1
|
Zheng Y, Ren Z, Liu Y, Yan J, Chen C, He Y, Shi Y, Cheng F, Wang Q, Li C, Wang X. T cell interactions with microglia in immune-inflammatory processes of ischemic stroke. Neural Regen Res 2025; 20:1277-1292. [PMID: 39075894 PMCID: PMC11624874 DOI: 10.4103/nrr.nrr-d-23-01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 07/31/2024] Open
Abstract
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke, which promotes neuronal death and inhibits nerve tissue regeneration. As the first immune cells to be activated after an ischemic stroke, microglia play an important immunomodulatory role in the progression of the condition. After an ischemic stroke, peripheral blood immune cells (mainly T cells) are recruited to the central nervous system by chemokines secreted by immune cells in the brain, where they interact with central nervous system cells (mainly microglia) to trigger a secondary neuroimmune response. This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke. We found that, during ischemic stroke, T cells and microglia demonstrate a more pronounced synergistic effect. Th1, Th17, and M1 microglia can co-secrete pro-inflammatory factors, such as interferon-γ, tumor necrosis factor-α, and interleukin-1β, to promote neuroinflammation and exacerbate brain injury. Th2, Treg, and M2 microglia jointly secrete anti-inflammatory factors, such as interleukin-4, interleukin-10, and transforming growth factor-β, to inhibit the progression of neuroinflammation, as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury. Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation, which in turn determines the prognosis of ischemic stroke patients. Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke. However, such studies have been relatively infrequent, and clinical experience is still insufficient. In summary, in ischemic stroke, T cell subsets and activated microglia act synergistically to regulate inflammatory progression, mainly by secreting inflammatory factors. In the future, a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells, along with the activation of M2-type microglia. These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
Collapse
Affiliation(s)
- Yuxiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zilin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juntang Yan
- Library, Beijing University of Chinese Medicine, Beijing, China
| | - Congai Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanhui He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Yin W, Ma H, Qu Y, Ren J, Sun Y, Guo ZN, Yang Y. Exosomes: the next-generation therapeutic platform for ischemic stroke. Neural Regen Res 2025; 20:1221-1235. [PMID: 39075892 PMCID: PMC11624871 DOI: 10.4103/nrr.nrr-d-23-02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 07/31/2024] Open
Abstract
Current therapeutic strategies for ischemic stroke fall short of the desired objective of neurological functional recovery. Therefore, there is an urgent need to develop new methods for the treatment of this condition. Exosomes are natural cell-derived vesicles that mediate signal transduction between cells under physiological and pathological conditions. They have low immunogenicity, good stability, high delivery efficiency, and the ability to cross the blood-brain barrier. These physiological properties of exosomes have the potential to lead to new breakthroughs in the treatment of ischemic stroke. The rapid development of nanotechnology has advanced the application of engineered exosomes, which can effectively improve targeting ability, enhance therapeutic efficacy, and minimize the dosages needed. Advances in technology have also driven clinical translational research on exosomes. In this review, we describe the therapeutic effects of exosomes and their positive roles in current treatment strategies for ischemic stroke, including their anti-inflammation, anti-apoptosis, autophagy-regulation, angiogenesis, neurogenesis, and glial scar formation reduction effects. However, it is worth noting that, despite their significant therapeutic potential, there remains a dearth of standardized characterization methods and efficient isolation techniques capable of producing highly purified exosomes. Future optimization strategies should prioritize the exploration of suitable isolation techniques and the establishment of unified workflows to effectively harness exosomes for diagnostic or therapeutic applications in ischemic stroke. Ultimately, our review aims to summarize our understanding of exosome-based treatment prospects in ischemic stroke and foster innovative ideas for the development of exosome-based therapies.
Collapse
Affiliation(s)
- Wenjing Yin
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongyin Ma
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Qu
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Ren
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yingying Sun
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
- Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Yang
- Stroke Center, Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
3
|
Tang Z, Li R, Guo X, Wang Z, Wu J. Regulation of Blood-brain Barrier Integrity by Brain Microvascular Endothelial Cells in Ischemic Stroke: A Therapeutic Opportunity. Eur J Pharmacol 2025:177553. [PMID: 40147580 DOI: 10.1016/j.ejphar.2025.177553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Stroke is the second leading cause of death from cardiovascular diseases. Brain microvascular endothelial cells (BMECs) are crucial in the treatment of cerebral ischemic stroke, as their functional status directly affects the integrity of the blood-brain barrier (BBB). This review systematically discusses the central role of BMECs in ischemia. The mitochondrial dysfunction and activation of apoptosis/necrosis pathways in BMECs directly disrupt the integrity of the BBB and the degradation of junctional complexes (such as TJs and AJs) further exacerbates its permeability. In the neurovascular unit (NVU), astrocytes, microglia, and pericytes regulate the function of BMECs by secreting cytokines (such as TGF-β and VEGF), showing dual effects of promoting repair and damage. The dynamic changes of transporters, including those from the ATP-binding cassette and solute carrier families, as well as ion channels and exchangers, such as potassium and calcium channels, offer novel insights for the development of targeted drug delivery systems.
Collapse
Affiliation(s)
- Ziqi Tang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Ruoxi Li
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - Xi Guo
- Beijing Tiantan Hospital, Capital Medical University, Beijing 10070, China; China National Clinical Research Center for Neurological Diseases, Beijing 10070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10070, China
| | - Zhongyu Wang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China; Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 440070, China
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; Beijing Tiantan Hospital, Capital Medical University, Beijing 10070, China; China National Clinical Research Center for Neurological Diseases, Beijing 10070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10070, China; Department of Pharmacology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 440070, China.
| |
Collapse
|
4
|
Agrawal N, Afzal M, Khan NH, Ganesan S, Kumari M, Sunitha S, Dash A, Goyal K, Kushwaha B, Rekha A, Rana M, Ali H. The role of VEGF in vascular dementia: impact of aging and cellular senescence. Biogerontology 2025; 26:77. [PMID: 40119956 DOI: 10.1007/s10522-025-10219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Vascular Endothelial Growth Factor (VEGF) is a critical element in vascular dementia (VD) pathogenesis and therapeutic development while remaining strongly influenced by aging processes and cellular aging mechanisms. VEGF's multiple effects comprise neuroprotective functions, its role in vascular development, and its ability to regulate brain blood flow systems, all leading to cognitive preservation. The prefrontal cortex exhibits elevated VEGF gene levels, which directly matches the advancement of cognitive deficits in patients with Alzheimer's disease and VD. These patients exhibit higher VEGF levels in their CSF fluid, demonstrating that disease pathology includes multiple inseparable factors. Aging dramatically worsens VEGF regulation because endothelial dysfunction combines with chronic inflammation and oxidative stress to generate adverse vascular symptoms that include atherosclerosis and stroke. Cellular senescence convolutes these processes by causing damaging inflammatory reactions alongside impaired vascular healing abilities. The secretion of pro-inflammatory cytokines from senescent cells (SCs) disrupts VEGF signaling and produces harmful consequences for both vascular health and cognitive well-being. The neuroprotective properties of VEGF-A165a and VEGF-A165b variants demonstrate their ability to lessen β-amyloid and tau protein toxicity. The protective mechanisms of VEGF depend heavily on VEGF expression levels and receptor functionality, both of which decrease with aging. The combination of approaches that modulate VEGF signaling and SC accumulation shows potential for designing treatments against VD. People can sustain BBB functionality over a longer period through Mediterranean diet consumption together with aerobic exercise along with developing therapies, including senolytics and senomorphics, which delay neurodegenerative progression. Future investigative efforts must improve VEGF delivery methods while studying cellular senescence mechanisms and developing advanced methods to detect SC cells. A three-dimensional healthcare approach combining VEGF-targeted treatments with anti-ageing interventions and detailed diagnostic techniques shows the potential for effective VD management to achieve better patient results.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Nawaid Hussain Khan
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic.
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - S Sunitha
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aniruddh Dash
- Department of Orthopaedics, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun, 248002, India
| | - Brajgopal Kushwaha
- IES Institute of Pharmacy, IES University, Bhopal, Madhya Pradesh, 462044, India
| | - A Rekha
- Hospital and Research Centre, Dr. D. Y. Patil Medical College, Pimpri, Pune, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College,, Saveetha University, Chennai, India
| |
Collapse
|
5
|
Orciani C, Foret MK, Cuello AC, Do Carmo S. Long-term nucleus basalis cholinergic lesions alter the structure of cortical vasculature, astrocytic density and microglial activity in Wistar rats. Neurobiol Aging 2025; 150:132-145. [PMID: 40121723 DOI: 10.1016/j.neurobiolaging.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Basal forebrain cholinergic neurons (BFCNs) are the sole source of cholinergic innervation to the cerebral cortex and hippocampus in humans and the primary source in rodents. This system undergoes early degeneration in Alzheimer's disease. BFCNs terminal synapses are involved in the regulation of the cerebral blood flow by making classical synaptic contacts with other neurons. Additionally, they are located in proximity to cortical cerebral blood vessels, forming connections with various cell types of the neurovascular unit (NVU), including vascular smooth muscle cells, endothelial cells, and astrocytic end-feet. However, the effects of the BFCNs input on NVU components remain unresolved. To address this issue, we immunolesioned the nucleus basalis by administering bilateral stereotaxic injections of the cholinergic immunotoxin 192-IgG-Saporin in 2.5-month-old Wistar rats. Seven months post-lesion, we observed a significant reduction in cortical vesicular acetylcholine transporter-immunoreactive synapses. This was accompanied by changes in the diameter of cortical capillaries and precapillary arterioles, as well as lower levels of vascular endothelial growth factor A (VEGF-A). Additionally, the cholinergic immunolesion increased the density of cortical astrocytes and microglia in the cortex. At these post-BFCN-lesion stages, astrocytic end-feet exhibited an increased co-localization with arterioles. The number of microglia in the parietal cortex correlated with cholinergic loss and exhibited morphological changes indicative of an intermediate activation state. This was supported by decreased levels of proinflammatory mediators IFN-γ, IL-1β, and KC/GRO (CXCL1), and by increased expression of M2 markers SOCS3, IL4Rα, YM1, ARG1, and Fizz1. Our findings offer a novel insight: that the loss of nucleus basalis cholinergic input negatively impacts cortical blood vessels, NVU components, and microglia phenotype.
Collapse
Affiliation(s)
- Chiara Orciani
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Morgan K Foret
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - A Claudio Cuello
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Anatomy & Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada; Department of Pharmacology, Oxford University, Oxford, UK.
