1
|
Dong S, Du Y, Wang H, Yuan W, Ai W, Liu L. Research progress on the interaction between intestinal flora and microRNA in pelvic inflammatory diseases. Noncoding RNA Res 2025; 11:303-312. [PMID: 39931541 PMCID: PMC11808595 DOI: 10.1016/j.ncrna.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/02/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
Pelvic inflammatory disease (PID) is a common infectious disease of the female upper reproductive tract, and its pathological basis is immune inflammatory response. The imbalance of gut microflora (GM) may lead to the development of inflammatory process. A large number of studies have shown that fecal microbiota transplantation, probiotics, bacteria, prebiotics, and dietary intervention may play a potential role in remodeling GM and treating diseases. MicroRNAs (miRNAs) are involved in cell development, proliferation, apoptosis and other physiological processes. In addition, they play an important role in the inflammatory process, participating in the regulation of proinflammatory and anti-inflammatory pathways. Differences in miRNA profiles may be PID diagnostic tools and serve as prognostic markers of the disease. The relationship between miRNA and GM has not been fully elucidated. Recent studies have shown the role of miRNA in the regulation and induction of GM dysbiosis. In turn, microbiota can regulate the expression of miRNA and improve the immune status of the body. Therefore, this review aims to describe the interaction between GM and miRNA in PID, and to find potential precise targeted therapy for PID.
Collapse
Affiliation(s)
- Shuhan Dong
- Heilongjiang University of Chinese Medicine, 150040, Heilongjiang, China
| | - Yunpeng Du
- Heilongjiang University of Chinese Medicine, 150040, Heilongjiang, China
| | - Haiyang Wang
- Heilongjiang University of Chinese Medicine, 150040, Heilongjiang, China
| | - Wenhan Yuan
- Liaoning University of Traditional Chinese Medicine, Liaoning, 110085, China
| | - Wenxia Ai
- Heilongjiang University of Chinese Medicine, 150040, Heilongjiang, China
| | - Li Liu
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, 150040, Heilongjiang, China
| |
Collapse
|
2
|
Pratt ML, Plumb AN, Manjrekar A, Cardona LM, Chan CK, John JM, Sadler KE. Microbiome contributions to pain: a review of the preclinical literature. Pain 2025; 166:262-281. [PMID: 39258679 PMCID: PMC11723818 DOI: 10.1097/j.pain.0000000000003376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/28/2024] [Indexed: 09/12/2024]
Abstract
ABSTRACT Over the past 2 decades, the microbiome has received increasing attention for the role that it plays in health and disease. Historically, the gut microbiome was of particular interest to pain scientists studying nociplastic visceral pain conditions given the anatomical juxtaposition of these microorganisms and the neuroimmune networks that drive pain in such diseases. More recently, microbiomes both inside and across the surface of the body have been recognized for driving sensory symptoms in a broader set of diseases. Microbiomes have never been a more popular topic in pain research, but to date, there has not been a systematic review of the preclinical microbiome pain literature. In this article, we identified all animal studies in which both the microbiome was manipulated and pain behaviors were measured. Our analysis included 303 unique experiments across 97 articles. Microbiome manipulation methods and behavioral outcomes were recorded for each experiment so that field-wide trends could be quantified and reported. This review specifically details the animal species, injury models, behavior measures, and microbiome manipulations used in preclinical pain research. From this analysis, we were also able to conclude how manipulations of the microbiome alter pain thresholds in naïve animals and persistent pain intensity and duration in cutaneous and visceral pain models. This review summarizes by identifying existing gaps in the literature and providing recommendations for how to best plan, implement, and interpret data collected in preclinical microbiome pain experiments.
Collapse
Affiliation(s)
- McKenna L Pratt
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | | | | | | | | | | | | |
Collapse
|
3
|
Zhang H, Su Q. Low-FODMAP Diet for Irritable Bowel Syndrome: Insights from Microbiome. Nutrients 2025; 17:544. [PMID: 39940404 PMCID: PMC11819959 DOI: 10.3390/nu17030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent gastrointestinal disorder characterized by chronic abdominal pain, bloating, and altered bowel habits. Low-FODMAP diets, which involve restricting fermentable oligosaccharides, disaccharides, monosaccharides, and polyols, have emerged as an effective dietary intervention for alleviating IBS symptoms. This review paper aims to synthesize current insights into the impact of a low-FODMAP diet on the gut microbiome and its mechanisms of action in managing IBS. We explore the alterations in microbial composition and function associated with a low-FODMAP diet and discuss the implications of these changes for gut health and symptom relief. Additionally, we examine the balance between symptom improvement and potential negative effects on microbial diversity and long-term gut health. Emerging evidence suggests that while a low-FODMAP diet can significantly reduce IBS symptoms, it may also lead to reductions in beneficial microbial populations. Strategies to mitigate these effects, such as the reintroduction phase and the use of probiotics, are evaluated. This review highlights the importance of a personalized approach to dietary management in IBS, considering individual variations in microbiome responses. Understanding the intricate relationship between diet, the gut microbiome, and IBS symptomatology will guide the development of more effective, sustainable dietary strategies for IBS patients.
Collapse
Affiliation(s)
- Haoshuai Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Pal S, Arisha R, Mazumder PM. A systematic review of preclinical studies targeted toward the management of co-existing functional gastrointestinal disorders, stress, and gut dysbiosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:25-46. [PMID: 39096376 DOI: 10.1007/s00210-024-03332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Modern dietary habits and stressed lifestyle have escalated the tendency to develop functional gastrointestinal disorders (FGIDs) through alteration in the gut-brain-microbiome axis. Clinical practices use symptomatic treatments, neglect root causes, and prolong distress in patients. The past decade has seen the evolution of various interventions to attenuate FGIDs. But clinical translation of such studies is very rare mostly due to lack of awareness. The aim of this review is to meticulously integrate different studies and bridge this knowledge gap. Literature between 2013 and 2023 was retrieved from PubMed, ProQuest, and Web of Science. The data was extracted based on the PRISMA guidelines and using the SYRCLE's risk of bias and the Cochrane Risk of Bias tools, quality assessment was performed. The review has highlighted molecular insights into the coexistence of FGIDs, stress, and gut dysbiosis. Furthermore, novel interventions focusing on diet, probiotics, herbal formulations, and phytoconstituents were explored which mostly had a multitargeted approach for the management of the diseases. Scientific literature implied positive interactions between the interventions and the gut microbiome by increasing the relative abundance of beneficial bacteria and reducing stress-related hormones. Moreover, the interventions reduced intestinal inflammation and regulated the expression of epithelial tight junction proteins in different in vivo models. This systematic review delves deep into the preclinical interventions to manage coexisting FGIDs, stress, and gut dysbiosis. However, in most of the discussed studies, long-term risks and toxicity profile of the interventions are lacking. So, it is necessary to highlight them for improved clinical outcomes.
Collapse
Affiliation(s)
- Shreyashi Pal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ruhi Arisha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
5
|
Chen S, Jiang D, Zhuang Q, Hou X, Jia X, Chen J, Lin H, Zhang M, Tan N, Xiao Y. Esophageal microbial dysbiosis impairs mucosal barrier integrity via toll-like receptor 2 pathway in patients with gastroesophageal reflux symptoms. J Transl Med 2024; 22:1145. [PMID: 39719586 DOI: 10.1186/s12967-024-05878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/11/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Previous research on the lower gastrointestinal tract has proved that microbial dysbiosis can lead to intestinal barrier dysfunction and enhanced visceral sensitivity, thus triggering bowel symptoms. Whether esophageal microbial dysbiosis also contributes to the development of gastroesophageal reflux (GER) symptoms, which are known to be associated with impaired esophageal barrier integrity, remains to be explored. METHODS Patients with GER symptoms (gastroesophageal reflux disease [GERD] and functional esophageal disorders [FED]), duodenal ulcer patients and healthy controls were prospectively included for esophageal microbial analysis. The expression of toll-like receptors (TLRs) and tight junction proteins and intercellular spaces were assessed through transcriptome analysis and immunohistochemistry. The human esophageal epithelial cell (HEEC) line was used to explore how esophageal microbial dysbiosis induced GER symptoms. RESULTS Patients with GER symptoms, whether GERD or FED, had a very similar pattern of microbial composition, which showed a significantly increased proportion of Gram-negative bacteria than controls. Patients with GER symptoms (GERD and FED) also exhibited significantly higher TLR2 expression, reduced claudin-1 expression and dilated intercellular spaces (DIS). In vitro, exposure of HEECs to lipopolysaccharide resulted in marked up-regulation of TLR2 and interleukin (IL)-6, down-regulation of claudin-1 and DIS. These effects were mitigated by blocking TLR2 or IL-6. CONCLUSION This study demonstrated that regardless of objective evidence of reflux, patients with GER symptoms presented esophageal microbial dysbiosis characterized by an elevated proportion of Gram-negative bacteria. Enriched Gram-negative bacteria could induce esophageal barrier dysfunction via LPS-TLR2-IL-6-claudin-1-DIS pathway.
Collapse
Affiliation(s)
- Songfeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Dianxuan Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Qianjun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Xun Hou
- Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xingyu Jia
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Jing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Huiting Lin
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Mengyu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Niandi Tan
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China
| | - Yinglian Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
6
|
Wan X, Wang L, Wang Z, Wan C. Toll-like receptor 4 plays a vital role in irritable bowel syndrome: a scoping review. Front Immunol 2024; 15:1490653. [PMID: 39749341 PMCID: PMC11693509 DOI: 10.3389/fimmu.2024.1490653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Background Irritable bowel syndrome (IBS) is a common gastrointestinal disease. Recently, an increasing number of studies have shown that Toll-like receptor 4 (TLR4), widely distributed on the surface of a variety of epithelial cells (ECs) and immune sentinel cells in the gut, plays a vital role in developing IBS. Objectives We sought to synthesize the existing literature on TLR4 in IBS and inform further study. Methods We conducted a systematic search of the PubMed, Embase (Ovid), Scopus, Web of Science, MEDLINE, and Cochrane Library databases on June 8, 2024, and screened relevant literature. Critical information was extracted, including clinical significance, relevant molecular mechanisms, and therapeutic approaches targeting TLR4 and its pathways. Results Clinical data showed that aberrant TLR4 expression is associated with clinical manifestations such as pain and diarrhea in IBS. Aberrant expression of TLR4 is involved in pathological processes such as intestinal inflammation, barrier damage, visceral sensitization, and dysbiosis, which may be related to TLR4, NF-κB, pro-inflammatory effects, and CRF. Several studies have shown that many promising therapeutic options (i.e., acupuncture, herbs, probiotics, hormones, etc.) have been able to improve intestinal inflammation, visceral sensitization, intestinal barrier function, intestinal flora, defecation abnormalities, and depression by inhibiting TLR4 expression and related pathways. Conclusion TLR4 plays a crucial role in the development of IBS. Many promising therapeutic approaches alleviate IBS through TLR4 and its pathways. Strategies for targeting TLR4 in the future may provide new ideas for treating IBS.
Collapse
Affiliation(s)
- Xuemeng Wan
- Department of Pediatrics, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Liyuan Wang
- Department of Pediatrics, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
| | - Zhiling Wang
- Department of Pediatrics, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Chaomin Wan
- Department of Pediatrics, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Abulughod N, Valakas S, El-Assaad F. Dietary and Nutritional Interventions for the Management of Endometriosis. Nutrients 2024; 16:3988. [PMID: 39683382 DOI: 10.3390/nu16233988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Endometriosis is a chronic, complex, systemic inflammatory condition that impacts approximately 190 million girls and women worldwide, significantly impacting their quality of life. The effective management of endometriosis requires a multi-disciplinary and holistic approach, one that includes surgical and medical management, such as a laparoscopy and a chronic medical management plan, as well as dietary, nutritional, and lifestyle adjunct interventions, such as pelvic pain physiotherapy and acupuncture. There is growing evidence to support the role of dietary and nutritional interventions in the adjunct management of endometriosis-related pain and gastrointestinal symptoms. However, the implementation of these interventions is often not regulated, as patients with endometriosis often adopt self-management strategies. Diet and nutrition can modulate key players integral to the pathophysiology of endometriosis, such as, but not limited to, inflammation, estrogen, and the microbiome. However, it is unclear as to whether diet plays a role in the prevention or the onset of endometriosis. In this review, we discuss three key players in the pathogenesis of endometriosis-inflammation, estrogen, and the microbiome-and we summarize how diet and nutrition can influence their mechanisms, and consequently, the progression and manifestation of endometriosis. There is a major need for evidence-based, non-invasive adjunct management of this debilitating disease, and diet and nutritional interventions may be suitable.
