1
|
Tan VWT, Salmi TM, Karamalakis AP, Gillespie A, Ong AJS, Balic JJ, Chan YC, Bladen CE, Brown KK, Dawson MA, Cox AG. SLAM-ITseq identifies that Nrf2 induces liver regeneration through the pentose phosphate pathway. Dev Cell 2024; 59:898-910.e6. [PMID: 38366599 DOI: 10.1016/j.devcel.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/07/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The liver exhibits a remarkable capacity to regenerate following injury. Despite this unique attribute, toxic injury is a leading cause of liver failure. The temporal processes by which the liver senses injury and initiates regeneration remain unclear. Here, we developed a transgenic zebrafish model wherein hepatocyte-specific expression of uracil phosphoribosyltransferase (UPRT) enabled the implementation of SLAM-ITseq to investigate the nascent transcriptome during initiation of liver injury and regeneration. Using this approach, we identified a rapid metabolic transition from the fed to the fasted state that was followed by induction of the nuclear erythroid 2-related factor (Nrf2) antioxidant program. We find that activation of Nrf2 in hepatocytes is required to induce the pentose phosphate pathway (PPP) and improve survival following liver injury. Mechanistically, we demonstrate that inhibition of the PPP disrupts nucleotide biosynthesis to prevent liver regeneration. Together, these studies provide fundamental insights into the mechanism by which early metabolic adaptation to injury facilitates tissue regeneration.
Collapse
Affiliation(s)
- Vicky W T Tan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Talhah M Salmi
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony P Karamalakis
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrea Gillespie
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Athena Jessica S Ong
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jesse J Balic
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yih-Chih Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Cerys E Bladen
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kristin K Brown
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; Centre for Cancer Research, The University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Andrew G Cox
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
2
|
Su D, Ding C, Qiu J, Yang G, Wang R, Liu Y, Tao J, Luo W, Weng G, Zhang T. Ribosome profiling: a powerful tool in oncological research. Biomark Res 2024; 12:11. [PMID: 38273337 PMCID: PMC10809610 DOI: 10.1186/s40364-024-00562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Neoplastic cells need to adapt their gene expression pattern to survive in an ever-changing or unfavorable tumor microenvironment. Protein synthesis (or mRNA translation), an essential part of gene expression, is dysregulated in cancer. The emergence of distinct translatomic technologies has revolutionized oncological studies to elucidate translational regulatory mechanisms. Ribosome profiling can provide adequate information on diverse aspects of translation by aiding in quantitatively analyzing the intensity of translating ribosome-protected fragments. Here, we review the primary currently used translatomics techniques and highlight their advantages and disadvantages as tools for translatomics studies. Subsequently, we clarified the areas in which ribosome profiling could be applied to better understand translational control. Finally, we summarized the latest advances in cancer studies using ribosome profiling to highlight the extensive application of this powerful and promising translatomic tool.
Collapse
Affiliation(s)
- Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Chen Ding
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Gang Yang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Guihu Weng
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China.
| |
Collapse
|
3
|
Lapenna D. Glutathione and glutathione-dependent enzymes: From biochemistry to gerontology and successful aging. Ageing Res Rev 2023; 92:102066. [PMID: 37683986 DOI: 10.1016/j.arr.2023.102066] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
The tripeptide glutathione (GSH), namely γ-L-glutamyl-L-cysteinyl-glycine, is an ubiquitous low-molecular weight thiol nucleophile and reductant of utmost importance, representing the central redox agent of most aerobic organisms. GSH has vital functions involving also antioxidant protection, detoxification, redox homeostasis, cell signaling, iron metabolism/homeostasis, DNA synthesis, gene expression, cysteine/protein metabolism, and cell proliferation/differentiation or death including apoptosis and ferroptosis. Various functions of GSH are exerted in concert with GSH-dependent enzymes. Indeed, although GSH has direct scavenging antioxidant effects, its antioxidant function is substantially accomplished by glutathione peroxidase-catalyzed reactions with reductive removal of H2O2, organic peroxides such as lipid hydroperoxides, and peroxynitrite; to this antioxidant activity also contribute peroxiredoxins, enzymes further involved in redox signaling and chaperone activity. Moreover, the detoxifying function of GSH is basically exerted in conjunction with glutathione transferases, which have also antioxidant properties. GSH is synthesized in the cytosol by the ATP-dependent enzymes glutamate cysteine ligase (GCL), which catalyzes ligation of cysteine and glutamate forming γ-glutamylcysteine (γ-GC), and glutathione synthase, which adds glycine to γ-GC resulting in GSH formation; GCL is rate-limiting for GSH synthesis, as is the precursor amino acid cysteine, which may be supplemented as N-acetylcysteine (NAC), a therapeutically available compound. After its cell export, GSH is degraded extracellularly by the membrane-anchored ectoenzyme γ-glutamyl transferase, a process occurring, as GSH synthesis and export, in the γ-glutamyl cycle. GSH degradation occurs also intracellularly by the cytoplasmic enzymatic ChaC family of γ-glutamyl cyclotransferase. Synthesis and degradation of GSH, together with its export, translocation to cell organelles, utilization for multiple essential functions, and regeneration from glutathione disulfide by glutathione reductase, are relevant to GSH homeostasis and metabolism. Notably, GSH levels decline during aging, an alteration generally related to impaired GSH biosynthesis and leading to cell dysfunction. However, there is evidence of enhanced GSH levels in elderly subjects with excellent physical and mental health status, suggesting that heightened GSH may be a marker and even a causative factor of increased healthspan and lifespan. Such aspects, and much more including GSH-boosting substances administrable to humans, are considered in this state-of-the-art review, which deals with GSH and GSH-dependent enzymes from biochemistry to gerontology, focusing attention also on lifespan/healthspan extension and successful aging; the significance of GSH levels in aging is considered also in relation to therapeutic possibilities and supplementation strategies, based on the use of various compounds including NAC-glycine, aimed at increasing GSH and related defenses to improve health status and counteract aging processes in humans.
