1
|
Rajawat J, Banerjee M. Poly(ADP-ribose) polymerase1 (PARP1) and PARP inhibitors: New frontiers in cervical cancer. Biochem Biophys Res Commun 2024; 738:150943. [PMID: 39504715 DOI: 10.1016/j.bbrc.2024.150943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Cervical cancer affects more than half a million women and treatment options for advanced disease and recurrence is limited. Poly (ADP-ribose) polymerase1 (PARP1) is a critical nuclear protein regulating several components and functions of cellular machinery, including cancer. PARP1 expression and activity plays a crucial dynamics in the tumor microenvironment. PARP inhibitors are being considered as a viable option for treating BRCA deficient ovarian and breast cancer patients. However, the role of PARP1 in cervical cancer tumorigenesis is less known. The aim of the present review is to provide a comprehensive insight about the role of PARP1 in cervical cancer pathogenesis in context to PARP1 expression as a molecular marker for identifying cancer and in predicting treatment response and prognosis. PARP1 expression is found to be elevated in cervical cancer tissues in comparison to that in the normal surrounding tissues. The cellular proteins linked with PARP1 have been described along with the association of SNPs in PARP1 gene with cervical cancer. Promising results of PARP inhibitors with immunotherapy and clinical trials with cisplatin have also been discussed. This review provides an up-to-date description of PARP1 expression, its role in cervical cancer pathogenesis and reported clinical trials of PARP inhibitors in adjuvant therapy.
Collapse
Affiliation(s)
- Jyotika Rajawat
- Institute of Advanced Molecular Genetics & Infectious Diseases, ONGC-CAS, University of Lucknow, Lucknow, 226007, U.P, India; Molecular & Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, U.P, India.
| | - Monisha Banerjee
- Molecular & Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, U.P, India; A Laboratory of Advanced Molecular Genetics & Infectious Diseases, ONGC-CAS, University of Lucknow, Lucknow, 226007, U.P, India.
| |
Collapse
|
2
|
Yu T, Lok BH. PARP inhibitor resistance mechanisms and PARP inhibitor derived imaging probes. Expert Rev Anticancer Ther 2024; 24:989-1008. [PMID: 39199000 DOI: 10.1080/14737140.2024.2398494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Poly(ADP-ribose) polymerase 1 (PARP1) inhibition has become a major target in anticancer therapy. While PARP inhibitors (PARPi) are approved for homologous recombination (HR) deficient cancers, therapeutic resistance is a challenge and PARPi are now being investigated in cancers lacking HR deficiencies. This creates a need to develop molecular and imaging biomarkers of PARPi response to improve patient selection and circumvent therapeutic resistance. AREAS COVERED PubMed and clinicaltrials.gov were queried for studies on PARPi resistance and imaging. This review summarizes established and emerging resistance mechanisms to PARPi, and the current state of imaging and theragnostic probes for PARPi, including fluorescently labeled and radiolabeled probes. EXPERT OPINION While progress has been made in understanding PARPi therapeutic resistance, clinical evidence remains lacking and relatively little is known regarding PARPi response outside of HR deficiencies. Continued research will clarify the importance of known biomarkers and resistance mechanisms in patient cohorts and the broader utility of PARPi. Progress has also been made in PARPi imaging, particularly with radiolabeled probes, and both imaging and theragnostic probes have now reached clinical validation. Reducing abdominal background signal from probe clearance will broaden their applicability, and improvements to molecular synthesis and radiation delivery will increase their utility.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Huang Y, Chen S, Yao N, Lin S, Zhang J, Xu C, Wu C, Chen G, Zhou D. Molecular mechanism of PARP inhibitor resistance. Oncoscience 2024; 11:69-91. [PMID: 39318358 PMCID: PMC11420906 DOI: 10.18632/oncoscience.610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Poly (ADP-ribose) polymerases (PARP) inhibitors (PARPi) are the first-approved anticancer drug designed to exploit synthetic lethality. PARPi selectively kill cancer cells with homologous recombination repair deficiency (HRD), as a result, PARPi are widely employed to treated BRCA1/2-mutant ovarian, breast, pancreatic and prostate cancers. Currently, four PARPi including Olaparib, Rucaparib, Niraparib, and Talazoparib have been developed and greatly improved clinical outcomes in cancer patients. However, accumulating evidences suggest that required or de novo resistance emerged. In this review, we discuss the molecular mechanisms leading to PARPi resistances and review the potential strategies to overcome PARPi resistance.
Collapse
Affiliation(s)
- Yi Huang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Simin Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Nan Yao
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
- Equal contribution
| | - Shikai Lin
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Junyi Zhang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Chengrui Xu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Chenxuan Wu
- School of Public Health, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Danyang Zhou
- Department of Respiratory, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210012, Jiangsu, P.R. China
| |
Collapse
|
4
|
Wachtel H, Nathanson KL. Molecular Genetics of Pheochromocytoma/Paraganglioma. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 36:100527. [PMID: 39328362 PMCID: PMC11424047 DOI: 10.1016/j.coemr.2024.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGL) are neuroendocrine tumors which secrete catecholamines, causing cardiovascular compromise. While isolated tumors and locoregional disease can be treated surgically, treatment options for metastatic disease are limited, and no targeted therapies exist. Approximately 25% of PPGL are causatively associated with germline pathogenic variants, which are known risk factors for multifocal and metastatic PPGL. Knowledge of somatic driver mutations continues to evolve. Molecular classification of PPGL has identified three genomic subtypes: Cluster 1 (pseudohypoxia), Cluster 2 (kinase signaling) and Cluster 3 (Wnt-altered). This review summaries recent studies characterizing the tumor microenvironment, genomic drivers of tumorigenesis and progression, and current research on molecular targets for novel diagnostic and therapeutic strategies in PPGL.
Collapse
Affiliation(s)
- Heather Wachtel
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic Surgery and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katherine L Nathanson
- Hospital of the University of Pennsylvania, Department of Medical Genetics, and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Lin LL, Wong F, Lin R, Yap T, Litton JK. Pharmacodynamic Activity of [ 18F]-Fluorthanatrace Poly(ADP-ribose) Polymerase Positron Emission Tomography in Patients With BRCA1/2-Mutated Breast Cancer Receiving Talazoparib. JCO Precis Oncol 2024; 8:e2400303. [PMID: 39208372 DOI: 10.1200/po.24.00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE We tested the ability of [18F] fluorthanatrace (FTT), a radiolabeled analog of poly(ADP-ribose) polymerase (PARP)-1 inhibitors, to demonstrate target engagement on positron emission tomography (PET) scans from patients with newly diagnosed primary breast cancer receiving the PARP inhibitor (PARPi) talazoparib. METHODS Seven patients with germline BRCA1/2 pathogenic variants underwent [18F]FTT PET-computed tomography scanning at baseline, and five underwent repeat scanning 14 days after talazoparib initiation. Maximum uptake on PET was quantified in the primary tumor, involved nodes, contralateral pectoralis muscle, and lumbar vertebra body level 3, and compared between the two time points. RESULTS Blocking of [18F]FTT was observed on the second scan. Potentially strong but nonsignificant correlations were found between changes in tumor volume (on ultrasound at 1 month v baseline) and percentage changes in tumor-to-muscle uptake ratio at 14 days from baseline (Spearman rank correlation coefficient r = 1; P = .083); and between the highest-grade hematologic toxicity and baseline bone marrow-to-muscle (B/M) uptake ratio (r = 0.72; P = .068) and percentage change in B/M ratio at 14 days from baseline (r = 0.87; P = .058). CONCLUSION We conclude that [18F]FTT can image target engagement by PARPi, but larger studies are needed to determine whether [18F]FTT uptake can predict response to PARPi and whether uptake of [18F]FTT in bone marrow may be an early predictor of hematologic toxicity.
Collapse
Affiliation(s)
- Lilie L Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Franklin Wong
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ruitao Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Timothy Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Kulkarni S, Gajjar K, Madhusudan S. Poly (ADP-ribose) polymerase inhibitor therapy and mechanisms of resistance in epithelial ovarian cancer. Front Oncol 2024; 14:1414112. [PMID: 39135999 PMCID: PMC11317305 DOI: 10.3389/fonc.2024.1414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Advanced epithelial ovarian cancer is the commonest cause of gynaecological cancer deaths. First-line treatment for advanced disease includes a combination of platinum-taxane chemotherapy (post-operatively or peri-operatively) and maximal debulking surgery whenever feasible. Initial response rate to chemotherapy is high (up to 80%) but most patients will develop recurrence (approximately 70-90%) and succumb to the disease. Recently, poly-ADP-ribose polymerase (PARP) inhibition (by drugs such as Olaparib, Niraparib or Rucaparib) directed synthetic lethality approach in BRCA germline mutant or platinum sensitive disease has generated real hope for patients. PARP inhibitor (PARPi) maintenance therapy can prolong survival but therapeutic response is not sustained due to intrinsic or acquired secondary resistance to PARPi therapy. Reversion of BRCA1/2 mutation can lead to clinical PARPi resistance in BRCA-germline mutated ovarian cancer. However, in the more common platinum sensitive sporadic HGSOC, the clinical mechanisms of development of PARPi resistance remains to be defined. Here we provide a comprehensive review of the current status of PARPi and the mechanisms of resistance to therapy.
