1
|
Aharoni R, Milo R, Arnon R. Glatiramer Acetate for the Treatment of Multiple Sclerosis: From First-Generation Therapy to Elucidation of Immunomodulation and Repair. Pharmacol Rev 2024; 76:1133-1158. [PMID: 39406508 DOI: 10.1124/pharmrev.124.000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS), with a putative autoimmune origin and complex pathogenesis. Modification of the natural history of MS by reducing relapses and slowing disability accumulation was first attained in the 1990 s with the development of the first-generation disease-modifying therapies. Glatiramer acetate (GA), a copolymer of L-alanine, L-lysine, L-glutamic acid, and L-tyrosine, was discovered due to its ability to suppress the animal model of MS, experimental autoimmune encephalomyelitis. Extensive clinical trials and long-term assessments established the efficacy and the safety of GA. Furthermore, studies of the therapeutic processes induced by GA in animal models and in MS patients indicate that GA affects various levels of the innate and the adaptive immune response, generating deviation from proinflammatory to anti-inflammatory pathways. This includes competition for binding to antigen presenting cells; driving dendritic cells, monocytes, and B-cells toward anti-inflammatory responses; and stimulating T-helper 2 and T-regulatory cells. The immune cells stimulated by GA reach the CNS and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings reveal that in addition to its immunomodulatory effect, GA promotes neuroprotective repair processes such as neurotrophic factors secretion, remyelination, and neurogenesis. This review aims to provide an overview of MS pathology diagnosis and treatment as well as the diverse mechanism of action of GA. SIGNIFICANCE STATEMENT: Understanding the complex MS immune pathogenesis provided multiple targets for therapeutic intervention, resulting in a plethora of agents, with various mechanisms of action, efficacy, and safety profiles. However, promoting repair beyond the body's limited spontaneous extent is still a major challenge. GA, one of the first approved disease-modifying therapies, induces diverse immunomodulatory effects. Furthermore, GA treatment results in elevated neurotrophic factors secretion, remyelination and neurogenesis, supporting the notion that immunomodulatory treatment can support in situ a growth-promoting and repair environment.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ron Milo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ruth Arnon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| |
Collapse
|
2
|
Woodfin S, Hall S, Ramerth A, Chapple B, Fausnacht D, Moore W, Alkhalidy H, Liu D. Potential Application of Plant-Derived Compounds in Multiple Sclerosis Management. Nutrients 2024; 16:2996. [PMID: 39275311 PMCID: PMC11397714 DOI: 10.3390/nu16172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration, resulting in significant disability and reduced quality of life. Current therapeutic strategies primarily target immune dysregulation, but limitations in efficacy and tolerability highlight the need for alternative treatments. Plant-derived compounds, including alkaloids, phenylpropanoids, and terpenoids, have demonstrated anti-inflammatory effects in both preclinical and clinical studies. By modulating immune responses and promoting neuroregeneration, these compounds offer potential as novel adjunctive therapies for MS. This review provides insights into the molecular and cellular basis of MS pathogenesis, emphasizing the role of inflammation in disease progression. It critically evaluates emerging evidence supporting the use of plant-derived compounds to attenuate inflammation and MS symptomology. In addition, we provide a comprehensive source of information detailing the known mechanisms of action and assessing the clinical potential of plant-derived compounds in the context of MS pathogenesis, with a focus on their anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Seth Woodfin
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Sierra Hall
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Alexis Ramerth
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Brooke Chapple
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA 24088, USA
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Aviel G, Elkahal J, Umansky KB, Bueno-Levy H, Petrover Z, Kotlovski Y, Lendengolts D, Kain D, Shalit T, Zhang L, Miyara S, Kramer MP, Merbl Y, Kozlovski S, Alon R, Aharoni R, Arnon R, Mishali D, Katz U, Nachman D, Asleh R, Amir O, Tzahor E, Sarig R. Repurposing of glatiramer acetate to treat cardiac ischemia in rodent models. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1049-1066. [PMID: 39215106 DOI: 10.1038/s44161-024-00524-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Myocardial injury may ultimately lead to adverse ventricular remodeling and development of heart failure (HF), which is a major cause of morbidity and mortality worldwide. Given the slow pace and substantial costs of developing new therapeutics, drug repurposing is an attractive alternative. Studies of many organs, including the heart, highlight the importance of the immune system in modulating injury and repair outcomes. Glatiramer acetate (GA) is an immunomodulatory drug prescribed for patients with multiple sclerosis. Here, we report that short-term GA treatment improves cardiac function and reduces scar area in a mouse model of acute myocardial infarction and a rat model of ischemic HF. We provide mechanistic evidence indicating that, in addition to its immunomodulatory functions, GA exerts beneficial pleiotropic effects, including cardiomyocyte protection and enhanced angiogenesis. Overall, these findings highlight the potential repurposing of GA as a future therapy for a myriad of heart diseases.
Collapse
Affiliation(s)
- Gal Aviel
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Elkahal
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kfir Baruch Umansky
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hanna Bueno-Levy
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zachary Petrover
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yulia Kotlovski
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Lendengolts
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Kain
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Shalit
- Bioinformatics Unit, G-INCPM, Weizmann Institute of Science, Rehovot, Israel
| | - Lingling Zhang
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shoval Miyara
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias P Kramer
- The Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yifat Merbl
- The Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stav Kozlovski
- The Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Alon
- The Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rina Aharoni
- The Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Arnon
- The Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Mishali
- Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Uriel Katz
- Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dean Nachman
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Rabea Asleh
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Offer Amir
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Eldad Tzahor
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Rachel Sarig
- The Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Gębka-Kępińska B, Adamczyk B, Gębka D, Czuba Z, Szczygieł J, Adamczyk-Sowa M. Cytokine Profiling in Cerebrospinal Fluid of Patients with Newly Diagnosed Relapsing-Remitting Multiple Sclerosis (RRMS): Associations between Inflammatory Biomarkers and Disease Activity. Int J Mol Sci 2024; 25:7399. [PMID: 39000506 PMCID: PMC11242697 DOI: 10.3390/ijms25137399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Cytokines regulate immune responses and are crucial to MS pathogenesis. This study evaluated pro-inflammatory and anti-inflammatory cytokine concentrations in the CSF of de novo diagnosed RRMS patients compared to healthy controls. We assessed cytokine levels in the CSF of 118 de novo diagnosed RRMS patients and 112 controls, analyzing relationships with time from symptom onset to diagnosis, MRI lesions, and serum vitamin D levels. Elevated levels of IL-2, IL-4, IL-6, IL-13, FGF-basic, and GM-CSF, and lower levels of IL-1β, IL-1RA, IL-5, IL-7, IL-9, IL-10, IL-12p70, IL-15, G-CSF, PDGF-bb, and VEGF were observed in RRMS patients compared to controls. IL-2, IL-4, IL-12p70, PDGF, G-CSF, GM-CSF, and FGF-basic levels increased over time, while IL-10 decreased. IL-1β, IL-1RA, IL-6, TNF-α, and PDGF-bb levels negatively correlated with serum vitamin D. TNF-α levels positively correlated with post-contrast-enhancing brain lesions. IL-15 levels negatively correlated with T2 and Gd(+) lesions in C-spine MRI, while TNF-α, PDGF-bb, and FGF-basic correlated positively with T2 lesions in C-spine MRI. IL-6 levels positively correlated with post-contrast-enhancing lesions in Th-spine MRI. Distinct cytokine profiles in the CSF of de novo diagnosed MS patients provide insights into MS pathogenesis and guide immunomodulatory therapy strategies.
Collapse
Affiliation(s)
- Barbara Gębka-Kępińska
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Bożena Adamczyk
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Dorota Gębka
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Jarosław Szczygieł
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-800 Katowice, Poland
| |
Collapse
|
5
|
Kim E, Fortoul MC, Weimer D, Meggyesy M, Demory Beckler M. Co-occurrence of glioma and multiple sclerosis: Prevailing theories and emerging therapies. Mult Scler Relat Disord 2023; 79:105027. [PMID: 37801959 DOI: 10.1016/j.msard.2023.105027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/01/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023]
Abstract
Though the concurrence of primary brain tumors and multiple sclerosis (MS) is exceedingly rare, instances have been noted in the literature as early as 1949. Given these observations, researchers have proposed various ideas as to how these malignancies may be linked to MS. Due to insufficient data, none have gained traction or been widely accepted amongst neurologists or neuro-oncologists. What is abundantly clear, however, is the mounting uncertainty faced by clinicians when caring for these individuals. Concerns persist about the potential for disease modifying therapies (DMTs) to initiate or promote tumor growth and progression, and to date, there are no approved treatments capable of mitigating both MS disease activity and tumor growth, let alone established guidelines that clinicians may refer to. Collectively, these gaps in the literature impose limitations to optimizing the care and management of this population. As such, our hope is to stimulate further discussion of this topic and prompt future investigations to explore novel treatment options and advance our understanding of these concurrent disease processes. To this end, the chief objective of this article is to evaluate proposed ideas of how the diseases may be linked, outline emerging therapies for both MS and brain tumors, and describe evidence-based approaches to diagnosing and treating this patient population.