Collapse
Affiliation(s)
- Domenico Lapenna
- Dipartimento di Medicina e Scienze dell'Invecchiamento, and Laboratorio di Fisiopatologia dello Stress Ossidativo, Center for Advanced Studies and Technology (CAST, former CeSI-MeT, Center of Excellence on Aging), Università degli Studi "G. d'Annunzio" Chieti Pescara, U.O.C. Medicina Generale 2, Ospedale Clinicizzato "Santissima Annunziata", Via dei Vestini, 66100 Chieti, Italy.
| |
Collapse
|
4
|
Chen F, Schönberger K, Tchorz JS. Distinct hepatocyte identities in liver homeostasis and regeneration. JHEP Rep 2023; 5:100779. [PMID: 37456678 PMCID: PMC10339260 DOI: 10.1016/j.jhepr.2023.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 07/18/2023] Open
Abstract
The process of metabolic liver zonation is spontaneously established by assigning distributed tasks to hepatocytes along the porto-central blood flow. Hepatocytes fulfil critical metabolic functions, while also maintaining hepatocyte mass by replication when needed. Recent technological advances have enabled us to fine-tune our understanding of hepatocyte identity during homeostasis and regeneration. Subsets of hepatocytes have been identified to be more regenerative and some have even been proposed to function like stem cells, challenging the long-standing view that all hepatocytes are similarly capable of regeneration. The latest data show that hepatocyte renewal during homeostasis and regeneration after liver injury is not limited to rare hepatocytes; however, hepatocytes are not exactly the same. Herein, we review the known differences that give individual hepatocytes distinct identities, recent findings demonstrating how these distinct identities correspond to differences in hepatocyte regenerative capacity, and how the plasticity of hepatocyte identity allows for division of labour among hepatocytes. We further discuss how these distinct hepatocyte identities may play a role during liver disease.
Collapse
Affiliation(s)
- Feng Chen
- Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| | | | - Jan S. Tchorz
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
5
|
Arif W, Mathur B, Saikali MF, Chembazhi UV, Toohill K, Song YJ, Hao Q, Karimi S, Blue SM, Yee BA, Van Nostrand EL, Bangru S, Guzman G, Yeo GW, Prasanth KV, Anakk S, Cummins CL, Kalsotra A. Splicing factor SRSF1 deficiency in the liver triggers NASH-like pathology and cell death. Nat Commun 2023; 14:551. [PMID: 36759613 PMCID: PMC9911759 DOI: 10.1038/s41467-023-35932-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Regulation of RNA processing contributes profoundly to tissue development and physiology. Here, we report that serine-arginine-rich splicing factor 1 (SRSF1) is essential for hepatocyte function and survival. Although SRSF1 is mainly known for its many roles in mRNA metabolism, it is also crucial for maintaining genome stability. We show that acute liver damage in the setting of targeted SRSF1 deletion in mice is associated with the excessive formation of deleterious RNA-DNA hybrids (R-loops), which induce DNA damage. Combining hepatocyte-specific transcriptome, proteome, and RNA binding analyses, we demonstrate that widespread genotoxic stress following SRSF1 depletion results in global inhibition of mRNA transcription and protein synthesis, leading to impaired metabolism and trafficking of lipids. Lipid accumulation in SRSF1-deficient hepatocytes is followed by necroptotic cell death, inflammation, and fibrosis, resulting in NASH-like liver pathology. Importantly, SRSF1-depleted human liver cancer cells recapitulate this pathogenesis, illustrating a conserved and fundamental role for SRSF1 in preserving genome integrity and tissue homeostasis. Thus, our study uncovers how the accumulation of detrimental R-loops impedes hepatocellular gene expression, triggering metabolic derangements and liver damage.
Collapse
Affiliation(s)
- Waqar Arif
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bhoomika Mathur
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Ullas V Chembazhi
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Katelyn Toohill
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Saman Karimi
- Department of Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science Chicago, Chicago, IL, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Grace Guzman
- Department of Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science Chicago, Chicago, IL, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
In vivo CRISPR screening identifies BAZ2 chromatin remodelers as druggable regulators of mammalian liver regeneration. Cell Stem Cell 2022; 29:372-385.e8. [PMID: 35090595 PMCID: PMC8897233 DOI: 10.1016/j.stem.2022.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/17/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022]
Abstract
Identifying new pathways that regulate mammalian regeneration is challenging due to the paucity of in vivo screening approaches. We employed pooled CRISPR knockout and activation screening in the regenerating liver to evaluate 165 chromatin regulatory proteins. Both screens identified the imitation-SWI chromatin remodeling components Baz2a and Baz2b, not previously implicated in regeneration. In vivo sgRNA, siRNA, and knockout strategies against either paralog confirmed increased regeneration. Distinct BAZ2-specific bromodomain inhibitors, GSK2801 and BAZ2-ICR, resulted in accelerated liver healing after diverse injuries. Inhibitor-treated mice also exhibited improved healing in an inflammatory bowel disease model, suggesting multi-tissue applicability. Transcriptomics on regenerating livers showed increases in ribosomal and cell cycle mRNAs. Surprisingly, CRISPRa screening to define mechanisms showed that overproducing Rpl10a or Rpl24 was sufficient to drive regeneration, whereas Rpl24 haploinsufficiency was rate limiting for BAZ2 inhibition-mediated regeneration. The discovery of regenerative roles for imitation-SWI components provides immediate strategies to enhance tissue repair.