Collapse
Affiliation(s)
- Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham NHS Trust, West Bromwich, United Kingdom
| | - Ketankumar Gajjar
- Department of Gynaecological Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
7
|
Ndlovu H, Lawal IO, Mdanda S, Kgatle MM, Mokoala KMG, Al-Ibraheem A, Sathekge MM. [ 18F]F-Poly(ADP-Ribose) Polymerase Inhibitor Radiotracers for Imaging PARP Expression and Their Potential Clinical Applications in Oncology. J Clin Med 2024; 13:3426. [PMID: 38929955 PMCID: PMC11204862 DOI: 10.3390/jcm13123426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Including poly(ADP-ribose) polymerase (PARP) inhibitors in managing patients with inoperable tumors has significantly improved outcomes. The PARP inhibitors hamper single-strand deoxyribonucleic acid (DNA) repair by trapping poly(ADP-ribose)polymerase (PARP) at sites of DNA damage, forming a non-functional "PARP enzyme-inhibitor complex" leading to cell cytotoxicity. The effect is more pronounced in the presence of PARP upregulation and homologous recombination (HR) deficiencies such as breast cancer-associated gene (BRCA1/2). Hence, identifying HR-deficiencies by genomic analysis-for instance, BRCA1/2 used in triple-negative breast cancer-should be a part of the selection process for PARP inhibitor therapy. Published data suggest BRCA1/2 germline mutations do not consistently predict favorable responses to PARP inhibitors, suggesting that other factors beyond tumor mutation status may be at play. A variety of factors, including tumor heterogeneity in PARP expression and intrinsic and/or acquired resistance to PARP inhibitors, may be contributing factors. This justifies the use of an additional tool for appropriate patient selection, which is noninvasive, and capable of assessing whole-body in vivo PARP expression and evaluating PARP inhibitor pharmacokinetics as complementary to the currently available BRCA1/2 analysis. In this review, we discuss [18F]Fluorine PARP inhibitor radiotracers and their potential in the imaging of PARP expression and PARP inhibitor pharmacokinetics. To provide context we also briefly discuss possible causes of PARP inhibitor resistance or ineffectiveness. The discussion focuses on TNBC, which is a tumor type where PARP inhibitors are used as part of the standard-of-care treatment strategy.
Collapse
Affiliation(s)
- Honest Ndlovu
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Sipho Mdanda
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Mankgopo M. Kgatle
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Kgomotso M. G. Mokoala
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Al-Jubeiha P.O. Box 1269, Amman 11941, Jordan;
| | - Mike M. Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| |
Collapse
|
8
|
Mobet Y, Wang H, Wei Q, Liu X, Yang D, Zhao H, Yang Y, Ngono Ngane RA, Souopgui J, Xu J, Liu T, Yi P. AKAP8 promotes ovarian cancer progression and antagonizes PARP inhibitor sensitivity through regulating hnRNPUL1 transcription. iScience 2024; 27:109744. [PMID: 38711442 PMCID: PMC11070336 DOI: 10.1016/j.isci.2024.109744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/08/2023] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
Ovarian cancer (OC) is the highest worldwide cancer mortality cause among gynecologic tumors, but its underlying molecular mechanism remains largely unknown. Here, we report that the RNA binding protein A-kinase anchoring protein 8 (AKAP8) is highly expressed in ovarian cancer and predicts poor prognosis for ovarian cancer patients. AKAP8 promotes ovarian cancer progression through regulating cell proliferation and metastasis. Mechanically, AKAP8 is enriched at chromatin and regulates the transcription of the specific hnRNPUL1 isoform. Moreover, AKAP8 phase separation modulates the hnRNPUL1 short isoform transcription. Ectopic expression of the hnRNPUL1 short isoform could partially rescue the growth inhibition effect of AKAP8-knockdown in ovarian cancer cells. In addition, AKAP8 modulates PARP1 expression through hnRNPUL1, and AKAP8 inhibition enhances PAPR inhibitor cytotoxicity in ovarian cancer. Together, our study uncovers the crucial function of AKAP8 condensation-mediated transcription regulation, and targeting AKAP8 could be potential for improvement of ovarian cancer therapy.
Collapse
Affiliation(s)
- Youchaou Mobet
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Laboratory of Biochemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Haocheng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Dan Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Hongyan Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Rosalie Anne Ngono Ngane
- Laboratory of Biochemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies Campus, 6041 Gosselies, Belgium
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
9
|
Shields AF, Chen DL. Positron Emission Tomography Imaging of Tumor Proliferation and DNA Repair. Cancer J 2024; 30:170-175. [PMID: 38753751 DOI: 10.1097/ppo.0000000000000724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Positron emission tomography (PET) is an established tool for molecular imaging of cancers, and its role in diagnosis, staging, and phenotyping continues to evolve and expand rapidly. PET imaging of increased glucose utilization with 18F-fluorodeoxyglucose is now entrenched in clinical oncology practice for improving prognostication and treatment response assessment. Additional critical processes for cancer cell survival can also be imaged by PET, helping to inform individualized treatment selections for patients by improving our understanding of cell survival mechanisms and identifying relevant active mechanisms in each patient. The critical importance of quantifying cell proliferation and DNA repair pathways for prognosis and treatment selection is highlighted by the nearly ubiquitous use of the Ki-67 index, an established histological quantitative measure of cell proliferation, and BRCA mutation testing for treatment selection. This review focuses on PET advances in imaging and quantifying cell proliferation and poly(ADP-ribose)polymerase expression that can be used to complement cancer phenotyping approaches that will identify the most effective treatments for each individual patient.
Collapse
Affiliation(s)
- Anthony F Shields
- From the Karmanos Cancer Institute, Wayne State University, Detroit, MI
| | - Delphine L Chen
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
10
|
Khessib T, Jha P, Davidzon GA, Iagaru A, Shah J. Nuclear Medicine and Molecular Imaging Applications in Gynecologic Malignancies: A Comprehensive Review. Semin Nucl Med 2024; 54:270-292. [PMID: 38342655 DOI: 10.1053/j.semnuclmed.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/13/2024]
Abstract
Gynecologic malignancies, consisting of endometrial, cervical, ovarian, vulvar, and vaginal cancers, pose significant diagnostic and management challenges due to their complex anatomic location and potential for rapid progression. These tumors cause substantial morbidity and mortality, often because of their delayed diagnosis and treatment. An estimated 19% of newly diagnosed cancers among women are gynecologic in origin. In recent years, there has been growing evidence supporting the integration of nuclear medicine imaging modalities in the diagnostic work-up and management of gynecologic cancers. The sensitivity of fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) combined with the anatomical specificity of computed tomography (CT) and magnetic resonance imaging (MRI) allows for the hybrid evaluation of metabolic activity and structural abnormalities that has become an indispensable tool in oncologic imaging. Lymphoscintigraphy, using technetium 99m (99mTc) based radiotracers along with single photon emission computed tomography/ computed tomography (SPECT/CT), holds a vital role in the identification of sentinel lymph nodes to minimize the surgical morbidity from extensive lymph node dissections. While not yet standard for gynecologic malignancies, promising therapeutic nuclear medicine agents serve as specialized treatment options for patients with advanced or recurrent disease. This article aims to provide a comprehensive review on the nuclear medicine applications in gynecologic malignancies through the following objectives: 1) To describe the role of nuclear medicine in the initial staging, lymph node mapping, response assessment, and recurrence/surveillance imaging of common gynecologic cancers, 2) To review the limitations of 18F-FDG PET/CT and promising applications of 18F-FDG PET/MRI in gynecologic malignancy, 3) To underscore the promising theragnostic applications of nuclear medicine, 4) To highlight the current role of nuclear medicine imaging in gynecologic cancers as per the National Comprehensive Cancer Network (NCCN), European Society of Surgical Oncology (ESGO), and European Society of Medical Oncology (ESMO) guidelines.
Collapse
Affiliation(s)
- Tasnim Khessib
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford Health Care; 300 Pasteur Drive, Palo Alto, CA 94305
| | - Priyanka Jha
- Division of Body Imaging, Department of Radiology, Stanford Health Care; 300 Pasteur Drive, Palo Alto, CA 94035
| | - Guido A Davidzon
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford Health Care; 300 Pasteur Drive, Palo Alto, CA 94305
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford Health Care; 300 Pasteur Drive, Palo Alto, CA 94305
| | - Jagruti Shah
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford Health Care; 300 Pasteur Drive, Palo Alto, CA 94305.
| |
Collapse
|
11
|
Jacene H, Dietsche E, Specht J. The Current and Future Roles of Precision Oncology in Advanced Breast Cancer. J Nucl Med 2024; 65:349-356. [PMID: 38302151 DOI: 10.2967/jnumed.122.264882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Breast cancer is a common but heterogeneous disease characterized by several biologic features, including tumor grade, hormone receptor status, human epidermal growth factor receptor 2 status, and gene expression assays. These biologic and genomic features drive treatment decisions. In the advanced disease setting, inter- and intrapatient tumor heterogeneity is increasingly recognized as a challenge for optimizing treatment. Recent evidence and the recent approval of novel radiopharmaceuticals have increased recognition and acceptance of the potential of molecular imaging as a biomarker to impact and guide management decisions for advanced breast cancer.
Collapse
Affiliation(s)
- Heather Jacene
- Imaging/Radiology, Dana-Farber/Brigham Cancer Center, Boston, Massachusetts;
| | - Eric Dietsche
- Department of Radiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Jennifer Specht
- Fred Hutch Cancer Center, Divisions of Hematology and Oncology and of Clinical Research, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
12
|
Jeppesen TE, Shao T, Chen J, Patel JS, Zhou X, Kjaer A, Liang SH. Poly(ADP-ribose) polymerase (PARP)-targeted PET imaging in non-oncology application: a pilot study in preclinical models of nonalcoholic steatohepatitis. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:41-47. [PMID: 38500745 PMCID: PMC10944370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/01/2024] [Indexed: 03/20/2024]
Abstract
Poly(ADP-ribose) polymerase (PARP) activation often indicates a disruptive signal to lipid metabolism, the physiological alteration of which may be implicated in the development of non-alcoholic fatty liver disease. The objective of this study was to evaluate the capability of [68Ga]DOTA-PARPi PET to detect hepatic PARP expression in a non-alcoholic steatohepatitis (NASH) mouse model. In this study, male C57BL/6 mice were subjected to a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for a 12-week period to establish preclinical NASH models. [68Ga]DOTA-PARPi PET imaging of the liver was conducted at the 12-week mark after CDAHFD feeding. Comprehensive histopathological analysis, covering hepatic steatosis, inflammation, fibrosis, along with blood biochemistry, was performed in both NASH models and control groups. Despite the induction of severe inflammation, steatosis and fibrosis in the liver of mice with the CDAHFD-NASH model, PET imaging of NASH with [68Ga]-DOTA-PARPi did not reveal a significantly higher uptake in NASH models compared to the control. This underscores the necessity for further development of new chelator-based PARP1 tracers with high binding affinity to enable the visualization of PARP1 changes in NASH pathology.