Collapse
Affiliation(s)
- Nour Abulughod
- University of New South Wales Microbiome Research Centre, School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses, Sydney, NSW 2217, Australia
| | | | - Fatima El-Assaad
- University of New South Wales Microbiome Research Centre, School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses, Sydney, NSW 2217, Australia
| |
Collapse
|
8
|
Aggeletopoulou I, Triantos C. Microbiome Shifts and Their Impact on Gut Physiology in Irritable Bowel Syndrome. Int J Mol Sci 2024; 25:12395. [PMID: 39596460 PMCID: PMC11594715 DOI: 10.3390/ijms252212395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most prevalent functional gastrointestinal disorders characterized by recurrent abdominal pain and altered bowel habits. The exact pathophysiological mechanisms for IBS development are not completely understood. Several factors, including genetic predisposition, environmental and psychological influences, low-grade inflammation, alterations in gastrointestinal motility, and dietary habits, have been implicated in the pathophysiology of the disorder. Additionally, emerging evidence highlights the role of gut microbiota in the pathophysiology of IBS. This review aims to thoroughly investigate how alterations in the gut microbiota impact physiological functions such as the brain-gut axis, immune system activation, mucosal inflammation, gut permeability, and intestinal motility. Our research focuses on the dynamic "microbiome shifts", emphasizing the enrichment or depletion of specific bacterial taxa in IBS and their profound impact on disease progression and pathology. The data indicated that specific bacterial populations are implicated in IBS, including reductions in beneficial species such as Lactobacillus and Bifidobacterium, along with increases in potentially harmful bacteria like Firmicutes and Proteobacteria. Emphasis is placed on the imperative need for further research to delineate the role of specific microbiome alterations and their potential as therapeutic targets, providing new insights into personalized treatments for IBS.
Collapse
Affiliation(s)
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| |
Collapse
|
9
|
Harris CI, Nasar B, Finnerty CC. Nutritional Implications of Mast Cell Diseases. J Acad Nutr Diet 2024; 124:1387-1396. [PMID: 38754765 DOI: 10.1016/j.jand.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Affiliation(s)
| | | | - Celeste C Finnerty
- Division of Surgical Sciences, Department of Surgery, University of Texas Medical Branch, Galveston, Texas; The Mast Cell Disease Society, Inc., Sterling, Massachusetts
| |
Collapse
|
10
|
Yu T, Chen D, Qi H, Lin L, Tang Y. Resolvins protect against diabetes-induced colonic oxidative stress, barrier dysfunction, and associated diarrhea via the HO-1 pathway. Biofactors 2024; 50:967-979. [PMID: 38485285 DOI: 10.1002/biof.2049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/26/2023] [Indexed: 10/04/2024]
Abstract
Diabetes is associated with increased oxidative stress, leading to altered tight junction formation and increased apoptosis in colonic epithelial cells. These changes may lead to intestinal barrier dysfunction and corresponding gastrointestinal symptoms in patients with diabetes, including diarrhea. The aim of this study was to characterize the effect and mechanism of Resolvin D1 (RvD1) on diabetes-induced oxidative stress and barrier disruption in the colon. Mice with streptozotocin-induced diabetes were treated with RvD1 for 2 weeks, then evaluated for stool frequency, stool water content, gut permeability, and colonic transepithelial electrical resistance as well as production of reactive oxygen species (ROS), apoptosis, and expression of tight junction proteins Zonula Occludens 1 (ZO-1) and occludin. The same parameters were assessed in human colonoid cultures subjected to elevated glucose. We found that RvD1 treatment did not affect blood glucose, but normalized stool water content and prevented intestinal barrier dysfunction, epithelial oxidative stress, and apoptosis. RvD1 also restored ZO-1 and occludin expression in diabetic mice. RvD1 treatment increased phosphorylation of Akt and was accompanied by a 3.5-fold increase in heme oxygenase-1 (HO-1) expression in the epithelial cells. The protective effects of RvD1 were blocked by ZnPP, a competitive inhibitor of HO-1. Similar findings were observed in RvD1-treated human colonoid cultures subjected to elevated glucose. In conclusion, Oxidative stress in diabetes results in mucosal barrier dysfunction, contributing to the development of diabetic diarrhea. Resolvins prevent ROS-mediated mucosal injury and protect gut barrier function by intracellular PI3K/Akt activation and subsequent HO-1 upregulation in intestinal epithelial cells. These actions result in normalizing stool frequency and stool water content in diabetic mice, suggesting that resolvins may be useful in the treatment of diabetic diarrhea.
Collapse
Affiliation(s)
- Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| | - Die Chen
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| | - Hongyan Qi
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| | - Yurong Tang
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Jiangsu Province, China
| |
Collapse
|
11
|
JohnBritto JS, Di Ciaula A, Noto A, Cassano V, Sciacqua A, Khalil M, Portincasa P, Bonfrate L. Gender-specific insights into the irritable bowel syndrome pathophysiology. Focus on gut dysbiosis and permeability. Eur J Intern Med 2024; 125:10-18. [PMID: 38467533 DOI: 10.1016/j.ejim.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder involving the brain-gut interaction. IBS is characterized by persistent abdominal pain and changes in bowel habits. IBS exerts significant impacts on quality of life and imposes huge economic costs. Global epidemiological data reveal variations in IBS prevalence, both globally and between genders, necessitating comprehensive studies to uncover potential societal and cultural influences. While the exact pathophysiology of IBS remains incompletely understood, the mechanism involves a dysregulation of the brain-gut axis, leading to disturbed intestinal motility, local inflammation, altered intestinal permeability, visceral sensitivity, and gut microbiota composition. We reviewed several gender-related pathophysiological aspects of IBS pathophysiology, by focusing on gut dysbiosis and intestinal permeability. This perspective paves the way to personalized and multidimensional clinical management of individuals with IBS.
Collapse
Affiliation(s)
- Jerlin Stephy JohnBritto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Antonino Noto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Velia Cassano
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
12
|
So D, Tuck C. Innovative concepts in diet therapies in disorders of gut-brain interaction. JGH Open 2024; 8:e70001. [PMID: 39027160 PMCID: PMC11255864 DOI: 10.1002/jgh3.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
Diet therapy in disorders of gut-brain interaction (DGBI) is rapidly advancing, with accumulating evidence to support two innovative therapies-manipulation of dietary fibers and enzyme supplementation-that target specific DGBI pathophysiology and modulate digestion. Dietary fibers escape digestion in the upper gastrointestinal tract and can influence gut function by impacting digestion, improving laxation, and interacting with the microbiota. A more nuanced understanding of different fiber types and their ability to impact gut function in highly specific ways has shown that fibers can impact distinct gut symptoms and pathophysiology. By considering their functional characteristics of bulking, gel-forming, and fermentability, restriction or supplementation of specific fibers can offer clinical value in DGBI. Similarly to fiber specificity, emerging evidence suggests that supplemental digestive enzymes may be targeted to known food triggers with consideration that enzymes are substrate specific. Limited evidence supports use of lactase to target lactose, and α-galactosidase to target galacto-oligosaccharides. Application of enzymes during manufacturing of food products may prove to be an additional strategy, although evidence is scant. Both innovative therapies may be utilized in isolation or in combination with other diet and nondiet therapies. Implementation can be guided by the principles that fiber modulation can be targeted to specific symptomology or requirement for alterations to gut function, and digestive enzymes can be targeted to known food triggers. This review aims to summarize recent literature of these two innovative concepts and provide practical suggestions for their implementation in clinical practice.
Collapse
Affiliation(s)
- Daniel So
- Department of GastroenterologyMonash University and Alfred HealthMelbourneAustralia
| | - Caroline Tuck
- Department of Nursing and Allied HealthSwinburne UniversityHawthornAustralia
| |
Collapse
|
13
|
Gawey BJ, Mars RA, Kashyap PC. The role of the gut microbiome in disorders of gut-brain interaction. FEBS J 2024:10.1111/febs.17200. [PMID: 38922780 PMCID: PMC11664017 DOI: 10.1111/febs.17200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Disorders of Gut-Brain Interaction (DGBI) are widely prevalent and commonly encountered in gastroenterology practice. While several peripheral and central mechanisms have been implicated in the pathogenesis of DGBI, a recent body of work suggests an important role for the gut microbiome. In this review, we highlight how gut microbiota and their metabolites affect physiologic changes underlying symptoms in DGBI, with a particular focus on their mechanistic influence on GI transit, visceral sensitivity, intestinal barrier function and secretion, and CNS processing. This review emphasizes the complexity of local and distant effects of microbial metabolites on physiological function, influenced by factors such as metabolite concentration, duration of metabolite exposure, receptor location, host genetics, and underlying disease state. Large-scale in vitro work has elucidated interactions between host receptors and the microbial metabolome but there is a need for future research to integrate such preclinical findings with clinical studies. The development of novel, targeted therapeutic strategies for DGBI hinges on a deeper understanding of these metabolite-host interactions, offering exciting possibilities for the future of treatment of DGBI.
Collapse
Affiliation(s)
- Brent J Gawey
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ruben A Mars
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Du L, Chen C, Yang YH, Zheng Y, Li H, Wu ZJ, Wu H, Miyashita K, Su GH. Fucoxanthin alleviates lipopolysaccharide-induced intestinal barrier injury in mice. Food Funct 2024; 15:6359-6373. [PMID: 38787699 DOI: 10.1039/d4fo00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The aim of this study was to evaluate the preventive role and underlying mechanisms of fucoxanthin (Fx) on lipopolysaccharide (LPS)-induced intestinal barrier injury in mice. Our results demonstrated that the oral administration of Fx (50 and 200 mg per kg body weight per day) for consecutive 7 days significantly alleviated the severity of LPS-induced intestinal barrier injury in mice, as evidenced by attenuating body weight loss, improving intestinal permeability, and ameliorating intestinal morphological damage such as reduction in the ratio of the villus length to the crypt depth (V/C), intestinal epithelium distortion, goblet cell depletion, and low mucin 2 (MUC2) expression. Fx also significantly mitigated LPS-induced excessive apoptosis of intestinal epithelial cells (IECs) and curbed the decrease of tight junction proteins including claudin-1, occludin, and zonula occludens-1 in the ileum and colon. Additionally, Fx effectively alleviated LPS-induced extensive infiltration of macrophages and neutrophils into the intestinal mucosa, the overproduction of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin 1beta (IL-1β) and IL-6, and gasdermin D (GSDMD)-mediated pyroptosis of IECs. The underlying mechanisms might be associated with inhibiting the activation of nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs) and nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathways. Moreover, Fx also notably restrained intestinal reactive oxygen species (ROS), malondialdehyde and protein carbonylation levels in LPS-treated mice, and it might be mediated by activating the nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway. Overall, these findings indicated that Fx might be developed as a potential effective dietary supplement to prevent intestinal barrier injury.
Collapse
Affiliation(s)
- Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Chen Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Yu-Hong Yang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 Daxue Road, Jinan, Shandong, 250353, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China.
| | - Hui Li
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Zi-Jian Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Guo-Hai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China.
| |
Collapse
|
15
|
Cuffaro F, Russo E, Amedei A. Endometriosis, Pain, and Related Psychological Disorders: Unveiling the Interplay among the Microbiome, Inflammation, and Oxidative Stress as a Common Thread. Int J Mol Sci 2024; 25:6473. [PMID: 38928175 PMCID: PMC11203696 DOI: 10.3390/ijms25126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Endometriosis (EM), a chronic condition in endometrial tissue outside the uterus, affects around 10% of reproductive-age women, significantly affecting fertility. Its prevalence remains elusive due to the surgical confirmation needed for diagnosis. Manifesting with a range of symptoms, including dysmenorrhea, dyschezia, dysuria, dyspareunia, fatigue, and gastrointestinal discomfort, EM significantly impairs quality of life due to severe chronic pelvic pain (CPP). Psychological manifestations, notably depression and anxiety, frequently accompany the physical symptoms, with CPP serving as a key mediator. Pain stems from endometrial lesions, involving oxidative stress, neuroinflammation, angiogenesis, and sensitization processes. Microbial dysbiosis appears to be crucial in the inflammatory mechanisms underlying EM and associated CPP, as well as psychological symptoms. In this scenario, dietary interventions and nutritional supplements could help manage EM symptoms by targeting inflammation, oxidative stress, and the microbiome. Our manuscript starts by delving into the complex relationship between EM pain and psychological comorbidities. It subsequently addresses the emerging roles of the microbiome, inflammation, and oxidative stress as common links among these abovementioned conditions. Furthermore, the review explores how dietary and nutritional interventions may influence the composition and function of the microbiome, reduce inflammation and oxidative stress, alleviate pain, and potentially affect EM-associated psychological disorders.
