomed Pharmacother 2019; 115:108843. [PMID: 31055236 DOI: 10.1016/j.biopha.2019.108843] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases are characterized by progressive loss of neurons and abnormal protein accumulation, including amyloid (A)β and tau in Alzheimer's disease and Lewy bodies and α-synuclein (α-syn) in Parkinson's disease (PD). Recent evidence suggests that adaptive immunity plays an important role in PD, and that anti-α-syn antibodies can be used as therapy in neurodegenerative diseases; monoclonal antibodies were shown to inhibit α-syn propagation and aggregation in PD models and patients. In this review, we summarize the different pathological states of α-syn, including gene mutations, truncation, phosphorylation, and the high molecular weight form, and describe the specific antibodies that recognize the α-syn monomer or oligomer, some of which have been tested in clinic trials. We also discuss future research directions and potential targets in PD therapy.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Ge Gao
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Chunli Duan
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China
| | - Hui Yang
- Department of Neurobiology School of Basic Medical Sciences, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory for Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
36
|
Yarapureddy S, Abril J, Foote J, Kumar S, Asad O, Sharath V, Faraj J, Daniel D, Dickman P, White-Collins A, Hingorani P, Sertil AR. ATF6α Activation Enhances Survival against Chemotherapy and Serves as a Prognostic Indicator in Osteosarcoma. Neoplasia 2019; 21:516-532. [PMID: 31029032 PMCID: PMC6484364 DOI: 10.1016/j.neo.2019.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/31/2023] Open
Abstract
Patients with metastatic or relapsed/refractory osteosarcoma (OS) have a 5-year survival rate of <30%. This has remained unchanged over several decades. One of the factors contributing to lack of improvement in survival is the development of chemoresistance. Hence, elucidating and targeting the mechanisms that promote survival against chemotherapy and lead to chemoresistance is pivotal to improving outcomes for these patients. We identified that endoplasmic reticulum (ER) stress-activated transcription factor, ATF6α, is essential for the survival of OS cells against chemotherapy induced cell death. ATF6α cleavage and activity were enhanced in OS cells compared to normal osteoblasts and knockdown of ATF6α expression enhanced sensitivity of OS cells against chemotherapy induced cell death. This was in part due to increased Bax activation. Pharmacologic inhibition or knock-down of downstream targets of ATF6α, protein disulfide isomerases (PDI) and ERO1β, a thiol oxidase that is involved in the re-oxidation of PDIs also independently induced pronounced killing of OS cells following chemotherapy. Analysis of primary tumors from OS patients reveals that patients with high levels of nuclear ATF6α: (1) also had increased expression of its downstream targets the chaperone BiP and enzyme PDI, (2) had a significant likelihood of developing metastasis at diagnosis, (3) had significantly poorer overall and progression free survival, and (4) had poorer response to chemotherapy. These findings suggest that targeting survival signaling by the ATF6α pathway in OS cells may favor eradication of refractory OS tumor cells and ATF6α could be a useful predictor for chemo-responsiveness and prognosis.
Collapse
Affiliation(s)
- Suma Yarapureddy
- Department of Basic Medical Sciences, University of Arizona, College of Medicine, Phoenix, AZ
| | - Jazmine Abril
- Department of Basic Medical Sciences, University of Arizona, College of Medicine, Phoenix, AZ
| | - Janet Foote
- Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | - Saravana Kumar
- Department of Basic Medical Sciences, University of Arizona, College of Medicine, Phoenix, AZ
| | - Omar Asad
- Department of Basic Medical Sciences, University of Arizona, College of Medicine, Phoenix, AZ
| | - Veena Sharath
- Department of Basic Medical Sciences, University of Arizona, College of Medicine, Phoenix, AZ
| | - Janine Faraj
- Department of Basic Medical Sciences, University of Arizona, College of Medicine, Phoenix, AZ
| | - Dustin Daniel
- Department of Basic Medical Sciences, University of Arizona, College of Medicine, Phoenix, AZ
| | - Paul Dickman
- Department of Hematology and Oncology, Phoenix Children's Hospital, Phoenix, Arizona
| | - Andrea White-Collins
- Department of Hematology and Oncology, Phoenix Children's Hospital, Phoenix, Arizona
| | - Pooja Hingorani
- Department of Hematology and Oncology, Phoenix Children's Hospital, Phoenix, Arizona.