Collapse
|
7
|
Jyotsana N, Ta KT, DelGiorno KE. The Role of Cystine/Glutamate Antiporter SLC7A11/xCT in the Pathophysiology of Cancer. Front Oncol 2022; 12:858462. [PMID: 35280777 PMCID: PMC8904967 DOI: 10.3389/fonc.2022.858462] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
SLC7A11/xCT is an antiporter that mediates the uptake of extracellular cystine in exchange for glutamate. Cystine is reduced to cysteine, which is a rate-limiting precursor in glutathione synthesis; a process that protects cells from oxidative stress and is, therefore, critical to cell growth, proliferation, and metabolism. SLC7A11 is expressed in different tissues and plays diverse functional roles in the pathophysiology of various diseases, including cancer, by regulating the processes of redox homeostasis, metabolic flexibility/nutrient dependency, immune system function, and ferroptosis. SLC7A11 expression is associated with poor prognosis and drug resistance in cancer and, therefore, represents an important therapeutic target. In this review, we discuss the molecular functions of SLC7A11 in normal versus diseased tissues, with a special focus on how it regulates gastrointestinal cancers. Further, we summarize current therapeutic strategies targeting SLC7A11 as well as novel avenues for treatment.
Collapse
Affiliation(s)
- Nidhi Jyotsana
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Kenny T. Ta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Kathleen E. DelGiorno
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
8
|
Yuan S, Wei C, Liu G, Zhang L, Li J, Li L, Cai S, Fang L. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway. Cell Prolif 2022; 55:e13158. [PMID: 34811833 PMCID: PMC8780895 DOI: 10.1111/cpr.13158] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Evidences demonstrate that sorafenib alleviates liver fibrosis via inhibiting HSC activation and ECM accumulation. The underlying mechanism remains unclear. Ferroptosis, a novel programmed cell death, regulates diverse physiological/pathological processes. In this study, we aim to investigate the functional role of HSC ferroptosis in the anti-fibrotic effect of sorafenib. MATERIALS AND METHODS The effects of sorafenib on HSC ferroptosis and ECM expression were assessed in mouse model of liver fibrosis induced by CCl4 . In vitro, Fer-1 and DFO were used to block ferroptosis and then explored the anti-fibrotic effect of sorafenib by detecting α-SMA, COL1α1 and fibronectin proteins. Finally, HIF-1α siRNA, plasmid and stabilizers were applied to assess related signalling pathway. RESULTS Sorafenib attenuated liver injury and ECM accumulation in CCl4 -induced fibrotic livers, accompanied by reduction of SLC7A11 and GPX4 proteins. In sorafenib-treated HSC-T6 cells, ferroptotic events (depletion of SLC7A11, GPX4 and GSH; accumulation iron, ROS and MDA) were discovered. Intriguingly, these ferroptotic events were not appeared in hepatocytes or macrophages. Sorafenib-elicited HSC ferroptosis and ECM reduction were abrogated by Fer-1 and DFO. Additionally, both HIF-1α and SLC7A11 proteins were reduced in sorafenib-treated HSC-T6 cells. SLC7A11 was positively regulated by HIF-1α, inactivation of HIF-1α/SLC7A11 pathway was required for sorafenib-induced HSC ferroptosis, and elevation of HIF-1α could inhibit ferroptosis, ultimately limited the anti-fibrotic effect. CONCLUSIONS Sorafenib triggers HSC ferroptosis via HIF-1α/SLC7A11 signalling, which in turn attenuates liver injury and fibrosis.
Collapse
Affiliation(s)
- Siyu Yuan
- Department of PharmacyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Can Wei
- Department of UrologyThe Second People's Hospital of HefeiHefeiChina
| | - Guofang Liu
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
| | - Lijun Zhang
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Jiahao Li
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
| | - Lingling Li
- Department of PharmacyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Shiyi Cai
- School of PharmacyAnhui Medical UniversityHefeiChina
| | - Ling Fang
- Department of PharmacyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
9
|
Solhi R, Lotfinia M, Gramignoli R, Najimi M, Vosough M. Metabolic hallmarks of liver regeneration. Trends Endocrinol Metab 2021; 32:731-745. [PMID: 34304970 DOI: 10.1016/j.tem.2021.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022]
Abstract
Despite the crucial role of cell metabolism in biological processes, particularly cell division, metabolic aspects of liver regeneration are not well defined. Better understanding of the metabolic activity governing division of liver cells will provide powerful insights into mechanisms of physiological and pathological liver regeneration. Recent studies have provided evidence that metabolic response to liver failure might be a proximal signal to initiate cell proliferation in liver regeneration. In this review, we highlight how lipids, carbohydrates, and proteins dynamically change and orchestrate liver regeneration. In addition, we discuss translational studies in which metabolic intervention has been used to treat chronic liver diseases (CLDs).