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
6
|
Ghorbanpour S, Cartland SP, Chen H, Seth S, Ecker RC, Richards C, Aksentijevic D, Padula MP, Cole L, Warkiani ME, Kavurma MM, McClements L. The FKBPL-based therapeutic peptide, AD-01, protects the endothelium from hypoxia-induced damage by stabilising hypoxia inducible factor-α and inflammation. J Transl Med 2025; 23:309. [PMID: 40069829 PMCID: PMC11895374 DOI: 10.1186/s12967-025-06118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/08/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Endothelial dysfunction is a hallmark feature of cardiovascular disease (CVD), yet the underlying mechanisms are still poorly understood. This has impeded the development of effective therapies, particularly for peripheral artery disease. FK506-binding protein like (FKBPL) and its therapeutic peptide mimetic, AD-01, are crucial negative regulators of angiogenesis, however their roles in CVD are unknown. In this study, we aimed to elucidate the FKBPL-mediated mechanisms involved in regulating endothelial dysfunction induced by hypoxia or inflammation, and to determine whether AD-01 can effectively restore endothelial function under these conditions. METHODS Hindlimb ischemia was induced in mice by ligating the proximal and distal ends of the right femoral artery, and, after three days, the gastrocnemius muscle was collected for immunofluorescence staining, and RNA extraction. A 3D in vitro microfluidics model was developed to determine the endothelial cell migration and impact of FKBPL following treatments with: (i) 24 µM FKBPL targeted siRNA, (ii) 1 mM hypoxia inducible factor (HIF-1)α activator (DMOG), (iii) 50% (v/v) macrophage conditioned media (MCM), ± 100 nM AD-01. Unbiased, untargeted proteomic analysis was conducted via LC-MS/MS to identify protein targets of AD-01. RESULTS FKBPL expression is substantially downregulated in mice after hindlimb ischemia (p < 0.05, protein; p < 0.001, mRNA), correlating with increased neovascularization and altered vascular adhesion molecule expression. In our real-time advanced 3D microfluidics model, hypoxia suppressed FKBPL (p < 0.05) and VE-cadherin (p < 0.001) expression, leading to increased endothelial cell number and migration (p < 0.001), which was restored by AD-01 treatment (p < 0.01). Under inflammatory conditions, FKBPL (p < 0.01) and HIF-1α (p < 0.05) expression was elevated, correlating with increased endothelial cell migration (p < 0.05). Unlike hypoxia, AD-01 did not influence endothelial cell migration under inflammatory conditions, but normalized FKBPL (p < 0.001), HIF-1α (p < 0.05) and CD31 (P < 0.05), expression, in 3D microfluidic cell culture. Proteomic analysis revealed that AD-01 treatment in hypoxia enhanced the abundance of tissue remodelling and vascular integrity proteins including collagen alpha-1(XIX) chain and junctional cadherin associated-5 (JCAD) proteins. CONCLUSIONS FKBPL represents an important novel mechanism in hypoxia and inflammation-induced angiogenesis. The FKBPL-based therapeutic peptide, AD-01, could be a viable treatment option for CVD-related endothelial cell dysfunction.
Collapse
Affiliation(s)
- Sahar Ghorbanpour
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Siân Peta Cartland
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Hao Chen
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Sanchit Seth
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- TissueGnostics Australia Pty Ltd, Brisbane, Australia
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Rupert C Ecker
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- TissueGnostics Australia Pty Ltd, Brisbane, Australia
- Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Claire Richards
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Dunja Aksentijevic
- Centre for Biochemical Pharmacology, School of Medicine and Dentistry, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| | - Matthew P Padula
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Louise Cole
- The Australian Institute for Microbiology and Infection (AIMI), Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Lana McClements
- School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Kim D, Lee JW, Kim YT, Choe J, Kim G, Ha CM, Kim JG, Song KH, Yang S. Minimally Invasive Syringe-Injectable Hydrogel with Angiogenic Factors for Ischemic Stroke Treatment. Adv Healthc Mater 2025; 14:e2403119. [PMID: 39520382 PMCID: PMC11874675 DOI: 10.1002/adhm.202403119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/06/2024] [Indexed: 11/16/2024]
Abstract
Ischemic stroke (IS) accounts for most stroke incidents and causes intractable damage to brain tissue. This condition manifests as diverse aftereffects, such as motor impairment, emotional disturbances, and dementia. However, a fundamental approach to curing IS remains unclear. This study proposes a novel approach for treating IS by employing minimally invasive and injectable jammed gelatin-norbornene nanofibrous hydrogels (GNF) infused with growth factors (GFs). The developed GNF/GF hydrogels are administered to the motor cortex of a rat IS model to evaluate their therapeutic effects on IS-induced motor dysfunction. GNFs mimic a natural fibrous extracellular matrix architecture and can be precisely injected into a targeted brain area. The syringe-injectable jammed nanofibrous hydrogel system increased angiogenesis, inflammation, and sensorimotor function in the IS-affected brain. For clinical applications, the biocompatible GNF hydrogel has the potential to efficiently load disease-specific drugs, enabling targeted therapy for treating a wide range of neurological diseases.
Collapse
Affiliation(s)
- Donggue Kim
- Department of Nano‐BioengineeringIncheon National UniversityIncheon22012Republic of Korea
| | - Ji Woo Lee
- Department of Nano‐BioengineeringIncheon National UniversityIncheon22012Republic of Korea
| | - Yang Tae Kim
- Division of Life SciencesCollege of Life Sciences and BioengineeringIncheon National UniversityIncheon22012Republic of Korea
| | - Junhyeok Choe
- Department of Nano‐BioengineeringIncheon National UniversityIncheon22012Republic of Korea
| | - Gaeun Kim
- Department of Nano‐BioengineeringIncheon National UniversityIncheon22012Republic of Korea
| | - Chang Man Ha
- Research Division and Brain Research Core Facilities of Korea Brain Research InstituteDaegu41068Republic of Korea
| | - Jae Geun Kim
- Division of Life SciencesCollege of Life Sciences and BioengineeringIncheon National UniversityIncheon22012Republic of Korea
- Research Center of Brain‐Machine InterfaceIncheon National UniversityIncheon22012Republic of Korea
| | - Kwang Hoon Song
- Department of Nano‐BioengineeringIncheon National UniversityIncheon22012Republic of Korea
- Research Center of Brain‐Machine InterfaceIncheon National UniversityIncheon22012Republic of Korea
| | - Sunggu Yang
- Department of Nano‐BioengineeringIncheon National UniversityIncheon22012Republic of Korea
- Research Center of Brain‐Machine InterfaceIncheon National UniversityIncheon22012Republic of Korea
- gBrain Inc.Incheon21984Republic of Korea
| |
Collapse
|
8
|
Qu H, Fu XX, Han S. C16 peptide and angiopoietin-1 alleviate the side effects of glucocorticoids in a rat multiple sclerosis model. Life Sci 2025; 363:123402. [PMID: 39828227 DOI: 10.1016/j.lfs.2025.123402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/01/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Natural glucocorticoids (GCs) have been widely used to treat acute multiple sclerosis (MS) attacks. However, they also cause significant side effects related to immunosuppression. Our previous study found that C16 peptide combined with angiopoietin-1 (Ang-1) inhibited inflammatory cell infiltration and protected blood vessels in animal models of inflammatory neurodegenerative diseases. METHODS An acute experimental autoimmune encephalomyelitis model was established in Lewis rats to explore the effects of these drugs on MS. One hundred rats were equally and randomly assigned into five groups: normal control, vehicle, low-dose methylprednisolone (MP), high-dose MP, and C16 + Ang-1 (C+A). Histological examinations, behavioral tests, and high-throughput 16S rRNA gene sequencing were conducted to determine inflammation levels in the central nervous system, neuronal survival, functional recovery and gut microbiota. RESULTS The results illustrated that C+A exerted a neuroprotective effect in MS rats, with fewer side effects observed in the C+A group than in the high-dose MP group. The abundance of Campylobacter was increased in vehicle-treated rats, indicating an imbalance of the gut microbiota after MS. The abundance of probiotic Lactobacillus plantarum was increased in the C+A group. Low-dose MP failed to reverse the gut microbiota imbalance, whereas both the C+A and high-dose MP groups exhibited gut microbiota profiles more similar to those of the normal controls, with C+A displaying superior efficacy. CONCLUSIONS C16 plus Ang-1 might serve as a complement to GCs for the treatment of MS. Changes in the abundance of Campylobacter and L. plantarum suggest their essential roles in the pathogenesis of MS.
Collapse
Affiliation(s)
- Han Qu
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| | - Xiao-Xiao Fu
- Institute of Human Anatomy, Histology and Embryology, Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shu Han
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Liu Q, Xie J, Zhou R, Deng J, Nie W, Sun S, Wang H, Shi C. A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury. Neural Regen Res 2025; 20:503-517. [PMID: 38819063 PMCID: PMC11317963 DOI: 10.4103/nrr.nrr-d-23-01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00028/figure1/v/2024-05-28T214302Z/r/image-tiff Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI (QK) are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases. However, conventional topical drug delivery often results in a burst release of the drug, leading to transient retention (inefficacy) and undesirable diffusion (toxicity) in vivo. Therefore, a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke. Matrix metalloproteinase-2 (MMP-2) is gradually upregulated after cerebral ischemia. Herein, vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG (TIMP) and customizable peptide amphiphilic (PA) molecules to construct nanofiber hydrogel PA-TIMP-QK. PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro. The results indicated that PA-TIMP-QK promoted neuronal survival, restored local blood circulation, reduced blood-brain barrier permeability, and restored motor function. These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Qi Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jianye Xie
- Department of General Practice, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Runxue Zhou
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Jin Deng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Weihong Nie
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shuwei Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Haiping Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
10
|
Kim S, Jung UJ, Kim SR. The Crucial Role of the Blood-Brain Barrier in Neurodegenerative Diseases: Mechanisms of Disruption and Therapeutic Implications. J Clin Med 2025; 14:386. [PMID: 39860392 PMCID: PMC11765772 DOI: 10.3390/jcm14020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The blood-brain barrier (BBB) is a crucial structure that maintains brain homeostasis by regulating the entry of molecules and cells from the bloodstream into the central nervous system (CNS). Neurodegenerative diseases such as Alzheimer's and Parkinson's disease, as well as ischemic stroke, compromise the integrity of the BBB. This leads to increased permeability and the infiltration of harmful substances, thereby accelerating neurodegeneration. In this review, we explore the mechanisms underlying BBB disruption, including oxidative stress, neuroinflammation, vascular dysfunction, and the loss of tight junction integrity, in patients with neurodegenerative diseases. We discuss how BBB breakdown contributes to neuroinflammation, neurotoxicity, and the abnormal accumulation of pathological proteins, all of which exacerbate neuronal damage and facilitate disease progression. Furthermore, we discuss potential therapeutic strategies aimed at preserving or restoring BBB function, such as anti-inflammatory treatments, antioxidant therapies, and approaches to enhance tight junction integrity. Given the central role of the BBB in neurodegeneration, maintaining its integrity represents a promising therapeutic approach to slow or prevent the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
11
|
Corti F, Locri F, Plastino F, Perrotta P, Zsebo K, Ristori E, Yin X, Song E, André H, Simons M. Anti-Syndecan 2 Antibody Treatment Reduces Edema Formation and Inflammation of Murine Laser-Induced CNV. Transl Vis Sci Technol 2025; 14:10. [PMID: 39792057 PMCID: PMC11730891 DOI: 10.1167/tvst.14.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects. Methods We have developed an alternative strategy that uses anti-syndecan-2 polyclonal antibody (anti-Sdc2 pAb) to block VEGF-A-induced permeability without interfering with other VEGF-A activities. The effect of anti-Sdc2 pAb therapy was assessed in vitro using a transendothelial electrical resistance (TEER) assay, as well as staining of the endothelial cell junction, and in vivo in the laser-induced choroidal neovascularization (CNV) model. Results Anti-Sdc2 pAb blocked VEGF-A-induced permeability in vitro, and both local intravitreal injections and systemic intravenous treatments with anti-Sdc2 pAb were as effective as intravitreal anti-VEGF therapy in reducing edema, size of retinal lesions, and local inflammation in this model. Post-injury neovascularization was not affected by treatment with anti-Sdc2 pAb. Conclusions These findings indicate that anti-Sdc2 pAb therapy can be an effective alternative to anti-VEGF-A approaches for suppression of edema and to prevent retinal lesions in wet neovascular AMD (nAMD). Translational Relevance Intravitreal anti-Sdc2 treatment may avoid side effects observed with the long-term anti-VEGF therapy, and systemic treatment with an anti-Sdc2 pAb antibody can address the issues associated with repeated intravitreal injections.