Collapse
Affiliation(s)
- Francesca Cuffaro
- Division of Interdisciplinary Internal Medicine, Careggi University Hospital of Florence, 50134 Florence, Italy;
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
16
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
17
|
Álvarez-Herms J, Odriozola A. Microbiome and physical activity. ADVANCES IN GENETICS 2024; 111:409-450. [PMID: 38908903 DOI: 10.1016/bs.adgen.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Regular physical activity promotes health benefits and contributes to develop the individual biological potential. Chronical physical activity performed at moderate and high-intensity is the intensity more favorable to produce health development in athletes and improve the gut microbiota balance. The athletic microbiome is characterized by increased microbial diversity and abundance as well as greater phenotypic versatility. In addition, physical activity and microbiota composition have bidirectional effects, with regular physical activity improving microbial composition and microbial composition enhancing physical performance. The improvement of physical performance by a healthy microbiota is related to different phenotypes: i) efficient metabolic development, ii) improved regulation of intestinal permeability, iii) favourable modulation of local and systemic inflammatory and efficient immune responses, iv) efective regulation of systemic pH and, v) protection against acute stressful events such as environmental exposure to altitude or heat. The type of sport, both intensity or volume characteristics promote microbiota specialisation. Individual assessment of the state of the gut microbiota can be an effective biomarker for monitoring health in the medium to long term. The relationship between the microbiota and the rest of the body is bidirectional and symbiotic, with a full connection between the systemic functions of the nervous, musculoskeletal, endocrine, metabolic, acid-base and immune systems. In addition, circadian rhythms, including regular physical activity, directly influence the adaptive response of the microbiota. In conclusion, regular stimuli of moderate- and high-intensity physical activity promote greater diversity, abundance, resilience and versatility of the gut microbiota. This effect is highly beneficial for human health when healthy lifestyle habits including nutrition, hydration, rest, chronoregulation and physical activity.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Phymo® Lab, Physiology and Molecular Laboratory, Collado Hermoso, Segovia, Spain.
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
18
|
Ford AC, Staudacher HM, Talley NJ. Postprandial symptoms in disorders of gut-brain interaction and their potential as a treatment target. Gut 2024; 73:1199-1211. [PMID: 38697774 DOI: 10.1136/gutjnl-2023-331833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Postprandial, or meal-related, symptoms, such as abdominal pain, early satiation, fullness or bloating, are often reported by patients with disorders of gut-brain interaction, including functional dyspepsia (FD) or irritable bowel syndrome (IBS). We propose that postprandial symptoms arise via a distinct pathophysiological process. A physiological or psychological insult, for example, acute enteric infection, leads to loss of tolerance to a previously tolerated oral food antigen. This enables interaction of both the microbiota and the food antigen itself with the immune system, causing a localised immunological response, with activation of eosinophils and mast cells, and release of inflammatory mediators, including histamine and cytokines. These have more widespread systemic effects, including triggering nociceptive nerves and altering mood. Dietary interventions, including a diet low in fermentable oligosaccharides, disaccharides, monosaccharides and polyols, elimination of potential food antigens or gluten, IgG food sensitivity diets or salicylate restriction may benefit some patients with IBS or FD. This could be because the restriction of these foods or dietary components modulates this pathophysiological process. Similarly, drugs including proton pump inhibitors, histamine-receptor antagonists, mast cell stabilisers or even tricyclic or tetracyclic antidepressants, which have anti-histaminergic actions, all of which are potential treatments for FD and IBS, act on one or more of these mechanisms. It seems unlikely that food antigens driving intestinal immune activation are the entire explanation for postprandial symptoms in FD and IBS. In others, fermentation of intestinal carbohydrates, with gas release altering reflex responses, adverse reactions to food chemicals, central mechanisms or nocebo effects may dominate. However, if the concept that postprandial symptoms arise from food antigens driving an immune response in the gastrointestinal tract in a subset of patients is correct, it is paradigm-shifting, because if the choice of treatment were based on one or more of these therapeutic targets, patient outcomes may be improved.
Collapse
Affiliation(s)
- Alexander C Ford
- Leeds Gastroenterology Institute, St James's University Hospital, Leeds, UK
| | - Heidi M Staudacher
- Deakin University-Geelong Waterfront Campus, Geelong, Victoria, Australia
| | - Nicholas J Talley
- Health, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
19
|
King AJ, Chang L, Li Q, Liu L, Zhu Y, Pasricha PJ, Wang J, Siegel M, Caldwell JS, Edelstein S, Rosenbaum DP, Kozuka K. NHE3 inhibitor tenapanor maintains intestinal barrier function, decreases visceral hypersensitivity, and attenuates TRPV1 signaling in colonic sensory neurons. Am J Physiol Gastrointest Liver Physiol 2024; 326:G543-G554. [PMID: 38252683 PMCID: PMC11376972 DOI: 10.1152/ajpgi.00233.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
The pathogenesis of irritable bowel syndrome (IBS) is multifactorial, characterized in part by increased intestinal permeability, and visceral hypersensitivity. Increased permeability is associated with IBS severity and abdominal pain. Tenapanor is FDA-approved for the treatment of IBS with constipation (IBS-C) and has demonstrated improvements in bowel motility and a reduction in IBS-related pain; however, the mechanism by which tenapanor mediates these functions remains unclear. Here, the effects of tenapanor on colonic pain signaling and intestinal permeability were assessed through behavioral, electrophysiological, and cell culture experiments. Intestinal motility studies in rats and humans demonstrated that tenapanor increased luminal sodium and water retention and gastrointestinal transit versus placebo. A significantly reduced visceral motor reflex (VMR) to colonic distension was observed with tenapanor treatment versus vehicle in two rat models of visceral hypersensitivity (neonatal acetic acid sensitization and partial restraint stress; both P < 0.05), returning VMR responses to that of nonsensitized controls. Whole cell voltage patch-clamp recordings of retrogradely labeled colonic dorsal root ganglia (DRG) neurons from sensitized rats found that tenapanor significantly reduced DRG neuron hyperexcitability to capsaicin versus vehicle (P < 0.05), an effect not mediated by epithelial cell secretions. Tenapanor also attenuated increases in intestinal permeability in human colon monolayer cultures caused by incubation with proinflammatory cytokines (P < 0.001) or fecal supernatants from patients with IBS-C (P < 0.005). These results support a model in which tenapanor reduces IBS-related pain by strengthening the intestinal barrier, thereby decreasing permeability to macromolecules and antigens and reducing DRG-mediated pain signaling.NEW & NOTEWORTHY A series of nonclinical experiments support the theory that tenapanor inhibits IBS-C-related pain by strengthening the intestinal barrier. Tenapanor treatment reduced visceral motor responses to nonsensitized levels in two rat models of hypersensitivity and reduced responses to capsaicin in sensitized colonic nociceptive dorsal root ganglia neurons. Intestinal permeability experiments in human colon monolayer cultures found that tenapanor attenuates increases in permeability induced by either inflammatory cytokines or fecal supernatants from patients with IBS-C.
Collapse
Affiliation(s)
- Andrew J King
- Ardelyx, Inc., Waltham, Massachusetts, United States
| | - Lin Chang
- Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Qian Li
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Liansheng Liu
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Yaohui Zhu
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Pankaj J Pasricha
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ji Wang
- Ardelyx, Inc., Waltham, Massachusetts, United States
| | | | | | | | | | - Kenji Kozuka
- Ardelyx, Inc., Waltham, Massachusetts, United States
| |
Collapse
|
20
|
Hearn-Yeates F, Horne AW, O’Mahony SM, Saunders PTK. The impact of the microbiota-gut-brain axis on endometriosis-associated symptoms: mechanisms and opportunities for personalised management strategies. REPRODUCTION AND FERTILITY 2024; 5:RAF-23-0085. [PMID: 38739749 PMCID: PMC11227073 DOI: 10.1530/raf-23-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/13/2024] [Indexed: 05/16/2024] Open
Abstract
Endometriosis is a chronic inflammatory condition affecting one in 10 women and those assigned female at birth, defined by the presence of endometrial-like tissue outside the uterus. It is commonly associated with pain, infertility, and mood disorders, and often comorbid with other chronic pain conditions, such as irritable bowel syndrome. Recent research has identified a key role for the microbiota-gut-brain axis in health and a range of inflammatory and neurological disorders, prompting an exploration of its potential mechanistic role in endometriosis. Increased awareness of the impact of the gut microbiota within the patient community, combined with the often-detrimental side effects of current therapies, has motivated many to utilise self-management strategies, such as dietary modification and supplements, despite a lack of robust clinical evidence. Current research has characterised the gut microbiota in endometriosis patients and animal models. However, small cohorts and differing methodology has resulted in little consensus in the data. In this narrative review, we summarise research studies that have investigated the role of gut microbiota and their metabolic products in the development and progression of endometriosis lesions, before summarising insights from research into co-morbid conditions and discussing the reported impact of self-management strategies on symptoms of endometriosis. Finally, we suggest ways in which this promising field of research could be expanded to explore the role of specific bacteria, improve access to 'microbial' phenotyping, and to develop personalised patient advice for reduction of symptoms such as chronic pain and bloating.
Collapse
Affiliation(s)
- Francesca Hearn-Yeates
- EXPPECT Edinburgh and Centre for Reproductive Health, University of Edinburgh, Institute for Regeneration and Repair, Edinburgh, UK
| | - Andrew W Horne
- EXPPECT Edinburgh and Centre for Reproductive Health, University of Edinburgh, Institute for Regeneration and Repair, Edinburgh, UK
| | - Siobhain M O’Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Philippa T K Saunders
- EXPPECT Edinburgh and Centre for Reproductive Health, University of Edinburgh, Institute for Regeneration and Repair, Edinburgh, UK
| |
Collapse
|
21
|
Ren H, Wang Z, Li Y, Liu J. Association of lipopolysaccharide with new-onset atrial fibrillation in ST-segment elevation myocardial infarction. Heliyon 2024; 10:e27552. [PMID: 38496897 PMCID: PMC10944234 DOI: 10.1016/j.heliyon.2024.e27552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Background Lipopolysaccharide (LPS) is related to various cardiovascular diseases. However, the relationship between LPS and new-onset atrial fibrillation (NOAF) after ST-segment elevation myocardial infarction (STEMI) has yet to be elucidated. This study aimed to evaluate the impact of LPS on NOAF in STEMI patients. Methods This was a single-center retrospective observational study including 806 patients diagnosed with STEMI. LPS levels were determined using a commercial ELISA kit. NOAF was characterized by postadmission AF with the absence of any prior history of AF. Results A total of 806 participants were enrolled, with 752 individuals in the non-AF group (93.3%) and 54 individuals in the AF group (6.7%). Multivariable analysis showed that LPS (OR = 1.047; 95% CI: 1.029-1.065, P < 0.001) was an independent risk marker for NOAF. The analysis of the ROC demonstrated that LPS had an AUC of 0.717 in predicting NOAF. When LPS was added to the conventional model, the ability of the risk model to discriminate and reclassify NOAF was improved significantly (IDI 0.053, P = 0.001; NRI 0.510, P < 0.001). Conclusion Elevated LPS is associated with an increased risk of NOAF in STEMI patients. The integration of LPS can improve the ability to predict NOAF in STEMI patients.