| | - Aparna R Sertil
- Department of Basic Medical Sciences, University of Arizona, College of Medicine, Phoenix, AZ.
| |
Collapse
|
37
|
Wang F, Pulinilkunnil T, Flibotte S, Nislow C, Vlodavsky I, Hussein B, Rodrigues B. Heparanase protects the heart against chemical or ischemia/reperfusion injury. J Mol Cell Cardiol 2019; 131:29-40. [PMID: 31004678 DOI: 10.1016/j.yjmcc.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/14/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Although cancer cells use heparanase for tumor metastasis, favourable effects of heparanase have been reported in the management of Alzheimer's disease and diabetes. Indeed, we previously established a protective function for heparanase in the acutely diabetic heart, where it conferred cardiomyocyte resistance to oxidative stress and apoptosis by provoking changes in gene expression. In this study, we tested if overexpression of heparanase can protect the heart against chemically induced or ischemia/reperfusion (I/R) injury. Transcriptomic analysis of Hep-tg hearts reveal that 240 genes related to the stress response, immune response, cell death, and development were altered in a pro-survival direction encompassing genes promoting the unfolded protein response (UPR) and autophagy, as well as those protecting against oxidative stress. The observed UPR activation was adaptive and not apoptotic, was mediated by activation of ATF6α, and when combined with mTOR inhibition, induced autophagy. Subjecting wild type (WT) mice to increasing concentrations of the ER stress inducer thapsigargin evoked a transition from adaptive to apoptotic UPR, an effect that was attenuated in Hep-tg mouse hearts. Consistent with these observations, when exposed to I/R, the infarct size and markers of apoptosis were significantly lower in the Hep-tg heart compared to WT. Finally, UPR and autophagy inhibitors reduced the protective effects of heparanase overexpression during I/R. Our data suggest that the mechanisms that underlie the role of heparanase in promoting cell survival could be uniquely beneficial to the heart by providing protection against cellular stresses, and could be useful for exploitation as a therapeutic target for the treatment of heart disease.
Collapse
Affiliation(s)
- Fulong Wang
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, 100 Tucker Park Road, Saint John, NB E2L 4L5, Canada
| | | | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
38
|
Peraza DA, Cercós P, Miaja P, Merinero YG, Lagartera L, Socuéllamos PG, Izquierdo García C, Sánchez SA, López-Hurtado A, Martín-Martínez M, Olivos-Oré LA, Naranjo JR, Artalejo AR, Gutiérrez-Rodríguez M, Valenzuela C. Identification of IQM-266, a Novel DREAM Ligand That Modulates K V4 Currents. Front Mol Neurosci 2019; 12:11. [PMID: 30787866 PMCID: PMC6373780 DOI: 10.3389/fnmol.2019.00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/14/2019] [Indexed: 01/30/2023] Open
Abstract
Downstream Regulatory Element Antagonist Modulator (DREAM)/KChIP3/calsenilin is a neuronal calcium sensor (NCS) with multiple functions, including the regulation of A-type outward potassium currents (I A). This effect is mediated by the interaction between DREAM and KV4 potassium channels and it has been shown that small molecules that bind to DREAM modify channel function. A-type outward potassium current (I A) is responsible of the fast repolarization of neuron action potentials and frequency of firing. Using surface plasmon resonance (SPR) assays and electrophysiological recordings of KV4.3/DREAM channels, we have identified IQM-266 as a DREAM ligand. IQM-266 inhibited the KV4.3/DREAM current in a concentration-, voltage-, and time-dependent-manner. By decreasing the peak current and slowing the inactivation kinetics, IQM-266 led to an increase in the transmembrane charge ( Q K V 4.3 / DREAM ) at a certain range of concentrations. The slowing of the recovery process and the increase of the inactivation from the closed-state inactivation degree are consistent with a preferential binding of IQM-266 to a pre-activated closed state of KV4.3/DREAM channels. Finally, in rat dorsal root ganglion neurons, IQM-266 inhibited the peak amplitude and slowed the inactivation of I A. Overall, the results presented here identify IQM-266 as a new chemical tool that might allow a better understanding of DREAM physiological role as well as modulation of neuronal I A in pathological processes.