Collapse
Affiliation(s)
- Federico Corti
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Filippo Locri
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flavia Plastino
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Paola Perrotta
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Emma Ristori
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiangyun Yin
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
| | - Eric Song
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT, USA
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Yang L, Chen P, Wen X, Zhao Q. Optical coherence tomography (OCT) and OCT angiography: Technological development and applications in brain science. Theranostics 2025; 15:122-140. [PMID: 39744229 PMCID: PMC11667229 DOI: 10.7150/thno.97192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 01/11/2025] Open
Abstract
Brain diseases are a leading cause of disability and death worldwide. Early detection can lead to earlier intervention and better outcomes for patients. In recent years, optical coherence tomography (OCT) and OCT angiography (OCTA) imaging have been widely used in stroke, traumatic brain injury (TBI), and brain cancer due to their advantages of in vivo, unlabeled, and high-resolution 3D microvessel imaging at the capillary resolution level. This review summarizes recent advances and challenges in living brain imaging using OCT/OCTA, including technique modality, types of diseases, and theoretical approach. Although there may still be many limitations, with the development of lasers and the advances in artificial intelligence are expected to enable accurate detection of deep cerebral hemodynamics and guide intraoperative tumor resection in vivo in the future.
Collapse
Affiliation(s)
| | | | - Xiaofei Wen
- School of Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingliang Zhao
- School of Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
13
|
Li K, Wang K, Xu SX, Xie XH, Tang Y, Zhang L, Liu Z. In vivo evidence of increased vascular endothelial growth factor in patients with major depressive disorder. J Affect Disord 2025; 368:151-159. [PMID: 39278472 DOI: 10.1016/j.jad.2024.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is a candidate mediator of blood-brain barrier (BBB) disruption in depression. However, previous studies have mainly focused on peripheral blood VEGF levels, and the results are heterogeneous. Here we use astrocyte-derived extracellular vesicles (ADEVs) isolated from plasma to explore the in vivo changes of VEGF levels in patients with major depressive disorder (MDD). METHODS Thirty-five unmedicated patients with MDD and 35 healthy controls (HCs) were enrolled, and plasma ADEVs were isolated from each participant. VEGF levels in ADEVs and glial fibrillary acidic protein (GFAP) in plasma were measured. Additionally, Alix and CD81, two established extracellular vesicle markers, were quantified in ADEVs. RESULTS At baseline, MDD patients exhibited significantly increased levels of VEGF in ADEVs and GFAP in plasma. Following four weeks of selective serotonin reuptake inhibitor treatment, these target protein levels did not significantly change. ROC curve analysis revealed an AUC of 0.711 for VEGF in ADEVs. In exploratory analysis, VEGF levels in ADEVs were positively correlated with Alix and CD81. LIMITATIONS Multiple factors regulate BBB permeability. This study focused solely on VEGF and the sample size for longitudinal analysis was relatively small. CONCLUSION Our study is the first to confirm increased ADEV-derived VEGF levels in patients with MDD, thereby providing preliminary evidence supporting the hypothesis that the BBB is disrupted in depression.
Collapse
Affiliation(s)
- Kun Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Clinical Laboratory, Affiliated Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Kun Wang
- Department of Psychiatry, Affied Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Tang
- Department of Psychiatry, Affied Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Lihong Zhang
- Clinical Laboratory, Affiliated Hospital of West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Battaglia L, Dianzani C, Muntoni E, Marini E, Bozza A, Bordano V, Ferraris C, Garelli S, Valsania MC, Terreno E, Capozza M, Costanzo D, Capucchio MT, Hassan T, Pizzimenti S, Pettineo E, Di Muro M, Scorziello F. Ultrasmall solid lipid nanoparticles as a potential innovative delivery system for a drug combination against glioma. Nanomedicine (Lond) 2025; 20:37-52. [PMID: 39611709 DOI: 10.1080/17435889.2024.2434452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
INTRODUCTION High grade gliomas are characterized by a very poor prognosis due to fatal relapses after surgery. Current chemotherapy is only a palliative care, while potential drug candidates are limited by poor overcoming of the blood-brain barrier. AIMS A suitable chemotherapeutic approach should be engineered to overcome both the altered blood-brain barrier in the glioma site, as well as the intact one in the brain adjacent to tumor zone, and to target the multiple factors influencing glioma proliferation, differentiation, migration, and angiogenesis. MATERIALS & METHODS In this experimental research, ultrasmall solid lipid nanoparticles were prepared owing to the temperature phase inversion technology and loaded with a specific drug combination made of paclitaxel, regorafenib, and nanoceria. RESULTS Such solid lipid nanoparticles demonstrated capability to inhibit glioma cell proliferation and migration, as well as angiogenesis in vitro. Moreover, relevant in vivo evidence assessed the accumulation of solid lipid nanoparticles in the glioma site of the F98/Fischer rat model, without causing any off-target toxicity. CONCLUSIONS Thus, promising results for glioma treatment were obtained with a technology characterized by safety and economy, allowing the perspective of successful scalability.
Collapse
Affiliation(s)
- Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, Turin, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, Turin, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Valentina Bordano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sara Garelli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Maria Carmen Valsania
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, Turin, Italy
- Department of Chemistry, University of Turin, Turin, Italy
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Diana Costanzo
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Talal Hassan
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Elisa Pettineo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | |
Collapse
|
15
|
Al-Eitan LN, Alahmad SZ, Ajeen SA, Altawil AY, Khair IY, Kharmah HSA, Alghamdi MA. Evaluation of the metabolic activity, angiogenic impacts, and GSK-3β signaling of the synthetic cannabinoid MMB-2201 on human cerebral microvascular endothelial cells. J Cannabis Res 2024; 6:43. [PMID: 39707578 DOI: 10.1186/s42238-024-00255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024] Open
Abstract
Angiogenesis is an intrinsic physiological process involving the formation of new capillaries from existing ones. Synthetic cannabinoids refer to a class of human-made chemicals that are primarily designed to mimic the effects of delta-9-tetrahydrocannabinol, the primary psychoactive compound in cannabis. Studies investigating the association between synthetic cannabinoids and cellular reactions are limited, and the available scientific evidence is insufficient. Consequently, the primary goal was to examine the effects of the synthetic cannabinoid MDMB-2201 on brain angiogenesis in vitro to provide a comprehensive analysis of MMB-2201's potential therapeutic or adverse effects on vascular development and related health conditions. Human Cerebral Microvascular Endothelial Cells (HBEC-5i) were incubated with MMB-2201, and their metabolic activity, migration rate, and tubular structure formation were examined. Expression levels of several angiogenesis-related proteins such as vascular endothelial growth factor (VEGF), Angiopoietin-1 (ANG-1), and Angiopoietin-2 (ANG-2) were assessed using western blot, ELISA, and real-time PCR. Furthermore, the phosphorylation of glycogen synthase kinase 3 beta (GSK-3β) at Ser9 induced by MMB-2201 was evaluated. HBEC-5i cells showed a significant increase in metabolic rate, enhanced migration, and sprouting of brain endothelial cells. Moreover, there was a noticeable increase in the mRNA and protein levels of VEGF, ANG-1, and ANG-2, as well as in the phosphorylation rate of GSK-3β at Ser9. This study paves the way for a novel pharmacological approach to addressing various angiogenesis-related diseases by targeting cannabinoid receptor type-1. Further exploration using different antagonists or agonists of cannabinoid receptors, depending on the specific characteristics of the disorders, may be necessary.
Collapse
Affiliation(s)
- Laith Naser Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Saif Zuhair Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Sufyan Ali Ajeen
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Ahmad Younis Altawil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Iliya Yacoub Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Hana Salah Abu Kharmah
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
- Genomics and Personalized Medicine Unit, The Centre for Medical and Health Research, King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
16
|
Torres-Espin A, Radabaugh HL, Treiman S, Fitzsimons SS, Harvey D, Chou A, Lindbergh CA, Casaletto KB, Goldberger L, Staffaroni AM, Maillard P, Miller BL, DeCarli C, Hinman JD, Ferguson AR, Kramer JH, Elahi FM. Sexually dimorphic differences in angiogenesis markers are associated with brain aging trajectories in humans. Sci Transl Med 2024; 16:eadk3118. [PMID: 39602511 DOI: 10.1126/scitranslmed.adk3118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
Aberrant angiogenesis could contribute to the development of cognitive impairment and represent a therapeutic target for preventing dementia. However, most studies addressing angiogenesis and cognitive impairment focus on model organisms. To test the relevance of angiogenesis to human cognitive aging, we evaluated associations of circulating blood markers of angiogenesis with brain aging trajectories in a pooled two-center sample from deeply phenotyped longitudinal human cohorts (n = 435; female = 207, age = 74 ± 9) using cognitive assessments, biospecimens, structural brain imaging, and clinical data. Blood markers included ligands involved in angiogenesis and vascular function such as basic fibroblast growth factor (bFGF), members of the vascular endothelial growth factor family (VEGFA, VEGFB, and VEGFC), and placental growth factor (PlGF), in addition to their receptors VEGF receptor 1 (VEGFR1) and tyrosine kinase with immunoglobulin and EGF homology domain 2 (Tie2). Machine learning and traditional statistics revealed sexually dimorphic associations of plasma angiogenic growth factors with brain aging outcomes, including executive function and gray matter atrophy. Specifically, markers of angiogenesis were associated with higher executive function and less brain atrophy in younger women (not men), a directionality of association that reversed around age 75. Higher concentrations of bFGF, known for pleiotropic effects on multiple cell types, predicted favorable cognitive trajectories in both women and men. An independent sample from a multicenter dataset (MarkVCID; n = 80; female = 30, age = 73 ± 9) was used to externally validate these findings. In conclusion, this analysis demonstrates the association of angiogenesis to human brain aging, with potential therapeutic implications for vascular cognitive impairment and dementia.
