1
|
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang HW, Yarchoan R. HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 2024; 37:e0002223. [PMID: 38899877 PMCID: PMC11391709 DOI: 10.1128/cmr.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.
Collapse
Affiliation(s)
- Kathryn A Lurain
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Laurie T Krug
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph M Ziegelbauer
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Iloukou PJ, Boumba AL, Ngombe DF, Massengo NR, Malonga GA, Moukassa D, Ennaji MM. Molecular detection and genotyping of human herpes virus 8 in blood donors in Congo. Vopr Virusol 2024; 69:277-284. [PMID: 38996376 DOI: 10.36233/0507-4088-237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVES Human herpesvirus 8 (HHV8) is rarely studied in Congo, despite its prevalence in Africa. Among healthy individuals, HHV-8 does not always lead to a life-threatening infection; however, in immunocompromised individuals, it could lead to more severe disease. The distribution of HHV-8 genotypes varies depending on ethnicity and geographic region. METHOD A prospective cross-sectional study included 265 samples from healthy blood donors from the National Blood Transfusion Center in Brazzaville, with an average age of 35 years, with extremes ranging from 18 to 60 years. After DNA extraction, a nested PCR was carried out for molecular detection, followed by genotyping by amplification of specific primers. RESULT In this study, 4.9% were positive for molecular detection of HHV-8 DNA. All HHV-8 positive DNA samples that were subjected to genotyping by amplification with specific primers allowing discrimination of two major genotypes (A and B). Genotype A was identified in 5 (1.9%) samples and genotype B in 2 (0.7%) samples, indicating that both genotypes were predominant. The remaining viral DNA samples not identified as the major genotypes were classified as «indeterminate» and consisted of 6 (2.3%) samples. CONCLUSION The results of the study suggest that Congo is an area where HHV-8 infection is endemic.
Collapse
Affiliation(s)
- P J Iloukou
- Hassan II University of Casablanca
- Marien N'gouabi University
| | - A L Boumba
- Marien N'gouabi University
- National Institute for Research in Health Sciences (IRSSA)
| | - D F Ngombe
- Hassan II University of Casablanca
- Marien N'gouabi University
| | | | - G A Malonga
- Marien N'gouabi University
- Sorbonne University, INSERM, Pierre Louis Institute of Epidemiology and Public Health, Public Assistance ‒ Paris Hospitals (AP-HP), Pitié-Salpêtrière University Hospitals ‒ Charles Foix
| | | | | |
Collapse
|
3
|
Luan Y, Long W, Dai L, Tao P, Deng Z, Xia Z. Linear ubiquitination regulates the KSHV replication and transcription activator protein to control infection. Nat Commun 2024; 15:5515. [PMID: 38951495 PMCID: PMC11217414 DOI: 10.1038/s41467-024-49887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Like many other viruses, KSHV has two life cycle modes: the latent phase and the lytic phase. The RTA protein from KSHV is essential for lytic reactivation, but how this protein's activity is regulated is not fully understood. Here, we report that linear ubiquitination regulates the activity of RTA during KSHV lytic reactivation and de novo infection. Overexpressing OTULIN inhibits KSHV lytic reactivation, whereas knocking down OTULIN or overexpressing HOIP enhances it. Intriguingly, we found that RTA is linearly polyubiquitinated by HOIP at K516 and K518, and these modifications control the RTA's nuclear localization. OTULIN removes linear polyubiquitin chains from cytoplasmic RTA, preventing its nuclear import. The RTA orthologs encoded by the EB and MHV68 viruses are also linearly polyubiquitinated and regulated by OTULIN. Our study establishes that linear polyubiquitination plays a critically regulatory role in herpesvirus infection, adding virus infection to the list of biological processes known to be controlled by linear polyubiquitination.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenying Long
- Center for Clinical Research, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Lisi Dai
- Department of Pathology & Pathophysiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Surgical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Panfeng Tao
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifen Deng
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongping Xia
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Yang NY, Hsieh AYY, Chen Z, Campbell AR, Gadawska I, Kakkar F, Sauve L, Bitnun A, Brophy J, Murray MCM, Pick N, Krajden M, Côté HCF. Chronic and Latent Viral Infections and Leukocyte Telomere Length across the Lifespan of Female and Male Individuals Living with or without HIV. Viruses 2024; 16:755. [PMID: 38793637 PMCID: PMC11125719 DOI: 10.3390/v16050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Chronic/latent viral infections may accelerate immunological aging, particularly among people living with HIV (PLWH). We characterized chronic/latent virus infections across their lifespan and investigated their associations with leukocyte telomere length (LTL). METHODS Participants enrolled in the CARMA cohort study were randomly selected to include n = 15 for each decade of age between 0 and >60 y, for each sex, and each HIV status. Cytomegalovirus (CMV), Epstein-Barr virus (EBV), human herpesvirus 8 (HHV-8), herpes simplex virus 1 (HSV-1), and HSV-2 infection were determined serologically; HIV, hepatitis C (HCV), and hepatitis B (HBV) were self-reported. LTLs were measured using monochrome multiplex qPCR. Associations between the number of viruses, LTL, and sociodemographic factors were assessed using ordinal logistic and linear regression modeling. RESULTS The study included 187 PLWH (105 female/82 male) and 190 HIV-negative participants (105 female/84 male), ranging in age from 0.7 to 76.1 years. Living with HIV, being older, and being female were associated with harbouring a greater number of chronic/latent non-HIV viruses. Having more infections was in turn bivariately associated with a shorter LTL. In multivariable analyses, older age, living with HIV, and the female sex remained independently associated with having more infections, while having 3-4 viruses (vs. 0-2) was associated with a shorter LTL. CONCLUSIONS Our results suggest that persistent viral infections are more prevalent in PLWH and females, and that these may contribute to immunological aging. Whether this is associated with comorbidities later in life remains an important question.
Collapse
Affiliation(s)
- Nancy Yi Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anthony Y. Y. Hsieh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zhuo Chen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Amber R. Campbell
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
| | - Izabella Gadawska
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
| | - Fatima Kakkar
- Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Laura Sauve
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada
| | - Ari Bitnun
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Jason Brophy
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H 8L1, Canada;
| | - Melanie C. M. Murray
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
- Department of Medicine, Division of Infectious Diseases, University of British Columbia Faculty of Medicine, Vancouver, BC V5Z 1M9, Canada
| | - Neora Pick
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
- Oak Tree Clinic, BC Women’s Hospital and Health Centre, Vancouver, BC V5Z 0C9, Canada
- Department of Medicine, Division of Infectious Diseases, University of British Columbia Faculty of Medicine, Vancouver, BC V5Z 1M9, Canada
| | - Mel Krajden
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- British Columbia Center for Disease Control, Vancouver, BC V5Z 4R4, Canada
| | - Hélène C. F. Côté
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (N.Y.Y.); (A.Y.Y.H.); (M.K.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Women’s Health Research Institute, British Columbia Women’s Hospital and Health Centre, Vancouver, BC V6H 2N9, Canada; (L.S.); (M.C.M.M.)
| | | |
Collapse
|
5
|
Zhou Y, Tian X, Wang S, Gao M, Zhang C, Ma J, Cheng X, Bai L, Qin HB, Luo MH, Qin Q, Jiang B, Lan K, Zhang J. Palmitoylation of KSHV pORF55 is required for Golgi localization and efficient progeny virion production. PLoS Pathog 2024; 20:e1012141. [PMID: 38626263 PMCID: PMC11051623 DOI: 10.1371/journal.ppat.1012141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/26/2024] [Accepted: 03/22/2024] [Indexed: 04/18/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus etiologically associated with multiple malignancies. Both latency and sporadic lytic reactivation contribute to KSHV-associated malignancies, however, the specific roles of many KSHV lytic gene products in KSHV replication remain elusive. In this study, we report that ablation of ORF55, a late gene encoding a tegument protein, does not impact KSHV lytic reactivation but significantly reduces the production of progeny virions. We found that cysteine 10 and 11 (C10 and C11) of pORF55 are palmitoylated, and the palmytoilation is essential for its Golgi localization and secondary envelope formation. Palmitoylation-defective pORF55 mutants are unstable and undergo proteasomal degradation. Notably, introduction of a putative Golgi localization sequence to these palmitoylation-defective pORF55 mutants restores Golgi localization and fully reinstates KSHV progeny virion production. Together, our study provides new insight into the critical role of pORF55 palmitoylation in KSHV progeny virion production and offers potential therapeutic targets for the treatment of related malignancies.
Collapse
Affiliation(s)
- Yaru Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuezhang Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shaowei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Ming Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Chuchu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jiali Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Lei Bai
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Hai-Bin Qin
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Baishan Jiang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Ke Lan
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Junjie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Poullot E, Milowich D, Lemonnier F, Bisig B, Robe C, Pelletier L, Letourneau A, Dupuy A, Sako N, Ketterer N, Carde P, Dartigues P, Delfau-Larue MH, de Leval L, Gaulard P. Angioimmunoblastic T-cell lymphoma and Kaposi sarcoma: A fortuitous collision? Histopathology 2024; 84:556-564. [PMID: 37988271 DOI: 10.1111/his.15083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 08/26/2023] [Accepted: 10/14/2023] [Indexed: 11/23/2023]
Abstract
AIMS Follicular helper T-cell (TFH) lymphoma of the angioimmunoblastic-type (AITL), one of the most prevalent T-cell lymphomas, typically encompasses proliferation of high endothelial venules and Epstein-Barr virus-positive immunoblasts, but neither infection with HHV8 nor association with Kaposi's sarcoma (KS) have been described. The aims of this study are to characterise the association between AITL and HHV8 infection or KS. METHODS AND RESULTS Three male patients aged 49-76 years, HIV-negative, with concurrent nodal involvement by AITL and KS, were identified from our files and carefully studied. Two patients originated from countries where endemic KS occurs, including one with cutaneous KS. The lymphomas featured abundant vessels, expanded follicular dendritic cells and neoplastic TFH cells [PD1+ (three of three), ICOS+ (three of three), CXCL13+ (three of three), CD10+ (two of three), BCL6 (two of three)] but lacked EBV+ immunoblasts. The foci of KS consisted of subcapsular proliferations of ERG+, CD31+ and/or CD34+ , HHV8+ spindle cells. High-throughput sequencing showed AITL-associated mutations in TET2 (three of three), RHOA (G17V) (three of three) and IDH2 (R172) (two of three), which were absent in the microdissected KS component in two cases. Relapses in two patients consisted of AITL, without evidence of KS. No evidence of HHV8 infection was found in a control group of 23 AITL cases. CONCLUSION Concurrent nodal involvement by AITL and KS is rare and identification of both neoplastic components may pose diagnostic challenges. The question of whether the association between AITL and KS may be fortuitous or could reflect the underlying immune dysfunction in AITL remains open.