Collapse
Affiliation(s)
- Diego A Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Cercós
- Instituto de Química Médica (IQM), IQM-CSIC, Madrid, Spain
| | - Pablo Miaja
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Yaiza G Merinero
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | | | - Paula G Socuéllamos
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain.,Instituto Universitario de Investigación en Neuroquímica & Departamento de Farmacología y Toxicología, Facultad de Veterinaria, UCM, Madrid, Spain
| | | | - Sara A Sánchez
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain
| | - Alejandro López-Hurtado
- Centro Nacional de Biotecnología (CNB), CNB-CSIC, Madrid, Spain.,Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Luis A Olivos-Oré
- Instituto Universitario de Investigación en Neuroquímica & Departamento de Farmacología y Toxicología, Facultad de Veterinaria, UCM, Madrid, Spain
| | - José R Naranjo
- Centro Nacional de Biotecnología (CNB), CNB-CSIC, Madrid, Spain.,Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio R Artalejo
- Instituto Universitario de Investigación en Neuroquímica & Departamento de Farmacología y Toxicología, Facultad de Veterinaria, UCM, Madrid, Spain
| | | | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), CSIC-UAM, Madrid, Spain.,Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
39
|
Jao TM, Nangaku M, Wu CH, Sugahara M, Saito H, Maekawa H, Ishimoto Y, Aoe M, Inoue T, Tanaka T, Staels B, Mori K, Inagi R. ATF6α downregulation of PPARα promotes lipotoxicity-induced tubulointerstitial fibrosis. Kidney Int 2019; 95:577-589. [PMID: 30639234 DOI: 10.1016/j.kint.2018.09.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/28/2018] [Accepted: 09/20/2018] [Indexed: 01/09/2023]
Abstract
Tubulointerstitial fibrosis is a strong predictor of progression in patients with chronic kidney disease, and is often accompanied by lipid accumulation in renal tubules. However, the molecular mechanisms modulating the relationship between lipotoxicity and tubulointerstitial fibrosis remain obscure. ATF6α, a transcription factor of the unfolded protein response, is reported to be an upstream regulator of fatty acid metabolism. Owing to their high energy demand, proximal tubular cells (PTCs) use fatty acids as their main energy source. We therefore hypothesized that ATF6α regulates PTC fatty acid metabolism, contributing to lipotoxicity-induced tubulointerstitial fibrosis. Overexpression of activated ATF6α transcriptionally downregulated peroxisome proliferator-activated receptor-α (PPARα), the master regulator of lipid metabolism, leading to reduced activity of fatty acid β-oxidation and cytosolic accumulation of lipid droplets in a human PTC line (HK-2). ATF6α-induced lipid accumulation caused mitochondrial dysfunction, enhanced apoptosis, and increased expression of connective tissue growth factor (CTGF), as well as reduced cell viability. Atf6α-/- mice had sustained expression of PPARα and less tubular lipid accumulation following unilateral ischemia-reperfusion injury (uIRI), resulting in the amelioration of apoptosis; reduced expression of CTGF, α-smooth muscle actin, and collagen I; and less tubulointerstitial fibrosis. Administration of fenofibrate, a PPARα agonist, reduced lipid accumulation and tubulointerstitial fibrosis in the uIRI model. Taken together, these findings suggest that ATF6α deranges fatty acid metabolism in PTCs, which leads to lipotoxicity-mediated apoptosis and CTGF upregulation, both of which promote tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Tzu-Ming Jao
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Chia-Hsien Wu
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mai Sugahara
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hisako Saito
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Maekawa
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yu Ishimoto
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mari Aoe
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Inoue
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Bart Staels
- Evaluation et Gestion Informatique de la Diversité Génétique, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, Institut Pasteur de Lille, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1011, Lille, France
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
40
|
Morton AJ, Skillings EA, Wood NI, Zheng Z. Antagonistic pleiotropy in mice carrying a CAG repeat expansion in the range causing Huntington's disease. Sci Rep 2019; 9:37. [PMID: 30631090 PMCID: PMC6328633 DOI: 10.1038/s41598-018-37102-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/28/2018] [Indexed: 02/06/2023] Open
Abstract
Antagonist pleiotropy, where a gene exerts a beneficial effect at early stages and a deleterious effect later on in an animal’s life, may explain the evolutionary persistence of devastating genetic diseases such as Huntington’s disease (HD). To date, however, there is little direct experimental evidence to support this theory. Here, we studied a transgenic mouse carrying the HD mutation with a repeat of 50 CAGs (R6/2_50) that is within the pathological range of repeats causing adult-onset disease in humans. R6/2_50 mice develop characteristic HD brain aggregate pathology, with aggregates appearing predominantly in the striatum and cortex. However, they show few signs of disease in their lifetime. On the contrary, R6/2_50 mice appear to benefit from carrying the mutation. They have extended lifespans compared to wildtype (WT) mice, and male mice show enhanced fecundity. Furthermore, R6/2_50 mice outperform WT mice on the rotarod and show equal or better performance in the two choice discrimination task than WT mice. This novel mouse line provides direct experimental evidence that, although the HD mutation causes a fatal neurodegenerative disorder, there may be premorbid benefits of carrying the mutation.