Collapse
Affiliation(s)
- Enoch Kim
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Marla C Fortoul
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Derek Weimer
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States
| | - Michael Meggyesy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michelle Demory Beckler
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, 3200 S University Drive, Fort Lauderdale, FL 33328, United States.
| |
Collapse
|
6
|
Cignarella A, Vegeto E, Bolego C, Trabace L, Conti L, Ortona E. Sex-oriented perspectives in immunopharmacology. Pharmacol Res 2023; 197:106956. [PMID: 37820857 DOI: 10.1016/j.phrs.2023.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Several immunopharmacological agents are effective in the treatment of cancer and immune-mediated conditions, with a favorable impact on life expectancy and clinical outcomes for a large number of patients. Nevertheless, response variation and undesirable effects of these drugs represent major issues, and overall efficacy remains unpredictable. Males and females show a distinct difference in immune system responses, with females generally mounting stronger responses to a variety of stimuli. Therefore, exploring sex differences in the efficacy and safety of immunopharmacological agents would strengthen the practice of precision medicine. As a pharmacological target highlight, programmed cell death 1 ligand 1 (PD-L1) is the first functionally characterized ligand of the coinhibitory programmed death receptor 1 (PD-1). The PD-L1/PD-1 crosstalk plays an important role in the immune response and is relevant in cancer, infectious and autoimmune disease. Sex differences in the response to immune checkpoint inhibitors are well documented, with male patients responding better than female patients. Similarly, higher efficacy of and adherence to tumor necrosis factor inhibitors in chronic inflammatory conditions including rheumatoid arthritis and Crohn's disease have been reported in male patients. The pharmacological basis of sex-specific responses to immune system modulating drugs is actively investigated in other settings such as stroke and type 1 diabetes. Advances in therapeutics targeting the endothelium could soon be wielded against autoimmunity and metabolic disorders. Based on the established sexual dimorphism in immune-related pathophysiology and disease presentation, sex-specific immunopharmacological protocols should be integrated into clinical guidelines.
Collapse
Affiliation(s)
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Lucia Conti
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Ortona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
7
|
Makar TK, Guda PR, Ray S, Andhavarapu S, Keledjian K, Gerzanich V, Simard JM, Nimmagadda VKC, Bever CT. Immunomodulatory therapy with glatiramer acetate reduces endoplasmic reticulum stress and mitochondrial dysfunction in experimental autoimmune encephalomyelitis. Sci Rep 2023; 13:5635. [PMID: 37024509 PMCID: PMC10079956 DOI: 10.1038/s41598-023-29852-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/11/2023] [Indexed: 04/08/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are found in lesions of multiple sclerosis (MS) and animal models of MS such as experimental autoimmune encephalomyelitis (EAE), and may contribute to the neuronal loss that underlies permanent impairment. We investigated whether glatiramer acetate (GA) can reduce these changes in the spinal cords of chronic EAE mice by using routine histology, immunostaining, and electron microscopy. EAE spinal cord tissue exhibited increased inflammation, demyelination, mitochondrial dysfunction, ER stress, downregulation of NAD+ dependent pathways, and increased neuronal death. GA reversed these pathological changes, suggesting that immunomodulating therapy can indirectly induce neuroprotective effects in the CNS by mediating ER stress.
Collapse
Affiliation(s)
- Tapas K Makar
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA.
- Research Service, Institute of Human Virology, VA Maryland Health Care System, 725 W Lombard St, Baltimore, MD, 21201, USA.
| | - Poornachander R Guda
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Sugata Ray
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Sanketh Andhavarapu
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - J Marc Simard
- Department of Neurosurgery, School of Medicine, University of Maryland, College Park, USA
| | - Vamshi K C Nimmagadda
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
| | - Christopher T Bever
- Department of Neurology, School of Medicine, University of Maryland, College Park, USA
- Research Service, Institute of Human Virology, VA Maryland Health Care System, 725 W Lombard St, Baltimore, MD, 21201, USA
- Department of Veterans Affairs, Office of Research and Development, Washington, USA
| |
Collapse
|
8
|
Kohle F, Dalakas MC, Lehmann HC. Repurposing MS immunotherapies for CIDP and other autoimmune neuropathies: unfulfilled promise or efficient strategy? Ther Adv Neurol Disord 2023; 16:17562864221137129. [PMID: 36620728 PMCID: PMC9810996 DOI: 10.1177/17562864221137129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/19/2022] [Indexed: 01/03/2023] Open
Abstract
Despite advances in the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and other common autoimmune neuropathies (AN), still-many patients with these diseases do not respond satisfactorily to the available treatments. Repurposing of disease-modifying therapies (DMTs) from other autoimmune conditions, particularly multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), is a promising strategy that may accelerate the establishment of novel treatment choices for AN. This approach appears attractive due to homologies in the pathogenesis of these diseases and the extensive post-marketing experience that has been gathered from treating MS and NMOSD patients. The idea is also strengthened by a number of studies that explored the efficacy of DMTs in animal models of AN but also in some CIDP patients. We here review the available preclinical and clinical data of approved MS therapeutics in terms of their applicability to AN, especially CIDP. Promising therapeutic approaches appear to be B cell-directed and complement-targeting strategies, such as anti-CD20/anti-CD19 agents, Bruton's tyrosine kinase inhibitors and anti-C5 agents, as they exert their effects in the periphery. This is a major advantage because, in contrast to MS, their action in the periphery is sufficient to exert significant immunomodulation.
Collapse
Affiliation(s)
- Felix Kohle
- Department of Neurology, Faculty of Medicine,
University of Cologne and University Hospital Cologne, Cologne,
Germany
| | - Marinos C. Dalakas
- Department of Neurology, Thomas Jefferson
University, Philadelphia, PA, USA
- Neuroimmunology Unit, National and Kapodistrian
University of Athens Medical School, Athens, Greece
| | - Helmar C. Lehmann
- Department of Neurology, Faculty of Medicine,
University of Cologne and University Hospital Cologne, Kerpener Strasse, 62,
50937 Cologne, Germany
| |
Collapse
|
9
|
Yaji ELA, Wahab SA, Len KYT, Sabri MZ, Razali N, Dos Mohamed AM, Wong FWF, Talib NA, Hashim NH, Pa’ee KF. Alternative biomanufacturing of bioactive peptides derived from halal food sources. INNOVATION OF FOOD PRODUCTS IN HALAL SUPPLY CHAIN WORLDWIDE 2023:99-113. [DOI: 10.1016/b978-0-323-91662-2.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Yang JH, Rempe T, Whitmire N, Dunn-Pirio A, Graves JS. Therapeutic Advances in Multiple Sclerosis. Front Neurol 2022; 13:824926. [PMID: 35720070 PMCID: PMC9205455 DOI: 10.3389/fneur.2022.824926] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system that causes significant disability and healthcare burden. The treatment of MS has evolved over the past three decades with development of new, high efficacy disease modifying therapies targeting various mechanisms including immune modulation, immune cell suppression or depletion and enhanced immune cell sequestration. Emerging therapies include CNS-penetrant Bruton's tyrosine kinase inhibitors and autologous hematopoietic stem cell transplantation as well as therapies aimed at remyelination or neuroprotection. Therapy development for progressive MS has been more challenging with limited efficacy of current approved agents for inactive disease and older patients with MS. The aim of this review is to provide a broad overview of the current therapeutic landscape for MS.
Collapse
Affiliation(s)
- Jennifer H. Yang
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
- *Correspondence: Jennifer H. Yang
| | - Torge Rempe
- Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Natalie Whitmire
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Anastasie Dunn-Pirio
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Jennifer S. Graves
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
12
|
A Treatment to Cure Diabetes Using Plant-Based Drug Discovery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8621665. [PMID: 35586686 PMCID: PMC9110154 DOI: 10.1155/2022/8621665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 03/04/2022] [Indexed: 01/11/2023]
Abstract
The field of peptides and proteins has opened up new doors for plant-based medication development because of analytical breakthroughs. Enzymatic breakdown of plant-specific proteins yields bioactive peptides. These plant-based proteins and peptides, in addition to their in vitro and vivo outcomes for diabetes treatment, are discussed in this study. The secondary metabolites of vegetation can interfere with the extraction, separation, characterization, and commercialization of plant proteins through the pharmaceutical industry. Glucose-lowering diabetic peptides are a hot commodity. For a wide range of illnesses, bioactive peptides from flora can offer up new avenues for the development of cost-effective therapy options.
Collapse
|
13
|
Mahadik R, Kiptoo P, Tolbert T, Siahaan TJ. Immune Modulation by Antigenic Peptides and Antigenic Peptide Conjugates for Treatment of Multiple Sclerosis. MEDICAL RESEARCH ARCHIVES 2022; 10:10.18103/mra.v10i5.2804. [PMID: 36381196 PMCID: PMC9648198 DOI: 10.18103/mra.v10i5.2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The immune system defends our body by fighting infection from pathogens utilizing both the innate and adaptive immune responses. The innate immune response is generated rapidly as the first line of defense. It is followed by the adaptive immune response that selectively targets infected cells. The adaptive immune response is generated more slowly, but selectively, by targeting a wide range of foreign particles (i.e., viruses or bacteria) or molecules that enter the body, known as antigens. Autoimmune diseases are the results of immune system glitches, where the body's adaptive system recognizes self-antigens as foreign. Thus, the host immune system attacks the self-tissues or organs with a high level of inflammation and causes debilitation in patients. Many current treatments for autoimmune diseases (i.e., multiple sclerosis (MS), rheumatoid arthritis (RA)) have been effective but lead to adverse side effects due to general immune system suppression, which makes patients vulnerable to opportunistic infections. To counter these negative effects, many different avenues of antigen specific treatments are being developed to selectively target the autoreactive immune cells for a specific self-antigen or set of self-antigens while not compromising the general immune system. These approaches include soluble antigenic peptides, bifunctional peptide inhibitors (BPI) including IDAC and Fc-BPI, polymer conjugates, and peptide-drug conjugates. Here, various antigen-specific methods of potential treatments, their efficacy, and limitations will be discussed along with the potential mechanisms of action.