Collapse
Affiliation(s)
- Elsa Poullot
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, Créteil, France
- Université Paris Est Créteil, Créteil, France
- INSERMU955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Dina Milowich
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - François Lemonnier
- Université Paris Est Créteil, Créteil, France
- INSERMU955, Institut Mondor de Recherche Biomédicale, Créteil, France
- Unité Hémopathies Lymphoïdes, Hôpitaux Universitaires Henri Mondor, AP-HP, Créteil, France
| | - Bettina Bisig
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Cyrielle Robe
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, Créteil, France
- Université Paris Est Créteil, Créteil, France
- INSERMU955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Laura Pelletier
- Université Paris Est Créteil, Créteil, France
- INSERMU955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Audrey Letourneau
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Aurélie Dupuy
- Université Paris Est Créteil, Créteil, France
- INSERMU955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Nouhoum Sako
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, Créteil, France
- Université Paris Est Créteil, Créteil, France
- INSERMU955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | | | - Patrice Carde
- Onco-Hématologie, American Hospital of Paris, Neuilly-sur-Seine, France
| | - Peggy Dartigues
- Département de Pathologie, Institut Gustave Roussy, Villejuif, France
| | - Marie-Hélène Delfau-Larue
- Université Paris Est Créteil, Créteil, France
- INSERMU955, Institut Mondor de Recherche Biomédicale, Créteil, France
- Département d'Hématologie et Immunologie Biologique, Hôpitaux Universitaires Henri Mondor, AP-HP, Créteil, France
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Philippe Gaulard
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, Créteil, France
- Université Paris Est Créteil, Créteil, France
- INSERMU955, Institut Mondor de Recherche Biomédicale, Créteil, France
| |
Collapse
|
7
|
Wang S, Tian X, Zhou Y, Xie J, Gao M, Zhong Y, Zhang C, Yu K, Bai L, Qin Q, Zhong B, Lin D, Feng P, Lan K, Zhang J. Non-canonical regulation of the reactivation of an oncogenic herpesvirus by the OTUD4-USP7 deubiquitinases. PLoS Pathog 2024; 20:e1011943. [PMID: 38215174 PMCID: PMC10810452 DOI: 10.1371/journal.ppat.1011943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/25/2024] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Deubiquitinases (DUBs) remove ubiquitin from substrates and play crucial roles in diverse biological processes. However, our understanding of deubiquitination in viral replication remains limited. Employing an oncogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) to probe the role of protein deubiquitination, we found that Ovarian tumor family deubiquitinase 4 (OTUD4) promotes KSHV reactivation. OTUD4 interacts with the replication and transcription activator (K-RTA), a key transcription factor that controls KSHV reactivation, and enhances K-RTA stability by promoting its deubiquitination. Notably, the DUB activity of OTUD4 is not required for K-RTA stabilization; instead, OTUD4 functions as an adaptor protein to recruit another DUB, USP7, to deubiquitinate K-RTA and facilitate KSHV lytic reactivation. Our study has revealed a novel mechanism whereby KSHV hijacks OTUD4-USP7 deubiquitinases to promote lytic reactivation, which could be potentially harnessed for the development of new antiviral therapies.
Collapse
Affiliation(s)
- Shaowei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuezhang Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yaru Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jun Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Ming Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yunhong Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Chuchu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Keying Yu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lei Bai
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Bo Zhong
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Ke Lan
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Junjie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Moorad R, Kasonkanji E, Gumulira J, Gondwe Y, Dewey M, Pan Y, Peng A, Pluta LJ, Kudowa E, Nyasosela R, Tomoka T, Tweya H, Heller T, Gugsa S, Phiri S, Moore DT, Damania B, Painschab M, Hosseinipour MC, Dittmer DP. A prospective cohort study identifies two types of HIV+ Kaposi Sarcoma lesions: proliferative and inflammatory. Int J Cancer 2023; 153:2082-2092. [PMID: 37602960 PMCID: PMC11074775 DOI: 10.1002/ijc.34689] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023]
Abstract
Kaposi sarcoma (KS) is the most common cancer in people living with HIV (PLWH) in many countries where KS-associated herpesvirus is endemic. Treatment has changed little in 20 years, but the disease presentation has. This prospective cohort study enrolled 122 human immunodeficiency virus (HIV) positive KS patients between 2017 and 2019 in Malawi. Participants were treated with bleomycin, vincristine and combination antiretroviral therapy, the local standard of care. One-year overall survival was 61%, and progression-free survival was 58%. The 48-week complete response rate was 35%. RNAseq (n = 78) differentiated two types of KS lesions, those with marked endothelial characteristics and those enriched in inflammatory transcripts. This suggests that different KS lesions are in different disease states consistent with the known heterogeneous clinical response to treatment. In contrast to earlier cohorts, the plasma HIV viral load of KS patients in our study was highly variable. A total of 25% of participants had no detectable HIV; all had detectable KSHV viral load. Our study affirms that many KS cases today develop in PLWH with well-controlled HIV infection and that different KS lesions have differing molecular compositions. Further studies are needed to develop predictive biomarkers for this disease.
Collapse
Affiliation(s)
- Razia Moorad
- Lineberger Comprehensive Cancer Centre, School of Medicine, University of North Carolina at Chapel Hill; Chapel Hill, USA
- Department of Immunology and Microbiology, University of North Carolina at Chapel Hill; Chapel Hill, USA
| | | | | | | | | | - Yue Pan
- Lineberger Comprehensive Cancer Centre, School of Medicine, University of North Carolina at Chapel Hill; Chapel Hill, USA
- Department of Biostatistics, The University of North Carolina at Chapel Hill; Chapel Hill
| | - Alice Peng
- Lineberger Comprehensive Cancer Centre, School of Medicine, University of North Carolina at Chapel Hill; Chapel Hill, USA
| | - Linda J. Pluta
- Lineberger Comprehensive Cancer Centre, School of Medicine, University of North Carolina at Chapel Hill; Chapel Hill, USA
| | - Evaristar Kudowa
- Department of Immunology and Microbiology, University of North Carolina at Chapel Hill; Chapel Hill, USA
| | | | | | | | | | | | | | - Dominic T Moore
- Lineberger Comprehensive Cancer Centre, School of Medicine, University of North Carolina at Chapel Hill; Chapel Hill, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Centre, School of Medicine, University of North Carolina at Chapel Hill; Chapel Hill, USA
- Department of Immunology and Microbiology, University of North Carolina at Chapel Hill; Chapel Hill, USA
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill; Chapel Hill, USA
| | - Matthew Painschab
- Lineberger Comprehensive Cancer Centre, School of Medicine, University of North Carolina at Chapel Hill; Chapel Hill, USA
- UNC Project Malawi, Lilongwe, Malawi
| | - Mina C. Hosseinipour
- Lineberger Comprehensive Cancer Centre, School of Medicine, University of North Carolina at Chapel Hill; Chapel Hill, USA
- UNC Project Malawi, Lilongwe, Malawi
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill; Chapel Hill, USA
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer Centre, School of Medicine, University of North Carolina at Chapel Hill; Chapel Hill, USA
- Department of Immunology and Microbiology, University of North Carolina at Chapel Hill; Chapel Hill, USA
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill; Chapel Hill, USA
| |
Collapse
|
9
|
Ramaswami R, Tagawa T, Mahesh G, Serquina A, Koparde V, Lurain K, Dremel S, Li X, Mungale A, Beran A, Ohler ZW, Bassel L, Warner A, Mangusan R, Widell A, Ekwede I, Krug LT, Uldrick TS, Yarchoan R, Ziegelbauer JM. Transcriptional landscape of Kaposi sarcoma tumors identifies unique immunologic signatures and key determinants of angiogenesis. J Transl Med 2023; 21:653. [PMID: 37740179 PMCID: PMC10517594 DOI: 10.1186/s12967-023-04517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Kaposi sarcoma (KS) is a multicentric tumor caused by Kaposi sarcoma herpesvirus (KSHV) that leads to morbidity and mortality among people with HIV worldwide. KS commonly involves the skin but can occur in the gastrointestinal tract (GI) in severe cases. METHODS RNA sequencing was used to compare the cellular and KSHV gene expression signatures of skin and GI KS lesions in 44 paired samples from 19 participants with KS alone or with concurrent KSHV-associated diseases. Analyses of KSHV expression from KS lesions identified transcriptionally active areas of the viral genome. RESULTS The transcript of an essential viral lytic gene, ORF75, was detected in 91% of KS lesions. Analyses of host genes identified 370 differentially expressed genes (DEGs) unique to skin KS and 58 DEGs unique to GI KS lesions as compared to normal tissue. Interleukin (IL)-6 and IL-10 gene expression were higher in skin lesions as compared to normal skin but not in GI KS lesions. Twenty-six cellular genes were differentially expressed in both skin and GI KS tissues: these included Fms-related tyrosine kinase 4 (FLT4), encoding an angiogenic receptor, and Stanniocalcin 1 (STC1), a secreted glycoprotein. FLT4 and STC1 were further investigated in functional studies using primary lymphatic endothelial cells (LECs). In these models, KSHV infection of LECs led to increased tubule formation that was impaired upon knock-down of STC1 or FLT4. CONCLUSIONS This study of transcriptional profiling of KS tissue provides novel insights into the characteristics and pathogenesis of this unique virus-driven neoplasm.
Collapse
Affiliation(s)
- Ramya Ramaswami
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Guruswamy Mahesh
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Anna Serquina
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Vishal Koparde
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Sarah Dremel
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Xiaofan Li
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ameera Mungale
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Alex Beran
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Zoe Weaver Ohler
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Laura Bassel
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrew Warner
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph Mangusan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Anaida Widell
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Irene Ekwede
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Thomas S Uldrick
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Joseph M Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Feng S, Liu Y, Zhou Y, Shu Z, Cheng Z, Brenner C, Feng P. Mechanistic insights into the role of herpes simplex virus 1 in Alzheimer's disease. Front Aging Neurosci 2023; 15:1245904. [PMID: 37744399 PMCID: PMC10512732 DOI: 10.3389/fnagi.2023.1245904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Alzheimer's Disease (AD) is an aging-associated neurodegenerative disorder, threatening millions of people worldwide. The onset and progression of AD can be accelerated by environmental risk factors, such as bacterial and viral infections. Human herpesviruses are ubiquitous infectious agents that underpin numerous inflammatory disorders including neurodegenerative diseases. Published studies concerning human herpesviruses in AD imply an active role HSV-1 in the pathogenesis of AD. This review will summarize the current understanding of HSV-1 infection in AD and highlight some barriers to advance this emerging field.
Collapse
Affiliation(s)
- Shu Feng
- Department of Diabetes and Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, United States
| | - Yongzhen Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Yu Zhou
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Zhenfeng Shu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Zhuxi Cheng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
- International Department, Beijing Bayi School, Beijing, China
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, United States
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
11
|
Chowdhary S, Deka R, Panda K, Kumar R, Solomon AD, Das J, Kanoujiya S, Gupta AK, Sinha S, Ruokolainen J, Kesari KK, Gupta PK. Recent Updates on Viral Oncogenesis: Available Preventive and Therapeutic Entities. Mol Pharm 2023; 20:3698-3740. [PMID: 37486263 PMCID: PMC10410670 DOI: 10.1021/acs.molpharmaceut.2c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.
Collapse
Affiliation(s)
- Shivam Chowdhary
- Department
of Industrial Microbiology, Sam Higginbottom
University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh India
| | - Rahul Deka
- Department
of Bioengineering and Biotechnology, Birla
Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kingshuk Panda
- Department
of Applied Microbiology, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Rohit Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Abhishikt David Solomon
- Department
of Molecular & Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Jimli Das
- Centre
for
Biotechnology and Bioinformatics, Dibrugarh
University, Assam 786004, India
| | - Supriya Kanoujiya
- School
of
Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashish Kumar Gupta
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi 110029, India
| | - Somya Sinha
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
- Division
of Research and Development, Lovely Professional
University, Phagwara 144411, Punjab, India
| | - Piyush Kumar Gupta
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
- Faculty
of Health and Life Sciences, INTI International
University, Nilai 71800, Malaysia
| |
Collapse
|
12
|
Zhang H, Sandhu PK, Damania B. The Role of RNA Sensors in Regulating Innate Immunity to Gammaherpesviral Infections. Cells 2023; 12:1650. [PMID: 37371120 PMCID: PMC10297173 DOI: 10.3390/cells12121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) and the Epstein-Barr virus (EBV) are double-stranded DNA oncogenic gammaherpesviruses. These two viruses are associated with multiple human malignancies, including both B and T cell lymphomas, as well as epithelial- and endothelial-derived cancers. KSHV and EBV establish a life-long latent infection in the human host with intermittent periods of lytic replication. Infection with these viruses induce the expression of both viral and host RNA transcripts and activates several RNA sensors including RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), protein kinase R (PKR) and adenosine deaminases acting on RNA (ADAR1). Activation of these RNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV and EBV utilize both viral and cellular proteins to block the innate immune pathways and facilitate their own infection. In this review, we summarize how gammaherpesviral infections activate RNA sensors and induce their downstream signaling cascade, as well as how these viruses evade the antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.