Collapse
Affiliation(s)
- Abel Torres-Espin
- School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hannah L Radabaugh
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott Treiman
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephen S Fitzsimons
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Danielle Harvey
- Department of Public Health Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Austin Chou
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cutter A Lindbergh
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Kaitlin B Casaletto
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lauren Goldberger
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pauline Maillard
- Department of Neurology, University of California, Davis, Davis, CA 95817, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, Davis, CA 95817, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Fanny M Elahi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- James J. Peters Veterans Affairs Health Care System, Bronx, NY 10468, USA
| |
Collapse
|
17
|
Pranty AI, Szepanowski LP, Wruck W, Karikari AA, Adjaye J. Hemozoin induces malaria via activation of DNA damage, p38 MAPK and neurodegenerative pathways in a human iPSC-derived neuronal model of cerebral malaria. Sci Rep 2024; 14:24959. [PMID: 39438620 PMCID: PMC11496667 DOI: 10.1038/s41598-024-76259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Malaria caused by Plasmodium falciparum infection results in severe complications including cerebral malaria (CM), in which approximately 30% of patients end up with neurological sequelae. Sparse in vitro cell culture-based experimental models which recapitulate the molecular basis of CM in humans has impeded progress in our understanding of its etiology. This study employed healthy human induced pluripotent stem cells (iPSCs)-derived neuronal cultures stimulated with hemozoin (HMZ) - the malarial toxin as a model for CM. Secretome, qRT-PCR, Metascape, and KEGG pathway analyses were conducted to assess elevated proteins, genes, and pathways. Neuronal cultures treated with HMZ showed enhanced secretion of interferon-gamma (IFN-γ), interleukin (IL)1-beta (IL-1β), IL-8 and IL-16. Enrichment analysis revealed malaria, positive regulation of cytokine production and positive regulation of mitogen-activated protein kinase (MAPK) cascade which confirm inflammatory response to HMZ exposure. KEGG assessment revealed up-regulation of malaria, MAPK and neurodegenerative diseases-associated pathways which corroborates findings from previous studies. Additionally, HMZ induced DNA damage in neurons. This study has unveiled that exposure of neuronal cultures to HMZ, activates molecules and pathways similar to those observed in CM and neurodegenerative diseases. Furthermore, our model is an alternative to rodent experimental models of CM.
Collapse
Affiliation(s)
- Abida Islam Pranty
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Leon-Phillip Szepanowski
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Akua Afriyie Karikari
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany.
- Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London - EGA Institute for Women's Health, 20 Guilford Street, WC1N 1DZ, London, United Kingdom.
| |
Collapse
|
18
|
Tang L, Wang D, Chang H, Liu Z, Zhang X, Feng X, Han L. Treating ischemic stroke by improving vascular structure and promoting angiogenesis using Taohong Siwu Decoction: An integrative pharmacology strategy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118372. [PMID: 38777084 DOI: 10.1016/j.jep.2024.118372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neovessels represent a crucial therapeutic target and strategy for repairing ischemic tissue. Taohong Siwu Decoction (THSWD) exhibits potential in promoting angiogenesis to address ischemic stroke (IS). However, its impact on neovessel structure and function, alongside the underlying molecular mechanisms, remains elusive. AIM OF THE STUDY Our aim is to investigate the protective effects of THSWD on neovessel structure and function, as well as the associated molecular mechanisms, utilizing an integrative pharmacological approach. MATERIALS AND METHODS We initially employed behavioral tests, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Haematoxylin-eosin (HE) staining, enzyme-linked immunosorbent assay (ELISA), Laser Doppler flowmetry (LDF), Evans blue staining, and immunofluorescence to evaluate the protective effects of THSWD on neovascular structure and function in middle cerebral artery occlusion/reperfusion (MCAO/R) rats. Subsequently, we utilized network pharmacology, metabolomics, and experimental validation to elucidate the underlying molecular mechanisms of THSWD in enhancing neovascular structure and function. RESULT In addition to significantly reducing neurological deficits and cerebral infarct volume, THSWD mitigated pathological damage, blood-brain barrier (BBB) leakage, and cerebral blood flow disruption. Moreover, it preserved neovascular structure and stimulated angiogenesis. THSWD demonstrated potential in ameliorating cerebral microvascular metabolic disturbances including lipoic acid metabolism, fructose and mannose metabolism, purine metabolism, and ether lipid metabolism. Consequently, it exhibited multifaceted therapeutic effects, encompassing anti-inflammatory, antioxidant, energy metabolism modulation, and antiplatelet aggregation properties. CONCLUSION THSWD exhibited protective effects on cerebral vascular structure and function and facilitated angiogenesis by rectifying cerebral microvascular metabolic disturbances in MCAO/R rats. Furthermore, integrated pharmacology offers a promising approach for studying the intricate traditional Chinese medicine (TCM) system in IS treatment.
Collapse
Affiliation(s)
- Linfeng Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Dandan Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Hao Chang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Zhuqing Liu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Xueting Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Xuefeng Feng
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Lan Han
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China.
| |
Collapse
|
19
|
Rust R, Nih LR, Liberale L, Yin H, El Amki M, Ong LK, Zlokovic BV. Brain repair mechanisms after cell therapy for stroke. Brain 2024; 147:3286-3305. [PMID: 38916992 PMCID: PMC11449145 DOI: 10.1093/brain/awae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Cell-based therapies hold great promise for brain repair after stroke. While accumulating evidence confirms the preclinical and clinical benefits of cell therapies, the underlying mechanisms by which they promote brain repair remain unclear. Here, we briefly review endogenous mechanisms of brain repair after ischaemic stroke and then focus on how different stem and progenitor cell sources can promote brain repair. Specifically, we examine how transplanted cell grafts contribute to improved functional recovery either through direct cell replacement or by stimulating endogenous repair pathways. Additionally, we discuss recently implemented preclinical refinement methods, such as preconditioning, microcarriers, genetic safety switches and universal (immune evasive) cell transplants, as well as the therapeutic potential of these pharmacologic and genetic manipulations to further enhance the efficacy and safety of cell therapies. By gaining a deeper understanding of post-ischaemic repair mechanisms, prospective clinical trials may be further refined to advance post-stroke cell therapy to the clinic.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
| | - Lina R Nih
- Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mohamad El Amki
- Department of Neurology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Lin Kooi Ong
- School of Health and Medical Sciences & Centre for Health Research, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
20
|
Mitchell AK, Bliss RR, Church FC. Exercise, Neuroprotective Exerkines, and Parkinson's Disease: A Narrative Review. Biomolecules 2024; 14:1241. [PMID: 39456173 PMCID: PMC11506540 DOI: 10.3390/biom14101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise's disease-modifying effect. Aerobic exercise and resistance training improve many of PD's motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson's (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD.
Collapse
Affiliation(s)
- Alexandra K. Mitchell
- Department of Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | | | - Frank C. Church
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Wang J, Xiong T, Wu Q, Qin X. Integrated Strategies for Targeting Arteriogenesis and Angiogenesis After Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01291-4. [PMID: 39225878 DOI: 10.1007/s12975-024-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The interdependence between arteriogenesis and angiogenesis is crucial for enhancing perfusion by synchronously improving leptomeningeal collaterals (LMCs) and microvascular networks after stroke. However, current approaches often focus on promoting arteriogenesis and angiogenesis separately, neglecting the potential synergistic benefits of targeting both processes simultaneously. Therefore, it is imperative to consider both arteriogenesis and angiogenesis as integral and complementary strategies for post-stroke revascularization. To gain a deeper understanding of their relationships after stroke and to facilitate the development of targeted revascularization strategies, we compared them based on their timescale, space, and pathophysiology. The temporal differences in the occurrence of arteriogenesis and angiogenesis allow them to restore blood flow at different stages after stroke. The spatial differences in the effects of arteriogenesis and angiogenesis enable them to specifically target the ischemic penumbra and core infarct region. Additionally, the endothelial cell, as the primary effector cell in their pathophysiological processes, is promising target for enhancing both. Therefore, we provide an overview of key signals that regulate endothelium-mediated arteriogenesis and angiogenesis. Finally, we summarize current therapeutic strategies that involve these signals to promote both processes after stroke, with the aim of inspiring future therapeutic advances in revascularization.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Taoying Xiong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qisi Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
22
|
Wang K, Zhou W, Wen L, Jin X, Meng T, Li S, Hong Y, Xu Y, Yuan H, Hu F. The protective effects of Axitinib on blood-brain barrier dysfunction and ischemia-reperfusion injury in acute ischemic stroke. Exp Neurol 2024; 379:114870. [PMID: 38897539 DOI: 10.1016/j.expneurol.2024.114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND PURPOSE The pathophysiological features of acute ischemic stroke (AIS) often involve dysfunction of the blood-brain barrier (BBB), characterized by the degradation of tight junction proteins (Tjs) leading to increased permeability. This dysfunction can exacerbate cerebral injury and contribute to severe complications. The permeability of the BBB fluctuates during different stages of AIS and is influenced by various factors. Developing effective therapies to restore BBB function remains a significant challenge in AIS treatment. High levels of vascular endothelial growth factor (VEGF) in the early stages of AIS have been shown to worsen BBB breakdown and stroke progression. Our study aimed to investigate the protective effects of the VEGF receptor inhibitor Axitinib on BBB dysfunction and cerebral ischemia/reperfusion-induced injury. METHODS BEnd3 cell exposed to oxygen-glucose deprivation (OGD) model was constructed to estimate pharmacological activity of Axitinib (400 ng/ml) on anti-apoptosis and pathological barrier function recovery. In vivo, rats were subjected to a 1 h transient middle cerebral artery occlusion and 23 h reperfusion (tMCAO/R) to investigate the permeability of BBB and cerebral tissue damage. Axitinib was administered through the tail vein at the beginning of reperfusion. BBB integrity was assessed by Evans blue leakage and the expression levels of Tjs claudin-5 and occludin. RESULTS Our research revealed that co-incubation with Axitinib enhanced the cell viability of OGD-insulted bEnd3 cells, decreased LDH leakage rate, and suppressed the expression of apoptosis-related proteins cytochrome C and Bax. Axitinib also mitigated the damage to Tjs and facilitated the restoration of transepithelial electrical resistance in OGD-insulted bEnd.3 cells. In vivo, Axitinib administration reduced intracerebral Evans blue leakage and up-regulated the expression of Tjs in the penumbra brain tissue in tMCAO/R rats. Notably, 10 mg/kg Axitinib exerted a significant anti-ischemic effect by decreasing cerebral infarct volume and brain edema volume, improving neurological function, and reducing pro-inflammatory cytokines IL-6 and TNF-α in the brain. CONCLUSIONS Our study highlights Axitinib as a potent protectant of blood-brain barrier function, capable of promoting pathological blood-brain barrier recovery through VEGF inhibition and increased expression of tight junction proteins in AIS. This suggests that VEGF antagonism within the first 24 h post-stroke could be a novel therapeutic approach to enhance blood-brain barrier function and mitigate ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Wentao Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Lijun Wen
- National Engineering Research Center for Modernization of Tranditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Xiangyu Jin
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Tingting Meng
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Sufen Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yiling Hong
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yichong Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| |
Collapse
|
23
|
Bernocchi F, Bonomi CG, Assogna M, Moreschini A, Mercuri NB, Koch G, Martorana A, Motta C. Astrocytic-derived vascular remodeling factors are independently associated with blood brain barrier permeability in Alzheimer's disease. Neurobiol Aging 2024; 141:66-73. [PMID: 38823205 DOI: 10.1016/j.neurobiolaging.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Astrocytes in Alzheimer's disease (AD) exert a pivotal role in the maintenance of blood-brain barrier (BBB) integrity essentially through structural support and release of soluble factors. This study provides new insights into the vascular remodeling processes occurring in AD, and reveals, in vivo, a pathological profile of astrocytic secretion involving Vascular Endothelial Growth Factor (VEGF), Matrix Metalloproteinases (MMP)-9, MMP-2 and Endothelin-1 (ET-1). Cerebrospinal fluid (CSF) levels of VEGF, MMP-2/-9 were lower in patients belonging to the AD continuum, compared to aged-matched controls. CSF levels of VEGF and ET-1 positively correlated with MMP-9 but negatively with MMP-2, suggesting a complex vascular remodeling process occurring in AD. Only MMP-2 levels were significantly associated with CSF AD biomarkers. Conversely, higher MMP-2 (β = 0.411, p < 0.001), ET-1 levels (β = 0.344, p < 0.001) and VEGF (β = 0.221, p = 0.022), were associated with higher BBB permeability. Astrocytic-derived vascular remodeling factors are altered in AD, disclosing the failure of important protective mechanisms which proceed independently alongside AD pathology.