Collapse
Affiliation(s)
- Rucha Mahadik
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | | | - Tom Tolbert
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| |
Collapse
|
14
|
Zanetta C, Rocca MA, Filippi M. Impact of immunotherapies on COVID-19 outcomes in multiple sclerosis patients. Expert Rev Clin Immunol 2022; 18:495-512. [PMID: 35395927 DOI: 10.1080/1744666x.2022.2064845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION SARS-CoV-2 pandemic has led the scientific community to maximize efforts to prevent infections and disease severity in patients with multiple sclerosis (pwMS). We analyze the impact of immunotherapies on COVID-19 outcomes in pwMS, providing our interpretation of data. AREAS COVERED Infections, hospitalizations, intensive care unit admissions and death rates in COVID-19 pwMS are comparable to general population. Severity of disability, MS clinical phenotype, age and comorbidities, along with the use of intravenous methylprednisolone and anti-CD20 treatments, are risk factors for COVID-19 severity. Disease modifying treatments (DMTs) can be safely started and continued during the pandemic. Benefit-risk evaluation is mandatory when managing second-line therapies, to balance risk of worse COVID-19 outcomes and MS reactivation. COVID-19 vaccination is safe in MS and its efficacy could be reduced in fingolimod and ocrelizumab-treated patients. EXPERT OPINION Rate of (re)-infection and outcomes with SARS-CoV-2 variants in pwMS and antiviral properties of DMTs need to be further explored. Data on COVID-19 in pregnant MS women, children and elderly pwMS are limited. Evidence on long-term effects of infection is needed. Impact of emerging DMTs on COVID-19 should be investigated. More data and longer follow-up are needed to characterize long-term efficacy and safety profile of vaccinations in pwMS.
Collapse
Affiliation(s)
| | - Maria A Rocca
- Neurology Unit.,Neuroimaging Research Unit, Division of Neuroscience.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neurology Unit.,Neurorehabilitation Unit.,Neuroimaging Research Unit, Division of Neuroscience.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
15
|
Lipsky P, Vallano PT, Smith J, Owens W, Snider D, Bandaru V, Sun Y, Wallingford R, Duncan J, Lewis J, Southall J, Ansari A, Li H. Demonstration of Equivalence of Generic Glatiramer Acetate and Copaxone ®. Front Pharmacol 2022; 12:760726. [PMID: 35002702 PMCID: PMC8740218 DOI: 10.3389/fphar.2021.760726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022] Open
Abstract
The objective of the current work was to demonstrate the equivalence of Mylan’s glatiramer acetate (GA) to that of the reference product Copaxone® (COP) using the four criteria for active pharmaceutical ingredient sameness as established by the US Food and Drug Administration (FDA). The reaction scheme used to produce Mylan’s glatiramer acetate (MGA) was compared with that of COP, determined from publicly available literature. Comparative analyses of MGA and COP were performed for physicochemical properties such as amino acid composition and molecular weight distributions. Spectroscopic fingerprints were obtained using circular dichroism spectroscopy. Structural signatures for polymerization and depolymerization including total diethylamine (DEA) content, relative proportions of DEA-adducted amino acids, and N-and C-terminal amino acid sequences were probed with an array of highly sensitive analytical methods. Biological activity of the products was assessed using validated murine Experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. MGA is produced using the same fundamental reaction scheme as COP and was shown to have equivalent physicochemical properties and composition. Analyses of multiple structural signatures demonstrated equivalence of MGA and COP with regard to polymerization, depolymerization, and propagational shift. Examination of the impact on prevention and treatment of EAE demonstrated equivalence of MGA and COP with respect to both activity and toxicity, and thereby provided confirmatory evidence of sameness. A rigorous, multi-pronged comparison of MGA and COP produced using an equivalent fundamental reaction scheme demonstrated equivalent physicochemical properties, structural signatures for polymerization and depolymerization, and biological activity as evidenced by comparable effects in EAE. These studies demonstrate the equivalence of MGA and COP, establishing active ingredient sameness by the US Food and Drug Administration (FDA) criteria for GA, and provide compelling evidence that the FDA-approved generic MGA can be substituted for COP for the treatment of patients with relapsing-remitting MS.
Collapse
Affiliation(s)
- Peter Lipsky
- RILITE Research Institute, Charlottesville, VA, United States
| | - Patrick T Vallano
- Viatris Viatris Research and Development, Morgantown, WV, United States
| | - Jeffrey Smith
- Viatris Viatris Research and Development, Morgantown, WV, United States
| | - Walter Owens
- Viatris Viatris Research and Development, Morgantown, WV, United States
| | - Daniel Snider
- Viatris Viatris Research and Development, Morgantown, WV, United States
| | - Viswanath Bandaru
- Viatris Viatris Research and Development, Morgantown, WV, United States
| | - Yunfu Sun
- Viatris Viatris Research and Development, Morgantown, WV, United States
| | - Ross Wallingford
- Viatris Viatris Research and Development, Morgantown, WV, United States
| | - Joseph Duncan
- Viatris Viatris Research and Development, Morgantown, WV, United States
| | - Joshua Lewis
- Viatris Viatris Research and Development, Morgantown, WV, United States
| | - Jason Southall
- Viatris Viatris Research and Development, Morgantown, WV, United States
| | - Azeem Ansari
- Viatris Viatris Research and Development, Morgantown, WV, United States
| | - Hong Li
- Viatris Viatris Research and Development, Morgantown, WV, United States
| |
Collapse
|
16
|
Ito K, Ito N, Yadav SK, Suresh S, Lin Y, Dhib-Jalbut S. Effect of switching glatiramer acetate formulation from 20 mg daily to 40 mg three times weekly on immune function in multiple sclerosis. Mult Scler J Exp Transl Clin 2021; 7:20552173211032323. [PMID: 34377526 PMCID: PMC8330487 DOI: 10.1177/20552173211032323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/04/2022] Open
Abstract
Background Many RRMS patients who had been treated for over 20 years with GA 20 mg/ml daily (GA20) switched to 40 mg/ml three times-a-week (GA40) to reduce injection-related adverse events. Although GA40 is as effective as GA20 in reducing annualized relapse rate and MRI activity, it remains unknown how switching to GA40 from GA20 affects the development of pathogenic and regulatory immune cells. Objective To investigate the difference in immunological parameters in response to GA20 and GA40 treatments. Methods We analyzed five pro-inflammatory cytokines (IL-1β, IL-23, IL-12, IL-18, TNF-α), and three anti-inflammatory/regulatory cytokines (IL-10, IL-13, and IL-27) in serum. In addition, we analyzed six cytokines (IFN-γ, IL-17A, GM-CSF, IL-10, IL-6, and IL-27) in cultured PBMC supernatants. The development of Th1, Th17, Foxp3 Tregs, M1-like, and M2-like macrophages were examined by flow cytometry. Samples were analyzed before and 12 months post switching to GA40 or GA20. Results Pro- and anti-inflammatory cytokines were comparable between the GA40 and GA20 groups. Development of Th1, Th17, M1-like macrophages, M2-like macrophages, and Foxp3 Tregs was also comparable between the two groups. Conclusions The immunological parameters measured in RRMS patients treated with GA40 three times weekly are largely comparable to those given daily GA20 treatment.
Collapse
Affiliation(s)
- Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA.,Rutgers-New Jersey Medical School, Newark, NJ, USA.,Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Naoko Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA.,Rutgers-New Jersey Medical School, Newark, NJ, USA.,Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Sudhir K Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA.,Rutgers-New Jersey Medical School, Newark, NJ, USA.,Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Shradha Suresh
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Yong Lin
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, USA.,Rutgers-New Jersey Medical School, Newark, NJ, USA.,Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
17
|
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol 2021; 12:665718. [PMID: 34305896 PMCID: PMC8292956 DOI: 10.3389/fimmu.2021.665718] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The cause and the pathogenic mechanisms leading to multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), are still under scrutiny. During the last decade, awareness has increased that multiple genetic and environmental factors act in concert to modulate MS risk. Likewise, the landscape of cells of the adaptive immune system that are believed to play a role in MS immunopathogenesis has expanded by including not only CD4 T helper cells but also cytotoxic CD8 T cells and B cells. Once the key cellular players are identified, the main challenge is to define precisely how they act and interact to induce neuroinflammation and the neurodegenerative cascade in MS. CD8 T cells have been implicated in MS pathogenesis since the 80's when it was shown that CD8 T cells predominate in MS brain lesions. Interest in the role of CD8 T cells in MS was revived in 2000 and the years thereafter by studies showing that CNS-recruited CD8 T cells are clonally expanded and have a memory effector phenotype indicating in situ antigen-driven reactivation. The association of certain MHC class I alleles with MS genetic risk implicates CD8 T cells in disease pathogenesis. Moreover, experimental studies have highlighted the detrimental effects of CD8 T cell activation on neural cells. While the antigens responsible for T cell recruitment and activation in the CNS remain elusive, the high efficacy of B-cell depleting drugs in MS and a growing number of studies implicate B cells and Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus that is strongly associated with MS, in the activation of pathogenic T cells. This article reviews the results of human studies that have contributed to elucidate the role of CD8 T cells in MS immunopathogenesis, and discusses them in light of current understanding of autoreactivity, B-cell and EBV involvement in MS, and mechanism of action of different MS treatments. Based on the available evidences, an immunopathological model of MS is proposed that entails a persistent EBV infection of CNS-infiltrating B cells as the target of a dysregulated cytotoxic CD8 T cell response causing CNS tissue damage.