Collapse
|
13
|
Palmer WH, Norman PJ. The impact of HLA polymorphism on herpesvirus infection and disease. Immunogenetics 2023; 75:231-247. [PMID: 36595060 PMCID: PMC10205880 DOI: 10.1007/s00251-022-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 01/04/2023]
Abstract
Human Leukocyte Antigens (HLA) are cell surface molecules, central in coordinating innate and adaptive immune responses, that are targets of strong diversifying natural selection by pathogens. Of these pathogens, human herpesviruses have a uniquely ancient relationship with our species, where coevolution likely has reciprocating impact on HLA and viral genomic diversity. Consistent with this notion, genetic variation at multiple HLA loci is strongly associated with modulating immunity to herpesvirus infection. Here, we synthesize published genetic associations of HLA with herpesvirus infection and disease, both from case/control and genome-wide association studies. We analyze genetic associations across the eight human herpesviruses and identify HLA alleles that are associated with diverse herpesvirus-related phenotypes. We find that whereas most HLA genetic associations are virus- or disease-specific, HLA-A*01 and HLA-A*02 allotypes may be more generally associated with immune susceptibility and control, respectively, across multiple herpesviruses. Connecting genetic association data with functional corroboration, we discuss mechanisms by which diverse HLA and cognate receptor allotypes direct variable immune responses during herpesvirus infection and pathogenesis. Together, this review examines the complexity of HLA-herpesvirus interactions driven by differential T cell and Natural Killer cell immune responses.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| |
Collapse
|
14
|
Zuo J, Meng T, Wang Y, Tang W. A Review of the Antiviral Activities of Glycyrrhizic Acid, Glycyrrhetinic Acid and Glycyrrhetinic Acid Monoglucuronide. Pharmaceuticals (Basel) 2023; 16:ph16050641. [PMID: 37242424 DOI: 10.3390/ph16050641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Licorice, a natural medicine derived from the roots and rhizomes of Glycyrrhiza species, possesses a wide range of therapeutic applications, including antiviral properties. Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are the most important active ingredients in licorice. Glycyrrhetinic acid 3-O-mono-β-d-glucuronide (GAMG) is the active metabolite of GL. GL and its metabolites have a wide range of antiviral activities against viruses, such as, the hepatitis virus, herpes virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and so on. Although their antiviral activity has been widely reported, the specific mechanism of action involving multiple links such as the virus itself, cells, and immunity are not clearly established. In this review, we will give an update on the role of GL and its metabolites as antiviral agents, and detail relevant evidence on the potential use and mechanisms of actions. Analyzing antivirals, their signaling, and the impacts of tissue and autoimmune protection may provide promising new therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Zuo
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230011, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tao Meng
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Yuanyuan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230011, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
15
|
Kandeel M. Oncogenic Viruses-Encoded microRNAs and Their Role in the Progression of Cancer: Emerging Targets for Antiviral and Anticancer Therapies. Pharmaceuticals (Basel) 2023; 16:ph16040485. [PMID: 37111242 PMCID: PMC10146417 DOI: 10.3390/ph16040485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Approximately 20% of all cases of human cancer are caused by viral infections. Although a great number of viruses are capable of causing a wide range of tumors in animals, only seven of these viruses have been linked to human malignancies and are presently classified as oncogenic viruses. These include the Epstein-Barr virus (EBV), human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), human herpesvirus 8 (HHV8), and human T-cell lymphotropic virus type 1 (HTLV-1). Some other viruses, such as the human immunodeficiency virus (HIV), are associated with highly oncogenic activities. It is possible that virally encoded microRNAs (miRNAs), which are ideal non-immunogenic tools for viruses, play a significant role in carcinogenic processes. Both virus-derived microRNAs (v-miRNAs) and host-derived microRNAs (host miRNAs) can influence the expression of various host-derived and virus-derived genes. The current literature review begins with an explanation of how viral infections might exert their oncogenic properties in human neoplasms, and then goes on to discuss the impact of diverse viral infections on the advancement of several types of malignancies via the expression of v-miRNAs. Finally, the role of new anti-oncoviral therapies that could target these neoplasms is discussed.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
16
|
Diakite M, Shaw-Saliba K, Lau CY. Malignancy and viral infections in Sub-Saharan Africa: A review. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1103737. [PMID: 37476029 PMCID: PMC10358275 DOI: 10.3389/fviro.2023.1103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The burden of malignancy related to viral infection is increasing in Sub-Saharan Africa (SSA). In 2018, approximately 2 million new cancer cases worldwide were attributable to infection. Prevention or treatment of these infections could reduce cancer cases by 23% in less developed regions and about 7% in developed regions. Contemporaneous increases in longevity and changes in lifestyle have contributed to the cancer burden in SSA. African hospitals are reporting more cases of cancer related to infection (e.g., cervical cancer in women and stomach and liver cancer in men). SSA populations also have elevated underlying prevalence of viral infections compared to other regions. Of 10 infectious agents identified as carcinogenic by the International Agency for Research on Cancer, six are viruses: hepatitis B and C viruses (HBV and HCV, respectively), Epstein-Barr virus (EBV), high-risk types of human papillomavirus (HPV), Human T-cell lymphotropic virus type 1 (HTLV-1), and Kaposi's sarcoma herpesvirus (KSHV, also known as human herpesvirus type 8, HHV-8). Human immunodeficiency virus type 1 (HIV) also facilitates oncogenesis. EBV is associated with lymphomas and nasopharyngeal carcinoma; HBV and HCV are associated with hepatocellular carcinoma; KSHV causes Kaposi's sarcoma; HTLV-1 causes T-cell leukemia and lymphoma; HPV causes carcinoma of the oropharynx and anogenital squamous cell cancer. HIV-1, for which SSA has the greatest global burden, has been linked to increasing risk of malignancy through immunologic dysregulation and clonal hematopoiesis. Public health approaches to prevent infection, such as vaccination, safer injection techniques, screening of blood products, antimicrobial treatments and safer sexual practices could reduce the burden of cancer in Africa. In SSA, inequalities in access to cancer screening and treatment are exacerbated by the perception of cancer as taboo. National level cancer registries, new screening strategies for detection of viral infection and public health messaging should be prioritized in SSA's battle against malignancy. In this review, we discuss the impact of carcinogenic viruses in SSA with a focus on regional epidemiology.
Collapse
Affiliation(s)
- Mahamadou Diakite
- University Clinical Research Center, University of Sciences, Techniques, and Technologies, Bamako, Mali
| | - Kathryn Shaw-Saliba
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Chuen-Yen Lau
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
17
|
Endemic Kaposi's Sarcoma. Cancers (Basel) 2023; 15:cancers15030872. [PMID: 36765830 PMCID: PMC9913747 DOI: 10.3390/cancers15030872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Kaposi's sarcoma (KS) is a common neoplasm in Eastern and central Africa reflecting the spread of human gammaherpesvirus-8 (HHV-8), now considered a necessary causal agent for the development of KS. The endemic KS subtype can follow an aggressive clinical course with ulcerative skin lesions with soft tissue invasion or even bone or visceral involvement. In the latter cases, a thorough imaging work-up and better follow-up schedules are warranted. As KS is a chronic disease, the therapeutic goal is to obtain sustainable remission in cutaneous and visceral lesions and a good quality of life. Watchful monitoring may be sufficient in localized cutaneous forms. Potential therapeutic modalities for symptomatic advanced KS include systemic chemotherapies, immunomodulators, immune checkpoint inhibitors, and antiangiogenic drugs.
Collapse
|
18
|
Choe D, Choi D. Cancel cancer: The immunotherapeutic potential of CD200/CD200R blockade. Front Oncol 2023; 13:1088038. [PMID: 36756156 PMCID: PMC9900175 DOI: 10.3389/fonc.2023.1088038] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Immune checkpoint molecules function to inhibit and regulate immune response pathways to prevent hyperactive immune activity from damaging healthy tissues. In cancer patients, targeting these key molecules may serve as a valuable therapeutic mechanism to bolster immune function and restore the body's natural defenses against tumors. CD200, an immune checkpoint molecule, is a surface glycoprotein that is widely but not ubiquitously expressed throughout the body. By interacting with its inhibitory receptor CD200R, CD200 suppresses immune cell activity within the tumor microenvironment, creating conditions that foster tumor growth. Targeting the CD200/CD200R pathway, either through the use of monoclonal antibodies or peptide inhibitors, has shown to be effective in boosting anti-tumor immune activity. This review will explore CD200 and the protein's expression and role within the tumor microenvironment, blood endothelial cells, and lymph nodes. This paper will also discuss the advantages and challenges of current strategies used to target CD200 and briefly summarize relevant preclinical/clinical studies investigating the immunotherapeutic efficacy of CD200/CD200R blockade.
Collapse
|
19
|
Oncolytic viruses as emerging therapy against cancers including Oncovirus-induced cancers. Eur J Pharmacol 2023; 939:175393. [PMID: 36435236 DOI: 10.1016/j.ejphar.2022.175393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
There are several human viruses with known potential for causing cancers including, Hepatitis B virus, Hepatitis C virus, Epstein-Barr virus, Kaposi's sarcoma herpesvirus, Human T-cell lymphotropic virus, Human papillomavirus, and Merkel cell polyomavirus. Cancer is the second leading cause of death that affects humans worldwide, especially in developing countries. Surgery, chemotherapy, and radiotherapy can cure about 60% of humans with cancer but recurrent and metastatic diseases remain a major reason for death. In recent years, understanding the molecular characteristics of cancer cells has led to the improvement of therapeutic strategies using novel emerging therapies. Oncolytic viruses with the potential of lysing cancer cells defined the field of oncolytic virology, hence becoming a biotechnology tool rather than just a cause of disease. This study mainly focused on targeting cell proliferation and death pathways in human tumor-inducing viruses by developing innovative therapies for cancer patients based on the natural oncolytic properties of reovirus. To kill tumor cells efficiently and reduce the chance of recurrence both the direct ability of reovirus infection to lyse the tumor cells and the stimulation of a potent host immune response are applied. Hence, bioengineered stem cells can be used as smart carriers to improve the efficacy of oncolytic reovirus and safety profiles.