Collapse
Affiliation(s)
- Francesca Bernocchi
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Chiara Giuseppina Bonomi
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Martina Assogna
- Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, via Ardeatina 306/354, Rome 00179, Italy
| | - Alessandra Moreschini
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Medicine, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, via Ardeatina 306/354, Rome 00179, Italy; Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Alessandro Martorana
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Caterina Motta
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy.
| |
Collapse
|
24
|
Ahtiainen A, Genocchi B, Subramaniyam NP, Tanskanen JMA, Rantamäki T, Hyttinen JAK. Astrocytes facilitate gabazine-evoked electrophysiological hyperactivity and distinct biochemical responses in mature neuronal cultures. J Neurochem 2024; 168:3076-3094. [PMID: 39001671 DOI: 10.1111/jnc.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 10/04/2024]
Abstract
Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the adult brain that binds to GABA receptors and hyperpolarizes the postsynaptic neuron. Gabazine acts as a competitive antagonist to type A GABA receptors (GABAAR), thereby causing diminished neuronal hyperpolarization and GABAAR-mediated inhibition. However, the biochemical effects and the potential regulatory role of astrocytes in this process remain poorly understood. To address this, we investigated the neuronal responses of gabazine in rat cortical cultures containing varying ratios of neurons and astrocytes. Electrophysiological characterization was performed utilizing microelectrode arrays (MEAs) with topologically controlled microcircuit cultures that enabled control of neuronal network growth. Biochemical analysis of the cultures was performed using traditional dissociated cultures on coverslips. Our study indicates that, upon gabazine stimulation, astrocyte-rich neuronal cultures exhibit elevated electrophysiological activity and tyrosine phosphorylation of tropomyosin receptor kinase B (TrkB; receptor for brain-derived neurotrophic factor), along with distinct cytokine secretion profiles. Notably, neurons lacking proper astrocytic support were found to experience synapse loss and decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, astrocytes contributed to neuronal viability, morphology, vascular endothelial growth factor (VEGF) secretion, and overall neuronal network functionality, highlighting the multifunctional role of astrocytes.
Collapse
Affiliation(s)
- Annika Ahtiainen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Barbara Genocchi
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Narayan Puthanmadam Subramaniyam
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jarno M A Tanskanen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jari A K Hyttinen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
25
|
Shankar A, Sharma A, Buch C, Chilton RJ. The evolving role of GLP-1 agonists in ischemic stroke prevention in diabetic patients. Cardiovasc Endocrinol Metab 2024; 13:e00308. [PMID: 39148946 PMCID: PMC11326472 DOI: 10.1097/xce.0000000000000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Affiliation(s)
- Aditi Shankar
- Division of Cardiology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Aditi Sharma
- Division of Cardiology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Chirag Buch
- Division of Cardiology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Robert J Chilton
- Division of Cardiology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
26
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
27
|
Xu B, Lin C, Wang Y, Wang H, Liu Y, Wang X. Using Dual-Target rTMS, Single-Target rTMS, or Sham rTMS on Post-Stroke Cognitive Impairment. J Integr Neurosci 2024; 23:161. [PMID: 39207080 DOI: 10.31083/j.jin2308161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The clinical application of 10 Hz repetitive transcranil magnetic stimulation (rTMS) remains limited despite its demonstrated effectiveness in enhancing cortical excitability and improving cognitive function. The present study used a novel stimulus target [left dorsolateral prefrontal cortex + primary motor cortex] to facilitate the enhancement of cognitive function through the bidirectional promotion of cognitive and motor functions; Methods: Post-stroke cognitive impairment patients (n = 48) were randomly assigned to receive either dual-target, single-target, or sham rTMS for 4 weeks. Before and after 4 weeks of treatment, participants were asked to complete the Montreal Cognitive Assessment (MoCA) test, the Modified Barthel Index (MBI), the Trail-making Test (TMT), and the Digital Span Test (DST). In addition, the levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) in serum were also measured. RESULTS After adjusting for pre-intervention (baseline) MoCA scores, the post-intervention MoCA scores varied significantly. After post-hoc analysis, differences existed between the post-treatment scores of the dual-target rTMS group and the sham rTMS group (the experimental group scores were significantly higher), and between those of the dual-target rTMS group and the single-target rTMS group (the dual-target rTMS scores were significantly higher). The serum VEGF levels of the dual-target rTMS group were significantly higher those that of the sham rTMS group. CONCLUSIONS The present study presented data showing that a dual-target rTMS therapy is effective for Post-stroke cognitive impairment (PSCI). The stimulation exhibited remarkable efficacy, suggesting that dual-target stimulation (left dorsolateral prefrontal cortex+motor cortex (L-DLPFC+M1)) holds promise as a potential target for TMS therapy in individuals with cognitive impairment after stroke. CLINICAL TRIAL REGISTRATION No: ChiCTR220066184. Registered 26 November, 2022, https://www.chictr.org.cn.
Collapse
Affiliation(s)
- Bingshan Xu
- College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, 201318 Shanghai, China
| | - Chunrong Lin
- College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, 201318 Shanghai, China
| | - Yiwen Wang
- Rehabilitation Department, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), 201620 Shanghai, China
| | - Hong Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, 201318 Shanghai, China
| | - Yao Liu
- Neuromodulation Therapy Department, Shanghai Health Rehabilitation Hospital, 201615 Shanghai, China
| | - Xiaojun Wang
- Medical Research and Education Department, Shanghai Health Rehabilitation Hospital, 201615 Shanghai, China
| |
Collapse
|
28
|
Fernández-Serra R, Lekouaghet A, Peracho L, Yonesi M, Alcázar A, Chioua M, Marco-Contelles J, Pérez-Rigueiro J, Rojo FJ, Panetsos F, Guinea GV, González-Nieto D. Permselectivity of Silk Fibroin Hydrogels for Advanced Drug Delivery Neurotherapies. Biomacromolecules 2024; 25:5233-5250. [PMID: 39018332 PMCID: PMC11323009 DOI: 10.1021/acs.biomac.4c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/19/2024]
Abstract
A promising trend in tissue engineering is using biomaterials to improve the control of drug concentration in targeted tissue. These vehicular systems are of specific interest when the required treatment time window is higher than the stability of therapeutic molecules in the body. Herein, the capacity of silk fibroin hydrogels to release different molecules and drugs in a sustained manner was evaluated. We found that a biomaterial format, obtained by an entirely aqueous-based process, could release molecules of variable molecular weight and charge with a preferential delivery of negatively charged molecules. Although the theoretical modeling suggested that drug delivery was more likely to be driven by Fickian diffusion, the external media had a considerable influence on the release, with lipophilic organic solvents such as acetonitrile-methanol (ACN-MeOH) intensifying the release of hydrophobic molecules. Second, we found that silk fibroin could be used as a vehicular system to treat a variety of brain disorders as this biomaterial sustained the release of different factors with neurotrophic (brain-derived neurotrophic factor) (BDNF), chemoattractant (C-X-C motif chemokine 12) (CXCL12), anti-inflammatory (TGF-β-1), and angiogenic (VEGF) capacities. Finally, we demonstrated that this biomaterial hydrogel could release cholesteronitrone ISQ201, a nitrone with antioxidant capacity, showing neuroprotective activity in an in vitro model of ischemia-reoxygenation. Given the slow degradation rate shown by silk fibroin in many biological tissues, including the nervous system, our study expands the restricted list of drug delivery-based biomaterial systems with therapeutic capacity for both short- and especially long-term treatment windows and has merit for use with brain pathologies.
Collapse
Affiliation(s)
- Rocío Fernández-Serra
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
| | - Amira Lekouaghet
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
| | - Lorena Peracho
- Department
of Research, Hospital Universitario Ramón
y Cajal, Madrid 28034, Spain
- Proteomics
Unit, Instituto Ramón y Cajal de
Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Mahdi Yonesi
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
| | - Alberto Alcázar
- Department
of Research, Hospital Universitario Ramón
y Cajal, Madrid 28034, Spain
- Proteomics
Unit, Instituto Ramón y Cajal de
Investigación Sanitaria (IRYCIS), Madrid 28034, Spain
| | - Mourad Chioua
- Laboratory
of Medicinal Chemistry, Institute of General
Organic Chemistry (CSIC), Madrid 28006, Spain
| | - José Marco-Contelles
- Laboratory
of Medicinal Chemistry, Institute of General
Organic Chemistry (CSIC), Madrid 28006, Spain
- Center
for
Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid 28029, Spain
| | - José Pérez-Rigueiro
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Departamento
de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Biomaterials
and Regenerative Medicine Group, Instituto de Investigación
Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, Madrid 28040, Spain
| | - Francisco J. Rojo
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Departamento
de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040, Spain
- Biomaterials
and Regenerative Medicine Group, Instituto de Investigación
Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, Madrid 28040, Spain
| | - Fivos Panetsos
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Biomaterials
and Regenerative Medicine Group, Instituto de Investigación
Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, Madrid 28040, Spain
- Neurocomputing
and Neurorobotics Research Group, Faculty of Biology and Faculty of
Optics, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Gustavo V. Guinea
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Departamento
de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Biomaterials
and Regenerative Medicine Group, Instituto de Investigación
Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, Madrid 28040, Spain
| | - Daniel González-Nieto
- Center
for Biomedical Technology, Universidad Politécnica
de Madrid, Pozuelo de Alarcón 28223, Spain
- Silk
Biomed SL, Calle Navacerrada
18, Urb. Puerto Galapagar. Galapagar 28260, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Departamento de
Tecnología Fotónica y Bioingeniería,
ETSI Telecomunicaciones, Universidad Politécnica
de Madrid, Madrid 28040, Spain
| |
Collapse
|
29
|
Quaggin SE. A half-century of VEGFA: from theory to practice. J Clin Invest 2024; 134:e184205. [PMID: 39087477 PMCID: PMC11290956 DOI: 10.1172/jci184205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Affiliation(s)
- Susan E. Quaggin
- Feinberg Cardiovascular & Renal Research Institute, and
- Division of Nephrology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
30
|
Rotaru-Zăvăleanu AD, Dinescu VC, Aldea M, Gresita A. Hydrogel-Based Therapies for Ischemic and Hemorrhagic Stroke: A Comprehensive Review. Gels 2024; 10:476. [PMID: 39057499 PMCID: PMC11276304 DOI: 10.3390/gels10070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Stroke remains the second leading cause of death and a major cause of disability worldwide, significantly impacting individuals, families, and healthcare systems. This neurological emergency can be triggered by ischemic events, including small vessel arteriolosclerosis, cardioembolism, and large artery atherothromboembolism, as well as hemorrhagic incidents resulting from macrovascular lesions, venous sinus thrombosis, or vascular malformations, leading to significant neuronal damage. The resultant motor impairment, cognitive dysfunction, and emotional disturbances underscore the urgent need for effective therapeutic interventions. Recent advancements in biomaterials, particularly hydrogels, offer promising new avenues for stroke management. Hydrogels, composed of three-dimensional networks of hydrophilic polymers, are notable for their ability to absorb and retain substantial amounts of water. Commonly used polymers in hydrogel formulations include natural polymers like alginate, chitosan, and collagen, as well as synthetic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), and polyacrylamide. Their customizable characteristics-such as their porosity, swelling behavior, mechanical strength, and degradation rates-make hydrogels ideal for biomedical applications, including drug delivery, cell delivery, tissue engineering, and the controlled release of therapeutic agents. This review comprehensively explores hydrogel-based approaches to both ischemic and hemorrhagic stroke therapy, elucidating the mechanisms by which hydrogels provide neuroprotection. It covers their application in drug delivery systems, their role in reducing inflammation and secondary injury, and their potential to support neurogenesis and angiogenesis. It also discusses current advancements in hydrogel technology and the significant challenges in translating these innovations from research into clinical practice. Additionally, it emphasizes the limited number of clinical trials utilizing hydrogel therapies for stroke and addresses the associated limitations and constraints, underscoring the need for further research in this field.