Collapse
Affiliation(s)
- Honglong Ren
- Department of Gastroenterology, The First People's Hospital of Yuhang District, Hangzhou, 311100, Zhejiang, China
| | - Zhonghua Wang
- Department of Gastroenterology, The First People's Hospital of Yuhang District, Hangzhou, 311100, Zhejiang, China
| | - Yong Li
- Department of Cardiology, The First People's Hospital of Yuhang District, Hangzhou, 311100, Zhejiang, China
| | - Jinqi Liu
- Department of Cardiology, Huai'an Second People's Hospital, 223001, Jiangsu, China
| |
Collapse
|
22
|
Baker CC, Sessenwein JL, Wood HM, Yu Y, Tsang Q, Alward TA, Jimenez Vargas NN, Omar AA, McDonnel A, Segal JP, Sjaarda CP, Bunnett NW, Schmidt BL, Caminero A, Boev N, Bannerman CA, Ghasemlou N, Sheth PM, Vanner SJ, Reed DE, Lomax AE. Protease-Induced Excitation of Dorsal Root Ganglion Neurons in Response to Acute Perturbation of the Gut Microbiota Is Associated With Visceral and Somatic Hypersensitivity. Cell Mol Gastroenterol Hepatol 2024; 18:101334. [PMID: 38494056 PMCID: PMC11350452 DOI: 10.1016/j.jcmgh.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND & AIMS Abdominal pain is a major symptom of diseases that are associated with microbial dysbiosis, including irritable bowel syndrome and inflammatory bowel disease. Germ-free mice are more prone to abdominal pain than conventionally housed mice, and reconstitution of the microbiota in germ-free mice reduces abdominal pain sensitivity. However, the mechanisms underlying microbial modulation of pain remain elusive. We hypothesized that disruption of the intestinal microbiota modulates the excitability of peripheral nociceptive neurons. METHODS In vivo and in vitro assays of visceral sensation were performed on mice treated with the nonabsorbable antibiotic vancomycin (50 μg/mL in drinking water) for 7 days and water-treated control mice. Bacterial dysbiosis was verified by 16s rRNA analysis of stool microbial composition. RESULTS Treatment of mice with vancomycin led to an increased sensitivity to colonic distension in vivo and in vitro and hyperexcitability of dorsal root ganglion (DRG) neurons in vitro, compared with controls. Interestingly, hyperexcitability of DRG neurons was not restricted to those that innervated the gut, suggesting a widespread effect of gut dysbiosis on peripheral pain circuits. Consistent with this, mice treated with vancomycin were more sensitive than control mice to thermal stimuli applied to hind paws. Incubation of DRG neurons from naive mice in serum from vancomycin-treated mice increased DRG neuron excitability, suggesting that microbial dysbiosis alters circulating mediators that influence nociception. The cysteine protease inhibitor E64 (30 nmol/L) and the protease-activated receptor 2 (PAR-2) antagonist GB-83 (10 μmol/L) each blocked the increase in DRG neuron excitability in response to serum from vancomycin-treated mice, as did the knockout of PAR-2 in NaV1.8-expressing neurons. Stool supernatant, but not colonic supernatant, from mice treated with vancomycin increased DRG neuron excitability via cysteine protease activation of PAR-2. CONCLUSIONS Together, these data suggest that gut microbial dysbiosis alters pain sensitivity and identify cysteine proteases as a potential mediator of this effect.
Collapse
Affiliation(s)
- Corey C Baker
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Jessica L Sessenwein
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Hannah M Wood
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Yang Yu
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Quentin Tsang
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Taylor A Alward
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | - Amal Abu Omar
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Abby McDonnel
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Julia P Segal
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Calvin P Sjaarda
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, New York
| | - Brian L Schmidt
- Department of Molecular Pathobiology, Neuroscience Institute, New York University, New York, New York
| | - Alberto Caminero
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Nadejda Boev
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Courtney A Bannerman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology and Perioperative Medicine, Queen's Unversity, Kingston, Ontario, Canada
| | - Prameet M Sheth
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
23
|
Guo C, Zhang C. Role of the gut microbiota in the pathogenesis of endometriosis: a review. Front Microbiol 2024; 15:1363455. [PMID: 38505548 PMCID: PMC10948423 DOI: 10.3389/fmicb.2024.1363455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Endometriosis is classically defined as a chronic inflammatory heterogeneous disorder occurring in any part of the body, characterized by estrogen-driven periodic bleeding, proliferation, and fibrosis of ectopic endometrial glands and stroma outside the uterus. Endometriosis can take overwhelmingly serious damage to the structure and function of multi-organ, even impair whole-body systems, resulting in severe dysmenorrhea, chronic pelvic pain, infertility, fatigue and depression in 5-10% women of reproductive age. Precisely because of a huge deficiency of cognition about underlying etiology and complex pathogenesis of the debilitating disease, early diagnosis and treatment modalities with relatively minor side effects become bottlenecks in endometriosis. Thus, endometriosis warrants deeper exploration and expanded investigation in pathogenesis. The gut microbiota plays a significant role in chronic diseases in humans by acting as an important participant and regulator in the metabolism and immunity of the body. Increasingly, studies have shown that the gut microbiota is closely related to inflammation, estrogen metabolism, and immunity resulting in the development and progression of endometriosis. In this review, we discuss the diverse mechanisms of endometriosis closely related to the gut microbiota in order to provide new approaches for deeper exploration and expanded investigation for endometriosis on prevention, early diagnosis and treatment.
Collapse
Affiliation(s)
| | - Chiyuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Uberti F, Trotta F, Cavalli R, Galla R, Caldera F, Ferrari S, Mulè S, Brovero A, Molinari C, Pagliaro P, Penna C. Enhancing Vitamin D3 Efficacy: Insights from Complexation with Cyclodextrin Nanosponges and Its Impact on Gut-Brain Axes in Physiology and IBS Syndrome. Int J Mol Sci 2024; 25:2189. [PMID: 38396866 PMCID: PMC10889673 DOI: 10.3390/ijms25042189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Vitamin D3 (VitD3) plays a crucial role in various cellular functions through its receptor interaction. The biological activity of Vitamin D3 can vary based on its solubility and stability. Thus, the challenge lies in maximizing its biological effects through its complexation within cyclodextrin (βNS-CDI 1:4) nanosponges (NS) (defined as VitD3NS). Therefore, its activity has been evaluated on two different gut-brain axes (healthy gut/degenerative brain and inflammatory bowel syndrome gut/degenerative brain axis). At the gut level, VitD3-NS mitigated liposaccharide-induced damage (100 ng/mL; for 48 h), restoring viability, integrity, and activity of tight junctions and reducing ROS production, lipid peroxidation, and cytokines levels. Following intestinal transit, VitD3-NS improved the neurodegenerative condition in the healthy axis and the IBS model, suggesting the ability of VitD3-NS to preserve efficacy and beneficial effects even in IBS conditions. In conclusion, this study demonstrates the ability of this novel form of VitD3, named VitD3-NS, to act on the gut-brain axis in healthy and damaged conditions, emphasizing enhanced biological activity through VitD3 complexation, as such complexation increases the beneficial effect of vitamin D3 in both the gut and brain by about 50%.
Collapse
Affiliation(s)
- Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (F.U.); (R.G.); (S.F.); (S.M.)
| | - Francesco Trotta
- Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy;
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125 Torino, Italy;
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (F.U.); (R.G.); (S.F.); (S.M.)
| | - Fabrizio Caldera
- Dipartimento di Chimica and NIS, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy;
| | - Sara Ferrari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (F.U.); (R.G.); (S.F.); (S.M.)
| | - Simone Mulè
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (F.U.); (R.G.); (S.F.); (S.M.)
| | - Arianna Brovero
- Laboratory of Cardiovascular Physiology, Dipartimento di Scienze Cliniche e Biologiche, Università Degli Studi di Torino, Regione Gonzole 10, 10043 Orbassano, Italy; (A.B.); (P.P.); (C.P.)
| | - Claudio Molinari
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, 13100 Vercelli, Italy;
| | - Pasquale Pagliaro
- Laboratory of Cardiovascular Physiology, Dipartimento di Scienze Cliniche e Biologiche, Università Degli Studi di Torino, Regione Gonzole 10, 10043 Orbassano, Italy; (A.B.); (P.P.); (C.P.)
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| | - Claudia Penna
- Laboratory of Cardiovascular Physiology, Dipartimento di Scienze Cliniche e Biologiche, Università Degli Studi di Torino, Regione Gonzole 10, 10043 Orbassano, Italy; (A.B.); (P.P.); (C.P.)
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
25
|
Bertin L, Zanconato M, Crepaldi M, Marasco G, Cremon C, Barbara G, Barberio B, Zingone F, Savarino EV. The Role of the FODMAP Diet in IBS. Nutrients 2024; 16:370. [PMID: 38337655 PMCID: PMC10857121 DOI: 10.3390/nu16030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The low FODMAP (fermentable oligosaccharide, disaccharide, monosaccharide, and polyol) diet is a beneficial therapeutic approach for patients with irritable bowel syndrome (IBS). However, how the low FODMAP diet works is still not completely understood. These mechanisms encompass not only traditionally known factors such as luminal distension induced by gas and water but also recent evidence on the role of FOMAPs in the modulation of visceral hypersensitivity, increases in intestinal permeability, the induction of microbiota changes, and the production of short-chain fatty acids (SCFAs), as well as metabolomics and alterations in motility. Although most of the supporting evidence is of low quality, recent trials have confirmed its effectiveness, even though the majority of the evidence pertains only to the restriction phase and its effectiveness in relieving abdominal bloating and pain. This review examines potential pathophysiological mechanisms and provides an overview of the existing evidence on the effectiveness of the low FODMAP diet across various IBS subtypes. Key considerations for its use include the challenges and disadvantages associated with its practical implementation, including the need for professional guidance, variations in individual responses, concerns related to microbiota, nutritional deficiencies, the development of constipation, the necessity of excluding an eating disorder before commencing the diet, and the scarcity of long-term data. Despite its recognized efficacy in symptom management, acknowledging these limitations becomes imperative for a nuanced comprehension of the role of a low FODMAP diet in managing IBS. By investigating its potential mechanisms and evidence across IBS subtypes and addressing emerging modulations alongside limitations, this review aims to serve as a valuable resource for healthcare practitioners, researchers, and patients navigating the intricate landscape of IBS.
Collapse
Affiliation(s)
- Luisa Bertin
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Miriana Zanconato
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Martina Crepaldi
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (C.C.); (G.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (C.C.); (G.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (C.C.); (G.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Brigida Barberio
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Fabiana Zingone
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology, Gastroenterology, University of Padua, 35121 Padua, Italy; (L.B.); (M.Z.); (M.C.); (B.B.); (F.Z.)
- Gastroenterology Unit, Azienda Ospedale-Università Padova, 35128 Padua, Italy
| |
Collapse
|
26
|
Zeng Y, Wu Y, Zhang Q, Xiao X. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases. mBio 2024; 15:e0203223. [PMID: 38055342 PMCID: PMC10790698 DOI: 10.1128/mbio.02032-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Gut microbiota exert influence on gastrointestinal mucosal permeability, bile acid metabolism, short-chain fatty acid synthesis, dietary fiber fermentation, and farnesoid X receptor/Takeda G protein-coupled receptor 5 (TGR5) signal transduction. The incretin glucagon-like peptide 1 (GLP-1) is mainly produced by L cells in the gut and regulates postprandial blood glucose. Changes in gut microbiota composition and function have been observed in obesity and type 2 diabetes (T2D). Meanwhile, the function and rhythm of GLP-1 have also been affected in subjects with obesity or T2D. Therefore, it is necessary to discuss the link between the gut microbiome and GLP-1. In this review, we describe the interaction between GLP-1 and the gut microbiota in metabolic diseases. On the one hand, gut microbiota metabolites stimulate GLP-1 secretion, and gut microbiota affect GLP-1 function and rhythm. On the other hand, the mechanism of action of GLP-1 on gut microbiota involves the inflammatory response. Additionally, we discuss the effects and mechanism of various interventions, such as prebiotics, probiotics, antidiabetic drugs, and bariatric surgery, on the crosstalk between gut microbiota and GLP-1. Finally, we stress that gut microbiota can be used as a target for metabolic diseases, and the clinical application of GLP-1 receptor agonists should be individualized.