Collapse
|
20
|
Volkow P, Chavez Galan L, Ramon-Luing L, Cruz-Velazquez J, Cornejo-Juarez P, Sada-Ovalle I, Perez-Padilla R, Islas-Muñoz B. Impact of valganciclovir therapy on severe IRIS-Kaposi Sarcoma mortality: An open-label, parallel, randomized controlled trial. PLoS One 2023; 18:e0280209. [PMID: 37195970 DOI: 10.1371/journal.pone.0280209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/07/2022] [Indexed: 05/19/2023] Open
Abstract
INTRODUCTION High HHV-8 viral load (VL) in Kaposi Sarcoma (KS) has been associated with Severe Immune Reconstitution Inflammatory Syndrome (Severe-IRIS-KS), which can occur after initiating cART, and leads to high mortality, particularly in patients with pulmonary involvement. We investigate if valganciclovir (as an anti-HHV-8 agent) initiated before cART reduces the mortality associated with Severe-IRIS-KS and the incidence of Severe-IRIS-KS. METHODS Open-label parallel-group randomized clinical trial in AIDS cART naïve patients with disseminated KS (DKS) as defined by at least two of the following: pulmonary, lymph-node, or gastrointestinal involvement, lymphedema, or ≥30 skin lesions. In the experimental group (EG), patients received valganciclovir 900 mg BID four weeks before cART and continued until week 48; in the control group (CG), cART was initiated on week 0. Non-severe-IRIS-KS was defined as: an increase in the number of lesions plus a decrease of ≥one log10 HIV-VL, or an increase of ≥50cells/mm3 or ≥2-fold in baseline CD4+cells. Severe-IRIS-KS was defined as abrupt clinical worsening of KS lesions and/or fever after ruling out another infection following cART initiation, and at least three of the following: thrombocytopenia, anemia, hyponatremia, or hypoalbuminemia. RESULTS 40 patients were randomized and 37 completed the study. In the ITT analysis, at 48 weeks, total mortality was the same in both groups (3/20), severe-IRIS-KS attributable mortality was 0/20 in the EG, compared with 3/20 in the CG (p = 0.09), similar to the per-protocol analysis: 0/18 in the EG, and 3/19 in the control group (p = 0.09). The crude incidence rate of severe-IRIS-KS was four patients developed a total of 12 episodes of Severe-IRIS-KS in the CG and two patients developed one episode each in the EG. Mortality in patients with pulmonary KS was nil in the EG (0/5) compared with 3/4 in the CG (P = 0.048). No difference was found between groups in the number of non-S-IRIS-KS events. Among survivors at week 48, 82% achieved >80% remission. CONCLUSIONS Although mortality attributable to KS was lower in the EG the difference was not statistically significant.
Collapse
Affiliation(s)
- Patricia Volkow
- Infectious Disease Department, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Leslie Chavez Galan
- Integrative Inmunology Laboratory, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Lucero Ramon-Luing
- Integrative Inmunology Laboratory, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | | | - Isabel Sada-Ovalle
- Integrative Inmunology Laboratory, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Rogelio Perez-Padilla
- Department of Research on Tobacco and COPD, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Beda Islas-Muñoz
- Infectious Disease Department, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
21
|
Grand'Maison A, Kohrn R, Omole E, Shah M, Fiorica P, Sims J, Ohm JE. Genetic and environmental reprogramming of the sarcoma epigenome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:283-317. [PMID: 36858777 DOI: 10.1016/bs.apha.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sarcomas are rare and heterogenous mesenchymal tumors occurring in soft tissue and bone. The World Health Organization Classification of sarcomas comprises more than hundred different entities which are very diverse in their molecular, genetic and epigenetic signatures as they are in their clinical presentations and behaviors. While sarcomas can be associated with an underlying hereditary cancer predisposition, most sarcomas developed sporadically without identifiable cause. Sarcoma oncogenesis involves complex interactions between genetic, epigenetic and environmental factors which are intimately related and intensively studied. Several molecular discoveries have been made over the last decades leading to the development of new therapeutic avenues. Sarcoma research continues its effort toward a more specific and personalized approach to all sarcoma sub-types to improve patient outcomes and this through world-wide collaboration. This chapter on "Genetic and Environmental Reprogramming of the Sarcoma Epigenome" provides a comprehensive review of general concepts and epidemiology of sarcoma as well as a detailed description of the genetic, molecular and epigenetic alterations seen in sarcomas, their therapeutic implications and ongoing research. This review also presents evidenced-based data on the environmental and occupational factors possibly involved in the etiology of sarcomas and a brief discussion on the role of the microbiome in sarcoma.
Collapse
Affiliation(s)
- Anne Grand'Maison
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Rachael Kohrn
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Emmanuel Omole
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mahek Shah
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Peter Fiorica
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Jennie Sims
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.
| |
Collapse
|
22
|
Zhou G, Koroukian SM, Navale SM, Schiltz NK, Kim U, Rose J, Cooper GS, Moore SE, Mintz LJ, Avery AK, Mukherjee S, Markt SC. Cancer burden in women with HIV on Medicaid: A nationwide analysis. WOMEN'S HEALTH (LONDON, ENGLAND) 2023; 19:17455057231170061. [PMID: 37184054 PMCID: PMC10192809 DOI: 10.1177/17455057231170061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Cancer is the leading cause of death in people living with HIV. In the United States, nearly 1 in 4 people living with HIV are women, more than half of whom rely on Medicaid for healthcare coverage. OBJECTIVE The objective of this study is to evaluate the cancer burden of women living with HIV on Medicaid. DESIGN We conducted a cross-sectional study of women 18-64 years of age enrolled in Medicaid during 2012, using data from Medicaid Analytic eXtract files. METHODS Using International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis codes, we identified women living with HIV (n = 72,508) and women without HIV (n = 17,353,963), flagging the presence of 15 types of cancer and differentiating between AIDS-defining cancers and non-AIDS-defining cancers. We obtained adjusted prevalence ratios and 95% confidence intervals for each cancer and for all cancers combined, using multivariable log-binomial models, and additionally stratifying by age and race/ethnicity. RESULTS The highest adjusted prevalence ratios were observed for Kaposi's sarcoma (81.79 (95% confidence interval: 57.11-117.22)) and non-Hodgkin's lymphoma (27.69 (21.67-35.39)). The adjusted prevalence ratios for anal and cervical cancer, both of which were human papillomavirus-associated cancers, were 19.31 (17.33-21.51) and 4.20 (3.90-4.52), respectively. Among women living with HIV, the adjusted prevalence ratio for all cancer types combined was about two-fold higher (1.99 (1.86-2.14)) in women 45-64 years of age than in women 18-44 years of age. For non-AIDS-defining cancers but not for AIDS-defining cancers, the adjusted prevalence ratios were higher in older than in younger women. There was no significant difference in the adjusted prevalence ratios for all cancer types combined in the race/ethnicity-stratified analyses of the women living with HIV cohort. However, in cancer type-specific sub-analyses, differences in adjusted prevalence ratios between Hispanic versus non-Hispanic women were observed. For example, the adjusted prevalence ratio for Hispanic women for non-Hodgkin's lymphoma was 2.00 (1.30-3.07) and 0.73 (0.58-0.92), respectively, for breast cancer. CONCLUSION Compared to their counterparts without HIV, women living with HIV on Medicaid have excess prevalence of cervical and anal cancers, both of which are human papillomavirus related, as well as Kaposi's sarcoma and lymphoma. Older age is also associated with increased burden of non-AIDS-defining cancers in women living with HIV. Our findings emphasize the need for not only cancer screening among women living with HIV but also for efforts to increase human papillomavirus vaccination among all eligible individuals.
Collapse
Affiliation(s)
- Guangjin Zhou
- Department of Population and
Quantitative Health Sciences, School of Medicine, Case Western Reserve University,
Cleveland, OH, USA
| | - Siran M Koroukian
- Department of Population and
Quantitative Health Sciences, School of Medicine, Case Western Reserve University,
Cleveland, OH, USA
- Population Cancer Analytics Shared
Resource, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | | | - Nicholas K Schiltz
- Frances Payne Bolton School of Nursing,
Case Western Reserve University, Cleveland, OH, USA
| | - Uriel Kim
- Department of Population and
Quantitative Health Sciences, School of Medicine, Case Western Reserve University,
Cleveland, OH, USA
- Population Cancer Analytics Shared
Resource, Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Community Health
Integration, School of Medicine, Case Western Reserve University, Cleveland, OH,
USA
| | - Johnie Rose
- Population Cancer Analytics Shared
Resource, Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Community Health
Integration, School of Medicine, Case Western Reserve University, Cleveland, OH,
USA
- Clinical Translational Science Doctoral
Program, School of Medicine, Case Western Reserve University, Cleveland, OH,
USA
| | - Gregory S Cooper
- Department of Internal Medicine,
University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Cancer Prevention and Control Program,
Case Comprehensive Cancer Center, Cleveland, OH, USA
- School of Medicine, Case Western
Reserve University, Cleveland, OH, USA
| | - Scott E Moore
- Frances Payne Bolton School of Nursing,
Case Western Reserve University, Cleveland, OH, USA
| | - Laura J Mintz
- School of Medicine, Case Western
Reserve University, Cleveland, OH, USA
- Department of Internal Medicine and
Pediatrics, MetroHealth Medical Center, Cleveland, OH, USA
- Center for Reducing Health
Disparities, MetroHealth Medical Center, Cleveland, OH, USA
- PRIDE Network, MetroHealth Medical
Center, Cleveland, OH, USA
| | - Ann K Avery
- School of Medicine, Case Western
Reserve University, Cleveland, OH, USA
- Division of Infectious Diseases,
Department of Medicine, MetroHealth Medical Center, Cleveland, OH, USA
| | - Sudipto Mukherjee
- School of Medicine, Case Western
Reserve University, Cleveland, OH, USA
- Department of Hematology and
Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Sarah C Markt
- Department of Population and
Quantitative Health Sciences, School of Medicine, Case Western Reserve University,
Cleveland, OH, USA
- Population Cancer Analytics Shared
Resource, Case Comprehensive Cancer Center, Cleveland, OH, USA
| |
Collapse
|
23
|
Nolan DJ, Rose R, Zhang R, Leong A, Fogel GB, Scholte LLS, Bethony JM, Bracci P, Lamers SL, McGrath MS. The Persistence of HIV Diversity, Transcription, and Nef Protein in Kaposi's Sarcoma Tumors during Antiretroviral Therapy. Viruses 2022; 14:v14122774. [PMID: 36560778 PMCID: PMC9782636 DOI: 10.3390/v14122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Epidemic Kaposi's sarcoma (KS), defined by co-infection with Human Herpes Virus 8 (HHV-8) and the Human Immunodeficiency Virus (HIV), is a major cause of mortality in sub-Saharan Africa. Antiretroviral therapy (ART) significantly reduces the risk of developing KS, and for those with KS, tumors frequently resolve with ART alone. However, for unknown reasons, a significant number of KS cases do not resolve and can progress to death. To explore how HIV responds to ART in the KS tumor microenvironment, we sequenced HIV env-nef found in DNA and RNA isolated from plasma, peripheral blood mononuclear cells, and tumor biopsies, before and after ART, in four Ugandan study participants who had unresponsive or progressive KS after 180-250 days of ART. We performed immunohistochemistry experiments to detect viral proteins in matched formalin-fixed tumor biopsies. Our sequencing results showed that HIV diversity and RNA expression in KS tumors are maintained after ART, despite undetectable plasma viral loads. The presence of spliced HIV transcripts in KS tumors after ART was consistent with a transcriptionally active viral reservoir. Immunohistochemistry staining found colocalization of HIV Nef protein and tissue-resident macrophages in the KS tumors. Overall, our results demonstrated that even after ART reduced plasma HIV viral load to undetectable levels and restored immune function, HIV in KS tumors continues to be transcriptionally and translationally active, which could influence tumor maintenance and progression.
Collapse
Affiliation(s)
- David J. Nolan
- Bioinfoexperts, LLC, Thibodaux, LA 70301, USA
- Correspondence:
| | | | - Rongzhen Zhang
- Departments of Laboratory Medicine, Pathology and Medicine, The University of California at San Francisco, San Francisco, CA 94110, USA
| | - Alan Leong
- Departments of Laboratory Medicine, Pathology and Medicine, The University of California at San Francisco, San Francisco, CA 94110, USA
| | | | - Larissa L. S. Scholte
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037, USA
| | - Jeffrey M. Bethony
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037, USA
| | - Paige Bracci
- The AIDS and Cancer Specimen Resource, San Francisco, CA 94110, USA
| | | | - Michael S. McGrath
- Departments of Laboratory Medicine, Pathology and Medicine, The University of California at San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
24
|
Co-Infection of the Epstein-Barr Virus and the Kaposi Sarcoma-Associated Herpesvirus. Viruses 2022; 14:v14122709. [PMID: 36560713 PMCID: PMC9782805 DOI: 10.3390/v14122709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The two human tumor viruses, Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been mostly studied in isolation. Recent studies suggest that co-infection with both viruses as observed in one of their associated malignancies, namely primary effusion lymphoma (PEL), might also be required for KSHV persistence. In this review, we discuss how EBV and KSHV might support each other for persistence and lymphomagenesis. Moreover, we summarize what is known about their innate and adaptive immune control which both seem to be required to ensure asymptomatic persistent co-infection with these two human tumor viruses. A better understanding of this immune control might allow us to prepare for vaccination against EBV and KSHV in the future.