Collapse
Affiliation(s)
- Troels E Jeppesen
- Division of Nuclear Medicine, Department of Radiology, Harvard Medical School and Massachusetts General HospitalBoston, MA, USA
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital - RigshospitaletCopenhagen, Denmark
- Department of Biomedical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Tuo Shao
- Division of Nuclear Medicine, Department of Radiology, Harvard Medical School and Massachusetts General HospitalBoston, MA, USA
- Division of Liver Center and Gastrointestinal, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Jiahui Chen
- Division of Nuclear Medicine, Department of Radiology, Harvard Medical School and Massachusetts General HospitalBoston, MA, USA
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA, USA
| | - Jimmy S Patel
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA, USA
- Department of Radiation Oncology, Winship Cancer Institute of Emory UniversityAtlanta, GA, USA
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital - RigshospitaletCopenhagen, Denmark
- Department of Biomedical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Steven H Liang
- Division of Nuclear Medicine, Department of Radiology, Harvard Medical School and Massachusetts General HospitalBoston, MA, USA
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA, USA
| |
Collapse
|
13
|
Chan CY, Chen Z, Guibbal F, Dias G, Destro G, O'Neill E, Veal M, Lau D, Mosley M, Wilson TC, Gouverneur V, Cornelissen B. [ 123I]CC1: A PARP-Targeting, Auger Electron-Emitting Radiopharmaceutical for Radionuclide Therapy of Cancer. J Nucl Med 2023; 64:1965-1971. [PMID: 37770109 PMCID: PMC10690119 DOI: 10.2967/jnumed.123.265429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Poly(adenosine diphosphate ribose) polymerase (PARP) has emerged as an effective therapeutic strategy against cancer that targets the DNA damage repair enzyme. PARP-targeting compounds radiolabeled with an Auger electron-emitting radionuclide can be trapped close to damaged DNA in tumor tissue, where high ionizing potential and short range lead Auger electrons to kill cancer cells through the creation of complex DNA damage, with minimal damage to surrounding normal tissue. Here, we report on [123I]CC1, an 123I-labeled PARP inhibitor for radioligand therapy of cancer. Methods: Copper-mediated 123I iododeboronation of a boronic pinacol ester precursor afforded [123I]CC1. The level and specificity of cell uptake and the therapeutic efficacy of [123I]CC1 were determined in human breast carcinoma, pancreatic adenocarcinoma, and glioblastoma cells. Tumor uptake and tumor growth inhibition of [123I]CC1 were assessed in mice bearing human cancer xenografts (MDA-MB-231, PSN1, and U87MG). Results: In vitro and in vivo studies showed selective uptake of [123I]CC1 in all models. Significantly reduced clonogenicity, a proxy for tumor growth inhibition by ionizing radiation in vivo, was observed in vitro after treatment with as little as 10 Bq [123I]CC1. Biodistribution at 1 h after intravenous administration showed PSN1 tumor xenograft uptake of 0.9 ± 0.06 percentage injected dose per gram of tissue. Intravenous administration of a relatively low amount of [123I]CC1 (3 MBq) was able to significantly inhibit PSN1 xenograft tumor growth but was less effective in xenografts that expressed less PARP. [123I]CC1 did not cause significant toxicity to normal tissues. Conclusion: Taken together, these results show the potential of [123I]CC1 as a radioligand therapy for PARP-expressing cancers.
Collapse
Affiliation(s)
- Chung Ying Chan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Zijun Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Florian Guibbal
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Gemma Dias
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Gianluca Destro
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Edward O'Neill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mathew Veal
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Doreen Lau
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael Mosley
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Thomas C Wilson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom;
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Cussenot O, Cancel-Tassin G, Rao SR, Woodcock DJ, Lamb AD, Mills IG, Hamdy FC. Aligning germline and somatic mutations in prostate cancer. Are genetics changing practice? BJU Int 2023; 132:472-484. [PMID: 37410655 DOI: 10.1111/bju.16120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
OBJECTIVE To review the current status of germline and somatic (tumour) genetic testing for prostate cancer (PCa), and its relevance for clinical practice. METHODS A narrative synthesis of various molecular profiles related to their clinical context was carried out. Current guidelines for genetic testing and its feasibility in clinical practice were analysed. We report the main identified genetic sequencing results or functional genomic scores for PCa published in the literature or obtained from the French PROGENE study. RESULTS The molecular alterations observed in PCa are mostly linked to disruption of the androgen receptor (AR) pathway or DNA repair deficiency. The main known germline mutations affect the BReast CAncer gene 2 (BRCA2) and homeobox B13 (HOXB13) genes, whereas AR and tumour protein p53 (TP53) are the genes with most frequent somatic alterations in tumours from men with metastatic PCa. Molecular tests are now available for detecting some of these germline or somatic alterations and sometimes recommended by guidelines, but their utilisation must combine rationality and feasibility. They can guide specific therapies, notably for the management of metastatic disease. Indeed, following androgen deprivation, targeted therapies for PCa currently include poly-(ADP-ribose)-polymerase (PARP) inhibitors, immune checkpoint inhibitors, and prostate-specific membrane antigen (PSMA)-guided radiotherapy. The genetic tests currently approved for targeted therapies remain limited to the detection of BRCA1 and BRCA2 mutation and DNA mismatch repair deficiency, while large panels are recommended for germline analyses, not only for inherited cancer predisposing syndrome, but also for metastatic PCa. CONCLUSIONS Further consensus aligning germline with somatic molecular analysis in metastatic PCa is required, including genomics scars, emergent immunohistochemistry, or functional pre-screen imaging. With rapid advances in knowledge and technology in the field, continuous updating of guidelines to help the clinical management of these individuals, and well-conducted studies to evaluate the benefits of genetic testing are needed.
Collapse
Affiliation(s)
- Olivier Cussenot
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques (CeRePP), Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Geraldine Cancel-Tassin
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques (CeRePP), Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
| | - Srinivasa R Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Dan J Woodcock
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Filippi L, Urso L, Frantellizzi V, Marzo K, Marzola MC, Schillaci O, Evangelista L. Molecular imaging of PARP in cancer: state-of-the-art. Expert Rev Mol Diagn 2023; 23:1167-1174. [PMID: 38009232 DOI: 10.1080/14737159.2023.2287503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Poly-ADP-ribose-polymerase inhibitors (PARPi), which exploit the processes of so-called 'synthetic lethality,' have been successfully implemented in oncological practice. However, not all patients respond to PARPi, and there is an unmet need for noninvasive biomarkers suitable for patient selection and monitoring during PARPi therapy. AREAS COVERED The first clinical applications of molecular imaging with positron emission tomography/computed tomography (PET/CT) with [18F]-FluorThanatrace ([18F]-FTT) and [18F]-PARPi, highly effective PARP-ligands, in patients with several malignancies (head and neck, ovarian, prostate, and breast cancer) are covered, with a particular focus on its potential for pre-treatment selection and follow-up. EXPERT OPINION By a search made on the most common database, such as PubMed and Google Scholar in a period from January 2010 and 2023, first clinical evidence suggests that PET/CT with [18F]-FTT and [18F]-PARPi might represent a reliable tool for in vivo imaging and quantification of PARP-1 expression in ovarian, prostate, breast, head, and neck cancer, supporting their potential usefulness for patient selection before PARPi-therapies. In addition, a reduction in [18F]-FTT uptake has been registered after therapy initiation and seems to be correlated with patient outcome after PARPi-based regimens. Further studies are needed to better address the value of PARPI-radiolabeled PET imaging in these clinical settings, especially as it concerns technical features such as optimal scan modality (dynamic vs. static) and timing.