Collapse
Grants
- 81870545, 81870579, 82170854, 81570715, 81170736 MOST | National Natural Science Foundation of China (NSFC)
- 7202163 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Z201100005520011 Beijing Municipal Science and Technology Commission, Adminitrative Commission of Zhongguancun Science Park
- 2017YFC1309603, 2021YFC2501700, 2016YFA0101002, 2018YFC2001100 MOST | National Key Research and Development Program of China (NKPs)
- 2019DCT-M-05 Beijing Municipal Human Resources and Social Security Bureau (BMHRSSB)
- 2017PT31036, 2018PT31021 Chinese Academy of Medical Sciences (CAMS)
- 2017PT32020, 2018PT32001 Chinese Academy of Medical Sciences (CAMS)
- CIFMS2017-I2M-1-008, CIFMS2021-I2M-1-002 Chinese Academy of Medical Sciences (CAMS)
- 2022-PUMCH- C-019, 2022-PUMCH-B-121 National High Level Hospital Clinical Research Funding
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yifan Wu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Scarpellini E, Balsiger LM, Broeders B, Houte KVD, Routhiaux K, Raymenants K, Carbone F, Tack J. Nutrition and Disorders of Gut-Brain Interaction. Nutrients 2024; 16:176. [PMID: 38202005 PMCID: PMC10780945 DOI: 10.3390/nu16010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Disorders of gut-brain interaction (DGBIs) have a complex pathophysiology that is often characterized by a relationship between food ingestion and triggering of symptoms. Understanding of the underlying mechanisms and the role of nutrients as a therapeutic target are rapidly evolving. AIMS AND METHODS We performed a narrative review of the literature using the following keywords, their acronyms, and their associations: nutrients, disorders of gut-brain interaction; functional dyspepsia; malabsorption; irritable bowel syndrome; diarrhea; constipation. RESULTS Functional dyspepsia displayed a significant correlation between volume, fat and/or wheat abundance, chemical composition of ingested food and symptoms of early satiety, fullness and weight loss. Carbohydrate malabsorption is related to enzyme deficiency throughout the GI tract. Food composition and richness in soluble vs. non-soluble fibers is related to constipation and diarrhea. The elimination of fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) has a significant and non-unidirectional impact on irritable bowel syndrome (IBS) symptoms. CONCLUSIONS Food volume, nutritive and chemical composition, and its malabsorption are associated with symptom generation in DGBIs. Further multicenter, randomized-controlled clinical trials are needed to clarify the underlying pathophysiology.
Collapse
Affiliation(s)
- Emidio Scarpellini
- Translational Research in Gastrointestinal Disoerders (T.A.R.G.I.D.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Lueven, Belgium; (E.S.); (L.M.B.); (B.B.); (K.V.D.H.); (K.R.); (K.R.); (F.C.)
- Internal Medicine Unit, “Madonna del Soccorso” General Hospital, Via Luciano Manara 7, 63074 San Benedetto del Tronto, Italy
| | - Lukas Michaja Balsiger
- Translational Research in Gastrointestinal Disoerders (T.A.R.G.I.D.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Lueven, Belgium; (E.S.); (L.M.B.); (B.B.); (K.V.D.H.); (K.R.); (K.R.); (F.C.)
| | - Bert Broeders
- Translational Research in Gastrointestinal Disoerders (T.A.R.G.I.D.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Lueven, Belgium; (E.S.); (L.M.B.); (B.B.); (K.V.D.H.); (K.R.); (K.R.); (F.C.)
| | - Karen Van Den Houte
- Translational Research in Gastrointestinal Disoerders (T.A.R.G.I.D.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Lueven, Belgium; (E.S.); (L.M.B.); (B.B.); (K.V.D.H.); (K.R.); (K.R.); (F.C.)
| | - Karen Routhiaux
- Translational Research in Gastrointestinal Disoerders (T.A.R.G.I.D.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Lueven, Belgium; (E.S.); (L.M.B.); (B.B.); (K.V.D.H.); (K.R.); (K.R.); (F.C.)
| | - Karlien Raymenants
- Translational Research in Gastrointestinal Disoerders (T.A.R.G.I.D.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Lueven, Belgium; (E.S.); (L.M.B.); (B.B.); (K.V.D.H.); (K.R.); (K.R.); (F.C.)
| | - Florencia Carbone
- Translational Research in Gastrointestinal Disoerders (T.A.R.G.I.D.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Lueven, Belgium; (E.S.); (L.M.B.); (B.B.); (K.V.D.H.); (K.R.); (K.R.); (F.C.)
| | - Jan Tack
- Translational Research in Gastrointestinal Disoerders (T.A.R.G.I.D.), Gasthuisberg University Hospital, KU Leuven, Herestraat 49, 3000 Lueven, Belgium; (E.S.); (L.M.B.); (B.B.); (K.V.D.H.); (K.R.); (K.R.); (F.C.)
| |
Collapse
|
28
|
Zhu L, Jian X, Zhou B, Liu R, Muñoz M, Sun W, Xie L, Chen X, Peng C, Maurer M, Li J. Gut microbiota facilitate chronic spontaneous urticaria. Nat Commun 2024; 15:112. [PMID: 38168034 PMCID: PMC10762022 DOI: 10.1038/s41467-023-44373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Chronic spontaneous urticaria (CSU) comes with gut dysbiosis, but its relevance remains elusive. Here we use metagenomics sequencing and short-chain fatty acids metabolomics and assess the effects of human CSU fecal microbial transplantation, Klebsiella pneumoniae, Roseburia hominis, and metabolites in vivo. CSU gut microbiota displays low diversity and short-chain fatty acids production, but high gut Klebsiella pneumoniae levels, negatively correlates with blood short-chain fatty acids levels and links to high disease activity. Blood lipopolysaccharide levels are elevated, link to rapid disease relapse, and high gut levels of conditional pathogenic bacteria. CSU microbiome transfer and Klebsiella pneumoniae transplantation facilitate IgE-mediated mast cell(MC)-driven skin inflammatory responses and increase intestinal permeability and blood lipopolysaccharide accumulation in recipient mice. Transplantation of Roseburia hominis and caproate administration protect recipient mice from MC-driven skin inflammation. Here, we show gut microbiome alterations, in CSU, may reduce short-chain fatty acids and increase lipopolysaccharide levels, respectively, and facilitate MC-driven skin inflammation.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingxing Jian
- Bioinformatics Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bingjing Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runqiu Liu
- Department of Dermatology, the First people's Hospital of Yancheng, Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Melba Muñoz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Wan Sun
- BGI, Complex building, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Lu Xie
- Bioinformatics Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Kraimi N, Ross T, Pujo J, De Palma G. The gut microbiome in disorders of gut-brain interaction. Gut Microbes 2024; 16:2360233. [PMID: 38949979 PMCID: PMC11218806 DOI: 10.1080/19490976.2024.2360233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs), chronic disorders characterized by either abdominal pain, altered intestinal motility, or their combination, have a worldwide prevalence of more than 40% and impose a high socioeconomic burden with a significant decline in quality of life. Recently, FGIDs have been reclassified as disorders of gut-brain interaction (DGBI), reflecting the key role of the gut-brain bidirectional communication in these disorders and their impact on psychological comorbidities. Although, during the past decades, the field of DGBIs has advanced significantly, the molecular mechanisms underlying DGBIs pathogenesis and pathophysiology, and the role of the gut microbiome in these processes are not fully understood. This review aims to discuss the latest body of literature on the complex microbiota-gut-brain interactions and their implications in the pathogenesis of DGBIs. A better understanding of the existing communication pathways between the gut microbiome and the brain holds promise in developing effective therapeutic interventions for DGBIs.
Collapse
Affiliation(s)
- Narjis Kraimi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Taylor Ross
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Julien Pujo
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| |
Collapse
|
30
|
Herfindal AM, van Megen F, Gilde MKO, Valeur J, Rudi K, Skodje GI, Lundin KEA, Henriksen C, Bøhn SK. Effects of a low FODMAP diet on gut microbiota in individuals with treated coeliac disease having persistent gastrointestinal symptoms - a randomised controlled trial. Br J Nutr 2023; 130:2061-2075. [PMID: 37272479 PMCID: PMC10657752 DOI: 10.1017/s0007114523001253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/28/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
Individuals with coeliac disease (CeD) often experience gastrointestinal symptoms despite adherence to a gluten-free diet (GFD). While we recently showed that a diet low in fermentable oligo-, di-, monosaccharides and polyols (FODMAP) successfully provided symptom relief in GFD-treated CeD patients, there have been concerns that the low FODMAP diet (LFD) could adversely affect the gut microbiota. Our main objective was therefore to investigate whether the LFD affects the faecal microbiota and related variables of gut health. In a randomised controlled trial GFD-treated CeD adults, having persistent gastrointestinal symptoms, were randomised to either consume a combined LFD and GFD (n 39) for 4 weeks or continue with GFD (controls, n 36). Compared with the control group, the LFD group displayed greater changes in the overall faecal microbiota profile (16S rRNA gene sequencing) from baseline to follow-up (within-subject β-diversity, P < 0·001), characterised by lower and higher follow-up abundances (%) of genus Anaerostipes (Pgroup < 0·001) and class Erysipelotrichia (Pgroup = 0·02), respectively. Compared with the control group, the LFD led to lower follow-up concentrations of faecal propionic and valeric acid (GC-FID) in participants with high concentrations at baseline (Pinteraction ≤ 0·009). No differences were found in faecal bacterial α-diversity (Pgroup ≥ 0·20) or in faecal neutrophil gelatinase-associated lipocalin (ELISA), a biomarker of gut integrity and inflammation (Pgroup = 0·74), between the groups at follow-up. The modest effects of the LFD on the gut microbiota and related variables in the CeD patients of the present study are encouraging given the beneficial effects of the LFD strategy to treat functional GI symptoms (Registered at clinicaltrials.gov as NCT03678935).
Collapse
Affiliation(s)
- Anne Mari Herfindal
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Frida van Megen
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Unit for Clinical Nutrition, Division of Cancer Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mari K. O. Gilde
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Knut Rudi
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gry I. Skodje
- Healthy Life Centre, Municipality of Nes, Nes, Norway
| | - Knut E. A. Lundin
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Christine Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Siv Kjølsrud Bøhn
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
31
|
Yang T, Li L, Pang J, Heng C, Wei C, Wang X, Xia Z, Huang X, Zhang L, Jiang Z. Modulating intestinal barrier function by sphingosine-1-phosphate receptor 1 specific agonist SEW2871 attenuated ANIT-induced cholestatic hepatitis via the gut-liver axis. Int Immunopharmacol 2023; 125:111150. [PMID: 37924700 DOI: 10.1016/j.intimp.2023.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Bile acid (BA) homeostasis throughout the enterohepatic circulation system is a guarantee of liver physiological functions. BA circulation disorders is one of the characteristic clinical manifestations of cholestasis, and have a closely relationship with intestinal barrier function, especially ileum. Here, our in vivo and in vitro studies showed that intestinal tight junctions (TJs) were disrupted by α-naphthylisothiocyanate (ANIT), which also down-regulated the protein expression of sphingosine-1-phosphate receptor 1 (S1PR1) in the top of villus of mice ileum. Activating S1PR1 by specific agonist SEW2871 could improve TJs via inhibiting ERK1/2/LKB1/AMPK signaling pathway in the ileum of ANIT-treated mice and ANIT-cultured Caco-2 cells. SEW2871 not only regained ileum TJs by activating S1PR1 in the epithelial cells of ileum mucosa, but also recovered ileum barrier function, which was further verified by the recovered BA homeostasis in mice ileum (content and tissue) by using of high-performance liquid chromatographytandem mass spectrometry (LC-MS/MS). Subsequently, the improved intestinal injury and inflammation further strengthened that SEW2871 modulated intestinal barrier function in ANIT-treated mice. Finally, our data revealed that along with the down-regulated levels of serum lipopolysaccharides (LPS), SEW2871 improved liver function and relieved hepatitis via blocking TLR4/MyD88/NF-kB signaling pathway in ANIT-treated mice. In conclusion, these results demonstrated that activating intestinal S1PR1 by SEW2871 could modulate intestinal barrier function, leading to the improvement of cholestatic hepatitis in ANIT-treated mice via the "gut-liver" axis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jiale Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Cai Heng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Chujing Wei
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Xue Wang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Ziyin Xia
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhenzhou Jiang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
32
|
Arora R, Chandel AK. Unlocking the potential of low FODMAPs sourdough technology for management of irritable bowel syndrome. Food Res Int 2023; 173:113425. [PMID: 37803764 DOI: 10.1016/j.foodres.2023.113425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
Consumption of high FODMAP (Fermentable Oligo-, Di-, and Monosaccharides and Polyols) diet is the leading cause of alteration in the human gut microbiome, thereby, causing irritable bowel syndrome (IBS). Therefore, sourdough technology can be exploited for reduction of FODMAPs in various foods to alleviate the symptoms of IBS. Several microorganisms viz. Pichia fermentans, Lactobacillus fetmentum, Saccharomyces cerevisiae, Torulaspora delbrueckii, Kluyveromyces marxianus etc. have been identified for the production of low FODMAP type II sourdough fermented products. However, more research on regulation of end-product and volatilome profile is required for maximal exploitation of FODMAP-reducing microorganisms. Therefore, the present review is focused on utilisation of lactic acid bacteria and yeasts, alone and in synergy, for the production of low FODMAP sourdough foods. Moreover, the microbial bioprocessing of cereal and non-cereal based low FODMAP fermented sourdough products along with their nutritional and therapeutic benefits have been elaborated. The challenges and future prospects for the production of sourdough fermented low FODMAP foods, thereby, bringing out positive alterations in gut microbiome, have also been discussed.