Collapse
|
25
|
Santiago JC, Adams SV, Towlerton A, Okuku F, Phipps W, Mullins JI. Genomic changes in Kaposi Sarcoma-associated Herpesvirus and their clinical correlates. PLoS Pathog 2022; 18:e1010524. [PMID: 36441790 PMCID: PMC9731496 DOI: 10.1371/journal.ppat.1010524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/08/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Kaposi sarcoma (KS), a common HIV-associated malignancy, presents a range of clinicopathological features. Kaposi sarcoma-associated herpesvirus (KSHV) is its etiologic agent, but the contribution of viral genomic variation to KS development is poorly understood. To identify potentially influential viral polymorphisms, we characterized KSHV genetic variation in 67 tumors from 1-4 distinct sites from 29 adults with advanced KS in Kampala, Uganda. Whole KSHV genomes were sequenced from 20 tumors with the highest viral load, whereas only polymorphic genes were screened by PCR and sequenced from 47 other tumors. Nine individuals harbored ≥1 tumors with a median 6-fold over-coverage of a region centering on K5 and K6 genes. K8.1 gene was inactivated in 8 individuals, while 5 had mutations in the miR-K10 microRNA coding sequence. Recurring inter-host polymorphisms were detected in K4.2 and K11.2. The K5-K6 region rearrangement breakpoints and K8.1 mutations were all unique, indicating that they arise frequently de novo. Rearrangement breakpoints were associated with potential G-quadruplex and Z-DNA forming sequences. Exploratory evaluations of viral mutations with clinical and tumor traits were conducted by logistic regression without multiple test corrections. K5-K6 over-coverage and K8.1 inactivation were tentatively correlated (p<0.001 and p = 0.005, respectively) with nodular rather than macular tumors, and with individuals that had lesions in ≤4 anatomic areas (both p≤0.01). Additionally, a trend was noted for miR-K10 point mutations and lower survival rates (HR = 4.11, p = 0.053). Two instances were found of distinct tumors within an individual sharing the same viral mutation, suggesting metastases or transmission of the aberrant viruses within the host. To summarize, KSHV genomes in tumors frequently have over-representation of the K5-K6 region, as well as K8.1 and miR-K10 mutations, and each might be associated with clinical phenotypes. Studying their possible effects may be useful for understanding KS tumorigenesis and disease progression.
Collapse
Affiliation(s)
- Jan Clement Santiago
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Scott V. Adams
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Andrea Towlerton
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Fred Okuku
- Uganda Cancer Institute, Kampala, Uganda
| | - Warren Phipps
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
26
|
Carneiro VCDS, Pereira JG, de Paula VS. Family Herpesviridae and neuroinfections: current status and research in progress. Mem Inst Oswaldo Cruz 2022; 117:e220200. [PMID: 36417627 PMCID: PMC9677594 DOI: 10.1590/0074-02760220200] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
This article addresses the relationship between human herpesviruses (HHVs) and neuroinfections. Alphaherpesviruses, betaherpesviruses and gammaherpesviruses are neurotropic viruses that establish latency and exhibit reactivation capacity. Encephalitis and meningitis are common in cases of HHV. The condition promoted by HHV infection is a purported trigger for certain neurodegenerative diseases. Ongoing studies have identified an association between HSV-1 and the occurrence of Alzheimer's disease, multiple sclerosis and infections by HHV-6 and Epstein-Barr virus. In this review, we highlight the importance of research investigating the role of herpesviruses in the pathogenesis of diseases that affect the nervous system and describe other studies in progress.
Collapse
Affiliation(s)
| | | | - Vanessa Salete de Paula
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| |
Collapse
|
27
|
Casper C, Corey L, Cohen JI, Damania B, Gershon AA, Kaslow DC, Krug LT, Martin J, Mbulaiteye SM, Mocarski ES, Moore PS, Ogembo JG, Phipps W, Whitby D, Wood C. KSHV (HHV8) vaccine: promises and potential pitfalls for a new anti-cancer vaccine. NPJ Vaccines 2022; 7:108. [PMID: 36127367 PMCID: PMC9488886 DOI: 10.1038/s41541-022-00535-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
Seven viruses cause at least 15% of the total cancer burden. Viral cancers have been described as the "low-hanging fruit" that can be potentially prevented or treated by new vaccines that would alter the course of global human cancer. Kaposi sarcoma herpesvirus (KSHV or HHV8) is the sole cause of Kaposi sarcoma, which primarily afflicts resource-poor and socially marginalized populations. This review summarizes a recent NIH-sponsored workshop's findings on the epidemiology and biology of KSHV as an overlooked but potentially vaccine-preventable infection. The unique epidemiology of this virus provides opportunities to prevent its cancers if an effective, inexpensive, and well-tolerated vaccine can be developed and delivered.
Collapse
Affiliation(s)
- Corey Casper
- Infectious Disease Research Institute, 1616 Eastlake Ave. East, Suite 400, Seattle, WA, 98102, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institutes of Health, Bldg. 50, Room 6134, 50 South Drive, MSC8007, Bethesda, MD, 20892-8007, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center & Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, US
| | - Anne A Gershon
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, 630 West 168th Street, New York, NY10032, US
| | - David C Kaslow
- PATH Essential Medicines, PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, HHS, 9609 Medical Center Dr, Rm. 6E118 MSC 3330, Bethesda, MD, 20892, USA
| | | | - Patrick S Moore
- Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Warren Phipps
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Denise Whitby
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Charles Wood
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
28
|
Reid EG, Shimabukuro K, Moore P, Ambinder RF, Bui JD, Han S, Martínez-Maza O, Dittmer DP, Aboulafia D, Chiao EY, Maurer T, Baiocchi R, Mitsuyasu R, Wachsman W. AMC-070: Lenalidomide Is Safe and Effective in HIV-Associated Kaposi Sarcoma. Clin Cancer Res 2022; 28:2646-2656. [PMID: 35247913 PMCID: PMC9197984 DOI: 10.1158/1078-0432.ccr-21-0645] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/23/2021] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Kaposi sarcoma (KS), an endothelial cell tumor associated with KS herpesvirus (KSHV), remains among the most common malignancies occurring with HIV infection (HIV-KS). As an oral anti-inflammatory, antiangiogenic, and immunomodulatory agent, lenalidomide is potentially an attractive alternative to standard chemotherapy for KS. EXPERIMENTAL DESIGN The primary objectives of this phase I/II trial were to determine the maximum tolerated dose (MTD) and response rates for lenalidomide in HIV-KS. Secondary objectives included correlating response with natural killer (NK) and T-cell subsets, plasma cytokines, viral copy number, and KSHV gene expression in biopsies. Four dose levels of oral lenalidomide taken 21 consecutive days of 28-day cycles were evaluated in adults with HIV-KS on antiretroviral therapy with controlled viremia. RESULTS Fifteen and 23 participants enrolled in phases I and II, respectively, 76% of whom had received prior KS therapy. The MTD was not reached, declaring 25 mg as the recommended phase II dose (RP2D). The most frequent adverse events were neutropenia, fatigue, leukopenia, and diarrhea. Of the 25 evaluable participants receiving RP2D, 60% responded. Correlative studies performed in a subset of participants demonstrated a significant increase in proportions of blood T cells with T-regulatory phenotype, and plasma cytokines trended toward a less inflammatory pattern. Clinical response was associated with loss of KSHV transcription. CONCLUSIONS Lenalidomide is active in HIV-KS. The most common adverse events were manageable. With 60% of participants receiving RP2D obtaining a partial response and <10% discontinuing due to adverse events, the response and tolerability to lenalidomide support its use in HIV-KS. See related commentary by Henry and Maki, p. 2485.
Collapse
Affiliation(s)
- Erin G. Reid
- University of California, San Diego Moores Cancer Center, La Jolla, CA
| | | | | | | | - Jack D. Bui
- University of California, San Diego, La Jolla, CA
| | - Semi Han
- University of Southern California, Los Angeles, CA
| | - Otoniel Martínez-Maza
- UCLA AIDS Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer Center at the University of North Carolina at Chapel Hill, NC
| | - David Aboulafia
- Floyd and Delores Jones Cancer Institute at Virginia Mason Medical Center, Seattle, WA, USA
| | | | - Toby Maurer
- University of California San Francisco, San Francisco, CA, USA
| | - Robert Baiocchi
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Ronald Mitsuyasu
- University of California, Los Angeles, Center for AIDS Research and Education, Los Angeles, CA
| | - William Wachsman
- University of California, San Diego Moores Cancer Center, La Jolla, CA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA
| | | |
Collapse
|
29
|
Wang Y, Li Y, Liang X, Xin S, Yang L, Cao P, Jiang M, Xin Y, Zhang S, Yang Y, Lu J. The implications of cell-free DNAs derived from tumor viruses as biomarkers of associated cancers. J Med Virol 2022; 94:4677-4688. [PMID: 35652186 DOI: 10.1002/jmv.27903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Cancer is still ranked as a leading cause of death according to estimates from the World Health Organization (WHO) and the strong link between tumor viruses and human cancers have been proved for almost six decades. Cell-free DNA (cfDNA) has drawn enormous attention for its dynamic, instant, and noninvasive advantages as one popular type of cancer biomarker. cfDNAs are mainly released from apoptotic cells and exosomes released from cancer cells, including those infected with viruses. Although cfDNAs are present at low concentrations in peripheral blood, they can reflect tumor load with high sensitivity. Considering the relevance of the tumor viruses to the associated cancers, cfDNAs derived from viruses may serve as good biomarkers for the early screening, diagnosis, and treatment monitoring. In this review, we summarize the methods and newly developed analytic techniques for the detection of cfDNAs from different body fluids, and discuss the implications of cfDNAs derived from different tumor viruses in the detection and treatment monitoring of virus-associated cancers. A better understanding of cfDNAs derived from tumor viruses may help formulate novel anti-tumoral strategies to decrease the burden of cancers that attributed to viruses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yiwei Wang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xinyu Liang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China
| | - Mingjuan Jiang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yujie Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Senmiao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yang Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
30
|
McNamara RP, Eason AB, Zhou Y, Bigi R, Griffith JD, Costantini LM, Rudek MA, Anders NM, Damania BA, Dittmer DP. Exosome-Encased Nucleic Acid Scaffold Chemotherapeutic Agents for Superior Anti-Tumor and Anti-Angiogenesis Activity. ACS BIO & MED CHEM AU 2022; 2:140-149. [PMID: 35480227 PMCID: PMC9026271 DOI: 10.1021/acsbiomedchemau.1c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
Extracellular vesicles (EVs), or exosomes, play a pivotal role in tumor growth and metastasis, such as in the case of Kaposi Sarcoma. By loading tumor-derived EVs with chemotherapeutic drugs, we noted that their pro-tumor/pro-angiogenic phenotype was converted into an anti-tumor phenotype in vivo. Drug concentration in EVs was significantly higher than in clinically approved liposome formulation, as retention was facilitated by the presence of miRNAs inside the natural EVs. This demonstrates a new mechanism by which to increase the payload capacity of nanoparticles. By exploiting the targeting preferences of tumor-derived EVs, chemotherapeutics can be directed to specifically poison the cells and the microenvironment that enables metastasis.