Collapse
Affiliation(s)
- Alexandra-Daniela Rotaru-Zăvăleanu
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2-4 Petru Rares Str., 200349 Craiova, Romania;
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Madalina Aldea
- Psychiatry Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Andrei Gresita
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 115680, USA
| |
Collapse
|
31
|
Dause TJ, Denninger JK, Osap R, Walters AE, Rieskamp JD, Kirby ED. Autocrine VEGF drives neural stem cell proximity to the adult hippocampus vascular niche. Life Sci Alliance 2024; 7:e202402659. [PMID: 38631901 PMCID: PMC11024344 DOI: 10.26508/lsa.202402659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
The vasculature is a key component of adult brain neural stem cell (NSC) niches. In the adult mammalian hippocampus, NSCs reside in close contact with a dense capillary network. How this niche is maintained is unclear. We recently found that adult hippocampal NSCs express VEGF, a soluble factor with chemoattractive properties for vascular endothelia. Here, we show that global and NSC-specific VEGF loss led to dissociation of NSCs and their intermediate progenitor daughter cells from local vasculature. Surprisingly, though, we found no changes in local vascular density. Instead, we found that NSC-derived VEGF supports maintenance of gene expression programs in NSCs and their progeny related to cell migration and adhesion. In vitro assays revealed that blockade of VEGF receptor 2 impaired NSC motility and adhesion. Our findings suggest that NSCs maintain their own proximity to vasculature via self-stimulated VEGF signaling that supports their motility towards and/or adhesion to local blood vessels.
Collapse
Affiliation(s)
- Tyler J Dause
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Jiyeon K Denninger
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Robert Osap
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Ashley E Walters
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Joshua D Rieskamp
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Elizabeth D Kirby
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
32
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
34
|
Tang L, Liu Z, Ji Z, Zhang X, Zhao M, Peng D, Han L. Promotion of mature angiogenesis in ischemic stroke by Taohong Siwu decoction through glycolysis activation. Front Pharmacol 2024; 15:1395167. [PMID: 38962303 PMCID: PMC11221195 DOI: 10.3389/fphar.2024.1395167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
Backgrounds: Mature angiogenesis plays a critical role in improving cerebral ischemia-reperfusion injury (CIRI). Glycolysis serves as the primary energy source for brain microvascular endothelial cells (BMECs), whereas other vascular cells rely on aerobic respiration. Therefore, intercellular variations in energy metabolism could influence mature angiogenesis. Taohong Siwu Decoction (THSWD) has demonstrated efficacy in treating ischemic stroke (IS), yet its potential to promote mature angiogenesis through glycolysis activation remains unclear. Methods: In this study, we established a middle cerebral artery occlusion/reperfusion (MCAO/R) model in vivo and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in vitro. We assessed neuroprotective effects using neurobehavioral scoring, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxylin-eosin (HE) staining, and Nissl staining in MCAO/R rats. Additionally, we evaluated mature angiogenesis and glycolysis levels through immunofluorescence, immunohistochemistry, and glycolysis assays. Finally, we investigated THSWD's mechanism in linking glycolysis to mature angiogenesis in OGD/R-induced BMECs. Results: In vivo experiments demonstrated that THSWD effectively mitigated cerebral damage and restored neurological function in MCAO/R rats. THSWD significantly enhanced CD31, Ang1, PDGFB, and PDGFR-β expression levels, likely associated with improved glucose, pyruvate, and ATP levels, along with reduced lactate and lactate/pyruvate ratios. In vitro findings suggested that THSWD may boost the expression of mature angiogenesis factors (VEGFA, Ang1, and PDGFB) by activating glycolysis, increasing glucose uptake and augmenting lactate, pyruvate, and ATP content, thus accelerating mature angiogenesis. Conclusion: THSWD could alleviate CIRI by activating the glycolysis pathway to promote mature angiogenesis. Targeting the glycolysis-mediated mature angiogenesis alongside THSWD therapy holds promise for IS treatment.
Collapse
Affiliation(s)
- Linfeng Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Zhuqing Liu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Zhaojie Ji
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Xueting Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Mengdie Zhao
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Daiyin Peng
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Lan Han
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
35
|
Bernard M, Menet R, Lecordier S, ElAli A. Endothelial PDGF-D contributes to neurovascular protection after ischemic stroke by rescuing pericyte functions. Cell Mol Life Sci 2024; 81:225. [PMID: 38769116 PMCID: PMC11106055 DOI: 10.1007/s00018-024-05244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Ischemic stroke induces neovascularization of the injured tissue as an attempt to promote structural repair and neurological recovery. Angiogenesis is regulated by pericytes that potently react to ischemic stroke stressors, ranging from death to dysfunction. Platelet-derived growth factor (PDGF) receptor (PDGFR)β controls pericyte survival, migration, and interaction with brain endothelial cells. PDGF-D a specific ligand of PDGFRβ is expressed in the brain, yet its regulation and role in ischemic stroke pathobiology remains unexplored. Using experimental ischemic stroke mouse model, we found that PDGF-D is transiently induced in brain endothelial cells at the injury site in the subacute phase. To investigate the biological significance of PDGF-D post-ischemic stroke regulation, its subacute expression was either downregulated using siRNA or upregulated using an active recombinant form. Attenuation of PDGF-D subacute induction exacerbates neuronal loss, impairs microvascular density, alters vascular permeability, and increases microvascular stalling. Increasing PDGF-D subacute bioavailability rescues neuronal survival and improves neurological recovery. PDGF-D subacute enhanced bioavailability promotes stable neovascularization of the injured tissue and improves brain perfusion. Notably, PDGF-D enhanced bioavailability improves pericyte association with brain endothelial cells. Cell-based assays using human brain pericyte and brain endothelial cells exposed to ischemia-like conditions were applied to investigate the underlying mechanisms. PDGF-D stimulation attenuates pericyte loss and fibrotic transition, while increasing the secretion of pro-angiogenic and vascular protective factors. Moreover, PDGF-D stimulates pericyte migration required for optimal endothelial coverage and promotes angiogenesis. Our study unravels new insights into PDGF-D contribution to neurovascular protection after ischemic stroke by rescuing the functions of pericytes.
Collapse
Affiliation(s)
- Maxime Bernard
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Romain Menet
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Sarah Lecordier
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada
| | - Ayman ElAli
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Neuroscience Axis, Research Center of CHU de Québec (CHUQ)-Université Laval, 2705 Laurier Boulevard, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
36
|
Cuccurullo SJ, Fleming TK, Petrosyan H, Hanley DF, Raghavan P. Mechanisms and benefits of cardiac rehabilitation in individuals with stroke: emerging role of its impact on improving cardiovascular and neurovascular health. Front Cardiovasc Med 2024; 11:1376616. [PMID: 38756753 PMCID: PMC11096558 DOI: 10.3389/fcvm.2024.1376616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Human and animal studies have demonstrated the mechanisms and benefits of aerobic exercise for both cardiovascular and neurovascular health. Aerobic exercise induces neuroplasticity and neurophysiologic reorganization of brain networks, improves cerebral blood flow, and increases whole-body VO2peak (peak oxygen consumption). The effectiveness of a structured cardiac rehabilitation (CR) program is well established and a vital part of the continuum of care for people with cardiovascular disease. Individuals post stroke exhibit decreased cardiovascular capacity which impacts their neurologic recovery and extends disability. Stroke survivors share the same risk factors as patients with cardiac disease and can therefore benefit significantly from a comprehensive CR program in addition to neurorehabilitation to address their cardiovascular health. The inclusion of individuals with stroke into a CR program, with appropriate adaptations, can significantly improve their cardiovascular health, promote functional recovery, and reduce future cardiovascular and cerebrovascular events thereby reducing the economic burden of stroke.
Collapse
Affiliation(s)
- Sara J. Cuccurullo
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute at Hackensack Meridian Health, Edison, NJ, United States
| | - Talya K. Fleming
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute at Hackensack Meridian Health, Edison, NJ, United States
| | - Hayk Petrosyan
- Department of Physical Medicine and Rehabilitation, JFK Johnson Rehabilitation Institute at Hackensack Meridian Health, Edison, NJ, United States
| | - Daniel F. Hanley
- Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Preeti Raghavan
- Department of Physical Medicine and Rehabilitation and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
37
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
38
|
Dobner S, Tóth F, de Rooij LPMH. A high-resolution view of the heterogeneous aging endothelium. Angiogenesis 2024; 27:129-145. [PMID: 38324119 PMCID: PMC11021252 DOI: 10.1007/s10456-023-09904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Vascular endothelial cell (EC) aging has a strong impact on tissue perfusion and overall cardiovascular health. While studies confined to the investigation of aging-associated vascular readouts in one or a few tissues have already drastically expanded our understanding of EC aging, single-cell omics and other high-resolution profiling technologies have started to illuminate the intricate molecular changes underlying endothelial aging across diverse tissues and vascular beds at scale. In this review, we provide an overview of recent insights into the heterogeneous adaptations of the aging vascular endothelium. We address critical questions regarding tissue-specific and universal responses of the endothelium to the aging process, EC turnover dynamics throughout lifespan, and the differential susceptibility of ECs to acquiring aging-associated traits. In doing so, we underscore the transformative potential of single-cell approaches in advancing our comprehension of endothelial aging, essential to foster the development of future innovative therapeutic strategies for aging-associated vascular conditions.