Collapse
Affiliation(s)
- Roya Solhi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Majid Lotfinia
- Physiology Research Center, Basic Sciences Research Institute, Kashan University of Medical Sciences, Kashan, Iran; Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| |
Collapse
|
10
|
Du K, Oh SH, Dutta RK, Sun T, Yang WH, Chi JTA, Diehl AM. Inhibiting xCT/SLC7A11 induces ferroptosis of myofibroblastic hepatic stellate cells but exacerbates chronic liver injury. Liver Int 2021; 41:2214-2227. [PMID: 33991158 PMCID: PMC8594404 DOI: 10.1111/liv.14945] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The outcome of liver injury is dictated by factors that control the accumulation of myofibroblastic (activated) hepatic stellate cells (MF-HSCs) but therapies that specifically block this process have not been discovered. We evaluated the hypothesis that MF-HSCs and liver fibrosis could be safely reduced by inhibiting the cysteine/glutamate antiporter xCT. METHODS xCT activity was disrupted in both HSC lines and primary mouse HSCs to determine its effect on HSC biology. For comparison, xCT expression and function were also determined in primary mouse hepatocytes. Finally, the roles of xCT were assessed in mouse models of liver fibrosis. RESULTS We found that xCT mRNA levels were almost a log-fold higher in primary mouse HSCs than in primary mouse hepatocytes. Further, primary mouse HSCs dramatically induced xCT as they became MF, and inhibiting xCT blocked GSH synthesis, reduced growth and fibrogenic gene expression and triggered HSC ferroptosis. Doses of xCT inhibitors that induced massive ferroptosis in HSCs had no effect on hepatocyte viability in vitro, and xCT inhibitors reduced liver fibrosis without worsening liver injury in mice with acute liver injury. However, TGFβ treatment up-regulated xCT and triggered ferroptosis in cultured primary mouse hepatocytes. During chronic liver injury, xCT inhibitors exacerbated injury, impaired regeneration and failed to improve fibrosis, confirming that HSCs and hepatocytes deploy similar mechanisms to survive chronic oxidative stress. CONCLUSIONS Inhibiting xCT can suppress myofibroblastic activity and induce ferroptosis of MF-HSCs. However, targeting xCT inhibition to MF-HSCs will be necessary to exploit ferroptosis as an anti-fibrotic strategy.
Collapse
Affiliation(s)
- Kuo Du
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Seh Hoon Oh
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Tianai Sun
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Wen-Hsuan Yang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Jen-Tsan Ashley Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina, USA,Corresponding Author:Anna Mae Diehl, M.D., Division of Gastroenterology, Duke University, Snyderman Building – Suite 1073, Durham, NC 27710, 919-684-2366,
| |
Collapse
|
11
|
INTACT vs. FANS for Cell-Type-Specific Nuclei Sorting: A Comprehensive Qualitative and Quantitative Comparison. Int J Mol Sci 2021; 22:ijms22105335. [PMID: 34069481 PMCID: PMC8159132 DOI: 10.3390/ijms22105335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Increasing numbers of studies seek to characterize the different cellular sub-populations present in mammalian tissues. The techniques “Isolation of Nuclei Tagged in Specific Cell Types” (INTACT) or “Fluorescence-Activated Nuclei Sorting” (FANS) are frequently used for isolating nuclei of specific cellular subtypes. These nuclei are then used for molecular characterization of the cellular sub-populations. Despite the increasing popularity of both techniques, little is known about their isolation efficiency, advantages, and disadvantages or downstream molecular effects. In our study, we compared the physical and molecular attributes of sfGFP+ nuclei isolated by the two methods—INTACT and FANS—from the neocortices of Arc-CreERT2 × CAG-Sun1/sfGFP animals. We identified differences in efficiency of sfGFP+ nuclei isolation, nuclear size as well as transcriptional (RNA-seq) and chromatin accessibility (ATAC-seq) states. Therefore, our study presents a comprehensive comparison between the two widely used nuclei sorting techniques, identifying the advantages and disadvantages for both INTACT and FANS. Our conclusions are summarized in a table to guide researchers in selecting the most suitable methodology for their individual experimental design.
Collapse
|
12
|
Chembazhi UV, Bangru S, Hernaez M, Kalsotra A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Res 2021; 31:576-591. [PMID: 33649154 DOI: 10.1101/2020.05.29.124263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/02/2021] [Indexed: 05/24/2023]
Abstract
The adult liver has an exceptional ability to regenerate, but how it maintains its specialized functions during regeneration is unclear. Here, we used partial hepatectomy (PHx) in tandem with single-cell transcriptomics to track cellular transitions and heterogeneities of ∼22,000 liver cells through the initiation, progression, and termination phases of mouse liver regeneration. Our results uncovered that, following PHx, a subset of hepatocytes transiently reactivates an early-postnatal-like gene expression program to proliferate, while a distinct population of metabolically hyperactive cells appears to compensate for any temporary deficits in liver function. Cumulative EdU labeling and immunostaining of metabolic, portal, and central vein-specific markers revealed that hepatocyte proliferation after PHx initiates in the midlobular region before proceeding toward the periportal and pericentral areas. We further demonstrate that portal and central vein proximal hepatocytes retain their metabolically active state to preserve essential liver functions while midlobular cells proliferate nearby. Through combined analysis of gene regulatory networks and cell-cell interaction maps, we found that regenerating hepatocytes redeploy key developmental regulons, which are guided by extensive ligand-receptor-mediated signaling events between hepatocytes and nonparenchymal cells. Altogether, our study offers a detailed blueprint of the intercellular crosstalk and cellular reprogramming that balances the metabolic and proliferative requirements of a regenerating liver.