Collapse
Affiliation(s)
- A J Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom.
| | - E A Skillings
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - N I Wood
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - Z Zheng
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| |
Collapse
|
41
|
Momtazi G, Lambrecht BN, Naranjo JR, Schock BC. Regulators of A20 (TNFAIP3): new drug-able targets in inflammation. Am J Physiol Lung Cell Mol Physiol 2018; 316:L456-L469. [PMID: 30543305 DOI: 10.1152/ajplung.00335.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Persistent activation of the transcription factor Nuclear factor-κB (NF-κB) is central to the pathogenesis of many inflammatory disorders, including those of the lung such as cystic fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD). Despite recent advances in treatment, management of the inflammatory component of these diseases still remains suboptimal. A20 is an endogenous negative regulator of NF-κB signaling, which has been widely described in several autoimmune and inflammatory disorders and more recently in terms of chronic lung disorders. However, the underlying mechanism for the apparent lack of A20 in CF, COPD, and asthma has not been investigated. Transcriptional regulation of A20 is complex and requires coordination of different transcription factors. In this review we examine the existing body of research evidence on the regulation of A20, concentrating on pulmonary inflammation. Special focus is given to the repressor downstream regulatory element antagonist modulator (DREAM) and its nuclear and cytosolic action to regulate inflammation. We provide evidence that would suggest the A20-DREAM axis to be an important player in (airway) inflammatory responses and point to DREAM as a potential future therapeutic target for the modification of phenotypic changes in airway inflammatory disorders. A schematic summary describing the role of DREAM in inflammation with a focus on chronic lung diseases as well as the possible consequences of altered DREAM expression on immune responses is provided.
Collapse
Affiliation(s)
- G Momtazi
- Centre for Experimental Medicine, Queen's University of Belfast , Belfast , United Kingdom
| | - B N Lambrecht
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas), Instituto de Salud Carlos III, Madrid, Spain.,National Biotechnology Center, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - B C Schock
- Centre for Experimental Medicine, Queen's University of Belfast , Belfast , United Kingdom
| |
Collapse
|
42
|
Naranjo R, González P, Lopez-Hurtado A, Dopazo XM, Mellström B, Naranjo JR. Inhibition of the Neuronal Calcium Sensor DREAM Modulates Presenilin-2 Endoproteolysis. Front Mol Neurosci 2018; 11:449. [PMID: 30559648 PMCID: PMC6287014 DOI: 10.3389/fnmol.2018.00449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/21/2018] [Indexed: 11/14/2022] Open
Abstract
Deregulated intracellular Ca2+ and protein homeostasis underlie synaptic dysfunction and are common features in neurodegenerative diseases. DREAM, also known as calsenilin or KChIP-3, is a multifunctional Ca2+ binding protein of the neuronal calcium sensor superfamily with specific functions through protein-DNA and protein-protein interactions. Small-molecules able to bind DREAM, like the anti-diabetic drug repaglinide, disrupt some of the interactions with other proteins and modulate DREAM activity on Kv4 channels or on the processing of activating transcription factor 6 (ATF6). Here, we show the interaction of endogenous DREAM and presenilin-2 (PS2) in mouse brain and, using DREAM deficient mice or transgenic mice overexpressing a dominant active DREAM (daDREAM) mutant in the brain, we provide genetic evidence of the role of DREAM in the endoproteolysis of endogenous PS2. We show that repaglinide disrupts the interaction between DREAM and the C-terminal PS2 fragment (Ct-PS2) by coimmunoprecipitation assays. Exposure to sub-micromolar concentrations of repaglinide reduces the levels of Ct-PS2 fragment in N2a neuroblastoma cells. These results suggest that the interaction between DREAM and PS2 may represent a new target for modulation of PS2 processing, which could have therapeutic potential in Alzheimer’s disease (AD) treatment.