Collapse
Affiliation(s)
- Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Rome, Italy
| | - Luca Urso
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, Rovigo, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, Rome, Italy
| | - Katia Marzo
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, Rozzano - Milan, Italy
| | - Maria Cristina Marzola
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, Rovigo, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Laura Evangelista
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, Rozzano - Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele - Milan, Italy
| |
Collapse
|
16
|
Hoffman SLV, Mixdorf JC, Kwon O, Johnson TR, Makvandi M, Lee H, Aluicio-Sarduy E, Barnhart TE, Jeffery JJ, Patankar MS, Engle JW, Bednarz BP, Ellison PA. Preclinical studies of a PARP targeted, Meitner-Auger emitting, theranostic radiopharmaceutical for metastatic ovarian cancer. Nucl Med Biol 2023; 122-123:108368. [PMID: 37490805 PMCID: PMC10529069 DOI: 10.1016/j.nucmedbio.2023.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Advanced ovarian cancer currently has few therapeutic options. Poly(ADP-ribose) polymerase (PARP) inhibitors bind to nuclear PARP and trap the protein-inhibitor complex to DNA. This work investigates a theranostic PARP inhibitor for targeted radiopharmaceutical therapy of ovarian cancer in vitro and PET imaging of healthy mice in vivo. METHODS [77Br]RD1 was synthesized and assessed for pharmacokinetics and cytotoxicity in human and murine ovarian cancer cell lines. [76Br]RD1 biodistribution and organ uptake in healthy mice were quantified through longitudinal PET/CT imaging and ex vivo radioactivity measurements. Organ-level dosimetry following [76/77Br]RD1 administration was calculated using RAPID, an in-house platform for absorbed dose in mice, and OLINDA for equivalent and effective dose in human. RESULTS The maximum specific binding (Bmax), equilibrium dissociation constant (Kd), and nonspecific binding slope (NS) were calculated for each cell line. These values were used to calculate the cell specific activity uptake for cell viability studies. The half maximal effective concentration (EC50) was measured as 0.17 (95 % CI: 0.13-0.24) nM and 0.46 (0.13-0.24) nM for PARP(+) and PARP(-) expressing cell lines, respectively. The EC50 was 0.27 (0.21-0.36) nM and 0.30 (0.22-0.41) nM for BRCA1(-) and BRCA1(+) expressing cell lines, respectively. When measuring the EC50 as a function of cellular activity uptake and nuclear dose, the EC50 ranges from 0.020 to 0.039 Bq/cell and 3.3-9.2 Gy, respectively. Excretion through the hepatobiliary and renal pathways were observed in mice, with liver uptake of 2.3 ± 0.4 %ID/g after 48 h, contributing to estimated absorbed dose values in mice of 19.3 ± 0.3 mGy/MBq and 290 ± 10 mGy/MBq for [77Br]RD1 and [76Br]RD1, respectively. CONCLUSION [77Br]RD1 cytotoxicity was dependent on PARP expression and independent of BRCA1 status. The in vitro results suggest that [77Br]RD1 cytotoxicity is driven by the targeted Meitner-Auger electron (MAe) radiotherapeutic effect of the agent. Further studies investigating the theranostic potential, organ dose, and tumor uptake of [76/77Br]RD1 are warranted.
Collapse
Affiliation(s)
- S L V Hoffman
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J C Mixdorf
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - O Kwon
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - T R Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - M Makvandi
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - H Lee
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - T E Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J J Jeffery
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - M S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J W Engle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - B P Bednarz
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - P A Ellison
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
17
|
Schwenck J, Sonanini D, Cotton JM, Rammensee HG, la Fougère C, Zender L, Pichler BJ. Advances in PET imaging of cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00576-4. [PMID: 37258875 DOI: 10.1038/s41568-023-00576-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/02/2023]
Abstract
Molecular imaging has experienced enormous advancements in the areas of imaging technology, imaging probe and contrast development, and data quality, as well as machine learning-based data analysis. Positron emission tomography (PET) and its combination with computed tomography (CT) or magnetic resonance imaging (MRI) as a multimodality PET-CT or PET-MRI system offer a wealth of molecular, functional and morphological data with a single patient scan. Despite the recent technical advances and the availability of dozens of disease-specific contrast and imaging probes, only a few parameters, such as tumour size or the mean tracer uptake, are used for the evaluation of images in clinical practice. Multiparametric in vivo imaging data not only are highly quantitative but also can provide invaluable information about pathophysiology, receptor expression, metabolism, or morphological and functional features of tumours, such as pH, oxygenation or tissue density, as well as pharmacodynamic properties of drugs, to measure drug response with a contrast agent. It can further quantitatively map and spatially resolve the intertumoural and intratumoural heterogeneity, providing insights into tumour vulnerabilities for target-specific therapeutic interventions. Failure to exploit and integrate the full potential of such powerful imaging data may lead to a lost opportunity in which patients do not receive the best possible care. With the desire to implement personalized medicine in the cancer clinic, the full comprehensive diagnostic power of multiplexed imaging should be utilized.
Collapse
Affiliation(s)
- Johannes Schwenck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
| | - Dominik Sonanini
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Medical Oncology and Pulmonology, Department of Internal Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jonathan M Cotton
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- Department of Immunology, IFIZ Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Lars Zender
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- Medical Oncology and Pulmonology, Department of Internal Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany.
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
18
|
Altena R, Tzortzakakis A, Af Burén S, Tran TA, Frejd FY, Bergh J, Axelsson R. Current status of contemporary diagnostic radiotracers in the management of breast cancer: first steps toward theranostic applications. EJNMMI Res 2023; 13:43. [PMID: 37195374 DOI: 10.1186/s13550-023-00995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Expanding therapeutic possibilities have improved disease-related prospects for breast cancer patients. Pathological analysis on a tumor biopsy is the current reference standard biomarker used to select for treatment with targeted anticancer drugs. This method has, however, several limitations, related to intra- and intertumoral as well as spatial heterogeneity in receptor expression as well as the need to perform invasive procedures that are not always technically feasible. MAIN BODY In this narrative review, we focus on the current role of molecular imaging with contemporary radiotracers for positron emission tomography (PET) in breast cancer. We provide an overview of diagnostic radiotracers that represent treatment targets, such as programmed death ligand 1, human epidermal growth factor receptor 2, polyadenosine diphosphate-ribose polymerase and estrogen receptor, and discuss developments in therapeutic radionuclides for breast cancer management. CONCLUSION Imaging of treatment targets with PET tracers may provide a more reliable precision medicine tool to find the right treatment for the right patient at the right time. In addition to visualization of the target of treatment, theranostic trials with alpha- or beta-emitting isotopes provide a future treatment option for patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Renske Altena
- Institutionen Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Medical Unit Breast, Endocrine Tumors and Sarcoma, Theme Cancer, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Solna, Sweden.
| | - Antonios Tzortzakakis
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Siri Af Burén
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Thuy A Tran
- Medical Unit Breast, Endocrine Tumors and Sarcoma, Theme Cancer, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Solna, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Solna, Sweden
| | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Affibody AB, Solna, Sweden
| | - Jonas Bergh
- Institutionen Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Breast, Endocrine Tumors and Sarcoma, Theme Cancer, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Solna, Sweden
| | - Rimma Axelsson
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, Huddinge, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Zhou L, Ma Z, Gao X. Retinoic Acid Prevents α-Synuclein Preformed Fibrils-Induced Toxicity via Inhibiting STAT1-PARP1 Signaling. Mol Neurobiol 2023:10.1007/s12035-023-03376-x. [PMID: 37171576 DOI: 10.1007/s12035-023-03376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Parkinson's disease (PD), the second-most prevalent neurodegenerative disorder, is characterized by the aberrant deposition of α-synuclein (α-Syn) aggregation in neurons. Recent reports have shown that retinoic acid (RA) ameliorates motor deficits. However, the underlying molecular mechanisms remain unclear. In this article, we investigated the effects of RA on cellular and animal models of PD. We found that RA is beneficial for neuronal survival in PD-associated models. In α-Syn preformed fibrils-treated mice, RA administration relieved the formation of intracellular inclusions, dopaminergic neuronal loss, and behavioral deficits. α-Syn preformed fibrils-treated SH-SY5Y cells manifested decreased cell viability, apoptosis, α-Syn aggregation, and autophagy defects. All these negative phenomena were alleviated by RA. More importantly, RA could inhibit the neurotoxicity via inhibiting α-Syn preformed fibrils-induced STAT1-PARP1 signaling, which could also be antagonized by IFN-γ. In conclusion, RA could hinder α-Syn preformed fibrils-induced toxicity by inhibiting STAT1-PARP1 signaling. Thus, we present new insight into RA in PD management.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zengxia Ma
- Department of Pulmonary and Critical Care Medicine, Shandong Public Health Clinical Center, Jinan, 250013, China.
| | - Xiang Gao
- Central Laboratory, Scientific Research Department, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
20
|
Sun X, Tang H, Chen Y, Chen Z, Hu Z, Cui Z, Tao Y, Yuan J, Fu Y, Zhuang Z, He Q, Li Q, Xu X, Wan X, Jiang Y, Mao Z. Loss of the receptors ER, PR and HER2 promotes USP15-dependent stabilization of PARP1 in triple-negative breast cancer. NATURE CANCER 2023; 4:716-733. [PMID: 37012401 DOI: 10.1038/s43018-023-00535-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is essential for the progression of several types of cancers. However, whether and how PARP1 is stabilized to promote genomic stability in triple-negative breast cancer (TNBC) remains unknown. Here, we demonstrated that the deubiquitinase USP15 interacts with and deubiquitinates PARP1 to promote its stability, thereby stimulating DNA repair, genomic stability and TNBC cell proliferation. Two PARP1 mutations found in individuals with breast cancer (E90K and S104R) enhanced the PARP1-USP15 interaction and suppressed PARP1 ubiquitination, thereby elevating the protein level of PARP1. Importantly, we found that estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) inhibited USP15-mediated PARP1 stabilization through different mechanisms. ER bound to the USP15 promoter to suppress its expression, PR suppressed the deubiquitinase activity of USP15, and HER2 abrogated the PARP1-USP15 interaction. The specific absence of these three receptors in TNBC results in high PARP1 levels, leading to increases in base excision repair and female TNBC cell survival.
Collapse
Affiliation(s)
- Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huanyin Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhixi Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiyi Hu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Cui
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yaming Tao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jian Yuan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Fu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhigang Zhuang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qizhi He
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianghong Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Tsingtao Advanced Research Institute, Tongji University, Qingdao, China.
| |
Collapse
|
21
|
Hartmann K, Sadée CY, Satwah I, Carrillo-Perez F, Gevaert O. Imaging genomics: data fusion in uncovering disease heritability. Trends Mol Med 2023; 29:141-151. [PMID: 36470817 PMCID: PMC10507799 DOI: 10.1016/j.molmed.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
Sequencing of the human genome in the early 2000s enabled probing of the genetic basis of disease on a scale previously unimaginable. Now, two decades later, after interrogating millions of markers in thousands of individuals, a significant portion of disease heritability still remains hidden. Recent efforts to unravel this 'missing heritability' have focused on garnering new insight from merging different data types, including medical imaging. Imaging offers promising intermediate phenotypes to bridge the gap between genetic variation and disease pathology. In this review we outline this fusion and provide examples of imaging genomics in a range of diseases, from oncology to cardiovascular and neurodegenerative disease. Finally, we discuss how ongoing revolutions in data science and sharing are primed to advance the field.