Collapse
Affiliation(s)
- Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
- Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA
| | - Mikel Hernaez
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008 Navarra, Spain
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
- Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
13
|
Chembazhi UV, Bangru S, Hernaez M, Kalsotra A. Cellular plasticity balances the metabolic and proliferation dynamics of a regenerating liver. Genome Res 2021; 31:576-591. [PMID: 33649154 PMCID: PMC8015853 DOI: 10.1101/gr.267013.120] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
The adult liver has an exceptional ability to regenerate, but how it maintains its specialized functions during regeneration is unclear. Here, we used partial hepatectomy (PHx) in tandem with single-cell transcriptomics to track cellular transitions and heterogeneities of ∼22,000 liver cells through the initiation, progression, and termination phases of mouse liver regeneration. Our results uncovered that, following PHx, a subset of hepatocytes transiently reactivates an early-postnatal-like gene expression program to proliferate, while a distinct population of metabolically hyperactive cells appears to compensate for any temporary deficits in liver function. Cumulative EdU labeling and immunostaining of metabolic, portal, and central vein-specific markers revealed that hepatocyte proliferation after PHx initiates in the midlobular region before proceeding toward the periportal and pericentral areas. We further demonstrate that portal and central vein proximal hepatocytes retain their metabolically active state to preserve essential liver functions while midlobular cells proliferate nearby. Through combined analysis of gene regulatory networks and cell-cell interaction maps, we found that regenerating hepatocytes redeploy key developmental regulons, which are guided by extensive ligand-receptor-mediated signaling events between hepatocytes and nonparenchymal cells. Altogether, our study offers a detailed blueprint of the intercellular crosstalk and cellular reprogramming that balances the metabolic and proliferative requirements of a regenerating liver.
Collapse
Affiliation(s)
- Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA.,Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA
| | - Mikel Hernaez
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA.,Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008 Navarra, Spain
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA.,Cancer Center@Illinois, University of Illinois, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
14
|
Colemonts-Vroninks H, Neuckermans J, Marcelis L, Claes P, Branson S, Casimir G, Goyens P, Martens GA, Vanhaecke T, De Kock J. Oxidative Stress, Glutathione Metabolism, and Liver Regeneration Pathways Are Activated in Hereditary Tyrosinemia Type 1 Mice upon Short-Term Nitisinone Discontinuation. Genes (Basel) 2020; 12:E3. [PMID: 33375092 PMCID: PMC7822164 DOI: 10.3390/genes12010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Hereditary tyrosinemia type 1 (HT1) is an inherited condition in which the body is unable to break down the amino acid tyrosine due to mutations in the fumarylacetoacetate hydrolase (FAH) gene, coding for the final enzyme of the tyrosine degradation pathway. As a consequence, HT1 patients accumulate toxic tyrosine derivatives causing severe liver damage. Since its introduction, the drug nitisinone (NTBC) has offered a life-saving treatment that inhibits the upstream enzyme 4-hydroxyphenylpyruvate dioxygenase (HPD), thereby preventing production of downstream toxic metabolites. However, HT1 patients under NTBC therapy remain unable to degrade tyrosine. To control the disease and side-effects of the drug, HT1 patients need to take NTBC as an adjunct to a lifelong tyrosine and phenylalanine restricted diet. As a consequence of this strict therapeutic regime, drug compliance issues can arise with significant influence on patient health. In this study, we investigated the molecular impact of short-term NTBC therapy discontinuation on liver tissue of Fah-deficient mice. We found that after seven days of NTBC withdrawal, molecular pathways related to oxidative stress, glutathione metabolism, and liver regeneration were mostly affected. More specifically, NRF2-mediated oxidative stress response and several toxicological gene classes related to reactive oxygen species metabolism were significantly modulated. We observed that the expression of several key glutathione metabolism related genes including Slc7a11 and Ggt1 was highly increased after short-term NTBC therapy deprivation. This stress response was associated with the transcriptional activation of several markers of liver progenitor cells including Atf3, Cyr61, Ddr1, Epcam, Elovl7, and Glis3, indicating a concreted activation of liver regeneration early after NTBC withdrawal.
Collapse
Affiliation(s)
- Haaike Colemonts-Vroninks
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (H.C.-V.); (J.N.); (P.C.); (S.B.); (T.V.)
| | - Jessie Neuckermans
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (H.C.-V.); (J.N.); (P.C.); (S.B.); (T.V.)
| | - Lionel Marcelis
- Laboratoire de Pédiatrie, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles (ULB), Avenue J.J. Crocq 1-3, 1020 Brussels, Belgium; (L.M.); (G.C.); (P.G.)
| | - Paul Claes
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (H.C.-V.); (J.N.); (P.C.); (S.B.); (T.V.)
| | - Steven Branson
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (H.C.-V.); (J.N.); (P.C.); (S.B.); (T.V.)
| | - Georges Casimir
- Laboratoire de Pédiatrie, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles (ULB), Avenue J.J. Crocq 1-3, 1020 Brussels, Belgium; (L.M.); (G.C.); (P.G.)
| | - Philippe Goyens
- Laboratoire de Pédiatrie, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles (ULB), Avenue J.J. Crocq 1-3, 1020 Brussels, Belgium; (L.M.); (G.C.); (P.G.)
| | - Geert A. Martens
- Department of Laboratory Medicine, AZ Delta General Hospital, Deltalaan 1, 8800 Roeselare, Belgium;
- Center for Beta Cell Therapy in Diabetes, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (H.C.-V.); (J.N.); (P.C.); (S.B.); (T.V.)