Collapse
Affiliation(s)
- Rocío Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - Paz González
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - Alejandro Lopez-Hurtado
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - Xosé M Dopazo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - Britt Mellström
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| | - José R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain.,National Biotechnology Center (CNB), CSIC, Madrid, Spain
| |
Collapse
|
43
|
Jin W, Qazi TJ, Quan Z, Li N, Qing H. Dysregulation of Transcription Factors: A Key Culprit Behind Neurodegenerative Disorders. Neuroscientist 2018; 25:548-565. [PMID: 30484370 DOI: 10.1177/1073858418811787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases (NDs) are considered heterogeneous disorders characterized by progressive pathological changes in neuronal systems. Transcription factors are protein molecules that are important in regulating the expression of genes. Although the clinical manifestations of NDs vary, the pathological processes appear similar with regard to neuroinflammation, oxidative stress, and proteostasis, to which, as numerous studies have discovered, transcription factors are closely linked. In this review, we summarized and reviewed the roles of transcription factors in NDs, and then we elucidated their functions during pathological processes, and finally we discussed their therapeutic values in NDs.
Collapse
Affiliation(s)
- Wei Jin
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Talal Jamil Qazi
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Zhenzhen Quan
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Nuomin Li
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Hong Qing
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| |
Collapse
|
44
|
Barrera K, Stanek A, Okochi K, Niewiadomska Z, Mueller C, Ou P, John D, Alfonso AE, Tenner S, Huan C. Acinar cell injury induced by inadequate unfolded protein response in acute pancreatitis. World J Gastrointest Pathophysiol 2018; 9:37-46. [PMID: 30283709 PMCID: PMC6163129 DOI: 10.4291/wjgp.v9.i2.37] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/01/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disorder of pancreatic tissue initiated in injured acinar cells. Severe AP remains a significant challenge due to the lack of effective treatment. The widely-accepted autodigestion theory of AP is now facing challenges, since inhibiting protease activation has negligible effectiveness for AP treatment despite numerous efforts. Furthermore, accumulating evidence supports a new concept that malfunction of a self-protective mechanism, the unfolded protein response (UPR), is the driving force behind the pathogenesis of AP. The UPR is induced by endoplasmic reticulum (ER) stress, a disturbance frequently found in acinar cells, to prevent the aggravation of ER stress that can otherwise lead to cell injury. In addition, the UPR’s signaling pathways control NFκB activation and autophagy flux, and these dysregulations cause acinar cell inflammatory injury in AP, but with poorly understood mechanisms. We therefore summarize the protective role of the UPR in AP, propose mechanistic models of how inadequate UPR could promote NFκB’s pro-inflammatory activity and impair autophagy’s protective function in acinar cells, and discuss its relevance to current AP treatment. We hope that insight provided in this review will help facilitate the research and management of AP.
Collapse
Affiliation(s)
- Kaylene Barrera
- Department of Surgery, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Albert Stanek
- Department of Surgery and Pathology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Kei Okochi
- College of Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Zuzanna Niewiadomska
- Department of Surgery, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Cathy Mueller
- Department of Surgery, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Peiqi Ou
- School of Graduate Studies, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Devon John
- Department of Surgery, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Antonio E Alfonso
- Department of Surgery, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Scott Tenner
- Greater New York Endoscopy Surgical Center, State University of New York, Brooklyn, NY 11235, United States
| | - Chongmin Huan
- Department of Surgery and Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States
| |
Collapse
|
45
|
Hillary RF, FitzGerald U. A lifetime of stress: ATF6 in development and homeostasis. J Biomed Sci 2018; 25:48. [PMID: 29801500 PMCID: PMC5968583 DOI: 10.1186/s12929-018-0453-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Activating transcription factor 6 (ATF6) is an endoplasmic reticulum (ER)-localised protein and member of the leucine zipper family of transcription factors. Best known for its role in transducing signals linked to stress to the endoplasmic reticulum, the 50 kDa activated form of ATF6 is now emerging as a major regulator of organogenesis and tissue homeostasis. Responsible for the correct folding, secretion and membrane insertion of a third of the proteome in eukaryotic cells, the ER encompasses a dynamic, labyrinthine network of regulators, chaperones, foldases and cofactors. Such structures are crucial to the extensive protein synthesis required to undergo normal development and maintenance of tissue homeostasis. When an additional protein synthesis burden is placed on the ER, ATF6, in tandem with ER stress transducers inositol requiring enzyme 1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), slows the pace of protein translation and induces the production of stress-reducing chaperones and foldases. MAIN TEXT In the context of development and tissue homeostasis, however, distinct cellular impacts have been attributed to ATF6. Drawing on data published from human, rodent, fish, goat and bovine research, this review first focuses on ATF6-mediated regulation of osteo- and chondrogenesis, ocular development as well as neuro- and myelinogenesis. The purported role of ATF6 in development of the muscular and reproductive systems as well as adipo- and lipogenesis is then described. With relevance to cardiac disease, cancer and brain disorders, the importance of ATF6 in maintaining tissue homeostasis is the subject of the final section. CONCLUSION In conclusion, the review encourages further elucidation of ATF6 regulatory operations during organogenesis and tissue homeostasis, to spawn the development of ATF6-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Robert F Hillary