Collapse
Affiliation(s)
- Katherine Hartmann
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Christoph Y Sadée
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ishan Satwah
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Francisco Carrillo-Perez
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Computer Architecture and Technology, University of Granada. C.I.T.I.C., Granada, Spain
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Tsujino T, Takai T, Hinohara K, Gui F, Tsutsumi T, Bai X, Miao C, Feng C, Gui B, Sztupinszki Z, Simoneau A, Xie N, Fazli L, Dong X, Azuma H, Choudhury AD, Mouw KW, Szallasi Z, Zou L, Kibel AS, Jia L. CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer. Nat Commun 2023; 14:252. [PMID: 36650183 PMCID: PMC9845315 DOI: 10.1038/s41467-023-35880-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Prostate cancer harboring BRCA1/2 mutations are often exceptionally sensitive to PARP inhibitors. However, genomic alterations in other DNA damage response genes have not been consistently predictive of clinical response to PARP inhibition. Here, we perform genome-wide CRISPR-Cas9 knockout screens in BRCA1/2-proficient prostate cancer cells and identify previously unknown genes whose loss has a profound impact on PARP inhibitor response. Specifically, MMS22L deletion, frequently observed (up to 14%) in prostate cancer, renders cells hypersensitive to PARP inhibitors by disrupting RAD51 loading required for homologous recombination repair, although this response is TP53-dependent. Unexpectedly, loss of CHEK2 confers resistance rather than sensitivity to PARP inhibition through increased expression of BRCA2, a target of CHEK2-TP53-E2F7-mediated transcriptional repression. Combined PARP and ATR inhibition overcomes PARP inhibitor resistance caused by CHEK2 loss. Our findings may inform the use of PARP inhibitors beyond BRCA1/2-deficient tumors and support reevaluation of current biomarkers for PARP inhibition in prostate cancer.
Collapse
Affiliation(s)
- Takuya Tsujino
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Tomoaki Takai
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kunihiko Hinohara
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fu Gui
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Takeshi Tsutsumi
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Xiao Bai
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Chenkui Miao
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Chao Feng
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Bin Gui
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Zsofia Sztupinszki
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Antoine Simoneau
- Department of Pathology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Ning Xie
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Atish D Choudhury
- Department of Medical Oncology, Dana-Farber Cancer Institute & Harvard Medical School, Boston, MA, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute & Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Zoltan Szallasi
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Lee Zou
- Department of Pathology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Adam S Kibel
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Li Jia
- Division of Urology, Department of Surgery, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Lee IK, Noguera-Ortega E, Xiao Z, Todd L, Scholler J, Song D, Liousia M, Lohith K, Xu K, Edwards KJ, Farwell MD, June CH, Albelda SM, Puré E, Sellmyer MA. Monitoring Therapeutic Response to Anti-FAP CAR T Cells Using [18F]AlF-FAPI-74. Clin Cancer Res 2022; 28:5330-5342. [PMID: 35972732 PMCID: PMC9771904 DOI: 10.1158/1078-0432.ccr-22-1379] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 08/12/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Despite the success of chimeric antigen receptor (CAR) T-cell therapy against hematologic malignancies, successful targeting of solid tumors with CAR T cells has been limited by a lack of durable responses and reports of toxicities. Our understanding of the limited therapeutic efficacy in solid tumors could be improved with quantitative tools that allow characterization of CAR T-targeted antigens in tumors and accurate monitoring of response. EXPERIMENTAL DESIGN We used a radiolabeled FAP inhibitor (FAPI) [18F]AlF-FAPI-74 probe to complement ongoing efforts to develop and optimize FAP CAR T cells. The selectivity of the radiotracer for FAP was characterized in vitro, and its ability to monitor changes in FAP expression was evaluated using rodent models of lung cancer. RESULTS [18F]AlF-FAPI-74 showed selective retention in FAP+ cells in vitro, with effective blocking of the uptake in presence of unlabeled FAPI. In vivo, [18F]AlF-FAPI-74 was able to detect FAP expression on tumor cells as well as FAP+ stromal cells in the tumor microenvironment with a high target-to-background ratio. We further demonstrated the utility of the tracer to monitor changes in FAP expression following FAP CAR T-cell therapy, and the PET imaging findings showed a robust correlation with ex vivo analyses. CONCLUSIONS This noninvasive imaging approach to interrogate the tumor microenvironment represents an innovative pairing of a diagnostic PET probe with solid tumor CAR T-cell therapy and has the potential to serve as a predictive and pharmacodynamic response biomarker for FAP as well as other stroma-targeted therapies. A PET imaging approach targeting FAP expressed on activated fibroblasts of the tumor stroma has the potential to predict and monitor therapeutic response to FAP-targeted CAR T-cell therapy. See related commentary by Weber et al., p. 5241.
Collapse
Affiliation(s)
- Iris K. Lee
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Estela Noguera-Ortega
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Zebin Xiao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pensnsylvania, Philadelphia, PA, USA
| | - Leslie Todd
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pensnsylvania, Philadelphia, PA, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Decheng Song
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Liousia
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Katheryn Lohith
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kexiang Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly J. Edwards
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D. Farwell
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H. June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pensnsylvania, Philadelphia, PA, USA
| | - Mark A. Sellmyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Deparment of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Makvandi M, Samanta M, Martorano P, Lee H, Gitto SB, Patel K, Groff D, Pogoriler J, Martinez D, Riad A, Dabagian H, Zaleski M, Taghvaee T, Xu K, Lee JY, Hou C, Farrel A, Batra V, Carlin SD, Powell DJ, Mach RH, Pryma DA, Maris JM. Pre-clinical investigation of astatine-211-parthanatine for high-risk neuroblastoma. Commun Biol 2022; 5:1260. [PMID: 36396952 PMCID: PMC9671962 DOI: 10.1038/s42003-022-04209-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Astatine-211-parthanatine ([211At]PTT) is an alpha-emitting radiopharmaceutical therapeutic that targets poly(adenosine-diphosphate-ribose) polymerase 1 (PARP1) in cancer cells. High-risk neuroblastomas exhibit among the highest PARP1 expression across solid tumors. In this study, we evaluated the efficacy of [211At]PTT using 11 patient-derived xenograft (PDX) mouse models of high-risk neuroblastoma, and assessed hematological and marrow toxicity in a CB57/BL6 healthy mouse model. We observed broad efficacy in PDX models treated with [211At]PTT at the maximum tolerated dose (MTD 36 MBq/kg/fraction x4) administered as a fractionated regimen. For the MTD, complete tumor response was observed in 81.8% (18 of 22) of tumors and the median event free survival was 72 days with 30% (6/20) of mice showing no measurable tumor >95 days. Reversible hematological and marrow toxicity was observed 72 hours post-treatment at the MTD, however full recovery was evident by 4 weeks post-therapy. These data support clinical development of [211At]PTT for high-risk neuroblastoma.
Collapse
Affiliation(s)
- Mehran Makvandi
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Minu Samanta
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Colket Translational Research Building, 3501 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Paul Martorano
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hwan Lee
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sarah B Gitto
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Khushbu Patel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Colket Translational Research Building, 3501 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - David Groff
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Colket Translational Research Building, 3501 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Jennifer Pogoriler
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Daniel Martinez
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Aladdin Riad
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hannah Dabagian
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michael Zaleski
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Tara Taghvaee
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kuiying Xu
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ji Youn Lee
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Catherine Hou
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Alvin Farrel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Colket Translational Research Building, 3501 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Vandana Batra
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Colket Translational Research Building, 3501 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Sean D Carlin
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Daniel J Powell
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert H Mach
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Daniel A Pryma
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Colket Translational Research Building, 3501 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
26
|
Tong J, Chen B, Tan PW, Kurpiewski S, Cai Z. Poly (ADP-ribose) polymerases as PET imaging targets for central nervous system diseases. Front Med (Lausanne) 2022; 9:1062432. [PMID: 36438061 PMCID: PMC9685622 DOI: 10.3389/fmed.2022.1062432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) constitute of 17 members that are associated with divergent cellular processes and play a crucial role in DNA repair, chromatin organization, genome integrity, apoptosis, and inflammation. Multiple lines of evidence have shown that activated PARP1 is associated with intense DNA damage and irritating inflammatory responses, which are in turn related to etiologies of various neurological disorders. PARP1/2 as plausible therapeutic targets have attracted considerable interests, and multitudes of PARP1/2 inhibitors have emerged for treating cancer, metabolic, inflammatory, and neurological disorders. Furthermore, PARP1/2 as imaging targets have been shown to detect, delineate, and predict therapeutic responses in many diseases by locating and quantifying the expression levels of PARP1/2. PARP1/2-directed noninvasive positron emission tomography (PET) has potential in diagnosing and prognosing neurological diseases. However, quantitative PARP PET imaging in the central nervous system (CNS) has evaded us due to the challenges of developing blood-brain barrier (BBB) penetrable PARP radioligands. Here, we review PARP1/2's relevance in CNS diseases, summarize the recent progress on PARP PET and discuss the possibilities of developing novel PARP radiotracers for CNS diseases.