Collapse
Affiliation(s)
| | - Francesca Aloisi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
18
|
Takarada-Iemata M, Hori O. [Astrocytes in the pathogenesis of multiple sclerosis]. Nihon Yakurigaku Zasshi 2021; 156:230-234. [PMID: 34193702 DOI: 10.1254/fpj.21030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS), and is designated as an intractable disease in Japan. It is characterized by dissemination of plaque-like sclerosis in space and time, accompanied with various symptoms corresponding to the CNS lesion site. Typically, neurological symptoms chronically progress accompanied with relapses and remissions, and there is still no curative therapy. A number of studies using MS specimen and the animal MS model experimental autoimmune encephalomyelitis (EAE) have shown that MS is an autoimmune disease that targets myelin sheath in the CNS. Autoreactive T cells and B cells play a central role in pathogenesis of MS. MS comprise relapsing-remitting MS and progressive MS, the latter accumulates clinical disability without relapse. Based on the importance of adaptive immunity, various disease-modifying drugs have been developed to treat relapsing-remitting MS. On the other hand, an effective treatment for progressive MS has not yet been established. Increasing evidence have been recognized glial cells as key components of MS immunopathology, in addition to innate immunity and adaptive immunity. However, molecular mechanisms of crosstalk between immune cells, glial cells and neurons remain to be elucidated. Here, we review MS pathology and recent advances in the disease-modifying therapy that efficiently reduce disease activity in relapsing-remitting MS and introduce an update of recent evidence that astrocyte is involved in the MS pathology with including our research analyzed in mouse EAE model.
Collapse
Affiliation(s)
- Mika Takarada-Iemata
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences
| | - Osamu Hori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical Sciences
| |
Collapse
|
19
|
Influence of immunomodulatory drugs on the gut microbiota. Transl Res 2021; 233:144-161. [PMID: 33515779 PMCID: PMC8184576 DOI: 10.1016/j.trsl.2021.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/10/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Immunomodulatory medications are a mainstay of treatment for autoimmune diseases and malignancies. In addition to their direct effects on immune cells, these medications also impact the gut microbiota. Drug-induced shifts in commensal microbes can lead to indirect but important changes in the immune response. We performed a comprehensive literature search focusing on immunotherapy/microbe interactions. Immunotherapies were categorized into 5 subtypes based on their mechanisms of action: cell trafficking inhibitors, immune checkpoint inhibitors, immunomodulators, antiproliferative drugs, and inflammatory cytokine inhibitors. Although no consistent relationships were observed between types of immunotherapy and microbiota, most immunotherapies were associated with shifts in specific colonizing bacterial taxa. The relationships between colonizing microbes and drug efficacy were not well-studied for autoimmune diseases. In contrast, the efficacy of immune checkpoint inhibitors for cancer was tied to the baseline composition of the gut microbiota. There was a paucity of high-quality data; existing data were generated using heterogeneous sampling and analytic techniques, and most studies involved small numbers of participants. Further work is needed to elucidate the extent and clinical significance of immunotherapy effects on the human microbiome.
Collapse
|
20
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|
21
|
Votaw NL, Collier L, Curvino EJ, Wu Y, Fries CN, Ojeda MT, Collier JH. Randomized peptide assemblies for enhancing immune responses to nanomaterials. Biomaterials 2021; 273:120825. [PMID: 33901731 DOI: 10.1016/j.biomaterials.2021.120825] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/16/2022]
Abstract
Biomaterials capable of inducing immune responses with minimal associated inflammation are of interest in applications ranging from tissue repair to vaccines. Here we report the design of self-assembling randomized polypeptide nanomaterials inspired by glatiramoids, an immunomodulatory class of linear random copolymers. We hypothesized that peptide self-assemblies bearing similar randomized polypeptides would similarly raise responses skewed toward Type 2 immunity and TH2 T-cell responses, additionally strengthening responses to co-assembled peptide epitopes in the absence of adjuvant. We developed a method for synthesizing self-assembling peptides terminated with libraries of randomized polypeptides (termed KEYA) with good batch-to-batch reproducibility. These peptides formed regular nanofibers and raised strong antibody responses without adjuvants. KEYA modifications dramatically improved uptake of peptide nanofibers in vitro by antigen presenting cells, and served as strong B-cell and T-cell epitopes in vivo, enhancing immune responses against epitopes relevant to influenza and chronic inflammation while inducing a KEYA-specific Type 2/TH2/IL-4 phenotype. KEYA modifications also increased IL-4 production by T cells, extended the residence time of nanofibers, induced no measurable swelling in footpad injections, and decreased overall T cell expansion compared to unmodified nanofibers, further suggesting a TH2 T-cell response with minimal inflammation. Collectively, this work introduces a biomaterial capable of raising strong Type 2/TH2/IL-4 immune responses, with potential applications ranging from vaccination to tissue repair.
Collapse
Affiliation(s)
- Nicole L Votaw
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Lauren Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Elizabeth J Curvino
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Chelsea N Fries
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Madison T Ojeda
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
22
|
Al-Ani M, Elemam NM, Hundt JE, Maghazachi AA. Drugs for Multiple Sclerosis Activate Natural Killer Cells: Do They Protect Against COVID-19 Infection? Infect Drug Resist 2020; 13:3243-3254. [PMID: 33061471 PMCID: PMC7519863 DOI: 10.2147/idr.s269797] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 infection caused by the newly discovered coronavirus severe acute respiratory distress syndrome virus-19 (SARS-CoV-2) has become a pandemic issue across the globe. There are currently many investigations taking place to look for specific, safe and potent anti-viral agents. Upon transmission and entry into the human body, SARS-CoV-2 triggers multiple immune players to be involved in the fight against the viral infection. Amongst these immune cells are NK cells that possess robust antiviral activity, and which do not require prior sensitization. However, NK cell count and activity were found to be impaired in COVID-19 patients and hence, could become a potential therapeutic target for COVID-19. Several drugs, including glatiramer acetate (GA), vitamin D3, dimethyl fumarate (DMF), monomethyl fumarate (MMF), natalizumab, ocrelizumab, and IFN-β, among others have been previously described to increase the biological activities of NK cells especially their cytolytic potential as reported by upregulation of CD107a, and the release of perforin and granzymes. In this review, we propose that such drugs could potentially restore NK cell activity allowing individuals to be more protective against COVID-19 infection and its complications.
Collapse
Affiliation(s)
- Mena Al-Ani
- Department of Clinical Sciences, College of Medicine and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
23
|
Moser T, Akgün K, Proschmann U, Sellner J, Ziemssen T. The role of TH17 cells in multiple sclerosis: Therapeutic implications. Autoimmun Rev 2020; 19:102647. [PMID: 32801039 DOI: 10.1016/j.autrev.2020.102647] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) where immunopathology is thought to be mediated by myelin-reactive CD4+ T helper (TH) cells. The TH cells most commonly implicated in the pathogenesis of the disease are of TH1 and TH17 lineage, which are defined by the production of interferon-γ and interleukin-17, respectively. Moreover, there is emerging evidence for the involvement of TH17.1 cells, which share the hallmarks of TH1 and TH17 subsets. In this review, we summarise current knowledge about the potential role of TH17 subsets in the initiation and progression of the disease and put a focus on their response to approved immunomodulatory MS drugs. In this regard, TH17 cells are abundant in peripheral blood, cerebrospinal fluid and brain lesions of MS patients, and their counts and inflammatory mediators are further increased during relapses. Fingolimod and alemtuzumab induce a paramount decrease in central memory T cells, which harbour the majority of peripheral TH17 cells, while the efficacy of natalizumab, dimethyl fumarate and importantly hematopoietic stem cell therapy correlates with TH17.1 cell inhibition. Interestingly, also CD20 antibodies target highly inflammatory TH cells and hamper TH17 differentiation by IL-6 reductions. Moreover, recovery rates of TH cells best correlate with long-term efficacy after therapeutical immunodepletion. We conclude that central memory TH17.1 cells play a pivotal role in MS pathogenesis and they represent a major target of MS therapeutics.
Collapse
Affiliation(s)
- Tobias Moser
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria
| | - Katja Akgün
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Undine Proschmann
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Johann Sellner
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria; Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Liechtensteinstrasse 67, 3120 Mistelbach, Austria; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 München, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
24
|
Halasan C, Isache C, Sands M. A case of Disseminated Herpes Zoster in a patient with Multiple Sclerosis on Glatiramer acetate. IDCases 2020; 21:e00873. [PMID: 32637319 PMCID: PMC7330603 DOI: 10.1016/j.idcr.2020.e00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 11/23/2022] Open
Abstract
We present a case of Disseminated Herpes Zoster in a 73 year old man who had been taking Glatiramer acetate for 8 years as treatment for Multiple Sclerosis. He presented to the emergency room with complaints of a painful skin lesions on his buttocks and was found to have a generalized papulo-pustular rash. He was treated with IV Acyclovir and concurrent Piperacillin-Tazobactam plus Vancomycin for disseminated herpes zoster with a necrotic bacterial superinfection on his buttocks. Multiple Sclerosis is a chronic immune mediated disease of the CNS and is treated with immunomodulators and immunosuppressive medications. With more than 2 decades of Glatiramer acetate use, it is regarded as the safest immunomodulator without any associated reported infections. This is the first case of Disseminated Herpes Zoster associated with Glatiramer.