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (H.C.-V.); (J.N.); (P.C.); (S.B.); (T.V.)
| |
Collapse
|
15
|
Abstract
Following injury, the liver's epithelial cells regenerate efficiently with rapid proliferation of hepatocytes and biliary cells. However, when proliferation of resident epithelial cells is impaired, alternative regeneration mechanisms can occur. Intricate lineage-tracing strategies and experimental models of regenerative stress have revealed a degree of plasticity between hepatocytes and biliary cells. New technologies such as single-cell omics, in combination with functional studies, will be instrumental to uncover the remaining unknowns in the field. In this review, we evaluate the experimental and clinical evidence for epithelial plasticity in the liver and how this influences the development of therapeutic strategies for chronic liver disease.
Collapse
Affiliation(s)
- Victoria L Gadd
- Centre for Regenerative Medicine, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Niya Aleksieva
- Centre for Regenerative Medicine, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Stuart J Forbes
- Centre for Regenerative Medicine, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
16
|
Zahm AM, Wang AW, Wang YJ, Schug J, Wangensteen KJ, Kaestner KH. A High-Content Screen Identifies MicroRNAs That Regulate Liver Repopulation After Injury in Mice. Gastroenterology 2020; 158:1044-1057.e17. [PMID: 31759059 PMCID: PMC7472793 DOI: 10.1053/j.gastro.2019.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/18/2019] [Accepted: 11/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Liver regeneration is impaired in mice with hepatocyte-specific deficiencies in microRNA (miRNA) processing, but it is not clear which miRNAs regulate this process. We developed a high-throughput screen to identify miRNAs that regulate hepatocyte repopulation after toxic liver injury using fumarylacetoacetate hydrolase-deficient mice. METHODS We constructed plasmid pools encoding more than 30,000 tough decoy miRNA inhibitors (hairpin nucleic acids designed to specifically inhibit interactions between miRNAs and their targets) to target hepatocyte miRNAs in a pairwise manner. The plasmid libraries were delivered to hepatocytes in fumarylacetoacetate hydrolase-deficient mice at the time of liver injury via hydrodynamic tail-vein injection. Integrated transgene-containing transposons were quantified after liver repopulation via high-throughput sequencing. Changes in polysome-bound transcripts after miRNA inhibition were determined using translating ribosome affinity purification followed by high-throughput sequencing. RESULTS Analyses of tough decoy abundance in hepatocyte genomic DNA and input plasmid pools identified several thousand miRNA inhibitors that were significantly depleted or increased after repopulation. We classified a subset of miRNA binding sites as those that have strong effects on liver repopulation, implicating the targeted hepatocyte miRNAs as regulators of this process. We then generated a high-content map of pairwise interactions between 171 miRNA-binding sites and identified synergistic and redundant effects. CONCLUSIONS We developed a screen to identify miRNAs that regulate liver repopulation after injury in live mice.
Collapse
Affiliation(s)
| | | | - Yue J Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Jonathan Schug
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kirk J Wangensteen
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
17
|
Greenbaum LE, Ukomadu C, Tchorz JS. Clinical translation of liver regeneration therapies: A conceptual road map. Biochem Pharmacol 2020; 175:113847. [PMID: 32035080 DOI: 10.1016/j.bcp.2020.113847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
The increasing incidence of severe liver diseases worldwide has resulted in a high demand for curative liver transplantation. Unfortunately, the need for transplants by far eclipses the availability of suitable grafts leaving many waitlisted patients to face liver failure and often death. Routine use of smaller grafts (for example left lobes, split livers) from living or deceased donors could increase the number of life-saving transplants but is often limited by the graft versus recipient weight ratio defining the safety margins that minimize the risk of small for size syndrome (SFSS). SFSS is a severe complication characterized by failure of a small liver graft to regenerate and occurs when a donor graft is insufficient to meet the metabolic demand of the recipient, leading to liver failure as a result of insufficient liver mass. SFSS is not limited to transplantation but can also occur in the setting of hepatic surgical resections, where life-saving large resections of tumors may be limited by concerns of post-surgical liver failure. There are, as yet no available pro-regenerative therapies to enable liver regrowth and thus prevent SFSS. However, there is optimism around targeting factors and pathways that have been identified as regulators of liver regeneration to induce regrowth in vivo and ex vivo for clinical use. In this commentary, we propose a roadmap for developing such pro-regenerative therapy and for bringing it into the clinic. We summarize the clinical indications, preclinical models, pro-regenerative pathways and safety considerations necessary for developing such a drug.
Collapse
Affiliation(s)
- Linda E Greenbaum
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, East Hanover, NJ, United States.
| | - Chinweike Ukomadu
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Cambridge, MA, United States.