Collapse
Affiliation(s)
| | | | | | | | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
27
|
Chan CY, Hopkins SL, Guibbal F, Pacelli A, Baguña Torres J, Mosley M, Lau D, Isenegger P, Chen Z, Wilson TC, Dias G, Hueting R, Gouverneur V, Cornelissen B. Correlation between molar activity, injection mass and uptake of the PARP targeting radiotracer [ 18F]olaparib in mouse models of glioma. EJNMMI Res 2022; 12:67. [PMID: 36210377 PMCID: PMC9548459 DOI: 10.1186/s13550-022-00940-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Radiopharmaceuticals targeting poly(ADP-ribose) polymerase (PARP) have emerged as promising agents for cancer diagnosis and therapy. PARP enzymes are expressed in both cancerous and normal tissue. Hence, the injected mass, molar activity and potential pharmacological effects are important considerations for the use of radiolabelled PARP inhibitors for diagnostic and radionuclide therapeutic applications. Here, we performed a systematic evaluation by varying the molar activity of [18F]olaparib and the injected mass of [TotalF]olaparib to investigate the effects on tumour and normal tissue uptake in two subcutaneous human glioblastoma xenograft models. METHODS [18F]Olaparib uptake was evaluated in the human glioblastoma models: in vitro on U251MG and U87MG cell lines, and in vivo on tumour xenograft-bearing mice, after administration of [TotalF]olaparib (varying injected mass: 0.04-8.0 µg, and molar activity: 1-320 GBq/μmol). RESULTS Selective uptake of [18F]olaparib was demonstrated in both models. Tumour uptake was found to be dependent on the injected mass of [TotalF]olaparib (µg) but not the molar activity. An injected mass of 1 μg resulted in the highest tumour uptake (up to 6.9 ± 1.3%ID/g), independent of the molar activity. In comparison, both the lower and higher injected masses of [TotalF]olaparib resulted in lower relative tumour uptake (%ID/g; P < 0.05). Ex vivo analysis of U87MG xenograft sections showed that the heterogeneity in [18F]olaparib intratumoural uptake correlated with PARP1 expression. Substantial upregulation of PARP1-3 expression was observed after administration of [TotalF]olaparib (> 0.5 µg). CONCLUSION Our findings show that the injected mass of [TotalF]olaparib has significant effects on tumour uptake. Moderate injected masses of PARP inhibitor-derived radiopharmaceuticals may lead to improved relative tumour uptake and tumour-to-background ratio for cancer diagnosis and radionuclide therapy.
Collapse
Affiliation(s)
- Chung Ying Chan
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ UK
| | - Samantha L. Hopkins
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ UK
| | - Florian Guibbal
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, South Parks Road, Oxford, OX1 3TA UK
| | - Anna Pacelli
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ UK
| | - Julia Baguña Torres
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ UK
| | - Michael Mosley
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ UK
| | - Doreen Lau
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ UK
| | - Patrick Isenegger
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, South Parks Road, Oxford, OX1 3TA UK
| | - Zijun Chen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, South Parks Road, Oxford, OX1 3TA UK
| | - Thomas C. Wilson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, South Parks Road, Oxford, OX1 3TA UK
| | - Gemma Dias
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ UK
| | - Rebekka Hueting
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ UK
| | - Véronique Gouverneur
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, South Parks Road, Oxford, OX1 3TA UK
| | - Bart Cornelissen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ UK
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Chan CY, Chen Z, Destro G, Veal M, Lau D, O’Neill E, Dias G, Mosley M, Kersemans V, Guibbal F, Gouverneur V, Cornelissen B. Imaging PARP with [ 18F]rucaparib in pancreatic cancer models. Eur J Nucl Med Mol Imaging 2022; 49:3668-3678. [PMID: 35614267 PMCID: PMC9399069 DOI: 10.1007/s00259-022-05835-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/08/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Rucaparib, an FDA-approved PARP inhibitor, is used as a single agent in maintenance therapy to provide promising treatment efficacy with an acceptable safety profile in various types of BRCA-mutated cancers. However, not all patients receive the same benefit from rucaparib-maintenance therapy. A predictive biomarker to help with patient selection for rucaparib treatment and predict clinical benefit is therefore warranted. With this aim, we developed [18F]rucaparib, an 18F-labelled isotopologue of rucaparib, and employed it as a PARP-targeting agent for cancer imaging with PET. Here, we report the in vitro and in vivo evaluation of [18F]rucaparib in human pancreatic cancer models. METHOD We incorporated the positron-emitting 18F isotope into rucaparib, enabling its use as a PET imaging agent. [18F]rucaparib binds to the DNA damage repair enzyme, PARP, allowing direct visualisation and measurement of PARP in cancerous models before and after PARP inhibition or other genotoxic cancer therapies, providing critical information for cancer diagnosis and therapy. Proof-of-concept evaluations were determined in pancreatic cancer models. RESULTS Uptake of [18F]rucaparib was found to be mainly dependent on PARP1 expression. Induction of DNA damage increased PARP expression, thereby increasing uptake of [18F]rucaparib. In vivo studies revealed relatively fast blood clearance of [18F]rucaparib in PSN1 tumour-bearing mice, with a tumour uptake of 5.5 ± 0.5%ID/g (1 h after i.v. administration). In vitro and in vivo studies showed significant reduction of [18F]rucaparib uptake by addition of different PARP inhibitors, indicating PARP-selective binding. CONCLUSION Taken together, we demonstrate the potential of [18F]rucaparib as a non-invasive PARP-targeting imaging agent for pancreatic cancers.
Collapse
Affiliation(s)
- Chung Ying Chan
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Zijun Chen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Gianluca Destro
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Mathew Veal
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Doreen Lau
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Edward O’Neill
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Gemma Dias
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Michael Mosley
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Veerle Kersemans
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
| | - Florian Guibbal
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Véronique Gouverneur
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Bart Cornelissen
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, OX3 7DQ Oxford, UK
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
29
|
Upregulation of PARG in prostate cancer cells suppresses their malignant behavior and downregulates tumor-promoting genes. Biomed Pharmacother 2022; 153:113504. [PMID: 36076593 DOI: 10.1016/j.biopha.2022.113504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/03/2023] Open
Abstract
Post-translational modification of nuclear proteins through the addition of poly(ADP-ribose) (pADPr) moieties is upregulated in many metastatic cancers, where the high levels of pADPr have often been associated with poor cancer prognosis. Although the inhibitors of poly(ADP-ribose) polymerases (PARPs) have been utilized as potent anti-cancer agents, their efficacy in clinical trials varied among patient groups and has often been unpredictable. Such outcome cannot be interpreted solely by the inability to keep PARP-driven DNA repair in check. The focus of studies on PARP-driven tumorigenesis have recently been shifted toward PARP-dependent regulation of transcription. Here we utilized the controlled overexpression of poly(ADP-ribose) glycohydrolase (PARG), a sole pADPr-degrading enzyme, to investigate pADPr-dependent gene regulation in prostate cancer PC-3 cells. We demonstrated that PARG upregulation reduces pADPr levels and inhibits the expression of genes in key tumor-promoted pathways, including TNFα/NF-kB, IL6/STAT3, MYC, and KRAS signaling, the genes involved in inflammation response, especially chemokines, and endothelial-mesenchymal transition. The observed effect of PARG on transcription was consistent across all tested prostate cancer cell lines and correlates with PARG-induced reduction of clonogenic potential of PC-3 cells in vitro and a significant growth inhibition of PC-3-derived tumors in nude mice in vivo.
Collapse
|
30
|
Predictive biomarkers for molecularly targeted therapies and immunotherapies in breast cancer. Arch Pharm Res 2022; 45:597-617. [PMID: 35982262 DOI: 10.1007/s12272-022-01402-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Globally, breast cancer is the most common malignancy in women. Substantial efforts have been made to develop novel therapies, including targeted therapies and immunotherapies, for patients with breast cancer who do not respond to standard therapies. Consequently, new targeted therapies, such as cyclin-dependent kinase 4 and 6 inhibitors, poly (ADP-ribose) polymerase inhibitors, phosphoinositide 3-kinase inhibitor, and antibody-drug conjugates targeting human epidermal growth factor receptor 2 or trophoblast cell surface antigen-2, and immune checkpoint inhibitor targeting programmed cell death-1, have been developed and are now in clinical use. However, only some patients have benefited from these novel therapies; therefore, the identification and validation of reliable or more accurate biomarkers for predicting responses to these agents remain a major challenge. This review summarizes the currently available predictive biomarkers for breast cancer and describes recent efforts undertaken to identify potential predictive markers for molecularly targeted therapies and immune checkpoint inhibitors.
Collapse
|
31
|
Wang Q, Zhang J. Current status and progress in using radiolabelled PARP-1 inhibitors for imaging PARP-1 expression in tumours. Eur J Med Chem 2022; 242:114690. [PMID: 36041258 DOI: 10.1016/j.ejmech.2022.114690] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a key enzyme in the DNA repair process, and the overexpression of PARP-1 in several tumours makes this enzyme a promising molecular target. Recently, several PARP-1 inhibitors, such as olaparib, rucaparib, niraparib and talazoparib, have been clinically approved as anticancer drugs. Several of these inhibitors have been radiolabelled for noninvasive imaging of PARP-1 expression in several types of tumours. In this review, the background and progress for using various radiolabelled PARP-1 inhibitors for cancer diagnosis are discussed and future development directions are proposed.