Collapse
Affiliation(s)
- C. Halasan
- Department of Infectious Diseases, University of Florida-Jacksonville, United States
| | - C. Isache
- Department of Infectious Diseases, University of Florida-Jacksonville, United States
| | - M. Sands
- Department of Infectious Diseases, University of Florida-Jacksonville, United States
| |
Collapse
|
25
|
Berger JR, Brandstadter R, Bar-Or A. COVID-19 and MS disease-modifying therapies. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/4/e761. [PMID: 32414755 PMCID: PMC7238896 DOI: 10.1212/nxi.0000000000000761] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To address concerns regarding the effect of MS disease-modifying therapies (DMTs) on the expression of coronavirus 2019 (COVID-19). METHODS Review of the current state of knowledge regarding the viral etiology of COVID-19, mechanisms of injury by SARS-CoV-2 infection, and the effect of individual DMTs on the risk of infection and COVID-19 disease expression. RESULTS Although data are limited, MS DMTs do not obviously increase the risk of acquiring symptomatic SARS-CoV-2 infection. The severe morbidity and mortality of SARS-CoV-2 appear to be largely the consequence of an overly robust immune response rather than the consequence of unchecked viral replication. The effects of specific MS DMTs on the immune response that may increase the risk of impaired viral clearance and their potential counterbalancing beneficial effects on the development of COVID-19-associated acute respiratory distress syndrome are reviewed. CONCLUSION Although there is currently insufficient real-world experience to definitively answer the question of the effect of a specific MS DMT on COVID-19, registries presently in nascent form should provide these answers. This review provides an approach to addressing these concerns while the data are being accumulated. Early insights suggest that the risk of infection and associated morbidity of COVID-19 in this population is little different than that of the population at large.
Collapse
Affiliation(s)
- Joseph R Berger
- From the Division of Multiple Sclerosis, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Rachel Brandstadter
- From the Division of Multiple Sclerosis, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Amit Bar-Or
- From the Division of Multiple Sclerosis, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
26
|
Gharibi T, Babaloo Z, Hosseini A, Marofi F, Ebrahimi-Kalan A, Jahandideh S, Baradaran B. The role of B cells in the immunopathogenesis of multiple sclerosis. Immunology 2020; 160:325-335. [PMID: 32249925 DOI: 10.1111/imm.13198] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/01/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
There is ongoing debate on how B cells contribute to the pathogenesis of multiple sclerosis (MS). The success of B-cell targeting therapies in MS highlighted the role of B cells, particularly the antibody-independent functions of these cells such as antigen presentation to T cells and modulation of the function of T cells and myeloid cells by secreting pathogenic and/or protective cytokines in the central nervous system. Here, we discuss the role of different antibody-dependent and antibody-independent functions of B cells in MS disease activity and progression proposing new therapeutic strategies for the optimization of B-cell targeting treatments.
Collapse
Affiliation(s)
- Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Jahandideh
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Häusler D, Hajiyeva Z, Traub JW, Zamvil SS, Lalive PH, Brück W, Weber MS. Glatiramer acetate immune modulates B-cell antigen presentation in treatment of MS. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:e698. [PMID: 32184341 PMCID: PMC7136047 DOI: 10.1212/nxi.0000000000000698] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE We examined the effect of glatiramer acetate (GA) on B-cell maturation, differentiation, and antigen presentation in MS and experimental autoimmune encephalomyelitis (EAE). METHODS A cross-sectional study of blood samples from 20 GA-treated and 18 untreated patients with MS was performed by flow cytometry; 6 GA-treated patients with MS were analyzed longitudinally. GA-mediated effects on B-cell antigen-presenting function were investigated in EAE, or, alternatively, B cells were treated with GA in vitro using vehicle as a control. RESULTS In MS, GA diminished transitional B-cell and plasmablast frequency, downregulated CD69, CD25, and CD95 expression, and decreased TNF-α production, whereas IL-10 secretion and MHC Class II expression were increased. In EAE, we observed an equivalent dampening of proinflammatory B-cell properties and an enhanced expression of MHC Class II. When used as antigen-presenting cells for activation of naive T cells, GA-treated B cells promoted development of regulatory T cells, whereas proinflammatory T-cell differentiation was diminished. CONCLUSIONS GA immune modulates B-cell function in EAE and MS and efficiently interferes with pathogenic B cell-T cell interaction.
Collapse
Affiliation(s)
- Darius Häusler
- From the Institute of Neuropathology (D.H., J.W.T., W.B., M.S.W.), University Medical Center; Department of Neurology (Z.H., J.W.T., M.S.W.), University Medical Center, Göttingen, Germany; Department of Neurology (S.S.Z.), University of California, San Francisco; Division of Neurology (P.H.L.), Department of Neurosciences, Hospital and University of Geneva; and Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, Geneva, Switzerland
| | - Zivar Hajiyeva
- From the Institute of Neuropathology (D.H., J.W.T., W.B., M.S.W.), University Medical Center; Department of Neurology (Z.H., J.W.T., M.S.W.), University Medical Center, Göttingen, Germany; Department of Neurology (S.S.Z.), University of California, San Francisco; Division of Neurology (P.H.L.), Department of Neurosciences, Hospital and University of Geneva; and Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, Geneva, Switzerland
| | - Jan W Traub
- From the Institute of Neuropathology (D.H., J.W.T., W.B., M.S.W.), University Medical Center; Department of Neurology (Z.H., J.W.T., M.S.W.), University Medical Center, Göttingen, Germany; Department of Neurology (S.S.Z.), University of California, San Francisco; Division of Neurology (P.H.L.), Department of Neurosciences, Hospital and University of Geneva; and Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, Geneva, Switzerland
| | - Scott S Zamvil
- From the Institute of Neuropathology (D.H., J.W.T., W.B., M.S.W.), University Medical Center; Department of Neurology (Z.H., J.W.T., M.S.W.), University Medical Center, Göttingen, Germany; Department of Neurology (S.S.Z.), University of California, San Francisco; Division of Neurology (P.H.L.), Department of Neurosciences, Hospital and University of Geneva; and Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, Geneva, Switzerland
| | - Patrice H Lalive
- From the Institute of Neuropathology (D.H., J.W.T., W.B., M.S.W.), University Medical Center; Department of Neurology (Z.H., J.W.T., M.S.W.), University Medical Center, Göttingen, Germany; Department of Neurology (S.S.Z.), University of California, San Francisco; Division of Neurology (P.H.L.), Department of Neurosciences, Hospital and University of Geneva; and Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, Geneva, Switzerland
| | - Wolfgang Brück
- From the Institute of Neuropathology (D.H., J.W.T., W.B., M.S.W.), University Medical Center; Department of Neurology (Z.H., J.W.T., M.S.W.), University Medical Center, Göttingen, Germany; Department of Neurology (S.S.Z.), University of California, San Francisco; Division of Neurology (P.H.L.), Department of Neurosciences, Hospital and University of Geneva; and Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, Geneva, Switzerland
| | - Martin S Weber
- From the Institute of Neuropathology (D.H., J.W.T., W.B., M.S.W.), University Medical Center; Department of Neurology (Z.H., J.W.T., M.S.W.), University Medical Center, Göttingen, Germany; Department of Neurology (S.S.Z.), University of California, San Francisco; Division of Neurology (P.H.L.), Department of Neurosciences, Hospital and University of Geneva; and Department of Pathology and Immunology (P.H.L.), Faculty of Medicine, Geneva, Switzerland.
| |
Collapse
|
28
|
Du J, Lv W, Yang S, Liu J, Zhen J, Leng J. Glatiramer acetate protects against oxygen-glucose deprivation/reperfusion-induced injury by inhibiting Egr-1 in H9c2 cells. Mol Immunol 2020; 120:61-66. [PMID: 32078859 DOI: 10.1016/j.molimm.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 01/21/2023]
Abstract
Myocardial infarction (MI) or heart attack is a deadly event with high prevalence. In the present study, we investigated the effects of the polypeptide copolymer glatiramer acetate (GA) in H9c2 rat cardiomyocytes exposed to oxygen-glucose deprivation/reperfusion injury. Immediately following MI, an acute inflammatory response is triggered that causes activation of various proinflammatory cytokines, infiltration of immune cells, and neovascularization. This response is largely mediated by some genes such as TNF-α, IL-6, ICAM-1, and VEGF. Additionally, the rapid influx of oxidants, such as reactive oxygen species (ROS), leads to a harmful state of oxidative stress. Here, we found that GA could reduce OGD/R-induced inflammation and oxidative stress by inhibiting the expression of TNF-α, IL-6, ICAM-1, and VEGF, and suppressing the production of ROS via reduced NADPH oxidase 1 (NOX1) expression. To elucidate the pathways involved in these promising results, we took a close look at the impact of the endothelial growth response-1 (Egr-1), a transcriptional factor recognized as a mediator of MI-related inflammation and cellular injury. Using siRNA for Egr-1, we found that GA could reduce the expression of ICAM-1 and VEGF by inhibiting Egr-1 expression. Together, our findings indicate a novel therapeutic potential of GA in the treatment of MI.