Collapse
Affiliation(s)
- Ryan P. McNamara
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Anthony B. Eason
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Yijun Zhou
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Rachele Bigi
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Jack D. Griffith
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Lindsey M. Costantini
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
- Department
of Biological and Biomedical Sciences, North
Carolina Central University, 1801 Fayetteville Street Durham, North Carolina 27707, United States
| | - Michelle A. Rudek
- Sidney
Kimmel Comprehensive Cancer Center, Johns
Hopkins School of Medicine, 401 N. Broadway, Baltimore, Maryland 21205, United
States
| | - Nicole M. Anders
- Sidney
Kimmel Comprehensive Cancer Center, Johns
Hopkins School of Medicine, 401 N. Broadway, Baltimore, Maryland 21205, United
States
| | - Blossom A. Damania
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| | - Dirk P. Dittmer
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School
of Medicine, 450 West
Drive, Chapel Hill, North
Carolina 27599-9500, United States
| |
Collapse
|
31
|
Molecular Mechanisms of Kaposi Sarcoma Development. Cancers (Basel) 2022; 14:cancers14081869. [PMID: 35454776 PMCID: PMC9030761 DOI: 10.3390/cancers14081869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 01/08/2023] Open
Abstract
Simple Summary There are at least four forms of Kaposi’s sarcoma (KS) with the ‘HIV’-related form being the most aggressive and can involve mucosae or visceral organs. Kaposi’s sarcoma-associated herpes virus (KSHV) is the underlying cause of this disease. It can infect endothelial and/or mesenchymal cells and establish a latent phase in host cells in which latency proteins and various non-coding RNAs (ncRNAs) play a complex role in proliferation and angiogenesis. It also undergoes periods of sporadic lytic reactivation that are key for KS progression. Complex interactions with the microenvironment with production of inflammatory cytokines and paracrine signaling is a standout feature of KS development and maintenance. KSHV impairs the immune response by various mechanisms such as the degradation of a variety of proteins involved in immune response or binding to cellular chemokines. Treatment options include classical chemotherapy, but other novel therapies are being investigated. Abstract Kaposi’s sarcoma (KS) is a heterogeneous angioproliferative tumor that generally arises in the skin. At least four forms of this disease have been described, with the ‘HIV’-related form being the most aggressive and can involve mucosae or visceral organs. Three quarters of KS cases occur in sub-Saharan Africa (SSA) as geographic variation is explained by the disparate prevalence of KS-associated herpes virus (KSHV), which is the underlying cause of this disease. It can infect endothelial and/or mesenchymal cells that consequently transdifferentiate to an intermediate state. KSHV establishes a latent phase in host cells in which latency proteins and various non-coding RNAs (ncRNAs) play a complex role in proliferation and angiogenesis. It also undergoes periods of sporadic lytic reactivation triggered by various biological signals in which lytic stage proteins modulate host cell signaling pathways and are key in KS progression. Complex interactions with the microenvironment with production of inflammatory cytokines with paracrine signaling is a standout feature of KS development and maintenance. KSHV impairs the immune response by various mechanisms such as the degradation of a variety of proteins involved in immune response or binding to cellular chemokines. Treatment options include classical chemotherapy, but other novel therapies are being investigated.
Collapse
|
32
|
Knights SM, Lazarte SM, Kainthla R, Chiao EY, Nijhawan AE. Mortality disparities among patients with HIV-associated Kaposi's sarcoma in the southern United States. AIDS 2022; 36:721-728. [PMID: 34930860 DOI: 10.1097/qad.0000000000003155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To describe risk factors for mortality in HIV-associated Kaposi's sarcoma in an urban population in Dallas, Texas. DESIGN Retrospective electronic medical record review of patients with HIV-associated Kaposi's sarcoma. METHODS Electronic medical records were reviewed from 1 January 2009 to 31 December 2018 for patients with a diagnosis of HIV and Kaposi's sarcoma by ICD-9 or ICD-10 codes. Demographics, HIV history, Kaposi's sarcoma history, treatment, and mortality data were collected. Mortality data was supplemented by an inquiry from the National Death Index (NDI). Survival analyses were performed using Cox proportional hazards analysis to determine independent predictors of mortality. RESULTS Black patients had higher mortality than white or Hispanic patients (hazard ratio 2.07, 95% confidence interval 1.12-3.82), even after adjusting for covariates. This mortality difference correlates with higher rates of advanced Kaposi's sarcoma disease and KS-IRIS in black patients compared with other groups and is not explained by differences in CD4+ cell count, HIV viral load, engagement in care, or ART adherence at the time of cancer diagnosis. CONCLUSION Despite nationwide trends showing decreased incidence and decreased mortality in Kaposi's sarcoma in the ART era, a high number of Kaposi's sarcoma cases and disparities in Kaposi's sarcoma outcomes persist in certain populations in the United States.
Collapse
Affiliation(s)
- Sheena M Knights
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, University of Texas Southwestern Medical Center
- Parkland Health and Hospital Systems
| | - Susana M Lazarte
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, University of Texas Southwestern Medical Center
- Parkland Health and Hospital Systems
| | - Radhika Kainthla
- Parkland Health and Hospital Systems
- Division of Hematology/Oncology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Elizabeth Y Chiao
- Department of General Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ank E Nijhawan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, University of Texas Southwestern Medical Center
- Parkland Health and Hospital Systems
| |
Collapse
|
33
|
Moorad R, Juarez A, Landis JT, Pluta LJ, Perkins M, Cheves A, Dittmer DP. Whole-genome sequencing of Kaposi sarcoma-associated herpesvirus (KSHV/HHV8) reveals evidence for two African lineages. Virology 2022; 568:101-114. [PMID: 35152042 PMCID: PMC8915436 DOI: 10.1016/j.virol.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 12/28/2022]
Abstract
Kaposi sarcoma (KS)-associated herpesvirus (KSHV/HHV-8) was first sequenced from the body cavity (BC) lymphoma cell line, BC-1, in 1996. Few other KSHV genomes have been reported. Our knowledge of sequence variation for this virus remains spotty. This study reports additional genomes from historical US patient samples and from African KS biopsies. It describes an assay that spans regions of the virus that cannot be covered by short read sequencing. These include the terminal repeats, the LANA repeats, and the origins of replication. A phylogenetic analysis, based on 107 genomes, identified three distinct clades; one containing isolates from USA/Europe/Japan collected in the 1990s and two of Sub-Saharan Africa isolates collected since 2010. This analysis indicates that the KSHV strains circulating today differ from the isolates collected at the height of the AIDS epidemic. This analysis helps experimental designs and potential vaccine studies.
Collapse
Affiliation(s)
- Razia Moorad
- Lineberger Comprehensive Cancer Center, School of Medicine, Department of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angelica Juarez
- Lineberger Comprehensive Cancer Center, School of Medicine, Department of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin T Landis
- Lineberger Comprehensive Cancer Center, School of Medicine, Department of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Linda J Pluta
- Lineberger Comprehensive Cancer Center, School of Medicine, Department of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Megan Perkins
- Lineberger Comprehensive Cancer Center, School of Medicine, Department of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Avery Cheves
- Lineberger Comprehensive Cancer Center, School of Medicine, Department of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center, School of Medicine, Department of Immunology and Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
34
|
Münz C. Natural killer cell responses to human oncogenic γ-herpesvirus infections. Semin Immunol 2022; 60:101652. [PMID: 36162228 DOI: 10.1016/j.smim.2022.101652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 01/15/2023]
Abstract
The two γ-herpesviruses Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are each associated with more than 1% of all tumors in humans. While EBV establishes persistent infection in nearly all adult individuals, KSHV benefits from this widespread EBV prevalence for its own persistence. Interestingly, EBV infection expands early differentiated NKG2A+KIR- NK cells that protect against lytic EBV infection, while KSHV co-infection drives accumulation of poorly functional CD56-CD16+ NK cells. Thus persistent γ-herpesvirus infections are sculptors of human NK cell repertoires and the respectively stimulated NK cell subsets should be considered for immunotherapies of EBV and KSHV associated malignancies.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland.
| |
Collapse
|
35
|
Cesarman E, Chadburn A, Rubinstein PG. KSHV/HHV8-mediated hematologic diseases. Blood 2022; 139:1013-1025. [PMID: 34479367 PMCID: PMC8854683 DOI: 10.1182/blood.2020005470] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
Kaposi sarcoma (KS) herpesvirus (KSHV), also known as human herpesvirus 8, is the causal agent of KS but is also pathogenetically related to several lymphoproliferative disorders, including primary effusion lymphoma (PEL)/extracavitary (EC) PEL, KSHV-associated multicentric Castleman disease (MCD), KSHV+ diffuse large B-cell lymphoma, and germinotropic lymphoproliferative disorder. These different KSHV-associated diseases may co-occur and may have overlapping features. KSHV, similar to Epstein-Barr virus (EBV), is a lymphotropic gammaherpesvirus that is preferentially present in abnormal lymphoid proliferations occurring in immunecompromised individuals. Notably, both KSHV and EBV can infect and transform the same B cell, which is frequently seen in KSHV+ EBV+ PEL/EC-PEL. The mechanisms by which KSHV leads to lymphoproliferative disorders is thought to be related to the expression of a few transforming viral genes that can affect cellular proliferation and survival. There are critical differences between KSHV-MCD and PEL/EC-PEL, the 2 most common KSHV-associated lymphoid proliferations, including viral associations, patterns of viral gene expression, and cellular differentiation stage reflected by the phenotype and genotype of the infected abnormal B cells. Advances in treatment have improved outcomes, but mortality rates remain high. Our deepening understanding of KSHV biology, clinical features of KSHV-associated diseases, and newer clinical interventions should lead to improved and increasingly targeted therapeutic interventions.
Collapse
Affiliation(s)
- Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Paul G Rubinstein
- Section of Hematology/Oncology, Department of Medicine, John H. Stroger Jr Hospital of Cook County, Chicago, IL; and
- Department of Medicine, Ruth M. Rothstein CORE Center, Rush University Medical Center, Chicago, IL
| |
Collapse
|
36
|
Virus-Like Particles as Preventive and Therapeutic Cancer Vaccines. Vaccines (Basel) 2022; 10:vaccines10020227. [PMID: 35214685 PMCID: PMC8879290 DOI: 10.3390/vaccines10020227] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Virus-like particles (VLPs) are self-assembled viral protein complexes that mimic the native virus structure without being infectious. VLPs, similarly to wild type viruses, are able to efficiently target and activate dendritic cells (DCs) triggering the B and T cell immunities. Therefore, VLPs hold great promise for the development of effective and affordable vaccines in infectious diseases and cancers. Vaccine formulations based on VLPs, compared to other nanoparticles, have the advantage of incorporating multiple antigens derived from different proteins. Moreover, such antigens can be functionalized by chemical modifications without affecting the structural conformation or the antigenicity. This review summarizes the current status of preventive and therapeutic VLP-based vaccines developed against human oncoviruses as well as cancers.
Collapse
|
37
|
Méndez-Solís O, Bendjennat M, Naipauer J, Theodoridis PR, Ho JJD, Verdun RE, Hare JM, Cesarman E, Lee S, Mesri EA. Kaposi's sarcoma herpesvirus activates the hypoxia response to usurp HIF2α-dependent translation initiation for replication and oncogenesis. Cell Rep 2021; 37:110144. [PMID: 34965440 PMCID: PMC9121799 DOI: 10.1016/j.celrep.2021.110144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is an angiogenesis-inducing oncovirus whose ability to usurp the oxygen-sensing machinery is central to its oncogenicity. By upregulating the hypoxia-inducible factors (HIFs), KSHV reprograms infected cells to a hypoxia-like state, triggering angiogenesis. Here we identify a link between KSHV replicative biology and oncogenicity by showing that KSHV's ability to regulate HIF2α levels and localization to the endoplasmic reticulum (ER) in normoxia enables translation of viral lytic mRNAs through the HIF2α-regulated eIF4E2 translation-initiation complex. This mechanism of translation in infected cells is critical for lytic protein synthesis and contributes to KSHV-induced PDGFRA activation and VEGF secretion. Thus, KSHV regulation of the oxygen-sensing machinery allows virally infected cells to initiate translation via the mTOR-dependent eIF4E1 or the HIF2α-dependent, mTOR-independent, eIF4E2. This "translation initiation plasticity" (TRIP) is an oncoviral strategy used to optimize viral protein expression that links molecular strategies of viral replication to angiogenicity and oncogenesis.