- Galway Neuroscience Centre, Cúram Centre for Research in Medical Devices, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Una FitzGerald
- Galway Neuroscience Centre, Cúram Centre for Research in Medical Devices, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
46
|
López-Hurtado A, Burgos DF, González P, Dopazo XM, González V, Rábano A, Mellström B, Naranjo JR. Inhibition of DREAM-ATF6 interaction delays onset of cognition deficit in a mouse model of Huntington's disease. Mol Brain 2018. [PMID: 29523177 PMCID: PMC5845147 DOI: 10.1186/s13041-018-0359-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) is a multifunctional neuronal calcium sensor (NCS) that controls Ca2+ and protein homeostasis through gene regulation and protein-protein interactions. Downregulation of DREAM is part of an endogenous neuroprotective mechanism that improves ATF6 (activating transcription factor 6) processing, neuronal survival in the striatum, and motor coordination in R6/2 mice, a model of Huntington’s disease (HD). Whether modulation of DREAM activity can also ameliorate cognition deficits in HD mice has not been studied. Moreover, it is not known whether DREAM downregulation in HD is unique, or also occurs for other NCS family members. Using the novel object recognition test, we show that chronic administration of the DREAM-binding molecule repaglinide, or induced DREAM haplodeficiency delays onset of cognitive impairment in R6/1 mice, another HD model. The mechanism involves a notable rise in the levels of transcriptionally active ATF6 protein in the hippocampus after repaglinide administration. In addition, we show that reduction in DREAM protein in the hippocampus of HD patients was not accompanied by downregulation of other NCS family members. Our results indicate that DREAM inhibition markedly improves ATF6 processing in the hippocampus and that it might contribute to a delay in memory decline in HD mice. The mechanism of neuroprotection through DREAM silencing in HD does not apply to other NCS family members.
Collapse
Affiliation(s)
- Alejandro López-Hurtado
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Daniel F Burgos
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Paz González
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Xose M Dopazo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Valentina González
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Rábano
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Britt Mellström
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Jose R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain. .,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain.
| |
Collapse
|
47
|
Hernández IH, Torres-Peraza J, Santos-Galindo M, Ramos-Morón E, Fernández-Fernández MR, Pérez-Álvarez MJ, Miranda-Vizuete A, Lucas JJ. The neuroprotective transcription factor ATF5 is decreased and sequestered into polyglutamine inclusions in Huntington's disease. Acta Neuropathol 2017; 134:839-850. [PMID: 28861715 DOI: 10.1007/s00401-017-1770-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/03/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
Abstract
Activating transcription factor-5 (ATF5) is a stress-response transcription factor induced upon different cell stressors like fasting, amino-acid limitation, cadmium or arsenite. ATF5 is also induced, and promotes transcription of anti-apoptotic target genes like MCL1, during the unfolded protein response (UPR) triggered by endoplasmic reticulum stress. In the brain, high ATF5 levels are found in gliomas and also in neural progenitor cells, which need to decrease their ATF5 levels for differentiation into mature neurons or glia. This initially led to believe that ATF5 is not expressed in adult neurons. More recently, we reported basal neuronal ATF5 expression in adult mouse brain and its neuroprotective induction during UPR in a mouse model of status epilepticus. Here we aimed to explore whether ATF5 is also expressed by neurons in human brain both in basal conditions and in Huntington's disease (HD), where UPR has been described to be partially impaired due to defective ATF6 processing. Apart from confirming that ATF5 is present in human adult neurons, here we report accumulation of ATF5 within the characteristic polyglutamine-containing neuronal nuclear inclusions in brains of HD patients and mice. This correlates with decreased levels of soluble ATF5 and of its antiapoptotic target MCL1. We then confirmed the deleterious effect of ATF5 deficiency in a Caenorhabditis elegans model of polyglutamine-induced toxicity. Finally, ATF5 overexpression attenuated polyglutamine-induced apoptosis in a cell model of HD. These results reflect that decreased ATF5 in HD-probably secondary to sequestration into inclusions-renders neurons more vulnerable to mutant huntingtin-induced apoptosis and that ATF5-increasing interventions might have therapeutic potential for HD.