Collapse
Affiliation(s)
- Jian Du
- Cadre' Ward, the First Hospital of Jilin University, China
| | - Wei Lv
- Cadre' Ward, the First Hospital of Jilin University, China
| | - Sitong Yang
- Cadre' Ward, the First Hospital of Jilin University, China
| | - Jia Liu
- Cadre' Ward, the First Hospital of Jilin University, China
| | - Juan Zhen
- Cadre' Ward, the First Hospital of Jilin University, China
| | - Jiyan Leng
- Cadre' Ward, the First Hospital of Jilin University, China.
| |
Collapse
|
29
|
Kopec BM, Kiptoo P, Zhao L, Rosa-Molinar E, Siahaan TJ. Noninvasive Brain Delivery and Efficacy of BDNF to Stimulate Neuroregeneration and Suppression of Disease Relapse in EAE Mice. Mol Pharm 2019; 17:404-416. [PMID: 31846344 PMCID: PMC10088282 DOI: 10.1021/acs.molpharmaceut.9b00644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The number of FDA-approved protein drugs (biologics), such as antibodies, antibody-drug conjugates, hormones, and enzymes, continues to grow at a rapid rate; most of these drugs are used to treat diseases of the peripheral body. Unfortunately, most of these biologics cannot be used to treat brain diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), and brain tumors in a noninvasive manner due to their inability to permeate the blood-brain barrier (BBB). Therefore, there is a need to develop an effective method to deliver protein drugs into the brain. Here, we report a proof of concept to deliver a recombinant brain-derived neurotrophic factor (BDNF) to the brains of healthy and experimental autoimmune encephalomyelitis (EAE) mice via intravenous (iv) injections by co-administering BDNF with a BBB modulator (BBBM) peptide ADTC5. Western blot evaluations indicated that ADTC5 enhanced the brain delivery of BDNF in healthy SJL/elite mice compared to BDNF alone and triggered the phosphorylation of TrkB receptors in the brain. The EAE mice treated with BDNF + ADTC5 suppressed EAE relapse compared to those treated with BDNF alone, ADTC5 alone, or vehicle. We further demonstrated that brain delivery of BDNF induced neuroregeneration via visible activation of oligodendrocytes, remyelination, and ARC and EGR1 mRNA transcript upregulation. In summary, we have demonstrated that ADTC5 peptide modulates the BBB to permit noninvasive delivery of BDNF to exert its neuroregeneration activity in the brains of EAE mice.
Collapse
|
30
|
Tsareva EY, Favorova OO, Boyko AN, Kulakova OG. Genetic Markers for Personalized Therapy of Polygenic Diseases: Pharmacogenetics of Multiple Sclerosis. Mol Biol 2019. [DOI: 10.1134/s0026893319040149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Patil SP, Goswami A, Kalia K, Kate AS. Plant-Derived Bioactive Peptides: A Treatment to Cure Diabetes. Int J Pept Res Ther 2019; 26:955-968. [PMID: 32435169 PMCID: PMC7223764 DOI: 10.1007/s10989-019-09899-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
ABSTRACT Recent advances in analytical techniques have opened new opportunities for plant-based drug discovery in the field of peptide and proteins. Enzymatic hydrolysis of plant parent proteins forms bioactive peptides which are explored in the treatment of various diseases. In this review, we will discuss the identified plant-based bioactive proteins and peptides and the in vitro, in vivo results for the treatment of diabetes. Extraction, isolation, characterization and commercial utilization of plant proteins is a challenge for the pharmaceutical industry as plants contain several interfering secondary metabolites. The market of peptide drugs for the treatment of diabetes is growing at a fast rate. Plant-based bioactive peptides might open up new opportunities to discover economic lead for the management of various diseases. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Shital P. Patil
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat India
| | - Ashutosh Goswami
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat India
| | - Abhijeet S. Kate
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat India
| |
Collapse
|
32
|
Nally FK, De Santi C, McCoy CE. Nanomodulation of Macrophages in Multiple Sclerosis. Cells 2019; 8:cells8060543. [PMID: 31195710 PMCID: PMC6628349 DOI: 10.3390/cells8060543] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022] Open
Abstract
Multiple Sclerosis (MS) is a chronic demyelinating autoimmune disease primarily affecting young adults. Despite an unclear causal factor, symptoms and pathology arise from the infiltration of peripheral immune cells across the blood brain barrier. Accounting for the largest fraction of this infiltrate, macrophages are functionally heterogeneous innate immune cells capable of adopting either a pro or an anti-inflammatory phenotype, a phenomenon dependent upon cytokine milieu in the CNS. This functional plasticity is of key relevance in MS, where the pro-inflammatory state dominates the early stage, instructing demyelination and axonal loss while the later anti-inflammatory state holds a key role in promoting tissue repair and regeneration in later remission. This review highlights a potential therapeutic benefit of modulating macrophage polarisation to harness the anti-inflammatory and reparative state in MS. Here, we outline the role of macrophages in MS and look at the role of current FDA approved therapeutics in macrophage polarisation. Moreover, we explore the potential of particulate carriers as a novel strategy to manipulate polarisation states in macrophages, whilst examining how optimising macrophage uptake via nanoparticle size and functionalisation could offer a novel therapeutic approach for MS.
Collapse
Affiliation(s)
- Frances K Nally
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, 2 D02 YN77 Dublin, Ireland.
| | - Chiara De Santi
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, 2 D02 YN77 Dublin, Ireland.
| | - Claire E McCoy
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, 2 D02 YN77 Dublin, Ireland.
| |
Collapse
|
33
|
Boziki M, Lagoudaki R, Melo P, Kanidou F, Bakirtzis C, Nikolaidis I, Grigoriadou E, Afrantou T, Tatsi T, Matsi S, Grigoriadis N. Induction of apoptosis in CD4(+) T-cells is linked with optimal treatment response in patients with relapsing-remitting multiple sclerosis treated with Glatiramer acetate. J Neurol Sci 2019; 401:43-50. [DOI: 10.1016/j.jns.2019.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 11/29/2022]
|
34
|
Li R, Bar-Or A. The Multiple Roles of B Cells in Multiple Sclerosis and Their Implications in Multiple Sclerosis Therapies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a029108. [PMID: 29661809 DOI: 10.1101/cshperspect.a029108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Increasing evidence has suggested that both antibody-dependent and antibody-independent functions of B cells are involved in multiple sclerosis (MS). The contrasting results of distinct B-cell targeting therapies in MS patients underscores the importance of elucidating these multiple B-cell functions. In this review, we discuss the generation of autoreactive B cells, migration of B cells into the central nervous system (CNS), and how different functions of B cells may contribute to MS disease activity and potentially mitigation in both the periphery and CNS compartments. In addition, we propose several future therapeutic strategies that may better target/shape B-cell responses for long-term treatment of MS.
Collapse
Affiliation(s)
- Rui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Amit Bar-Or
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
35
|
Shahi SK, Freedman SN, Murra AC, Zarei K, Sompallae R, Gibson-Corley KN, Karandikar NJ, Murray JA, Mangalam AK. Prevotella histicola, A Human Gut Commensal, Is as Potent as COPAXONE® in an Animal Model of Multiple Sclerosis. Front Immunol 2019; 10:462. [PMID: 30984162 PMCID: PMC6448018 DOI: 10.3389/fimmu.2019.00462] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system. We and others have shown that there is enrichment or depletion of some gut bacteria in MS patients compared to healthy controls (HC), suggesting an important role of the gut bacteria in disease pathogenesis. Thus, specific gut bacteria that are lower in abundance in MS patients could be used as a potential treatment option for this disease. In particular, we and others have shown that MS patients have a lower abundance of Prevotella compared to HC, whereas the abundance of Prevotella is increased in patients that receive disease-modifying therapies such as Copaxone® (Glatiramer acetate-GA). This inverse correlation between the severity of MS disease and the abundance of Prevotella suggests its potential for use as a therapeutic option to treat MS. Notably we have previously identified a specific strain, Prevotella histicola (P. histicola), that suppresses disease in the animal model of MS, experimental autoimmune encephalomyelitis (EAE) compared with sham treatment. In the present study we analyzed whether the disease suppressing effects of P. histicola synergize with those of the disease-modifying drug Copaxone® to more effectively suppress disease compared to either treatment alone. Treatment with P. histicola was as effective in suppressing disease as treatment with Copaxone®, whereas the combination of P. histicola plus Copaxone® was not more effective than either individual treatment. P. histicola-treated mice had an increased frequency and number of CD4+FoxP3+ regulatory T cells in periphery as well as gut and a decreased frequency of pro-inflammatory IFN-γ and IL17-producing CD4 T cells in the CNS, suggesting P. histicola suppresses disease by boosting anti-inflammatory immune responses and inhibiting pro-inflammatory immune responses. In conclusion, our study indicates that the human gut commensal P. histicola can suppress disease as efficiently as Copaxone® and may provide an alternative treatment option for MS patients.