Collapse
Affiliation(s)
- Qianna Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
32
|
Zhang H, Abou D, Lu P, Hasson AM, Villmer A, Benabdallah N, Jiang W, Ulmert D, Carlin S, Rogers BE, Turtle NF, McDevitt MR, Baumann B, Simons BW, Dehdashti F, Zhou D, Thorek DLJ. [ 18F]-Labeled PARP-1 PET imaging of PSMA targeted alpha particle radiotherapy response. Sci Rep 2022; 12:13034. [PMID: 35906379 PMCID: PMC9338249 DOI: 10.1038/s41598-022-17460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
The growing interest and clinical translation of alpha particle (α) therapies brings with it new challenges to assess target cell engagement and to monitor therapeutic effect. Noninvasive imaging has great potential to guide α-treatment and to harness the potential of these agents in the complex environment of disseminated disease. Poly(ADP) ribose polymerase 1 (PARP-1) is among the most abundantly expressed DNA repair enzymes with key roles in multiple repair pathways-such as those induced by irradiation. Here, we used a third-generation PARP1-specific radiotracer, [18F]-PARPZ, to delineate castrate resistant prostate cancer xenografts. Following treatment with the clinically applied [225Ac]-PSMA-617, positron emission tomography was performed and correlative autoradiography and histology acquired. [18F]-PARPZ was able to distinguish treated from control (saline) xenografts by increased uptake. Kinetic analysis of tracer accumulation also suggests that the localization of the agent to sites of increased PARP-1 expression is a consequence of DNA damage response. Together, these data support expanded investigation of [18F]-PARPZ to facilitate clinical translation in the ⍺-therapy space.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus, Box 8225, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
- Oncologic Imaging Program, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Diane Abou
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus, Box 8225, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
- Radiology Cyclotron Facility, Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Peng Lu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus, Box 8225, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Abbie Meghan Hasson
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus, Box 8225, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Alexandria Villmer
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus, Box 8225, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadia Benabdallah
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus, Box 8225, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
| | - Wen Jiang
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David Ulmert
- Johnsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sean Carlin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Buck E Rogers
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Norman F Turtle
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus, Box 8225, St. Louis, MO, 63110, USA
| | - Michael R McDevitt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian Baumann
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian W Simons
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Farrokh Dehdashti
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus, Box 8225, St. Louis, MO, 63110, USA
- Oncologic Imaging Program, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dong Zhou
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus, Box 8225, St. Louis, MO, 63110, USA.
| | - Daniel L J Thorek
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus, Box 8225, St. Louis, MO, 63110, USA.
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Oncologic Imaging Program, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
33
|
Mekonnen N, Yang H, Shin YK. Homologous Recombination Deficiency in Ovarian, Breast, Colorectal, Pancreatic, Non-Small Cell Lung and Prostate Cancers, and the Mechanisms of Resistance to PARP Inhibitors. Front Oncol 2022; 12:880643. [PMID: 35785170 PMCID: PMC9247200 DOI: 10.3389/fonc.2022.880643] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination (HR) is a highly conserved DNA repair mechanism that protects cells from exogenous and endogenous DNA damage. Breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) play an important role in the HR repair pathway by interacting with other DNA repair proteins such as Fanconi anemia (FA) proteins, ATM, RAD51, PALB2, MRE11A, RAD50, and NBN. These pathways are frequently aberrant in cancer, leading to the accumulation of DNA damage and genomic instability known as homologous recombination deficiency (HRD). HRD can be caused by chromosomal and subchromosomal aberrations, as well as by epigenetic inactivation of tumor suppressor gene promoters. Deficiency in one or more HR genes increases the risk of many malignancies. Another conserved mechanism involved in the repair of DNA single-strand breaks (SSBs) is base excision repair, in which poly (ADP-ribose) polymerase (PARP) enzymes play an important role. PARP inhibitors (PARPIs) convert SSBs to more cytotoxic double-strand breaks, which are repaired in HR-proficient cells, but remain unrepaired in HRD. The blockade of both HR and base excision repair pathways is the basis of PARPI therapy. The use of PARPIs can be expanded to sporadic cancers displaying the “BRCAness” phenotype. Although PARPIs are effective in many cancers, their efficacy is limited by the development of resistance. In this review, we summarize the prevalence of HRD due to mutation, loss of heterozygosity, and promoter hypermethylation of 35 DNA repair genes in ovarian, breast, colorectal, pancreatic, non-small cell lung cancer, and prostate cancer. The underlying mechanisms and strategies to overcome PARPI resistance are also discussed.
Collapse
Affiliation(s)
- Negesse Mekonnen
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Department of Veterinary Science, School of Animal Science and Veterinary Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Hobin Yang
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
| | - Young Kee Shin
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University Graduate School of Convergence Science and Technology, Seoul, South Korea
- LOGONE Bio Convergence Research Foundation, Center for Companion Diagnostics, Seoul, South Korea
- *Correspondence: Young Kee Shin,
| |
Collapse
|
34
|
Examples of Inverse Comorbidity between Cancer and Neurodegenerative Diseases: A Possible Role for Noncoding RNA. Cells 2022; 11:cells11121930. [PMID: 35741059 PMCID: PMC9221903 DOI: 10.3390/cells11121930] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the most common causes of death; in parallel, the incidence and prevalence of central nervous system diseases are equally high. Among neurodegenerative diseases, Alzheimer’s dementia is the most common, while Parkinson’s disease (PD) is the second most frequent neurodegenerative disease. There is a significant amount of evidence on the complex biological connection between cancer and neurodegeneration. Noncoding RNAs (ncRNAs) are defined as transcribed nucleotides that perform a variety of regulatory functions. The mechanisms by which ncRNAs exert their functions are numerous and involve every aspect of cellular life. The same ncRNA can act in multiple ways, leading to different outcomes; in fact, a single ncRNA can participate in the pathogenesis of more than one disease—even if these seem very different, as cancer and neurodegenerative disorders are. The ncRNA activates specific pathways leading to one or the other clinical phenotype, sometimes with obvious mechanisms of inverse comorbidity. We aimed to collect from the existing literature examples of inverse comorbidity in which ncRNAs seem to play a key role. We also investigated the example of mir-519a-3p, and one of its target genes Poly (ADP-ribose) polymerase 1, for the inverse comorbidity mechanism between some cancers and PD. We believe it is very important to study the inverse comorbidity relationship between cancer and neurodegenerative diseases because it will help us to better assess these two major areas of human disease.
Collapse
|
35
|
Long Y, Shao F, Ji H, Song X, Lv X, Xia X, Liu Q, Zhang Y, Zeng D, Lan X, Gai Y. Evaluation of a CD13 and Integrin α vβ 3 Dual-Receptor Targeted Tracer 68Ga-NGR-RGD for Ovarian Tumor Imaging: Comparison With 18F-FDG. Front Oncol 2022; 12:884554. [PMID: 35664759 PMCID: PMC9158524 DOI: 10.3389/fonc.2022.884554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer has the highest mortality rate of gynecologic malignancy. 18F-FDG positron emission tomography (PET) adds an important superiority over traditional anatomic imaging modalities in oncological imaging but has drawbacks including false negative results at the early stage of ovarian cancer, and false positives when inflammatory comorbidities are present. Aminopeptidase N (APN, also known as CD13) and integrin αvβ3 are two important targets overexpressed on tumor neo-vessels and frequently on ovarian cancerous cells. In this study, we used subcutaneous and metastatic models of ovarian cancer and muscular inflammation models to identify 68Ga-NGR-RGD, a heterodimeric tracer consisting of NGR and RGD peptides targeting CD13 and integrin αvβ3, respectively, and compared it with 18F-FDG. We found that 68Ga-NGR-RGD showed greater contrast in SKOV3 and ES-2 tumors than 18F-FDG. Low accumulation of 68Ga-NGR-RGD but avid uptake of 18F-FDG were observed in inflammatory muscle. In abdominal metastasis models, PET imaging with 68Ga-NGR-RGD allowed for rapid and clear delineation of both peritoneal and liver metastases (3-6 mm), whereas, 18F-FDG could not distinguish the metastasis lesions due to the relatively low metabolic activity in tumors and the interference of intestinal physiological 18F-FDG uptake. Due to the high tumor-targeting efficacy, low inflammatory uptake, and higher tumor-to-background ratios compared to that of 18F-FDG, 68Ga-NGR-RGD presents a promising imaging agent for diagnosis, staging, and follow-up of ovarian tumors.
Collapse
Affiliation(s)
- Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Fuqiang Shao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoying Lv
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Dexing Zeng
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
36
|
Perspective on the Use of DNA Repair Inhibitors as a Tool for Imaging and Radionuclide Therapy of Glioblastoma. Cancers (Basel) 2022; 14:cancers14071821. [PMID: 35406593 PMCID: PMC8997380 DOI: 10.3390/cancers14071821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The current routine treatment for glioblastoma (GB), the most lethal high-grade brain tumor in adults, aims to induce DNA damage in the tumor. However, the tumor cells might be able to repair that damage, which leads to therapy resistance. Fortunately, DNA repair defects are common in GB cells, and their survival is often based on a sole backup repair pathway. Hence, targeted drugs inhibiting essential proteins of the DNA damage response have gained momentum and are being introduced in the clinic. This review gives a perspective on the use of radiopharmaceuticals targeting DDR kinases for imaging in order to determine the DNA repair phenotype of GB, as well as for effective radionuclide therapy. Finally, four new promising radiopharmaceuticals are suggested with the potential to lead to a more personalized GB therapy. Abstract Despite numerous innovative treatment strategies, the treatment of glioblastoma (GB) remains challenging. With the current state-of-the-art therapy, most GB patients succumb after about a year. In the evolution of personalized medicine, targeted radionuclide therapy (TRT) is gaining momentum, for example, to stratify patients based on specific biomarkers. One of these biomarkers is deficiencies in DNA damage repair (DDR), which give rise to genomic instability and cancer initiation. However, these deficiencies also provide targets to specifically kill cancer cells following the synthetic lethality principle. This led to the increased interest in targeted drugs that inhibit essential DDR kinases (DDRi), of which multiple are undergoing clinical validation. In this review, the current status of DDRi for the treatment of GB is given for selected targets: ATM/ATR, CHK1/2, DNA-PK, and PARP. Furthermore, this review provides a perspective on the use of radiopharmaceuticals targeting these DDR kinases to (1) evaluate the DNA repair phenotype of GB before treatment decisions are made and (2) induce DNA damage via TRT. Finally, by applying in-house selection criteria and analyzing the structural characteristics of the DDRi, four drugs with the potential to become new therapeutic GB radiopharmaceuticals are suggested.