Collapse
Affiliation(s)
- Omayra Méndez-Solís
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mourad Bendjennat
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Julian Naipauer
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Phaedra R Theodoridis
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J J David Ho
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ramiro E Verdun
- Cancer Epigenetics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Stephen Lee
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Enrique A Mesri
- Tumor Biology Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
38
|
A panel of KSHV mutants in the polycistronic kaposin locus for precise analysis of individual protein products. J Virol 2021; 96:e0156021. [PMID: 34936820 PMCID: PMC8906436 DOI: 10.1128/jvi.01560-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the cause of several human cancers, including the endothelial cell (EC) malignancy, Kaposi’s sarcoma. Unique KSHV genes absent from other human herpesvirus genomes, the “K-genes,” are important for KSHV replication and pathogenesis. Among these, the kaposin transcript is highly expressed in all phases of infection, but its complex polycistronic nature has hindered functional analysis to date. At least three proteins are produced from the kaposin transcript: Kaposin A (KapA), B (KapB), and C (KapC). To determine the relative contributions of kaposin proteins during KSHV infection, we created a collection of mutant viruses unable to produce kaposin proteins individually or in combination. In previous work, we showed KapB alone recapitulated the elevated proinflammatory cytokine transcripts associated with KS via the disassembly of RNA granules called processing bodies (PBs). Using the new ΔKapB virus, we showed that KapB was necessary for this effect during latent KSHV infection. Moreover, we observed that despite the ability of all kaposin-deficient latent iSLK cell lines to produce virions, all displayed low viral episome copy number, a defect that became more pronounced after primary infection of naive ECs. For ΔKapB, provision of KapB in trans failed to complement the defect, suggesting a requirement for the kaposin locus in cis. These findings demonstrate that our panel of kaposin-deficient viruses enables precise analysis of the respective contributions of individual kaposin proteins to KSHV replication. Moreover, our mutagenesis approach serves as a guide for the functional analysis of other complex multicistronic viral loci. IMPORTANCE Kaposi’s sarcoma-associated herpesvirus (KSHV) expresses high levels of the kaposin transcript during both latent and lytic phases of replication. Due to its repetitive, GC-rich nature and polycistronic coding capacity, until now no reagents existed to permit a methodical analysis of the role of individual kaposin proteins in KSHV replication. We report the creation of a panel of recombinant viruses and matched producer cell lines that delete kaposin proteins individually or in combination. We demonstrate the utility of this panel by confirming the requirement of one kaposin translation product to a key KSHV latency phenotype. This study describes a new panel of molecular tools for the KSHV field to enable precise analysis of the roles of individual kaposin proteins during KSHV infection.
Collapse
|
39
|
Carbone A, Borok M, Damania B, Gloghini A, Polizzotto MN, Jayanthan RK, Fajgenbaum DC, Bower M. Castleman disease. Nat Rev Dis Primers 2021; 7:84. [PMID: 34824298 PMCID: PMC9584164 DOI: 10.1038/s41572-021-00317-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 01/02/2023]
Abstract
Castleman disease (CD), a heterogeneous group of disorders that share morphological features, is divided into unicentric CD and multicentric CD (MCD) according to the clinical presentation and disease course. Unicentric CD involves a solitary enlarged lymph node and mild symptoms and excision surgery is often curative. MCD includes a form associated with Kaposi sarcoma herpesvirus (KSHV) (also known as human herpesvirus 8) and a KSHV-negative idiopathic form (iMCD). iMCD can present in association with severe syndromes such as TAFRO (thrombocytopenia, ascites, fever, reticulin fibrosis and organomegaly) or POEMS (polyneuropathy, organomegaly, endocrinopathy, monoclonal plasma cell disorder and skin changes). KSHV-MCD often occurs in the setting of HIV infection or another cause of immune deficiency. The interplay between KSHV and HIV elevates the risk for the development of KSHV-induced disorders, including KSHV-MCD, KSHV-lymphoproliferation, KSHV inflammatory cytokine syndrome, primary effusion lymphoma and Kaposi sarcoma. A CD diagnosis requires a multidimensional approach, including clinical presentation and imaging, pathological features, and molecular virology. B cell-directed monoclonal antibody therapy is the standard of care in KSHV-MCD, and anti-IL-6 therapy is the recommended first-line therapy and only treatment of iMCD approved by the US FDA and EMA.
Collapse
Affiliation(s)
- Antonino Carbone
- Centro di Riferimento Oncologico (CRO), IRCCS, National Cancer Institute, Aviano, Italy.
- S. Maria degli Angeli Hospital, Pordenone, Italy.
| | - Margaret Borok
- Unit of Internal Medicine, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Blossom Damania
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Annunziata Gloghini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Mark N Polizzotto
- Clinical Hub for Interventional Research, John Curtin School of Medical Research, The Australian National University, Canberra, NSW, Australia
| | - Raj K Jayanthan
- Castleman Disease Collaborative Network, Philadelphia, PA, USA
| | - David C Fajgenbaum
- Center for Cytokine Storm Treatment & Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Bower
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London, UK
| |
Collapse
|
40
|
Tissue Pathogens and Cancers: A Review of Commonly Seen Manifestations in Histo- and Cytopathology. Pathogens 2021; 10:pathogens10111410. [PMID: 34832566 PMCID: PMC8624235 DOI: 10.3390/pathogens10111410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Tissue pathogens are commonly encountered in histopathology and cytology practice, where they can present as either benign mimickers of malignancy or true malignancies. The aim of this review is to provide a timely synthesis of our understanding of these tissue pathogens, with an emphasis on pertinent diagnostic conundrums associated with the benign mimickers of malignancy that can be seen with viral infections and those which manifest as granulomas. The oncogenic pathogens, including viruses, bacteria, and parasites, are then discussed with relationship to their associated malignancies. Although not exhaustive, the epidemiology, clinical manifestations, pathogenesis, and histological findings are included, along with a short review of emerging therapies.
Collapse
|
41
|
Hale AE, Moorman NJ. The Ends Dictate the Means: Promoter Switching in Herpesvirus Gene Expression. Annu Rev Virol 2021; 8:201-218. [PMID: 34129370 DOI: 10.1146/annurev-virology-091919-072841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herpesvirus gene expression is dynamic and complex, with distinct complements of viral genes expressed at specific times in different infection contexts. These complex patterns of viral gene expression arise in part from the integration of multiple cellular and viral signals that affect the transcription of viral genes. The use of alternative promoters provides an increased level of control, allowing different promoters to direct the transcription of the same gene in response to distinct temporal and contextual cues. While once considered rare, herpesvirus alternative promoter usage was recently found to be far more pervasive and impactful than previously thought. Here we review several examples of promoter switching in herpesviruses and discuss the functional consequences on the transcriptional and post-transcriptional regulation of viral gene expression.
Collapse
Affiliation(s)
- Andrew E Hale
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
42
|
Malonga GA, Jary A, Leducq V, Moudiongui Mboungou Malanda D, Boumba ALM, Chicaud E, Malet I, Calvez V, Peko JF, Marcelin AG. Seroprevalence and molecular diversity of Human Herpesvirus 8 among people living with HIV in Brazzaville, Congo. Sci Rep 2021; 11:17442. [PMID: 34465868 PMCID: PMC8408137 DOI: 10.1038/s41598-021-97070-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
Human herpesvirus 8 (HHV8) is endemic in Africa, although studies of this infection are rare in Congo. We evaluated seroprevalence and HHV-8 diversity among people living with HIV. We included 353 patients receiving highly active antiretroviral therapy. Antibodies against HHV-8 latency-associated nuclear antigen were detected by indirect immunofluorescence. In HHV-8 positive patients, we performed HHV-8 quantification in blood and saliva by real-time PCR and typing by Sanger sequencing of K1 open reading frame. HHV-8 seroprevalence was 19%, being male (odd ratio [OR] = 1.741, [95% Confidence interval {CI}, 0.97-3.07]; p = 0.0581) and having multiple sex partners before HIV diagnosis (OR = 1.682, [CI 95%, 0.97-2.92]; p = 0.0629) tended to be associated with HHV-8 seropositivity. Of the 64 HHV-8 seropositive patients, HHV-8 DNA was detected in 10 (16%) in saliva, 6 (9%) in whole-blood and in 2 (3%) in both whole-blood and saliva. Three out of 6 HHV-8 strains were subtypes A5, 2 subtype B1 and 1 subtype C. HHV-8 seroprevalence was relatively low with more frequent carriage in men, associated with asymptomatic oral excretion and a predominance of subtype A5. These data tend to support the hypothesis of horizontal transmission in people living with HIV in Brazzaville.
Collapse
Affiliation(s)
- Gervillien Arnold Malonga
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Laboratoire de Virologie, Department of Virology - CERVI, Pitié-Salpêtrière Hospital, 83 boulevard de l'Hôpital, 75013, Paris, France.
- Faculté des Sciences de la Santé, Université Marien Ngouabi, Brazzaville, Republic of Congo.
| | - Aude Jary
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Laboratoire de Virologie, Department of Virology - CERVI, Pitié-Salpêtrière Hospital, 83 boulevard de l'Hôpital, 75013, Paris, France
| | - Valentin Leducq
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Laboratoire de Virologie, Department of Virology - CERVI, Pitié-Salpêtrière Hospital, 83 boulevard de l'Hôpital, 75013, Paris, France
| | - Dimitry Moudiongui Mboungou Malanda
- Faculté des Sciences de la Santé, Université Marien Ngouabi, Brazzaville, Republic of Congo
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire de Brazzaville, Brazzaville, Republic of Congo
| | - Anicet Luc Magloire Boumba
- Faculté des Sciences de la Santé, Université Marien Ngouabi, Brazzaville, Republic of Congo
- Laboratoire d'Analyses Médicales, Hôpital Général de Loandjili, Pointe-Noire, Republic of Congo
| | - Elodie Chicaud
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Laboratoire de Virologie, Department of Virology - CERVI, Pitié-Salpêtrière Hospital, 83 boulevard de l'Hôpital, 75013, Paris, France
| | - Isabelle Malet
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Laboratoire de Virologie, Department of Virology - CERVI, Pitié-Salpêtrière Hospital, 83 boulevard de l'Hôpital, 75013, Paris, France
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Laboratoire de Virologie, Department of Virology - CERVI, Pitié-Salpêtrière Hospital, 83 boulevard de l'Hôpital, 75013, Paris, France
| | - Jean Felix Peko
- Faculté des Sciences de la Santé, Université Marien Ngouabi, Brazzaville, Republic of Congo
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire de Brazzaville, Brazzaville, Republic of Congo
| | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Pitié-Salpêtrière - Charles Foix, Laboratoire de Virologie, Department of Virology - CERVI, Pitié-Salpêtrière Hospital, 83 boulevard de l'Hôpital, 75013, Paris, France
| |
Collapse
|
43
|
The Role of Coinfections in the EBV-Host Broken Equilibrium. Viruses 2021; 13:v13071399. [PMID: 34372605 PMCID: PMC8310153 DOI: 10.3390/v13071399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The Epstein–Barr virus (EBV) is a well-adapted human virus, and its infection is exclusive to our species, generally beginning in the childhood and then persisting throughout the life of most of the affected adults. Although this infection generally remains asymptomatic, EBV can trigger life-threatening conditions under unclear circumstances. The EBV lifecycle is characterized by interactions with other viruses or bacteria, which increases the probability of awakening its pathobiont capacity. For instance, EBV infects B cells with the potential to alter the germinal center reaction (GCR)—an adaptive immune structure wherein mutagenic-driven processes take place. HIV- and Plasmodium falciparum-induced B cell hyperactivation also feeds the GCR. These agents, along with the B cell tropic KSHV, converge in the ontogeny of germinal center (GC) or post-GC lymphomas. EBV oral transmission facilitates interactions with local bacteria and HPV, thereby increasing the risk of periodontal diseases and head and neck carcinomas. It is less clear as to how EBV is localized in the stomach, but together with Helicobacter pylori, they are known to be responsible for gastric cancer. Perhaps this mechanism is reminiscent of the local inflammation that attracts different herpesviruses and enhances graft damage and chances of rejection in transplanted patients. In this review, we discussed the existing evidence suggestive of EBV possessing the potential to synergize or cooperate with these agents to trigger or worsen the disease.