Collapse
Affiliation(s)
- Shailesh K Shahi
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Samantha N Freedman
- Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Alexandra C Murra
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Kasra Zarei
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
| | | | | | - Nitin J Karandikar
- Department of Pathology, University of Iowa, Iowa City, IA, United States.,Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States.,Graduate Program in Molecular Cell Biology, University of Iowa, Iowa City, IA, United States
| | - Joseph A Murray
- Department of Immunology, Mayo Clinic, Rochester, MN, United States.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA, United States.,Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States.,Graduate Program in Molecular Cell Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
36
|
|
37
|
Prod'homme T, Zamvil SS. The Evolving Mechanisms of Action of Glatiramer Acetate. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a029249. [PMID: 29440323 DOI: 10.1101/cshperspect.a029249] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glatiramer acetate (GA) is a synthetic amino acid copolymer that is approved for treatment of relapsing remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS). GA reduces multiple sclerosis (MS) disease activity and has shown comparable efficacy with high-dose interferon-β. The mechanism of action (MOA) of GA has long been an enigma. Originally, it was recognized that GA treatment promoted expansion of GA-reactive T-helper 2 and regulatory T cells, and induced the release of neurotrophic factors. However, GA treatment influences both innate and adaptive immune compartments, and it is now recognized that antigen-presenting cells (APCs) are the initial cellular targets for GA. The anti-inflammatory (M2) APCs induced following treatment with GA are responsible for the induction of anti-inflammatory T cells that contribute to its therapeutic benefit. Here, we review studies that have shaped our current understanding of the MOA of GA.
Collapse
Affiliation(s)
| | - Scott S Zamvil
- Department of Neurology and Program in Immunology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
38
|
Napier J, Rose L, Adeoye O, Hooker E, Walsh KB. Modulating acute neuroinflammation in intracerebral hemorrhage: the potential promise of currently approved medications for multiple sclerosis. Immunopharmacol Immunotoxicol 2019; 41:7-15. [PMID: 30702002 DOI: 10.1080/08923973.2019.1566361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The secondary inflammatory injury following intracerebral hemorrhage (ICH) results in increased morbidity and mortality. White blood cells have been implicated as critical mediators of this inflammatory injury. Currently, no medications have been clinically proven to ameliorate or beneficially modulate inflammation, or to improve outcomes by any mechanism, following ICH. However, other neuroinflammatory conditions, such as multiple sclerosis, have approved pharmacologic therapies that modulate the inflammatory response and minimize the damage caused by inflammatory cells. Thus, there is substantial interest in existing therapies for neuroinflammation and their potential applicability to other acute neurological diseases such as ICH. In this review, we examined the mechanism of action of twelve currently approved medications for multiple sclerosis: alemtuzumab, daclizumab, dimethyl fumarate, fingolimod, glatiramer acetate, interferon beta-1a, interferon beta-1b, mitoxantrone, natalizumab, ocrelizumab, rituximab, teriflunomide. We analyzed the existing literature pertaining to the effects of these medications on various leukocytes and also with emphasis on mechanisms of action during the acute period following initiation of therapy. As a result, we provide a valuable summary of the current body of knowledge regarding these therapies and evidence that supports or refutes their likely promise for treating neuroinflammation following ICH.
Collapse
Affiliation(s)
- Jarred Napier
- a College of Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Lucas Rose
- a College of Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Opeolu Adeoye
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA.,c Gardner Neuroscience Institute , University of Cincinnati , Cincinnati , OH , USA
| | - Edmond Hooker
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Kyle B Walsh
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA.,c Gardner Neuroscience Institute , University of Cincinnati , Cincinnati , OH , USA
| |
Collapse
|
39
|
Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? AUTOIMMUNITY HIGHLIGHTS 2018; 9:9. [PMID: 30415321 PMCID: PMC6230324 DOI: 10.1007/s13317-018-0109-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Current clinical experience with immunomodulatory agents and monoclonal antibodies in principle has established the benefit of depleting lymphocytic populations in relapsing–remitting multiple sclerosis (RRMS). B and T cells may exert multiple pro-inflammatory actions, but also possess regulatory functions making their role in RRMS pathogenesis much more complex. There is no clear correlation of Tregs and Bregs with clinical features of the disease. Herein, we discuss the emerging data on regulatory T and B cell subset distributions in MS and their roles in the pathophysiology of MS and its murine model, experimental autoimmune encephalomyelitis (EAE). In addition, we summarize the immunomodulatory properties of certain MS therapeutic agents through their effect on such regulatory cell subsets and their relevance to clinical outcomes.
Collapse
|
40
|
Negron A, Robinson RR, Stüve O, Forsthuber TG. The role of B cells in multiple sclerosis: Current and future therapies. Cell Immunol 2018; 339:10-23. [PMID: 31130183 DOI: 10.1016/j.cellimm.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
While it was long held that T cells were the primary mediators of multiple sclerosis (MS) pathogenesis, the beneficial effects observed in response to treatment with Rituximab (RTX), a monoclonal antibody (mAb) targeting CD20, shed light on a key contributor to MS that had been previously underappreciated: B cells. This has been reaffirmed by results from clinical trials testing the efficacy of subsequently developed B cell-depleting mAbs targeting CD20 as well as studies revisiting the effects of previous disease-modifying therapies (DMTs) on B cell subsets thought to modulate disease severity. In this review, we summarize current knowledge regarding the complex roles of B cells in MS pathogenesis and current and potential future B cell-directed therapies.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Rachel R Robinson
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, USA
| | | |
Collapse
|
41
|
Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol 2018; 19:696-707. [PMID: 29925992 DOI: 10.1038/s41590-018-0135-x] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
There is growing recognition that B cell contributions to normal immune responses extend well beyond their potential to become antibody-producing cells, including roles at the innate-adaptive interface and their potential to modulate the responses of other immune cells such as T cells and myeloid cells. These B cell functions can have both pathogenic and protective effects in the context of central nervous system (CNS) inflammation. Here, we review recent advances in the field of multiple sclerosis (MS), which has traditionally been viewed as primarily a T cell-mediated disease, and we consider antibody-dependent and, particularly, emerging antibody-independent functions of B cells that may be relevant in both the peripheral and CNS disease compartments.
Collapse
Affiliation(s)
- Rui Li
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristina R Patterson
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics (CNET) and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
42
|
First-line therapy in relapsing remitting multiple sclerosis. Rev Neurol (Paris) 2018; 174:419-428. [DOI: 10.1016/j.neurol.2018.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 11/21/2022]
|
43
|
Mosaad YM, El-Toraby EE, Tawhid ZM, Abdelsalam AI, Enin AF, Hasson AM, Shafeek GM. Association between CD226 polymorphism and soluble levels in rheumatoid arthritis: Relationship with clinical activity. Immunol Invest 2018; 47:264-278. [PMID: 29319370 DOI: 10.1080/08820139.2018.1423570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To study the relation between CD226 rs763361 gene polymorphism and CD226 serum level and to evaluate their role in susceptibility and disease activity of RA in a cohort of Egyptian individuals. METHODS The serum level of CD226 was measured using a suitable ELISA kit and the CD226 rs763361 gene polymorphism was typed by PCR-RFLP for 112 RA patients and 100 healthy controls. RESULTS Significant association with RA was found with CD226 T allele (OR (95%CI) = 1.6 (1.04-2.4), P = 0.032), and higher CD226 serum level (P = 0.001). Higher CD226 levels were associated with higher ESR values (P = 0.035), positive CRP (0.048), increased number of tender joints (P = 0.045), and higher DAS score (P = 0.035). Serum CD226 is an independent risk factor for the prediction of RA (P = 0.001). No correlations were found between the serum level of CD226 and different CD226 genotypes and also between them and RA activity grades. CONCLUSION The CD226 T allele may be susceptibility risk factors for the development of RA and the higher serum level of CD226 may be involved in the pathogenesis of RA in Egyptian patients. The serum level of CD226 and not CD226 genotypes could be considered as an independent risk factor for the prediction of RA within healthy individuals and also for RA disease activity.
Collapse
Affiliation(s)
- Youssef M Mosaad
- a Clinical Pathology Department, Mansoura Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Ehab Es El-Toraby
- b Internal Medicine (Rheumatology & Immunology), Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Ziyad Me Tawhid
- a Clinical Pathology Department, Mansoura Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Adel I Abdelsalam
- b Internal Medicine (Rheumatology & Immunology), Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Asmaa F Enin
- b Internal Medicine (Rheumatology & Immunology), Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Amany Me Hasson
- b Internal Medicine (Rheumatology & Immunology), Faculty of Medicine , Mansoura University , Mansoura, Egypt
| | - Ghada M Shafeek
- c Clinical Pathology Department , Mansoura General Hospital, Ministry of health , Egypt
| |
Collapse
|
44
|
Deciphering the Role of B Cells in Multiple Sclerosis-Towards Specific Targeting of Pathogenic Function. Int J Mol Sci 2017; 18:ijms18102048. [PMID: 28946620 PMCID: PMC5666730 DOI: 10.3390/ijms18102048] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022] Open
Abstract
B cells, plasma cells and antibodies may play a key role in the pathogenesis of multiple sclerosis (MS). This notion is supported by various immunological changes observed in MS patients, such as activation and pro-inflammatory differentiation of peripheral blood B cells, the persistence of clonally expanded plasma cells producing immunoglobulins in the cerebrospinal fluid, as well as the composition of inflammatory central nervous system lesions frequently containing co-localizing antibody depositions and activated complement. In recent years, the perception of a respective pathophysiological B cell involvement was vividly promoted by the empirical success of anti-CD20-mediated B cell depletion in clinical trials; based on these findings, the first monoclonal anti-CD20 antibody—ocrelizumab—is currently in the process of being approved for treatment of MS. In this review, we summarize the current knowledge on the role of B cells, plasma cells and antibodies in MS and elucidate how approved and future treatments, first and foremost anti-CD20 antibodies, therapeutically modify these B cell components. We will furthermore describe regulatory functions of B cells in MS and discuss how the evolving knowledge of these therapeutically desirable B cell properties can be harnessed to improve future safety and efficacy of B cell-directed therapy in MS.