Collapse
Affiliation(s)
- Sarah Dobner
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Fanni Tóth
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Laura P M H de Rooij
- The CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
39
|
Li Y, Xue W, Li S, Cui L, Gao Y, Li L, Chen R, Zhang X, Xu R, Jiang W, Zhang X, Wang L. Salidroside promotes angiogenesis after cerebral ischemia in mice through Shh signaling pathway. Biomed Pharmacother 2024; 174:116625. [PMID: 38643543 DOI: 10.1016/j.biopha.2024.116625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
AIMS The purpose of this study was to explore the impacts of salidroside on vascular regeneration, vascular structural changes and long-term neurological recuperation following cerebral ischemia and its possible mechanism. MAIN METHODS From Day 1 to Day 28, young male mice with middle cerebral artery blockage received daily doses of salidroside and measured neurological deficits. On the 7th day after stroke, the volume of cerebral infarction was determined using TTC and HE staining. Microvascular density, astrocyte coverage, angiogenesis and the expression of the Shh signaling pathway were detected by IF, qRTPCR and WB at 7, 14 and 28 days after stroke. Changes in blood flow, blood vessel density and diameter from stroke to 28 days were measured by the LSCI and TPMI. KEY FINDINGS Compared with the dMACO group, the salidroside treatment group significantly promoted the recovery of neurological function. Salidroside was found to enhance cerebral blood flow perfusion and reduce the infarct on the 7th day after stroke. From the 7th to the 28th day after stroke, salidroside treatment boosted the expression of CD31, CD31+/BrdU+, and GFAP in the cortex around the infarction site. On the 14th day after stroke, salidroside significantly enhanced the width and density of blood vessels. Salidroside increased the expression of histones and genes in the Shh signaling pathway during treatment, and this effect was weakened by the Shh inhibitor Cyclopamine. SIGNIFICANCE Salidroside can restore nerve function, improve cerebral blood flow, reduce cerebral infarction volume, increase microvessel density and promote angiogenesis via the Shh signaling pathway.
Collapse
Affiliation(s)
- Ying Li
- Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Weihong Xue
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Songyi Li
- Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Lili Cui
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yuxiao Gao
- Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Linlin Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Rong Chen
- Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Xiao Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Renhao Xu
- Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Wei Jiang
- Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China.
| | - Lina Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Collaborative Innovation Center for Cardio, Cerebrovascular Disease, Shijiazhuang, Hebei 050000, People's Republic of China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, People's Republic of China.
| |
Collapse
|
40
|
Choi YK. Detrimental Roles of Hypoxia-Inducible Factor-1α in Severe Hypoxic Brain Diseases. Int J Mol Sci 2024; 25:4465. [PMID: 38674050 PMCID: PMC11050730 DOI: 10.3390/ijms25084465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia stabilizes hypoxia-inducible factors (HIFs), facilitating adaptation to hypoxic conditions. Appropriate hypoxia is pivotal for neurovascular regeneration and immune cell mobilization. However, in central nervous system (CNS) injury, prolonged and severe hypoxia harms the brain by triggering neurovascular inflammation, oxidative stress, glial activation, vascular damage, mitochondrial dysfunction, and cell death. Diminished hypoxia in the brain improves cognitive function in individuals with CNS injuries. This review discusses the current evidence regarding the contribution of severe hypoxia to CNS injuries, with an emphasis on HIF-1α-mediated pathways. During severe hypoxia in the CNS, HIF-1α facilitates inflammasome formation, mitochondrial dysfunction, and cell death. This review presents the molecular mechanisms by which HIF-1α is involved in the pathogenesis of CNS injuries, such as stroke, traumatic brain injury, and Alzheimer's disease. Deciphering the molecular mechanisms of HIF-1α will contribute to the development of therapeutic strategies for severe hypoxic brain diseases.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
41
|
Weinstein G, Kojis DJ, Ghosh S, Beiser AS, Seshadri S. Association of Neurotrophic Factors at Midlife With In Vivo Measures of β-Amyloid and Tau Burden 15 Years Later in Dementia-Free Adults. Neurology 2024; 102:e209198. [PMID: 38471064 PMCID: PMC11033983 DOI: 10.1212/wnl.0000000000209198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/13/2023] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Neurotrophic factors (NTFs) play an important role in Alzheimer disease (AD) pathophysiology. Brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) are important NTFs. However, a direct link of BDNF and VEGF circulating levels with in vivo measures of amyloid-β (Aβ) and tau burden remains to be elucidated. We explored the relationship of BDNF and VEGF serum levels with future brain Aβ and tau pathology in a cohort of cognitively healthy, predominantly middle-aged adults and tested for possible effect modifications by sex and menopausal status. METHODS This cross-sectional analysis was conducted using data from the Framingham Heart Study (FHS), a community-based cohort study. The study sample included cognitively healthy participants from the FHS Offspring and Third-generation cohorts. BDNF and VEGF were measured in the third-generation cohort during examination cycles 2 (2005-2008) and 1 (2002-2005), respectively, and in the offspring cohort during examination cycle 7 (1998-2001). Participants underwent 11C-Pittsburgh compound B amyloid and 18F-Flortaucipir tau-PET imaging (2015-2021). Linear regression models were used to assess the relationship of serum BDNF and VEGF levels with regional tau and global Aβ, adjusting for potential confounders. Interactions with sex and menopausal status were additionally tested. RESULTS The sample included 414 individuals (mean age = 41 ± 9 years; 51% female). Continuous measures of BDNF and VEGF were associated with tau signal in the rhinal region after adjustment for potential confounders (β = -0.15 ± 0.06, p = 0.018 and β = -0.19 ± 0.09, p = 0.043, respectively). High BDNF (≥32,450 pg/mL) and VEGF (≥488 pg/mL) levels were significantly related to lower rhinal tau (β = -0.27 ± 0.11, p = 0.016 and β = -0.40 ± 0.14, p = 0.004, respectively) and inferior temporal tau (β = -0.24 ± 0.11, p = 0.028 and β = -0.26 ± 0.13, p = 0.049, respectively). The BDNF-rhinal tau association was observed only among male individuals. Overall, BDNF and VEGF were not associated with global amyloid; however, high VEGF levels were associated with lower amyloid burden in postmenopausal women (β = -1.96 ± 0.70, p = 0.013, per 1 pg/mL). DISCUSSION This study demonstrates a robust association between BDNF and VEGF serum levels with in vivo measures of tau almost 2 decades later. These findings add to mounting evidence from preclinical studies suggesting a role of NTFs as valuable blood biomarkers for AD risk prediction.
Collapse
Affiliation(s)
- Galit Weinstein
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| | - Daniel J Kojis
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| | - Saptaparni Ghosh
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| | - Alexa S Beiser
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| | - Sudha Seshadri
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| |
Collapse
|
42
|
Pordel S, McCloskey AP, Almahmeed W, Sahebkar A. The protective effects of statins in traumatic brain injury. Pharmacol Rep 2024; 76:235-250. [PMID: 38448729 DOI: 10.1007/s43440-024-00582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Traumatic brain injury (TBI), often referred to as the "silent epidemic", is the most common cause of mortality and morbidity worldwide among all trauma-related injuries. It is associated with considerable personal, medical, and economic consequences. Although remarkable advances in therapeutic approaches have been made, current treatments and clinical management for TBI recovery still remain to be improved. One of the factors that may contribute to this gap is that existing therapies target only a single event or pathology. However, brain injury after TBI involves various pathological mechanisms, including inflammation, oxidative stress, blood-brain barrier (BBB) disruption, ionic disturbance, excitotoxicity, mitochondrial dysfunction, neuronal necrosis, and apoptosis. Statins have several beneficial pleiotropic effects (anti-excitotoxicity, anti-inflammatory, anti-oxidant, anti-thrombotic, immunomodulatory activity, endothelial and vasoactive properties) in addition to promoting angiogenesis, neurogenesis, and synaptogenesis in TBI. Supposedly, using agents such as statins that target numerous and diverse pathological mechanisms, may be more effective than a single-target approach in TBI management. The current review was undertaken to investigate and summarize the protective mechanisms of statins against TBI. The limitations of conducted studies and directions for future research on this potential therapeutic application of statins are also discussed.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Díaz-Pérez A, Pérez B, Manich G, García-Aranda J, Navarro X, Penas C, Jiménez-Altayó F. Histone deacetylase inhibition by suberoylanilide hydroxamic acid during reperfusion promotes multifaceted brain and vascular protection in spontaneously hypertensive rats with transient ischaemic stroke. Biomed Pharmacother 2024; 172:116287. [PMID: 38382328 DOI: 10.1016/j.biopha.2024.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
Hypertension is the most prevalent modifiable risk factor for stroke and is associated with worse functional outcomes. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid (SAHA) modulates gene expression and has emerged as a promising therapeutic approach to reduce ischaemic brain injury. Here, we have tested the therapeutic potential of SAHA administered during reperfusion in adult male spontaneously hypertensive (SHR) rats subjected to transient middle cerebral artery occlusion (tMCAO; 90 min occlusion/24 h reperfusion). Animals received a single dose of SAHA (50 mg/kg) or vehicle i.p. at 1, 4, or 6 h after reperfusion onset. The time-course of brain histone H3 acetylation was studied. After tMCAO, drug brain penetrance and beneficial effects on behavioural outcomes, infarct volume, oedema, angiogenesis, blood-brain barrier integrity, cerebral artery oxidative stress and remodelling, and brain and vascular inflammation were evaluated. SAHA increased brain histone H3 acetylation from 1 to 6 h after injection, reaching the ischaemic brain administered during reperfusion. Treatment given at 4 h after reperfusion onset improved neurological score, reduced infarct volume and oedema, attenuated microglial activation, prevented exacerbated MCA angiogenic sprouting and blood-brain barrier breakdown, normalised MCA oxidative stress and remodelling, and modulated brain and cerebrovascular cytokine expression. Overall, we demonstrate that SAHA administered during early reperfusion exerts robust brain and vascular protection after tMCAO in hypertensive rats. These findings are aligned with previous research in ischaemic normotensive mice and help pave the way to optimise the design of clinical trials assessing the effectiveness and safety of SAHA in ischaemic stroke.
Collapse
Affiliation(s)
- Andrea Díaz-Pérez
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Gemma Manich
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Human Anatomy and Embriology Unit, Department of Morphological Sciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Julián García-Aranda
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Red Española de Terapias Avanzadas (RED-TERAV), Instituto de Salud Carlos III, Madrid, Spain
| | - Clara Penas
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Red Española de Terapias Avanzadas (RED-TERAV), Instituto de Salud Carlos III, Madrid, Spain.
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
44
|
Di Martino E, Rayasam A, Vexler ZS. Brain Maturation as a Fundamental Factor in Immune-Neurovascular Interactions in Stroke. Transl Stroke Res 2024; 15:69-86. [PMID: 36705821 PMCID: PMC10796425 DOI: 10.1007/s12975-022-01111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 01/28/2023]
Abstract
Injuries in the developing brain cause significant long-term neurological deficits. Emerging clinical and preclinical data have demonstrated that the pathophysiology of neonatal and childhood stroke share similar mechanisms that regulate brain damage, but also have distinct molecular signatures and cellular pathways. The focus of this review is on two different diseases-neonatal and childhood stroke-with emphasis on similarities and distinctions identified thus far in rodent models of these diseases. This includes the susceptibility of distinct cell types to brain injury with particular emphasis on the role of resident and peripheral immune populations in modulating stroke outcome. Furthermore, we discuss some of the most recent and relevant findings in relation to the immune-neurovascular crosstalk and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we comment on the current state of treatments geared toward inducing neuroprotection and promoting brain repair after injury and highlight that future prophylactic and therapeutic strategies for stroke should be age-specific and consider gender differences in order to achieve optimal translational success.