Collapse
|
44
|
Shao Y, Saredy J, Xu K, Sun Y, Saaoud F, Drummer C, Lu Y, Luo JJ, Lopez-Pastrana J, Choi ET, Jiang X, Wang H, Yang X. Endothelial Immunity Trained by Coronavirus Infections, DAMP Stimulations and Regulated by Anti-Oxidant NRF2 May Contribute to Inflammations, Myelopoiesis, COVID-19 Cytokine Storms and Thromboembolism. Front Immunol 2021; 12:653110. [PMID: 34248940 PMCID: PMC8269631 DOI: 10.3389/fimmu.2021.653110] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
To characterize transcriptomic changes in endothelial cells (ECs) infected by coronaviruses, and stimulated by DAMPs, the expressions of 1311 innate immune regulatomic genes (IGs) were examined in 28 EC microarray datasets with 7 monocyte datasets as controls. We made the following findings: The majority of IGs are upregulated in the first 12 hours post-infection (PI), and maintained until 48 hours PI in human microvascular EC infected by middle east respiratory syndrome-coronavirus (MERS-CoV) (an EC model for COVID-19). The expressions of IGs are modulated in 21 human EC transcriptomic datasets by various PAMPs/DAMPs, including LPS, LPC, shear stress, hyperlipidemia and oxLDL. Upregulation of many IGs such as nucleic acid sensors are shared between ECs infected by MERS-CoV and those stimulated by PAMPs and DAMPs. Human heart EC and mouse aortic EC express all four types of coronavirus receptors such as ANPEP, CEACAM1, ACE2, DPP4 and virus entry facilitator TMPRSS2 (heart EC); most of coronavirus replication-transcription protein complexes are expressed in HMEC, which contribute to viremia, thromboembolism, and cardiovascular comorbidities of COVID-19. ECs have novel trained immunity (TI), in which subsequent inflammation is enhanced. Upregulated proinflammatory cytokines such as TNFα, IL6, CSF1 and CSF3 and TI marker IL-32 as well as TI metabolic enzymes and epigenetic enzymes indicate TI function in HMEC infected by MERS-CoV, which may drive cytokine storms. Upregulated CSF1 and CSF3 demonstrate a novel function of ECs in promoting myelopoiesis. Mechanistically, the ER stress and ROS, together with decreased mitochondrial OXPHOS complexes, facilitate a proinflammatory response and TI. Additionally, an increase of the regulators of mitotic catastrophe cell death, apoptosis, ferroptosis, inflammasomes-driven pyroptosis in ECs infected with MERS-CoV and the upregulation of pro-thrombogenic factors increase thromboembolism potential. Finally, NRF2-suppressed ROS regulate innate immune responses, TI, thrombosis, EC inflammation and death. These transcriptomic results provide novel insights on the roles of ECs in coronavirus infections such as COVID-19, cardiovascular diseases (CVD), inflammation, transplantation, autoimmune disease and cancers.
Collapse
Affiliation(s)
- Ying Shao
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jason Saredy
- Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Keman Xu
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Charles Drummer
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yifan Lu
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jin J Luo
- Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jahaira Lopez-Pastrana
- Psychiatry and Behavioral Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Eric T Choi
- Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
45
|
Hatta MNA, Mohamad Hanif EA, Chin SF, Neoh HM. Pathogens and Carcinogenesis: A Review. BIOLOGY 2021; 10:533. [PMID: 34203649 PMCID: PMC8232153 DOI: 10.3390/biology10060533] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Cancer is a global health problem associated with genetics and unhealthy lifestyles. Increasingly, pathogenic infections have also been identified as contributors to human cancer initiation and progression. Most pathogens (bacteria, viruses, fungi, and parasites) associated with human cancers are categorized as Group I human carcinogens by the International Agency for Research on Cancer, IARC. These pathogens cause carcinogenesis via three known mechanisms: persistent infection that cause inflammation and DNA damage, initiation of oncogene expression, and immunosuppression activity of the host. In this review, we discuss the carcinogenesis mechanism of ten pathogens, their implications, and some future considerations for better management of the disease. The pathogens and cancers described are Helicobacter pylori (gastric cancer), Epstein-Barr virus (gastric cancer and lymphoma), Hepatitis B and C viruses (liver cancer), Aspergillus spp. (liver cancer), Opisthorchis viverrine (bile duct cancer), Clonorchis sinensis (bile duct cancer), Fusobacterium nucleatum (colorectal cancer), Schistosoma haematobium (bladder cancer); Human Papillomavirus (cervical cancer), and Kaposi's Sarcoma Herpes Virus (Kaposi's sarcoma).
Collapse
Affiliation(s)
| | | | | | - Hui-min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Jalan Ya’acob Latiff, Cheras, Kuala Lumpur 56000, Malaysia; (M.N.A.H.); (E.A.M.H.); (S.-F.C.)
| |
Collapse
|
46
|
Oral lymphangioma-like Kaposi sarcoma: a Brazilian case report in a scenario of a still high number of HIV infections. Oral Maxillofac Surg 2021; 26:171-176. [PMID: 34089420 DOI: 10.1007/s10006-021-00974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
We present a challenging case of HIV-related lymphangioma-like Kaposi sarcoma (LLKS) affecting the oral cavity. A 54-year-old Brazilian male patient was referred to our center complaining of bleeding lesions affecting the oral cavity for 2 months. Interestingly, these oral lesions were the first clinical manifestation of HIV infection. Clinically, multiple erythematous nodular and patch lesions were observed. An incisional biopsy was performed, revealing numerous microscopic angled and irregular vascular channels lined with flattened endothelial cells. More cellularized and solid areas consisting of more fusiform cells with little pleomorphism and with slit-like vascular channels were noted. Based on immunoreactivity for CD31, CD34, D2-40, and HHV-8, the final diagnosis was oral LLKS. Highly active antiretroviral therapy (HAART) was initiated with dolutegravir, tenofovir, and lamivudine. During follow-up, the patient showed KS metastases to other sites and a chemotherapeutic protocol was initiated. Regression of the oral lesion was clearly noted by the clinicians 1 year after the KS diagnosis. Dentists should be able to recognize systemic diseases that affect the oral cavity such as KS in order to make an early diagnosis of its oral manifestations and to implement effective therapeutic measures to ensure a better prognosis.
Collapse
|
47
|
Dzobo K. The Role of Viruses in Carcinogenesis and Molecular Targeting: From Infection to Being a Component of the Tumor Microenvironment. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:358-371. [PMID: 34037476 DOI: 10.1089/omi.2021.0052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
About a tenth of all cancers are caused by viruses or associated with viral infection. Recent global events including the coronavirus disease-2019 (COVID-19) pandemic means that human encounter with viruses is increased. Cancer development in individuals with viral infection can take many years after infection, demonstrating that the involvement of viruses in cancer development is a long and complex process. This complexity emanates from individual genetic heterogeneity and the many steps involved in cancer development owing to viruses. The process of tumorigenesis is driven by the complex interaction between several viral factors and host factors leading to the creation of a tumor microenvironment (TME) that is ideal and promotes tumor formation. Viruses associated with human cancers ensure their survival and proliferation through activation of several cellular processes including inflammation, migration, and invasion, resistance to apoptosis and growth suppressors. In addition, most human oncoviruses evade immune detection and can activate signaling cascades including the PI3K-Akt-mTOR, Notch and Wnt pathways associated with enhanced proliferation and angiogenesis. This expert review examines and synthesizes the multiple biological factors related to oncoviruses, and the signaling cascades activated by these viruses contributing to viral oncogenesis. In particular, I examine and review the Epstein-Barr virus, human papillomaviruses, and Kaposi's sarcoma herpes virus in a context of cancer pathogenesis. I conclude with a future outlook on therapeutic targeting of the viruses and their associated oncogenic pathways within the TME. These anticancer strategies can be in the form of, but not limited to, antibodies and inhibitors.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
48
|
Costantini LM, Damania B. DNA Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Riggs JB, Medina EM, Perrenoud LJ, Bonilla DL, Clambey ET, van Dyk LF, Berg LJ. Optimized Detection of Acute MHV68 Infection With a Reporter System Identifies Large Peritoneal Macrophages as a Dominant Target of Primary Infection. Front Microbiol 2021; 12:656979. [PMID: 33767688 PMCID: PMC7985543 DOI: 10.3389/fmicb.2021.656979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Investigating the dynamics of virus-host interactions in vivo remains an important challenge, often limited by the ability to directly identify virally infected cells. Here, we utilize a beta-lactamase activated fluorescent substrate to identify primary targets of murine gammaherpesvirus 68 (MHV68) infection in the peritoneal cavity. By optimizing substrate and detection conditions, we were able to achieve multiparameter characterization of infected cells and the ensuing host response. MHV68 infection leads to a pronounced increase in immune cells, with CD8+ T cells increasing by 3 days, and total infiltrate peaking around 8 days post-infection. MHV68 infection results in near elimination of large peritoneal macrophages (LPMs) by 8 days post-infection, and a concordant increase in small peritoneal macrophages (SPMs) and monocytes. Infection is associated with prolonged changes to myeloid cells, with a distinct population of MHC IIhigh LPMs emerging by 14 days. Targets of MHV68 infection could be readily detected. Between 1 and 3 days post-infection, MHV68 infects ∼5–10% of peritoneal cells, with >75% being LPMs. By 8 days post-infection, the frequency of MHV68 infection is reduced at least 10-fold, with infection primarily in SPMs, with few infected dendritic cells and B cells. Importantly, limiting dilution analysis indicates that at 3 days post-infection, the majority of MHV68-infected cells harbor latent rather than lytic virus at frequencies consistent with those identified based on reporter gene expression. Our findings demonstrate the utility of the beta-lactamase MHV68 reporter system for high throughput single-cell analysis and identify dynamic changes during primary gammaherpesvirus infection.
Collapse
Affiliation(s)
- Julianne B Riggs
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eva M Medina
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Loni J Perrenoud
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Eric T Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Linda F van Dyk
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Leslie J Berg
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
50
|
Münz C. The Role of Lytic Infection for Lymphomagenesis of Human γ-Herpesviruses. Front Cell Infect Microbiol 2021; 11:605258. [PMID: 33842383 PMCID: PMC8034291 DOI: 10.3389/fcimb.2021.605258] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are two oncogenic human γ-herpesviruses that are each associated with 1-2% of human tumors. They encode bona fide oncogenes that they express during latent infection to amplify their host cells and themselves within these. In contrast, lytic virus particle producing infection has been considered to destroy host cells and might be even induced to therapeutically eliminate EBV and KSHV associated tumors. However, it has become apparent in recent years that early lytic replication supports tumorigenesis by these two human oncogenic viruses. This review will discuss the evidence for this paradigm change and how lytic gene products might condition the microenvironment to facilitate EBV and KSHV associated tumorigenesis.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|