Collapse
|
45
|
Grebenciucova E, Pruitt A. Infections in Patients Receiving Multiple Sclerosis Disease-Modifying Therapies. Curr Neurol Neurosci Rep 2017; 17:88. [PMID: 28940162 DOI: 10.1007/s11910-017-0800-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW This paper will systemically review the risk of infections associated with current disease-modifying treatments and will discuss pre-treatment testing recommendations, infection monitoring strategies, and patient education. RECENT FINDINGS Aside from glatiramer acetate and interferon-beta therapies, all other multiple sclerosis treatments to various degrees impair immune surveillance and may predispose patients to the development of both community-acquired and opportunistic infections. Some of these infections are rarely seen in neurologic practice, and neurologists should be aware of how to monitor for these infections and how to educate patients about medication-specific risks. Of particular interest in this discussion is the risk of PML in association with the recently approved B cell depleting therapy, ocrelizumab, particularly when switching from natalizumab. The risk of infection in association with MS treatments has become one of the most important factors in the choice of therapy. Balance of the overall risk versus benefit should be continuously re-evaluated during treatment.
Collapse
Affiliation(s)
- Elena Grebenciucova
- Multiple Sclerosis Division, Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Amy Pruitt
- Multiple Sclerosis Division, the Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, 3400 Convention Avenue, Philadelphia, PA, 19104, USA
| |
Collapse
|
46
|
Marciani DJ. Effects of immunomodulators on the response induced by vaccines against autoimmune diseases. Autoimmunity 2017; 50:393-402. [PMID: 28906131 DOI: 10.1080/08916934.2017.1373766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A promising treatment for T-cell-mediated autoimmune diseases is the induction of immune tolerance by modulating the immune response against self-antigens, an objective that may be achieved by vaccination. There are two main types of vaccines currently under development. The tolerogenic vaccines, composed of proteins formed by a cytokine fused to a self-antigen, which usually induce tolerance by eliminating the T-cells that are immune reactive against the self-antigen. The immunogenic vaccines, comprised of a self-antigen plus a sole Th2 adjuvant either free or conjugated, that alleviate autoimmunity by switching the immune response against the self-antigen, from a damaging pro-inflammatory Th1/Th17 to an anti-inflammatory Th2 immunity. Another type of vaccines is the DNA vaccines, where cells transiently express the self-antigen encoded by DNA, which induces a Th2 immunity. Actually, DNA vaccines can benefit from the presence of an adjuvant that elicits a systemic sole Th2 immunity to enhance the initially weak immune response characteristic of these vaccines. While in the tolerogenic vaccines, cytokines are the endogenous immunomodulators, in the immunogenic vaccines, the adjuvants are exogenous agents that elicit Th2 immunity with a production of anti-inflammatory cytokines and antibodies against the self-antigen. Because the commonly used Th2 adjuvant alum, fails to induce an effective immunity in the elderly population, it is unlikely that it would be widely used. Another Th2 adjuvant, the oil/water emulsions mixed with the antigen, while effective in vaccines against infectious agents, due to potential aldehydes in their formulation may be not suitable for autoimmune vaccines. A unique compound is glatiramer, which seems to be both a random polypeptide antigen and an immune modulator that biases the response to Th2 immunity. Its mechanism of action seems to implicate binding to MHC-II, which alters the outcome of T-cell signaling, leading to anergy. Glatiramer, while effective in the treatment of multiple sclerosis has not shown efficacy in other autoimmune diseases. An important new group of promising sole Th2 adjuvants are the fucosylated glycans, which by binding to DC-SIGN bias dendritic cells to Th2 immunity while inhibiting Th1/Th7 immunities. These glycans are similar to those produced by parasitic helminths to prevent inflammatory responses by mammalian hosts. A novel group of sole Th2 adjuvants are some plant-derived fucosylated triterpene glycosides, which share the immune modulatory properties from the fucosylated glycans. These glycosides have also an aldehyde group that delivers an alternative co-stimulatory signal to T-cells, averting the anergy associated with aging due to the loss of the CD28 receptor on T-cells. Hence, the development of vaccines to treat and/or prevent autoimmune conditions and some proteopathies, will significantly benefit from the availability of new sole Th2 adjuvants that while inducing an anti-inflammatory immunity, they do not abrogate pro-inflammatory Th1/Th17 immunities.
Collapse
|
47
|
von Euler Chelpin M, Vorup-Jensen T. Targets and Mechanisms in Prevention of Parkinson's Disease through Immunomodulatory Treatments. Scand J Immunol 2017; 85:321-330. [PMID: 28231624 DOI: 10.1111/sji.12542] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world; however, there is no cure for it. Current treatments only relieve some of the symptoms, without ceasing the disease, and lose efficacy with prolonged treatment. Considerable evidence shows that persistent inflammatory responses, involving T cell infiltration and glial cell activation, are common characteristics of human patients and play a crucial role in the degeneration of dopaminergic neurons. Therefore, it is important to develop therapeutic strategies that can impede or halt the disease through the modulation of the peripheral immune system by aiming at controlling the existing neuroinflammation. Most of the immunomodulatory therapies designed for the treatment of Parkinson's disease are based on vaccines using AS or antibodies against it; yet, it is of significant interest to explore other formulations that could be used as therapeutic agents. Several vaccination procedures have shown that inducing regulatory T cells in the periphery is protective in PD animal models. In this regard, the formulation glatiramer acetate (Copaxone® ), extensively used for the treatment of multiple sclerosis, could be a suitable candidate due to its capability to increase the number and suppressor capacity of regulatory T cells. In this review, we will present some of the recent immunomodulatory therapies for PD including vaccinations with AS or glatiramoids, or both, as treatments of PD pathology.
Collapse
Affiliation(s)
| | - T Vorup-Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
48
|
Kelly SH, Shores LS, Votaw NL, Collier JH. Biomaterial strategies for generating therapeutic immune responses. Adv Drug Deliv Rev 2017; 114:3-18. [PMID: 28455189 PMCID: PMC5606982 DOI: 10.1016/j.addr.2017.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 01/04/2023]
Abstract
Biomaterials employed to raise therapeutic immune responses have become a complex and active field. Historically, vaccines have been developed primarily to fight infectious diseases, but recent years have seen the development of immunologically active biomaterials towards an expanding list of non-infectious diseases and conditions including inflammation, autoimmunity, wounds, cancer, and others. This review structures its discussion of these approaches around a progression from single-target strategies to those that engage increasingly complex and multifactorial immune responses. First, the targeting of specific individual cytokines is discussed, both in terms of delivering the cytokines or blocking agents, and in terms of active immunotherapies that raise neutralizing immune responses against such single cytokine targets. Next, non-biological complex drugs such as randomized polyamino acid copolymers are discussed in terms of their ability to raise multiple different therapeutic immune responses, particularly in the context of autoimmunity. Last, biologically derived matrices and materials are discussed in terms of their ability to raise complex immune responses in the context of tissue repair. Collectively, these examples reflect the tremendous diversity of existing approaches and the breadth of opportunities that remain for generating therapeutic immune responses using biomaterials.
Collapse
Affiliation(s)
- Sean H Kelly
- Duke University, Department of Biomedical Engineering, United States
| | - Lucas S Shores
- Duke University, Department of Biomedical Engineering, United States
| | - Nicole L Votaw
- Duke University, Department of Biomedical Engineering, United States
| | - Joel H Collier
- Duke University, Department of Biomedical Engineering, United States.
| |
Collapse
|
49
|
Grossman I, Knappertz V, Laifenfeld D, Ross C, Zeskind B, Kolitz S, Ladkani D, Hayardeny L, Loupe P, Laufer R, Hayden M. Pharmacogenomics strategies to optimize treatments for multiple sclerosis: Insights from clinical research. Prog Neurobiol 2017; 152:114-130. [DOI: 10.1016/j.pneurobio.2016.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 02/10/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
|
50
|
Himly M, Mills-Goodlet R, Geppert M, Duschl A. Nanomaterials in the Context of Type 2 Immune Responses-Fears and Potentials. Front Immunol 2017; 8:471. [PMID: 28487697 PMCID: PMC5403887 DOI: 10.3389/fimmu.2017.00471] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/05/2017] [Indexed: 01/07/2023] Open
Abstract
The type 2 immune response is an adaptive immune program involved in defense against parasites, detoxification, and wound healing, but is predominantly known for its pathophysiological effects, manifesting as allergic disease. Engineered nanoparticles (NPs) are non-self entities that, to our knowledge, do not stimulate detrimental type 2 responses directly, but have the potential to modulate ongoing reactions in various ways, including the delivery of substances aiming at providing a therapeutic benefit. We review, here, the state of knowledge concerning the interaction of NPs with type 2 immune responses and highlight their potential as a multifunctional platform for therapeutic intervention.
Collapse
Affiliation(s)
- Martin Himly
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Robert Mills-Goodlet
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Mark Geppert
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Albert Duschl
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|