Collapse
Affiliation(s)
- Richa Arora
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena SP 12.602-810, Brazil.
| |
Collapse
|
33
|
Alhasan MM, Hölsken O, Duerr C, Helfrich S, Branzk N, Philipp A, Leitz D, Duerr J, Almousa Y, Barrientos G, Mohn WW, Gamradt S, Conrad ML. Antibiotic use during pregnancy is linked to offspring gut microbial dysbiosis, barrier disruption, and altered immunity along the gut-lung axis. Eur J Immunol 2023; 53:e2350394. [PMID: 37431194 DOI: 10.1002/eji.202350394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Antibiotic use during pregnancy is associated with increased asthma risk in children. Since approximately 25% of women use antibiotics during pregnancy, it is important to identify the pathways involved in this phenomenon. We investigate how mother-to-offspring transfer of antibiotic-induced gut microbial dysbiosis influences immune system development along the gut-lung axis. Using a mouse model of maternal antibiotic exposure during pregnancy, we immunophenotyped offspring in early life and after asthma induction. In early life, prenatal-antibiotic exposed offspring exhibited gut microbial dysbiosis, intestinal inflammation (increased fecal lipocalin-2 and IgA), and dysregulated intestinal ILC3 subtypes. Intestinal barrier dysfunction in the offspring was indicated by a FITC-dextran intestinal permeability assay and circulating lipopolysaccharide. This was accompanied by increased T-helper (Th)17 cell percentages in the offspring's blood and lungs in both early life and after allergy induction. Lung tissue additionally showed increased percentages of RORγt T-regulatory (Treg) cells at both time points. Our investigation of the gut-lung axis identifies early-life gut dysbiosis, intestinal inflammation, and barrier dysfunction as a possible developmental programming event promoting increased expression of RORγt in blood and lung CD4+ T cells that may contribute to increased asthma risk.
Collapse
Affiliation(s)
- Moumen M Alhasan
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Oliver Hölsken
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
- German Rheuma Research Center Berlin (DRFZ), Mucosal and Developmental Immunology, Berlin, Germany
- Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Claudia Duerr
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sofia Helfrich
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Nora Branzk
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Alina Philipp
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Dominik Leitz
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yahia Almousa
- Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefanie Gamradt
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Melanie L Conrad
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
34
|
Lin W, Wu D, Zeng Y, Liu Y, Yu D, Wei J, Cai Y, Lin Y, Wu B, Huang H. Characteristics of gut microbiota in male periadolescent rats with irritable bowel syndrome. Heliyon 2023; 9:e18995. [PMID: 37609414 PMCID: PMC10440515 DOI: 10.1016/j.heliyon.2023.e18995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder, however, its effect on gut microbiota during the periadolescent period remains unclear. In this study, our objective was to investigate the characteristics of gut microbiota in male periadolescent rats with IBS induced by neonatal maternal separation (NMS). We evaluated visceral sensitivity by electromyography (EMG), analyzed gut microbiota composition using 16S rDNA gene sequencing, and examined intestinal pathological changes between control and IBS-like groups. The IBS-like group had significantly higher discharge amplitude of the external oblique muscle of the abdomen during colorectal distension (CRD) at 40- and 60 mmHg pressures. We observed differences in gut microbiota composition, with an increase in Bacteroidetes abundance and a decrease in Firmicutes in IBS-like rats. Beta-diversity analysis revealed the gut microbiota of the IBS-like group displayed higher consistent, while that of the control group exhibited substantial variation. Linear discriminant analysis effect size (LEfSe) detected 10 bacterial taxonomic clades showing statistically significant differences (7 increased and 3 decreased) in the IBS-like group. Functional analysis revealed that aminoacyl-tRNA biosynthesis and fatty acid biosynthesis were significantly altered, leading to changes in gene expression. Our findings demonstrate a definite correlation between gut microbiota dysbiosis and IBS during the male periadolescent period, with Alloprevotella and Bacteroide positively associated with high risk of IBS. The effects of specific bacterial genera may provide new insights for the development of treatments for IBS.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dongxiao Wu
- Department of Pediatrics, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yongbin Zeng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuan Liu
- Cancer Research Center Nantong, Affiliated Tumor Hospital of Nantong University, China
| | - Dajie Yu
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianhang Wei
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanliang Cai
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yueli Lin
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bin Wu
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huanhuan Huang
- Department of Pediatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
35
|
Luo JQ, Ren H, Chen MY, Zhao Q, Yang N, Liu Q, Gao YC, Zhou HH, Huang WH, Zhang W. Hydrochlorothiazide-induced glucose metabolism disorder is mediated by the gut microbiota via LPS-TLR4-related macrophage polarization. iScience 2023; 26:107130. [PMID: 37456847 PMCID: PMC10338205 DOI: 10.1016/j.isci.2023.107130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/09/2023] [Accepted: 06/10/2023] [Indexed: 07/18/2023] Open
Abstract
Hydrochlorothiazide (HCTZ) is reported to impair glucose tolerance and may induce new onset of diabetes, but the pharmacomicrobiomics of the adverse effect for HCTZ remains unknown. Mice-fed HCTZ exhibited insulin resistance and impaired glucose tolerance. By using FMT and antibiotic cocktail models, we found that HCTZ-induced metabolic disorder was mediated by commensal microbiota. HCTZ consumption disturbed the structure of the intestinal microbiota, causing abnormal elevation of Gram-negative Enterobacteriaceae and lipopolysaccharide (LPS) then leading to intestinal barrier dysfunction. Additionally, HCTZ activated TLR4 signaling and induced macrophage polarization and inflammation in the liver. Furthermore, HCTZ-induced macrophage polarization and metabolic disorder were abrogated by blocking TLR4 signaling. HCTZ consumption caused a significant increase in Gram-negative Enterobacteriaceae, which elevated the levels of LPS, thereby activating LPS/TLR4 pathway, promoting inflammation and macrophage polarization, and resulting in metabolic disorders. These findings revealed that the gut microbiome is the key medium underlying HCTZ-induced metabolic disorder.
Collapse
Affiliation(s)
- Jian-Quan Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ren
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
- Department of Pharmacy, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, No.61 Western Jiefang Road, Changsha, Hunan, China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Qing Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Nian Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Yong-Chao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| |
Collapse
|
36
|
Dale HF, Lorentzen SCS, Mellin-Olsen T, Valeur J. Diet-microbiota interaction in irritable bowel syndrome: looking beyond the low-FODMAP approach. Scand J Gastroenterol 2023; 58:1366-1377. [PMID: 37384386 DOI: 10.1080/00365521.2023.2228955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Diet is one of the main modulators of the gut microbiota, and dietary patterns are decisive for gut-microbiota-related diseases, including irritable bowel syndrome (IBS). The low-FODMAP diet (LFD) is commonly used to treat IBS, but its long-term effects on microbiota, symptoms and quality of life (QoL) are unclear. Alternative dietary strategies promoting beneficial gut microbiota, combined with reduced symptoms and improved QoL, are therefore of interest. AIMS To review current evidence on the diet-microbiota-interaction as a modulator of IBS pathophysiology, and dietary management of IBS, with particular emphasis on strategies targeting the gut microbiota, beyond the LFD. METHODS Literature was identified through PubMed-searches with relevant keywords. RESULTS Dietary patterns with a low intake of processed foods and a high intake of plants, such as the Mediterranean diet, promote gut microbiota associated with beneficial health outcomes. In contrast, Western diets with a high intake of ultra-processed foods promote a microbiota associated with disease, including IBS. Increasing evidence points towards dietary strategies consistent with the Mediterranean diet being equal to the LFD in alleviating IBS-symptoms and having a less negative impact on QoL. Timing of food intake is suggested as a gut microbiota modulator, but little is known about its effects on IBS. CONCLUSIONS Dietary recommendations in IBS should aim to target the gut microbiota by focusing on improved dietary quality, considering the impact on both IBS-symptoms and QoL. Increased intake of whole foods combined with a regular meal pattern and limitation of ultra-processed foods can be beneficial strategies beyond the LFD.
Collapse
Affiliation(s)
- Hanna Fjeldheim Dale
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Clinical Support, Lovisenberg Diaconal Hospital, Oslo, Norway
| | | | - Tonje Mellin-Olsen
- Department of Clinical Support, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Medicine, Lovisenberg Diaconal Hospital, Oslo, Norway
| |
Collapse
|
37
|
Chakraborty PS, Daniel R, Navarro FA. Non-pharmacologic approaches to treatment of pediatric functional abdominal pain disorders. Front Pediatr 2023; 11:1118874. [PMID: 37397151 PMCID: PMC10311071 DOI: 10.3389/fped.2023.1118874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/24/2023] [Indexed: 07/04/2023] Open
Abstract
Functional abdominal pain disorders (FAPDs) affect up to 25% of children in the United States. These disorders are more recently known as disorders of "brain-gut" interaction. The diagnosis is based on the ROME IV criteria, and requires the absence of an organic condition to explain the symptoms. Although these disorders are not completely understood, several factors have been involved in the pathophysiology including disordered gut motility, visceral hypersensitivity, allergies, anxiety/stress, gastrointestinal infection/inflammation, as well dysbiosis of the gut microbiome. The pharmacologic and non-pharmacologic treatments for FAPDs are directed to modifying these pathophysiologic mechanisms. This review aims to summarize the non-pharmacologic interventions used in the treatment of FAPDs including dietary modifications, manipulation of the gut microbiome (neutraceuticals, prebiotics, probiotics, synbiotics and fecal microbiota transplant) and psychological interventions that addresses the "brain" component of the brain-gut axis (cognitive behavioral therapy, hypnotherapy, breathing and relaxation techniques). In a survey conducted at a large academic pediatric gastroenterology center, 96% of patients with functional pain disorders reported using at least 1 complementary and alternative medicine treatment to ameliorate symptoms. The paucity of data supporting most of the therapies discussed in this review underscores the need for large randomized controlled trials to assess their efficacy and superiority compared to other treatments.