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
18
|
Wang AW, Wang YJ, Zahm AM, Morgan AR, Wangensteen KJ, Kaestner KH. The Dynamic Chromatin Architecture of the Regenerating Liver. Cell Mol Gastroenterol Hepatol 2019; 9:121-143. [PMID: 31629814 PMCID: PMC6909351 DOI: 10.1016/j.jcmgh.2019.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The adult liver is the main detoxification organ and routinely is exposed to environmental insults but retains the ability to restore its mass and function upon tissue damage. However, extensive injury can lead to liver failure, and chronic injury causes fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, the transcriptional regulation of organ repair in the adult liver is incompletely understood. METHODS We isolated nuclei from quiescent as well as repopulating hepatocytes in a mouse model of hereditary tyrosinemia, which recapitulates the injury and repopulation seen in toxic liver injury in human beings. We then performed the assay for transposase accessible chromatin with high-throughput sequencing specifically in repopulating hepatocytes to identify differentially accessible chromatin regions and nucleosome positioning. In addition, we used motif analysis to predict differential transcription factor occupancy and validated the in silico results with chromatin immunoprecipitation followed by sequencing for hepatocyte nuclear factor 4α (HNF4α) and CCCTC-binding factor (CTCF). RESULTS Chromatin accessibility in repopulating hepatocytes was increased in the regulatory regions of genes promoting proliferation and decreased in the regulatory regions of genes involved in metabolism. The epigenetic changes at promoters and liver enhancers correspond with the regulation of gene expression, with enhancers of many liver function genes showing a less accessible state during the regenerative process. Moreover, increased CTCF occupancy at promoters and decreased HNF4α binding at enhancers implicate these factors as key drivers of the transcriptomic changes in replicating hepatocytes that enable liver repopulation. CONCLUSIONS Our analysis of hepatocyte-specific epigenomic changes during liver repopulation identified CTCF and HNF4α as key regulators of hepatocyte proliferation and regulation of metabolic programs. Thus, liver repopulation in the setting of toxic injury makes use of both general transcription factors (CTCF) for promoter activation, and reduced binding by a hepatocyte-enriched factor (HNF4α) to temporarily limit enhancer activity. All sequencing data in this study were deposited to the Gene Expression Omnibus database and can be downloaded with accession number GSE109466.
Collapse
Affiliation(s)
- Amber W Wang
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yue J Wang
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Adam M Zahm
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ashleigh R Morgan
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kirk J Wangensteen
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
19
|
Wang AW, Zahm AM, Wangensteen KJ. Cell Type-specific Gene Expression Profiling in the Mouse Liver. J Vis Exp 2019:10.3791/60242. [PMID: 31609340 PMCID: PMC7507956 DOI: 10.3791/60242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Liver repopulation after injury is a crucial feature of mammals which prevents immediate organ failure and death after exposure of environmental toxins. A deeper understanding of the changes in gene expression that occur during repopulation could help identify therapeutic targets to promote the restoration of liver function in the setting of injuries. Nonetheless, methods to isolate specifically the repopulating hepatocytes are inhibited by a lack of cell markers, limited cell numbers, and the fragility of these cells. The development of translating ribosome affinity purification (TRAP) technology in conjunction with the Fah-/- mouse model to recapitulate repopulation in the setting of liver injury allows gene expression profiling of the repopulating hepatocytes. With TRAP, cell type-specific translating mRNA is rapidly and efficiently isolated. We developed a method that utilizes TRAP with affinity-based isolation of translating mRNA from hepatocytes that selectively express the green fluorescent protein (GFP)-tagged ribosomal protein (RP), GFP:RPL10A. TRAP circumvents the long time period required for fluorescence-activated cell sorting that could change the gene expression profile. Furthermore, since only the repopulating hepatocytes express the GFP:RPL10A fusion protein, the isolated mRNA is devoid of contamination from the surrounding injured hepatocytes and other cell types in the liver. The affinity-purified mRNA is of high quality and allows downstream PCR- or high-throughput sequencing-based analysis of gene expression.
Collapse
Affiliation(s)
- Amber W Wang
- Department of Genetics, University of Pennsylvania
| | - Adam M Zahm
- Department of Genetics, University of Pennsylvania
| | - Kirk J Wangensteen
- Department of Genetics, University of Pennsylvania; Department of Medicine, University of Pennsylvania;
| |
Collapse
|
20
|
Kieckhaefer JE, Maina F, Wells R, Wangensteen KJ. Liver Cancer Gene Discovery Using Gene Targeting, Sleeping Beauty, and CRISPR/Cas9. Semin Liver Dis 2019; 39:261-274. [PMID: 30912094 PMCID: PMC7485130 DOI: 10.1055/s-0039-1678725] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a devastating and prevalent cancer with limited treatment options. Technological advances have enabled genetic screens to be employed in HCC model systems to characterize genes regulating tumor initiation and growth. Relative to traditional methods for studying cancer biology, such as candidate gene approaches or expression analysis, genetic screens have several advantages: they are unbiased, with no a priori selection; can directly annotate gene function; and can uncover gene-gene interactions. In HCC, three main types of screens have been conducted and are reviewed here: (1) transposon-based mutagenesis screens, (2) knockdown screens using RNA interference (RNAi) or the CRISPR/Cas9 system, and (3) overexpression screens using CRISPR activation (CRISPRa) or cDNAs. These methods will be valuable in future genetic screens to delineate the mechanisms underlying drug resistance and to identify new treatments for HCC.