Collapse
Affiliation(s)
- Elena Di Martino
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Aditya Rayasam
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Zinaida S Vexler
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA.
| |
Collapse
|
45
|
Guo D, Zhang B, Han L, Rensing NR, Wong M. Cerebral vascular and blood brain-barrier abnormalities in a mouse model of epilepsy and tuberous sclerosis complex. Epilepsia 2024; 65:483-496. [PMID: 38049961 PMCID: PMC10922951 DOI: 10.1111/epi.17848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is a genetic disorder, characterized by tumor formation in the brain and other organs, and severe neurological symptoms, such as epilepsy. Abnormal vascular endothelial growth factor (VEGF) expression may promote angiogenesis in kidney and lung tumors in TSC and has been identified in brain specimens from TSC patients, but the role of VEGF and vascular abnormalities in neurological manifestations of TSC is poorly defined. In this study, we investigated abnormalities in brain VEGF expression, cerebral blood vessel anatomy, and blood-brain barrier (BBB) structure and function in a mouse model of TSC. METHODS Tsc1GFAP CKO mice were used to investigate VEGF expression and vascular abnormalities in the brain by Western blotting and immunohistochemical analysis of vascular and BBB markers. In vivo two-photon imaging was used to assess BBB permeability to normally impenetrable fluorescently labeled compounds. The effect of mechanistic target of rapamycin (mTOR) pathway inhibitors, VEGF receptor antagonists (apatinib), or BBB stabilizers (RepSox) was assessed in some of these assays, as well as on seizures by video-electroencephalography. RESULTS VEGF expression was elevated in cortex of Tsc1GFAP CKO mice, which was reversed by the mTOR inhibitor rapamycin. Tsc1GFAP CKO mice exhibited increased cerebral angiogenesis and vascular complexity in cortex and hippocampus, which were reversed by the VEGF receptor antagonist apatinib. BBB permeability was abnormally increased and BBB-related tight junction proteins occludin and claudin-5 were decreased in Tsc1GFAP CKO mice, also in an apatinib- and RepSox-dependent manner. The BBB stabilizer (RepSox), but not the VEGF receptor antagonist (apatinib), decreased seizures and improved survival in Tsc1GFAP CKO mice. SIGNIFICANCE Increased brain VEGF expression is dependent on mTOR pathway activation and promotes cerebral vascular abnormalities and increased BBB permeability in a mouse model of TSC. BBB modulation may affect epileptogenesis and represent a rational treatment for epilepsy in TSC.
Collapse
Affiliation(s)
- Dongjun Guo
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bo Zhang
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lirong Han
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas R Rensing
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Wong
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
46
|
Abstract
Vascular endothelial growth factor (VEGF) is well known for its angiogenic activity, but recent evidence has revealed a neuroprotective action of this factor on injured or diseased neurons. In the present review, we summarize the most relevant findings that have contributed to establish a link between VEGF deficiency and neuronal degeneration. At issue, 1) mutant mice with reduced levels of VEGF show adult-onset muscle weakness and motoneuron degeneration resembling amyotrophic lateral sclerosis (ALS), 2) administration of VEGF to different animal models of motoneuron degeneration improves motor performance and ameliorates motoneuronal degeneration, and 3) there is an association between low plasmatic levels of VEGF and human ALS. Altogether, the results presented in this review highlight VEGF as an essential motoneuron neurotrophic factor endowed with promising therapeutic potential for the treatment of motoneuron disorders.
Collapse
Affiliation(s)
- Paula M Calvo
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rosendo G Hernández
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
47
|
He Q, Wang Y, Fang C, Feng Z, Yin M, Huang J, Ma Y, Mo Z. Advancing stroke therapy: A deep dive into early phase of ischemic stroke and recanalization. CNS Neurosci Ther 2024; 30:e14634. [PMID: 38379112 PMCID: PMC10879038 DOI: 10.1111/cns.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Ischemic stroke, accounting for the majority of stroke events, significantly contributes to global morbidity and mortality. Vascular recanalization therapies, namely intravenous thrombolysis and mechanical thrombectomy, have emerged as critical interventions, yet their success hinges on timely application and patient-specific factors. This review focuses on the early phase pathophysiological mechanisms of ischemic stroke and the nuances of recanalization. It highlights the dual role of neutrophils in tissue damage and repair, and the critical involvement of the blood-brain barrier (BBB) in stroke outcomes. Special emphasis is placed on ischemia-reperfusion injury, characterized by oxidative stress, inflammation, and endothelial dysfunction, which paradoxically exacerbates cerebral damage post-revascularization. The review also explores the potential of targeting molecular pathways involved in BBB integrity and inflammation to enhance the efficacy of recanalization therapies. By synthesizing current research, this paper aims to provide insights into optimizing treatment protocols and developing adjuvant neuroprotective strategies, thereby advancing stroke therapy and improving patient outcomes.
Collapse
Affiliation(s)
- Qianyan He
- Department of Neurology, Stroke CenterThe First Hospital of Jilin UniversityJilinChina
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Yueqing Wang
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Cheng Fang
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Ziying Feng
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Meifang Yin
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Juyang Huang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Yinzhong Ma
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Zhizhun Mo
- Emergency Department, Shenzhen Traditional Chinese Medicine HospitalThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenGuangdongChina
| |
Collapse
|
48
|
Stankovic I, Notaras M, Wolujewicz P, Lu T, Lis R, Ross ME, Colak D. Schizophrenia endothelial cells exhibit higher permeability and altered angiogenesis patterns in patient-derived organoids. Transl Psychiatry 2024; 14:53. [PMID: 38263175 PMCID: PMC10806043 DOI: 10.1038/s41398-024-02740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Schizophrenia (SCZ) is a complex neurodevelopmental disorder characterized by the manifestation of psychiatric symptoms in early adulthood. While many research avenues into the origins of SCZ during brain development have been explored, the contribution of endothelial/vascular dysfunction to the disease remains largely elusive. To model the neuropathology of SCZ during early critical periods of brain development, we utilized patient-derived induced pluripotent stem cells (iPSCs) to generate 3D cerebral organoids and define cell-specific signatures of disease. Single-cell RNA sequencing revealed that while SCZ organoids were similar in their macromolecular diversity to organoids generated from healthy controls (CTRL), SCZ organoids exhibited a higher percentage of endothelial cells when normalized to total cell numbers. Additionally, when compared to CTRL, differential gene expression analysis revealed a significant enrichment in genes that function in vessel formation, vascular regulation, and inflammatory response in SCZ endothelial cells. In line with these findings, data from 23 donors demonstrated that PECAM1+ microvascular vessel-like structures were increased in length and number in SCZ organoids in comparison to CTRL organoids. Furthermore, we report that patient-derived endothelial cells displayed higher paracellular permeability, implicating elevated vascular activity. Collectively, our data identified altered gene expression patterns, vessel-like structural changes, and enhanced permeability of endothelial cells in patient-derived models of SCZ. Hence, brain microvascular cells could play a role in the etiology of SCZ by modulating the permeability of the developing blood brain barrier (BBB).
Collapse
Affiliation(s)
- Isidora Stankovic
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tyler Lu
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Lis
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
49
|
Yao Y, Liu F, Gu Z, Wang J, Xu L, Yu Y, Cai J, Ren R. Emerging diagnostic markers and therapeutic targets in post-stroke hemorrhagic transformation and brain edema. Front Mol Neurosci 2023; 16:1286351. [PMID: 38178909 PMCID: PMC10764516 DOI: 10.3389/fnmol.2023.1286351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Stroke is a devastating condition that can lead to significant morbidity and mortality. The aftermath of a stroke, particularly hemorrhagic transformation (HT) and brain edema, can significantly impact the prognosis of patients. Early detection and effective management of these complications are crucial for improving outcomes in stroke patients. This review highlights the emerging diagnostic markers and therapeutic targets including claudin, occludin, zonula occluden, s100β, albumin, MMP-9, MMP-2, MMP-12, IL-1β, TNF-α, IL-6, IFN-γ, TGF-β, IL-10, IL-4, IL-13, MCP-1/CCL2, CXCL2, CXCL8, CXCL12, CCL5, CX3CL1, ICAM-1, VCAM-1, P-selectin, E-selectin, PECAM-1/CD31, JAMs, HMGB1, vWF, VEGF, ROS, NAC, and AQP4. The clinical significance and implications of these biomarkers were also discussed.
Collapse
Affiliation(s)
- Ying Yao
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaowen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lintao Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Yu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Cai
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Reng Ren
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
50
|
Yi T, Li K, Lin XH, Lin DL, Wu YM, Pan ZN, Zheng XF, Chen RC, Zeng G, Chen WH. Predictors of futile recanalization in basilar artery occlusion patients undergoing endovascular treatment: a post hoc analysis of the ATTENTION trial. Front Neurol 2023; 14:1308036. [PMID: 38178887 PMCID: PMC10765589 DOI: 10.3389/fneur.2023.1308036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
Background Few studies have focused on factors associated with futile recanalization in patients with an acute basilar artery occlusion (BAO) that was treated with modern endovascular therapy (EVT). The aim of this study was to explore the factors associated with futile recanalization in patients with an acute BAO presented within 12 h. Methods This is a post-hoc analysis of the ATTENTION trial (The Trial of Endovascular Treatment of Acute Basilar-Artery Occlusion, ClinicalTrials.gov, number NCT04751708). Demographics, clinical characteristics, acute stroke workflow interval times, and imaging characteristics were compared between the futile recanalization and favorable recanalization groups. The favorable outcome was defined as a modified Rankin scale (mRS) score of 0-3 at 90 days, successful reperfusion was defined as thrombolysis in cerebral infarction (TICI) 2b and 3 on the final angiogram, and futile recanalization was defined as failure to achieve a favorable outcome despite successful reperfusion. A multivariate analysis was performed to identify the predictors of futile recanalization. Results In total, 185 patients were included in the final analysis: 89 (48.1%) patients had futile recanalization and 96 (51.9%) patients had favorable recanalization. In the multivariable logistic regression analysis, older age (OR 1.04, 95% CI 1.01 to 1.08, p = 0.01) and diabetes mellitus (OR 3.35, 95% CI 1.40 to 8.01, p = 0.007) were independent predictors of futile recanalization. Conclusion Futile recanalization occurred in nearly half of patients with acute BAO following endovascular treatment. Old age and diabetes mellitus were identified as independent predictors of futile recanalization after endovascular therapy for acute BAO.
Collapse
Affiliation(s)
- Tingyu Yi
- Department of Neurointervention, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Kai Li
- Department of Neurology, Heze Municipal Hospital, Heze, China
| | - Xiao-hui Lin
- Department of Neurointervention, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Ding-lai Lin
- Department of Neurointervention, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yan-Min Wu
- Department of Neurointervention, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Zhi-nan Pan
- Department of Neurointervention, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Xiu-fen Zheng
- Department of Neurointervention, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Rong-cheng Chen
- Department of Neurointervention, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Guoyong Zeng
- Department of Neurology, Ganzhou People’s Hospital, Ganzhou, China
| | - Wen-huo Chen
- Department of Neurointervention, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| |
Collapse
|