Collapse
Affiliation(s)
- Ivó H Hernández
- Centro de Biología Molecular Severo Ochoa (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Torres-Peraza
- Centro de Biología Molecular Severo Ochoa (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Gerència d'Atenció Primària del Servei de Salut de les Illes Balears (IB-SALUT), Palma, Spain
| | - María Santos-Galindo
- Centro de Biología Molecular Severo Ochoa (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Eloísa Ramos-Morón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - M Rosario Fernández-Fernández
- Centro de Biología Molecular Severo Ochoa (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - María J Pérez-Álvarez
- Centro de Biología Molecular Severo Ochoa (CBMSO) CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José J Lucas
- Centro de Biología Molecular Severo Ochoa (CBMSO) CSIC/UAM, Madrid, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
48
|
Abstract
The clinical manifestation of neurodegenerative diseases is initiated by the selective alteration in the functionality of distinct neuronal populations. The pathology of many neurodegenerative diseases includes accumulation of misfolded proteins in the brain. In physiological conditions, the proteostasis network maintains normal protein folding, trafficking and degradation; alterations in this network - particularly disturbances to the function of endoplasmic reticulum (ER) - are thought to contribute to abnormal protein aggregation. ER stress triggers a signalling reaction known as the unfolded protein response (UPR), which induces adaptive programmes that improve protein folding and promote quality control mechanisms and degradative pathways or can activate apoptosis when damage is irreversible. In this Review, we discuss the latest advances in defining the functional contribution of ER stress to brain diseases, including novel evidence that relates the UPR to synaptic function, which has implications for cognition and memory. A complex concept is emerging wherein the consequences of ER stress can differ drastically depending on the disease context and the UPR signalling pathway that is altered. Strategies to target specific components of the UPR using small molecules and gene therapy are in development, and promise interesting avenues for future interventions to delay or stop neurodegeneration.
Collapse
|
49
|
Benedet T, Gonzalez P, Oliveros JC, Dopazo JM, Ghimire K, Palczewska M, Mellstrom B, Naranjo JR. Transcriptional repressor DREAM regulates trigeminal noxious perception. J Neurochem 2017; 141:544-552. [DOI: 10.1111/jnc.13584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/04/2016] [Accepted: 02/10/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Tomaso Benedet
- National Centre for Biotechnology; C.S.I.C.; Madrid Spain
| | - Paz Gonzalez
- National Centre for Biotechnology; C.S.I.C.; Madrid Spain
- CIBERNED; Madrid Spain
| | | | - Jose M. Dopazo
- National Centre for Biotechnology; C.S.I.C.; Madrid Spain
- CIBERNED; Madrid Spain
| | - Kedar Ghimire
- National Centre for Biotechnology; C.S.I.C.; Madrid Spain
| | | | - Britt Mellstrom
- National Centre for Biotechnology; C.S.I.C.; Madrid Spain
- CIBERNED; Madrid Spain
| | - Jose R. Naranjo
- National Centre for Biotechnology; C.S.I.C.; Madrid Spain
- CIBERNED; Madrid Spain
| |
Collapse
|
50
|
Downstream Regulatory Element Antagonist Modulator (DREAM), a target for anti-thrombotic agents. Pharmacol Res 2017; 117:283-287. [PMID: 28065857 DOI: 10.1016/j.phrs.2017.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/03/2017] [Indexed: 11/21/2022]
Abstract
Circulating platelets participate in the process of numerous diseases including thrombosis, inflammation, and cancer. Thus, it is of great importance to understand the underlying mechanisms mediating platelet activation under disease conditions. Emerging evidence indicates that despite the lack of a nucleus, platelets possess molecules that are involved in gene transcription in nucleated cells. This review will summarize downstream regulatory element antagonist modulator (DREAM), a transcriptional repressor, and highlight recent findings suggesting its novel non-transcriptional role in hemostasis and thrombosis.
Collapse
|