Collapse
Affiliation(s)
- Julia E. Kieckhaefer
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| | - Flavio Maina
- Aix Marseille University, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Rebecca Wells
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
- Pathology and Laboratory Medicine and Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirk J. Wangensteen
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Manoli I, Sysol JR, Epping MW, Li L, Wang C, Sloan JL, Pass A, Gagné J, Ktena YP, Li L, Trivedi NS, Ouattara B, Zerfas PM, Hoffmann V, Abu-Asab M, Tsokos MG, Kleiner DE, Garone C, Cusmano-Ozog K, Enns GM, Vernon HJ, Andersson HC, Grunewald S, Elkahloun AG, Girard CL, Schnermann J, DiMauro S, Andres-Mateos E, Vandenberghe LH, Chandler RJ, Venditti CP. FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia. JCI Insight 2018; 3:124351. [PMID: 30518688 DOI: 10.1172/jci.insight.124351] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Methylmalonic acidemia (MMA), an organic acidemia characterized by metabolic instability and multiorgan complications, is most frequently caused by mutations in methylmalonyl-CoA mutase (MUT). To define the metabolic adaptations in MMA in acute and chronic settings, we studied a mouse model generated by transgenic expression of Mut in the muscle. Mut-/-;TgINS-MCK-Mut mice accurately replicate the hepatorenal mitochondriopathy and growth failure seen in severely affected patients and were used to characterize the response to fasting. The hepatic transcriptome in MMA mice was characterized by the chronic activation of stress-related pathways and an aberrant fasting response when compared with controls. A key metabolic regulator, Fgf21, emerged as a significantly dysregulated transcript in mice and was subsequently studied in a large patient cohort. The concentration of plasma FGF21 in MMA patients correlated with disease subtype, growth indices, and markers of mitochondrial dysfunction but was not affected by renal disease. Restoration of liver Mut activity, by transgenesis and liver-directed gene therapy in mice or liver transplantation in patients, drastically reduced plasma FGF21 and was associated with improved outcomes. Our studies identify mitocellular hormesis as a hepatic adaptation to metabolic stress in MMA and define FGF21 as a highly predictive disease biomarker.
Collapse
Affiliation(s)
- Irini Manoli
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Justin R Sysol
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Madeline W Epping
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Lina Li
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Cindy Wang
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Jennifer L Sloan
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Alexandra Pass
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Jack Gagné
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Yiouli P Ktena
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Lingli Li
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Niraj S Trivedi
- Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Bazoumana Ouattara
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada.,Péléforo Gbon Coulibaly University, Korhogo, Ivory Coast
| | | | | | - Mones Abu-Asab
- Ultrastructural Pathology Section, Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | - Maria G Tsokos
- Ultrastructural Pathology Section, Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Caterina Garone
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | - Gregory M Enns
- Division of Medical Genetics, Stanford University, Stanford, California, USA
| | - Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans C Andersson
- Hayward Genetics Center, Tulane University Medical School, New Orleans, Louisiana, USA
| | - Stephanie Grunewald
- Department of Pediatric Metabolic Medicine, Great Ormond Street Hospital for Children Foundation Trust, Institute of Child Health, UCL, London, United Kingdom
| | - Abdel G Elkahloun
- Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Christiane L Girard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Jurgen Schnermann
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Randy J Chandler
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Seimetz J, Arif W, Bangru S, Hernaez M, Kalsotra A. Cell-type specific polysome profiling from mammalian tissues. Methods 2018; 155:131-139. [PMID: 30500367 DOI: 10.1016/j.ymeth.2018.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/29/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022] Open
Abstract
The regulation of gene expression occurs through complex relationships between transcription, processing, turnover, and translation, which are only beginning to be elucidated. We know that at least for certain messenger (m) RNAs, processing, modifications, and sequence elements can greatly influence their translational output through recognition by translation and turn-over machinery. Recently, we and others have combined high-throughput sequencing technologies with traditional biochemical methods of studying translation to extend our understanding of these relationships. Additionally, there is growing importance given to how these processes may be regulated across varied cell types as a means to achieve tissue-specific expression of proteins. Here, we provide an in-depth methodology for polysome profiling to dissect the composition of mRNAs and proteins that make up the translatome from both whole tissues and a specific cell type isolated from mammalian tissue. Also, we provide a detailed computational workflow for the analysis of the next-generation sequencing data generated from these experiments.
Collapse
Affiliation(s)
- Joseph Seimetz
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA
| | - Waqar Arif
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA
| | - Mikel Hernaez
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA; Cancer Center@ Illinois, University of Illinois, Urbana-Champaign, IL, USA.
| |
Collapse
|
23
|
Abstract
The liver's extraordinary ability to regenerate has been known since the myth of Prometheus, but the mechanisms involved are still being discovered. Various small animal models have been used in this quest. Two of the most popular include partial hepatectomy (PHx), in which two-thirds of the liver mass is surgically removed to evoke a massive, immediate stimulus for regeneration, and prolonged exposure to toxins that kill liver cells more gradually, provoking chronic regenerative activity. In either case, multiple types of cells must interact effectively to repopulate the organ with functional mature hepatocytes and thus assure ultimate restoration of healthy liver structure and function. This complexity has confounded efforts to distinguish specific changes that occur in cells that repopulate the hepatocyte compartment from changes in other cell populations, including subpopulations of hepatocytes or hepatocyte precursors that do not become regenerative. In the current issue of the JCI, Wang et al. used translating ribosome affinity purification followed by high-throughput RNA sequencing (TRAP-seq) to isolate mRNAs from repopulating hepatocytes in order to profile gene expression specifically in the hepatocytes that regenerate the liver following toxic injury imposed by inherent byproducts of tyrosine metabolism. This innovative methodology can potentially be used to design therapeutic strategies for liver regeneration.
Collapse
|