Collapse
|
38
|
Stribling P, Ibrahim F. Dietary fibre definition revisited - The case of low molecular weight carbohydrates. Clin Nutr ESPEN 2023; 55:340-356. [PMID: 37202067 DOI: 10.1016/j.clnesp.2023.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/16/2023] [Indexed: 05/20/2023]
Abstract
Low molecular weight (LMW) non-digestible carbohydrates (namely, oligosaccharides and inulin) are accepted as dietary fibre in many countries worldwide. The inclusion of oligosaccharides as dietary fibre was made optional within the Codex Alimentarius definition in 2009, which has caused great controversy. Inulin is accepted as dietary fibre by default, due to being a non-digestible carbohydrate polymer. Oligosaccharides and inulin occur naturally in numerous foods and are frequently incorporated into commonly consumed food products for a variety of purposes, such as to increase dietary fibre content. LMW non-digestible carbohydrates, due to their rapid fermentation in the proximal colon, may cause deleterious effects in individuals with functional bowel disorders (FBDs) and, as such, are excluded on the low FODMAP (fermentable oligosaccharides, disaccharides, and polyols) diet and similar protocols. Their addition to food products as dietary fibre allows the use of associated nutrition/health claims, causing a paradox for those with FBDs, which is further complicated by lack of clarity on food labelling. Therefore, this review aimed to discuss whether the inclusion of LMW non-digestible carbohydrates within the Codex definition of dietary fibre is warranted. This review provides justification for the exclusion of oligosaccharides and inulin from the Codex definition of dietary fibre. LMW non-digestible carbohydrates could, instead, be placed in their own category as prebiotics, recognised for their specific functional properties, or considered food additives, whereby they are not promoted for being beneficial for health. This would preserve the concept of dietary fibre being a universally beneficial dietary component for all individuals.
Collapse
Affiliation(s)
- Philippa Stribling
- UCL Division of Medicine, 5 University Street, London, WC1E 6JF, United Kingdom.
| | - Fandi Ibrahim
- University of Suffolk, Life Sciences, Ipswich, IP4 1QJ, United Kingdom.
| |
Collapse
|
39
|
Colleselli K, Ebeyer-Masotta M, Neuditschko B, Stierschneider A, Pollhammer C, Potocnjak M, Hundsberger H, Herzog F, Wiesner C. Beyond Pattern Recognition: TLR2 Promotes Chemotaxis, Cell Adhesion, and Migration in THP-1 Cells. Cells 2023; 12:1425. [PMID: 37408259 DOI: 10.3390/cells12101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
The interaction between monocytes and endothelial cells in inflammation is central to chemoattraction, adhesion, and transendothelial migration. Key players, such as selectins and their ligands, integrins, and other adhesion molecules, and their functions in these processes are well studied. Toll-like receptor 2 (TLR2), expressed in monocytes, is critical for sensing invading pathogens and initiating a rapid and effective immune response. However, the extended role of TLR2 in monocyte adhesion and migration has only been partially elucidated. To address this question, we performed several functional cell-based assays using monocyte-like wild type (WT), TLR2 knock-out (KO), and TLR2 knock-in (KI) THP-1 cells. We found that TLR2 promotes the faster and stronger adhesion of monocytes to the endothelium and a more intense endothelial barrier disruption after endothelial activation. In addition, we performed quantitative mass spectrometry, STRING protein analysis, and RT-qPCR, which not only revealed the association of TLR2 with specific integrins but also uncovered novel proteins affected by TLR2. In conclusion, we show that unstimulated TLR2 influences cell adhesion, endothelial barrier disruption, migration, and actin polymerization.
Collapse
Affiliation(s)
- Katrin Colleselli
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Marie Ebeyer-Masotta
- Department for Biomedical Research, University for Continuing Education Krems, 3500 Krems, Austria
| | - Benjamin Neuditschko
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Anna Stierschneider
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Christopher Pollhammer
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Mia Potocnjak
- Gene Center Munich, Department of Biochemistry, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Harald Hundsberger
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Franz Herzog
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| |
Collapse
|
40
|
Vanuytsel T, Bercik P, Boeckxstaens G. Understanding neuroimmune interactions in disorders of gut-brain interaction: from functional to immune-mediated disorders. Gut 2023; 72:787-798. [PMID: 36657961 PMCID: PMC10086308 DOI: 10.1136/gutjnl-2020-320633] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023]
Abstract
Functional gastrointestinal disorders-recently renamed into disorders of gut-brain interaction-such as irritable bowel syndrome and functional dyspepsia are highly prevalent conditions with bothersome abdominal symptoms in the absence of structural abnormalities. While traditionally considered as motility disorders or even psychosomatic conditions, our understanding of the pathophysiology has evolved significantly over the last two decades. Initial observations of subtle mucosal infiltration with immune cells, especially mast cells and eosinophils, are since recently being backed up by mechanistic evidence demonstrating increased release of nociceptive mediators by immune cells and the intestinal epithelium. These mediators can activate sensitised neurons leading to visceral hypersensitivity with bothersome symptoms. The interaction between immune activation and an impaired barrier function of the gut is most likely a bidirectional one with alterations in the microbiota, psychological stress and food components as upstream players in the pathophysiology. Only few immune-targeting treatments are currently available, but an improved understanding through a multidisciplinary scientific approach will hopefully identify novel, more precise treatment targets with ultimately better outcomes.
Collapse
Affiliation(s)
- Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMeta), KU Leuven, Leuven, Belgium.,Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Premysl Bercik
- Faculty of Health Sciences, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Guy Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMeta), KU Leuven, Leuven, Belgium .,Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Zhou Q, Yang L, Verne ML, Zhang BB, Fields J, Verne GN. Catechol-O-Methyltransferase Loss Drives Cell-Specific Nociceptive Signaling via the Enteric Catechol-O-Methyltransferase/microRNA-155/Tumor Necrosis Factor α Axis. Gastroenterology 2023; 164:630-641.e34. [PMID: 36623778 PMCID: PMC10038873 DOI: 10.1053/j.gastro.2022.12.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS The etiology of abdominal pain in postinfectious, diarrhea-predominant irritable bowel syndrome (PI-IBS-D) is unknown, and few treatment options exist. Catechol-O-methyltransferase (COMT), an enzyme that inactivates and degrades biologically active catecholamines, plays an important role in numerous physiologic processes, including modulation of pain perception. Our objective was to determine the mechanism(s) of how decreased colonic COMT in PI-IBS-D patients contributes to the chronic abdominal pain phenotype after enteric infections. METHODS Colon neurons, epithelial cells, and macrophages were procured with laser capture microdissection from PI-IBS-D patients to evaluate cell-specific colonic COMT, microRNA-155 (miR-155), and tumor necrosis factor (TNF) α expression levels compared to recovered patients (infection cleared: did not develop PI-IBS-D) and control individuals. COMT-/-, colon-specific COMT-/-, and miR-155-/- mice and human colonoids were used to model phenotypic expression of COMT in PI-IBS-D patients and to investigate signaling pathways linking abdominal pain. Citrobacter rodentium and trinitrobenzene sulfonic acid animal models were used to model postinflammatory changes seen in PI-IBS-D patients. RESULTS Colonic COMT levels were significantly decreased and correlated with increased visual analog scale abdominal pain ratings in PI-IBS-D patients compared to recovered patients and control individuals. Colonic miR-155 and TNF-α were increased in PI-IBS-D patients with diminished colonic COMT. COMT-/- mice had significantly increased expression of miR-155 and TNF-α in both colon tissues and dorsal root ganglia. Introduction of cV1q antibody (anti-TNF-α) into mice reversed visceral hypersensitivity after C rodentium and trinitrobenzene sulfonic acid. CONCLUSIONS Decreased colonic COMT in PI-IBS-D patients drives abdominal pain phenotypes via the COMT/miR-155/TNF-α axis. These important findings will allow new treatment paradigms and more targeted and personalized medicine approaches for gastrointestinal disorders after enteric infections.
Collapse
Affiliation(s)
- QiQi Zhou
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Memphis Veterans Affairs Medical Center, Research Service, Memphis, Tennessee
| | - Liuqing Yang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Meghan L Verne
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Benjamin B Zhang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jeremy Fields
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - George Nicholas Verne
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Memphis Veterans Affairs Medical Center, Research Service, Memphis, Tennessee.
| |
Collapse
|
42
|
Camilleri M, Boeckxstaens G. Irritable bowel syndrome: treatment based on pathophysiology and biomarkers. Gut 2023; 72:590-599. [PMID: 36307180 PMCID: PMC9990119 DOI: 10.1136/gutjnl-2022-328515] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/16/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To appraise the evidence that pathophysiological mechanisms and individualised treatment directed at those mechanisms provide an alternative approach to the treatment of patients with irritable bowel syndrome (IBS). DESIGN A PubMED-based literature review of mechanisms and treatment of IBS was conducted independently by the two authors, and any differences of perspective or interpretation of the literature were resolved following discussion. RESULTS The availability of several noninvasive clinical tests can appraise the mechanisms responsible for symptom generation in IBS, including rectal evacuation disorders, abnormal transit, visceral hypersensitivity or hypervigilance, bile acid diarrhoea, sugar intolerances, barrier dysfunction, the microbiome, immune activation and chemicals released by the latter mechanism. The basic molecular mechanisms contributing to these pathophysiologies are increasingly recognised, offering opportunities to intervene with medications directed specifically to food components, receptors and potentially the microbiome. Although the evidence supporting interventions for each mechanism is not at the same level of proof, the current state-of-the-art provides the opportunity to advance the practice from treatment based on symptoms to individualisation of treatment guided by pathophysiology and clinically identified biomarkers. CONCLUSION These advances augur well for the implementation of evidence-based individualised treatment for patients with IBS based on actionable biomarkers or psychological disturbances.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Guy Boeckxstaens
- Center of Intestinal Neuroimmune Interaction, Division of Gastroenterology, Translational Research Center for GI Disorders (TARGID), Leuven University, Leuven, Belgium
| |
Collapse
|
43
|
Camilleri M, Dilmaghani S. Update on treatment of abdominal pain in irritable bowel syndrome: A narrative review. Pharmacol Ther 2023; 245:108400. [PMID: 37001737 DOI: 10.1016/j.pharmthera.2023.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
The objectives of this narrative review are to update readers on the current state-of-the-art regarding diverse approaches for the treatment of pain, global symptoms, or adequate relief in irritable bowel syndrome (IBS). The article appraises medications, dietary interventions including low fermentable oligosaccharides, disaccharides, and monosaccharides and polyols (FODMAP) diet, fecal microbial transplantation (FMT), electrical approaches, and behavioral therapies including cognitive behavioral therapy (CBT), gut-directed hypnotherapy (GDH), mindfulness, and open-label placebo. Current evidence demonstrates only modest benefit in global IBS symptoms and pain relief. A future approach that identifies pathophysiological mechanisms of IBS through validated biomarkers has the potential to individualize treatment of patients rather than sequential therapeutic trial and error approaches.
Collapse
|
44
|
Abstract
Interactions between the immune and nervous systems are of central importance in neuropathic pain, a common and debilitating form of chronic pain caused by a lesion or disease affecting the somatosensory system. Our understanding of neuroimmune interactions in pain research has advanced considerably. Initially considered as passive bystanders, then as culprits in the pathogenesis of neuropathic pain, immune responses in the nervous system are now established to underpin not only the initiation and progression of pain but also its resolution. Indeed, immune cells and their mediators are well-established promoters of neuroinflammation at each level of the neural pain pathway that contributes to pain hypersensitivity. However, emerging evidence indicates that specific subtypes of immune cells (including antinociceptive macrophages, pain-resolving microglia and T regulatory cells) as well as immunoresolvent molecules and modulators of the gut microbiota-immune system axis can reduce the pain experience and contribute to the resolution of neuropathic pain. This Review provides an overview of the immune mechanisms responsible for the resolution of neuropathic pain, including those involved in innate, adaptive and meningeal immunity as well as interactions with the gut microbiome. Specialized pro-resolving mediators and therapeutic approaches that target these neuroimmune mechanisms are also discussed.
Collapse
|
45
|
Hu C, Yan C, Wu Y, Tao E, Guo R, Zhu Z, Chen X, Fang M, Jiang M. Low FODMAP Diet Relieves Visceral Hypersensitivity and Is Associated with Changes in Colonic Microcirculation in Water Avoidance Mice Model. Nutrients 2023; 15:nu15051155. [PMID: 36904154 PMCID: PMC10004816 DOI: 10.3390/nu15051155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
(1) Background: Irritable bowel syndrome (IBS) is a global public health problem, the pathogenesis of which has not been fully explored. Limiting fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) can relieve symptoms in some patients with IBS. Studies have shown that normal microcirculation perfusion is necessary to maintain the primary function of the gastrointestinal system. Here, we hypothesized that IBS pathogenesis might be related to abnormalities in colonic microcirculation. A low-FODMAP diet could alleviate visceral hypersensitivity (VH) by improving colonic microcirculation; (2) Methods: C57BL/6 mice were raised to establish an IBS-like rodent model using water avoidance (WA) stress or SHAM-WA as a control, one hour per day for ten days. The mice in the WA group were administered different levels of the FODMAP diet: 2.1% regular FODMAP (WA-RF), 10% high FODMAP diet (WA-HF), 5% medium FODMAP diet (WA-MF), and 0% low FODMAP diet (WA-LF) for the following 14 days. The body weight and food consumption of the mice were recorded. Visceral sensitivity was measured as colorectal distention (CRD) using the abdominal withdrawal reflex (AWR) score. Colonic microcirculation was assessed using laser speckle contrast imaging (LCSI). Vascular endothelial-derived growth factor (VEGF) was detected using immunofluorescence staining; (3) Results: The threshold values of CRD pressure in the WA-RF, WA-HF, and WA-MF groups were significantly lower than those in the SHAM-WA group. Moreover, we observed that colonic microcirculation perfusion decreased, and the expression of VEGF protein increased in these three groups of mice. Interestingly, a low-FODMAP dietary intervention could reverse this situation. Specifically, a low-FODMAP diet increased colonic microcirculation perfusion, reduced VEGF protein expression in mice, and increased the threshold of VH. There was a significant positive correlation between colonic microcirculation and threshold for VH; (4) Conclusions: These results demonstrate that a low-FODMAP diet can alter VH by affecting colonic microcirculation. Changes in intestinal microcirculation may be related to VEGF expression.
Collapse
Affiliation(s)
- Chenmin Hu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310052, China
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chenxi Yan
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310052, China
| | - Yuhao Wu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310052, China
| | - Enfu Tao
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310052, China
| | - Rui Guo
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310052, China
| | - Zhenya Zhu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310052, China
| | - Xiaolong Chen
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310052, China
| | - Marong Fang
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (M.F.); (M.J.)
| | - Mizu Jiang
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310052, China
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou 310052, China
- Correspondence: (M.F.); (M.J.)
| |
Collapse
|
46
|
Colomier E, Algera JP, Van den Houte K, Simrén M, Tack J. Mechanisms underlying food-related symptoms in disorders of gut-brain interaction: Course ahead in research and clinical practice. Best Pract Res Clin Gastroenterol 2023; 62-63:101824. [PMID: 37094907 DOI: 10.1016/j.bpg.2023.101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 04/26/2023]
Abstract
A subgroup of patients with a disorder of gut-brain interaction (DGBI) report symptoms such as abdominal pain, gas-related symptoms, dyspeptic symptoms and loose stool or urgency after meal intake. Therefore, the effect of several dietary therapies including fibre-rich or restrictive diets have already been studied in patients with irritable bowel syndrome, functional abdominal bloating or distention, and functional dyspepsia. However, there is a paucity of studies in the literature on the mechanisms underlying food-related symptoms. Therefore, this review focuses on these potential mechanisms and explains the role of nutrient sensing and tasting, physical considerations, malabsorption or allergy-like reaction to food and its interaction with microbiota. In addition, it emphasizes the importance of future research and clinical practice regarding food-related symptoms in patients with a DGBI.
Collapse
Affiliation(s)
- Esther Colomier
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joost P Algera
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karen Van den Houte
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Center for Functional GI and Motility Disorders, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
47
|
Chen L, Dai M, Zuo W, Dai Y, Yang Q, Yu S, Huang M, Liu H. NF-κB p65 and SETDB1 expedite lipopolysaccharide-induced intestinal inflammation in mice by inducing IRF7/NLR-dependent macrophage M1 polarization. Int Immunopharmacol 2023; 115:109554. [PMID: 36580757 DOI: 10.1016/j.intimp.2022.109554] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 12/28/2022]
Abstract
Macrophages exhibit distinct phenotypes that are pro-inflammatory (M1) or anti-inflammatory (M2) in response to inflammation. In this study, we tried to identify the roles and mechanisms of interferon regulatory factor 7 (IRF7) in modulating the phenotypes of macrophages in lipopolysaccharide (LPS)-induced intestinal inflammation. The mouse model of intestinal inflammation was induced by lipopolysaccharide (LPS), and mouse bone marrow-derived macrophages (BMDMs) and mouse intestinal epithelial cells were selected for experimental verification in vitro. Results demonstrated that IRF7 was highly expressed in the mouse model of intestinal inflammation, while IRF7 deficiency repressed macrophage M1 polarization and attenuated intestinal inflammation in mice. p65 and SET domain bifurcated 1 (SETDB1) synergistically promoted histone 3 lysine 4 trimethylation (H3K4me3) methylation to elevate IRF7 expression, which activated the Nod-like receptor (NLR) pathway to induce macrophage M1 polarization. Through this mechanism, IRF7 in BMDMs functioned to accelerate intestinal epithelial cell apoptosis and their release of pro-inflammatory proteins. Furthermore, the promoting effect of p65 and SETDB1 on LPS-induced intestinal inflammation was validated in vivo. To sum up, NF-κB p65 and SETDB1 facilitated IRF7-mediated macrophage M1 polarization, thereby aggravating the LPS-induced intestinal inflammation. Hence, this study highlights the appealing value of these factors as anti-inflammatory targets.
Collapse
Affiliation(s)
- Li Chen
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Maolin Dai
- Department of Anesthesia, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Wei Zuo
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Yongyu Dai
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Qiqi Yang
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China
| | - Shuangjiang Yu
- Department of Neurosurgery, The First Hospital Affiliated to Army Military Medical University (Southwest Hospital), Chongqing 400038, PR China
| | - Min Huang
- Department of Digestion, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, PR China
| | - Hao Liu
- Department of Digestion, Rongchang District People's Hospital of Chongqing, Chongqing 402468, PR China.
| |
Collapse
|
48
|
Tomassen MMM, Govers C, Vos AP, de Wit NJW. Dietary fat induced chylomicron-mediated LPS translocation in a bicameral Caco-2cell model. Lipids Health Dis 2023; 22:4. [PMID: 36635716 PMCID: PMC9835336 DOI: 10.1186/s12944-022-01754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND There is increasing evidence that dietary fat, especially saturated fat, promotes the translocation of lipopolysaccharide (LPS) via chylomicron production in the gut. Chylomicrons can subsequently transport LPS to other parts of the body, where they can induce low-grade chronic inflammation that is linked to various metabolic and gut-related diseases. To identify promising (food) compounds that can prevent or ameliorate LPS-related low-grade inflammation, we developed and optimized a bicameral in vitro model for dietary fat-induced LPS translocation that closely mimics the in vivo situation and facilitates high-throughput screening. METHODS Caco-2 cells were cultured in monolayers and differentiated to a small intestinal phenotype in 21 days. Thereafter, optimal conditions for fat-induced chylomicron production were determined by apical exposure of Caco-2 cells to a dilution range of in vitro digested palm oil and sunflower oil, optionally preceded by a 1-week apical FBS deprivation (cultured without apical fetal bovine serum). Chylomicron production was assessed by measuring basolateral levels of the chylomicron-related marker apolipoprotein B. Next, LPS was coincubated at various concentrations with the digested oils, and fat-induced LPS translocation to the basolateral side was assessed. RESULTS We found that dietary fat-induced LPS translocation in Caco-2 cells was optimal after apical exposure to digested oils at a 1:50 dilution in combination with 750 ng/mL LPS, preceded by 1 week of apical FBS deprivation. Coincubation with the chylomicron blocker Pluronic L81 confirmed that fat-induced LPS translocation is mediated via chylomicron production in this Caco-2 cell model. CONCLUSION We developed a robust Caco-2 cell model for dietary fat-induced LPS translocation that can be used for high-throughput screening of (food) compounds that can reduce LPS-related low-grade inflammation.
Collapse
Affiliation(s)
- Monic M. M. Tomassen
- grid.4818.50000 0001 0791 5666Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands ,grid.4818.50000 0001 0791 5666Wageningen Food & Biobased Research – Food Health & Consumer Research group, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Coen Govers
- grid.4818.50000 0001 0791 5666Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands ,grid.4818.50000 0001 0791 5666Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - A. Paul Vos
- grid.4818.50000 0001 0791 5666Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Nicole J. W. de Wit
- grid.4818.50000 0001 0791 5666Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
49
|
De Palma G, Reed DE, Bercik P. Diet-microbial cross-talk underlying increased visceral perception. Gut Microbes 2023; 15:2166780. [PMID: 36656562 PMCID: PMC9858425 DOI: 10.1080/19490976.2023.2166780] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Visceral hypersensitivity, a fundamental mechanism of chronic visceral pain disorders, can result from both central or peripheral factors, or their combination. As an important regulator of normal gut function, the gut microbiota has been implicated as a key peripheral factor in the pathophysiology of visceral hypersensitivity. Patients with chronic gastrointestinal disorders, such as irritable bowel syndrome, often present with abdominal pain secondary to adverse reactions to dietary components. As both long- and short-term diets are major determinants of gut microbiota configuration that can result in changes in microbial metabolic output, it is becoming increasingly recognized that diet-microbiota interactions play an important role in the genesis of visceral sensitivity. Changes in pain signaling may occur via diet-induced changes in secretion of mediators by both the microbiota and/or host cells. This review will examine the peripheral influence of diet-microbiota interactions underlying increased visceral sensitivity.
Collapse
Affiliation(s)
- Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - David E. Reed
- GI Diseases Research Unit, Queens University, Kingston, Ontario, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
50
|
Tuck CJ, Abu Omar A, De Palma G, Osman S, Jiménez-Vargas NN, Yu Y, Bennet SM, Lopez-Lopez C, Jaramillo-Polanco JO, Baker CC, Bennett AS, Guzman-Rodriguez M, Tsang Q, Alward T, Rolland S, Morissette C, Verdu EF, Bercik P, Vanner SJ, Lomax AE, Reed DE. Changes in signalling from faecal neuroactive metabolites following dietary modulation of IBS pain. Gut 2022; 72:gutjnl-2022-327260. [PMID: 36591617 DOI: 10.1136/gutjnl-2022-327260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/23/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Dietary therapies for irritable bowel syndrome (IBS) have received increasing interest but predicting which patients will benefit remains a challenge due to a lack of mechanistic insight. We recently found evidence of a role for the microbiota in dietary modulation of pain signalling in a humanised mouse model of IBS. This randomised cross-over study aimed to test the hypothesis that pain relief following reduced consumption of fermentable carbohydrates is the result of changes in luminal neuroactive metabolites. DESIGN IBS (Rome IV) participants underwent four trial periods: two non-intervention periods, followed by a diet low (LFD) and high in fermentable carbohydrates for 3 weeks each. At the end of each period, participants completed questionnaires and provided stool. The effects of faecal supernatants (FS) collected before (IBS FS) and after a LFD (LFD FS) on nociceptive afferent neurons were assessed in mice using patch-clamp and ex vivo colonic afferent nerve recording techniques. RESULTS Total IBS symptom severity score and abdominal pain were reduced by the LFD (N=25; p<0.01). Excitability of neurons was increased in response to IBS FS, but this effect was reduced (p<0.01) with LFD FS from pain-responders. IBS FS from pain-responders increased mechanosensitivity of nociceptive afferent nerve axons (p<0.001), an effect lost following LFD FS administration (p=NS) or when IBS FS was administered in the presence of antagonists of histamine receptors or protease inhibitors. CONCLUSIONS In a subset of IBS patients with improvement in abdominal pain following a LFD, there is a decrease in pronociceptive signalling from FS, suggesting that changes in luminal mediators may contribute to symptom response.
Collapse
Affiliation(s)
- Caroline J Tuck
- Department of Sport, Exercise and Nutrition Sciences, La Trobe University, Melbourne, Victoria, Australia
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Amal Abu Omar
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
- Department of Physiology, Jordan University of Science and Technology, Irbid, Jordan
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Samira Osman
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | - Yang Yu
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Sean Mp Bennet
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Cintya Lopez-Lopez
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | - Corey C Baker
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Aidan Sw Bennett
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | - Quentin Tsang
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Taylor Alward
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Sebastien Rolland
- Department of Medicine, Hopital Maisonneuve-Rosemont, Montreal, Québec, Canada
| | - Celine Morissette
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|