Collapse
|
37
|
Shabashvili DE, Feng Y, Kaur P, Venugopal K, Guryanova OA. Combination strategies to promote sensitivity to cytarabine-induced replication stress in acute myeloid leukemia with and without DNMT3A mutations. Exp Hematol 2022; 110:20-27. [DOI: 10.1016/j.exphem.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
|
38
|
Nguyen NT, Pacelli A, Nader M, Kossatz S. DNA Repair Enzyme Poly(ADP-Ribose) Polymerase 1/2 (PARP1/2)-Targeted Nuclear Imaging and Radiotherapy. Cancers (Basel) 2022; 14:cancers14051129. [PMID: 35267438 PMCID: PMC8909184 DOI: 10.3390/cancers14051129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In parallel to the successful clinical implementation of PARP1/2 inhibitors as anti-cancer drugs, which interfere with the DNA repair machinery, these small molecule agents have also gained attention as vehicles for molecular imaging and radiotherapy. In this review article, we summarize the development and preclinical evaluation of radioactively-labelled PARP inhibitors for positron emission tomography (PET) for many applications, such as selecting patients for PARP inhibitor treatment, response prediction or monitoring, and diagnosis of tumors. We report on early clinical studies that show safety and feasibility of PARP-imaging in humans. In addition, we summarize the latest developments in the field of PARP-targeted radiotherapy, where PARP inhibitors are studied as vehicles to deposit highly cytotoxic radioisotopes in close proximity to the DNA of tumor cells. Lastly, we look at synthetic strategies for PARP-targeted imaging and therapy agents that are compatible with large scale production and clinical translation. Abstract Since it was discovered that many tumor types are vulnerable to inhibition of the DNA repair machinery, research towards efficient and selective inhibitors has accelerated. Amongst other enzymes, poly(ADP-ribose)-polymerase 1 (PARP1) was identified as a key player in this process, which resulted in the development of selective PARP inhibitors (PARPi) as anti-cancer drugs. Most small molecule PARPi’s exhibit high affinity for both PARP1 and PARP2. PARPi are under clinical investigation for mono- and combination therapy in several cancer types and five PARPi are now clinically approved. In parallel, radiolabeled PARPi have emerged for non-invasive imaging of PARP1 expression. PARP imaging agents have been suggested as companion diagnostics, patient selection, and treatment monitoring tools to improve the outcome of PARPi therapy, but also as stand-alone diagnostics. We give a comprehensive overview over the preclinical development of PARP imaging agents, which are mostly based on the PARPi olaparib, rucaparib, and recently also talazoparib. We also report on the current status of clinical translation, which involves a growing number of early phase trials. Additionally, this work provides an insight into promising approaches of PARP-targeted radiotherapy based on Auger and α-emitting isotopes. Furthermore, the review covers synthetic strategies for PARP-targeted imaging and therapy agents that are compatible with large scale production and clinical translation.
Collapse
Affiliation(s)
- Nghia T. Nguyen
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany;
| | - Anna Pacelli
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg–Essen, 45147 Essen, Germany; (A.P.); (M.N.)
| | - Michael Nader
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg–Essen, 45147 Essen, Germany; (A.P.); (M.N.)
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany;
- Correspondence:
| |
Collapse
|
39
|
Surasi DSS, Lin L, Ravizzini G, Wong F. Supraclavicular and Axillary Lymphadenopathy Induced by COVID-19 Vaccination on 18F-Fluorthanatrace, 68Ga-DOTATATE, and 18F-Fluciclovine PET/CT. Clin Nucl Med 2022; 47:195-196. [PMID: 34507331 DOI: 10.1097/rlu.0000000000003891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT COVID-19 vaccination has started in most countries, and postvaccination imaging is inevitable in the oncologic population. The immune response to the vaccination in the form of reactive lymphadenopathy has been well documented on 18F-FDG PET/CT. We present the imaging findings of 3 patients who have undergone non-FDG PET/CT imaging including 18F-fluorthanatrace, 68Ga-DOTATATE, and 18F-fluciclovine PET/CT. It is crucial to recognize the timing and laterality of immunization to avoid false-positive findings.
Collapse
Affiliation(s)
| | - Lilie Lin
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gregory Ravizzini
- From the Division of Diagnostic Imaging, Department of Nuclear Medicine
| | - Franklin Wong
- From the Division of Diagnostic Imaging, Department of Nuclear Medicine
| |
Collapse
|
40
|
Lee HS, Schwarz SW, Schubert EK, Chen DL, Doot RK, Makvandi M, Lin LL, McDonald ES, Mankoff DA, Mach RH. The Development of 18F Fluorthanatrace: A PET Radiotracer for Imaging Poly (ADP-Ribose) Polymerase-1. Radiol Imaging Cancer 2022; 4:e210070. [PMID: 35089089 PMCID: PMC8830434 DOI: 10.1148/rycan.210070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorine 18 (18F) fluorthanatrace (18F-FTT) is a PET radiotracer for imaging poly (adenosine diphosphate-ribose) polymerase-1 (PARP-1), an important target for a class of drugs known as PARP inhibitors, or PARPi. This article describes the stepwise development of this radiotracer from its design and preclinical evaluation to the first-in-human imaging studies and the initial validation of 18F-FTT as an imaging-based biomarker for measuring PARP-1 expression levels in patients with breast and ovarian cancer. A detailed discussion on the preparation and submission of an exploratory investigational new drug application to the Food and Drug Administration is also provided. Additionally, this review highlights the need and future plans for identifying a commercialization strategy to overcome the major financial barriers that exist when conducting the multicenter clinical trials needed for approval in the new drug application process. The goal of this article is to provide a road map that scientists and clinicians can follow for the successful clinical translation of a PET radiotracer developed in an academic setting. Keywords: Molecular Imaging-Cancer, PET, Breast, Genital/Reproductive, Chemistry, Radiotracer Development, PARPi, 18F-FTT, Investigational New Drug © RSNA, 2022.
Collapse
|
41
|
Pilot Study: PARP1 Imaging in Advanced Prostate Cancer. Mol Imaging Biol 2022; 24:853-861. [PMID: 35701722 PMCID: PMC9681698 DOI: 10.1007/s11307-022-01746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE PARP inhibitor (PARPi) therapy is approved for patients with metastatic castration-resistant prostate cancer (mCRPC) and homologous recombination repair (HRR) genomic aberrations. However, only a fraction of patients with BRCA1/2 mutations respond to PARPi therapy. In this pilot study, we assess PARP-1 expression in prostate cancer patients with and without HRR genomic alternations using a novel PARP-based imaging agent. PROCEDURES Nine advanced prostate cancer patients were studied with PET/CT and [18F]FluorThanatrace (FTT), an analogue of the PARPi rucaparib. Images were analyzed using maximum standardized uptake values (SUVmax). PARP expression was assessed by immunohistochemistry (IHC) when feasible (n = 4). RESULTS We found great variability in FTT uptake (SUVmax range: 2.3-15.4). Patients with HRR mutations had a significantly higher SUVmax (p = 0.0379) than patients with non-HRR mutations although there was an overlap in FTT uptake between groups. Three patients without HRR and one with HRR mutations had similarly high PARP1 IHC expression. CONCLUSIONS FTT-PET/CT may serve as an alternate biomarker for PARP1 expression and a potential method for PARPi treatment selection.
Collapse
|
42
|
Young AJ, Pantel AR, Viswanath V, Dominguez TL, Makvandi M, Lee H, Li S, Schubert EK, Pryma DA, Farwell MD, Mach RH, Simpkins F, Lin LL, Mankoff DA, Doot RK. Kinetic and Static Analysis of Poly-(Adenosine Diphosphate-Ribose) Polymerase-1-Targeted 18F-Fluorthanatrace PET Images of Ovarian Cancer. J Nucl Med 2022; 63:44-50. [PMID: 33863820 PMCID: PMC8717190 DOI: 10.2967/jnumed.121.261894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
The poly-(adenosine diphosphate-ribose) polymerase (PARP) family of proteins participates in numerous functions, most notably the DNA damage response. Cancer vulnerability to DNA damage has led to development of several PARP inhibitors (PARPi). This class of drugs has demonstrated therapeutic efficacy in ovarian, breast, and prostate cancers, but with variable response. Consequently, clinics need to select patients likely to benefit from these targeted therapies. In vivo imaging of 18F-fluorthanatrace uptake has been shown to correspond to PARP-1 expression in tissue. This study characterized the pharmacokinetics of 18F-fluorthanatrace and tested kinetic and static models to guide metric selection in future studies assessing 18F-fluorthanatrace as a biomarker of response to PARPi therapy. Methods: Fourteen prospectively enrolled ovarian cancer patients were injected with 18F-fluorthanatrace and imaged dynamically for 60 min after injection followed by up to 2 whole-body scans, with venous blood activity and metabolite measurements. SUVmax and SUVpeak were extracted from dynamic images and whole-body scans. Kinetic parameter estimates and SUVs were assessed for correlations with tissue PARP-1 immunofluorescence (n = 7). Simulations of population kinetic parameters enabled estimation of measurement bias and precision in parameter estimates. Results:18F-fluorthanatrace blood clearance was variable, but labeled metabolite profiles were similar across patients, supporting use of a population parent fraction curve. The total distribution volume from a reversible 2-tissue-compartment model and Logan reference tissue distribution volume ratio (DVR) from the first hour of PET acquisition correlated with tumor PARP-1 expression by immunofluorescence (r = 0.76 and 0.83, respectively; P < 0.05). DVR bias and precision estimates were 6.4% and 29.1%, respectively. SUVmax and SUVpeak acquired from images with midpoints of 57.5, 110 ± 3, and 199 ± 4 min highly correlated with PARP-1 expression (mean ± SD, r ≥ 0.79; P < 0.05). Conclusion: Tumor SUVmax and SUVpeak at 55-60 min after injection and later and DVR from at least 60 min appear to be robust noninvasive measures of PARP-1 binding. 18F-fluorthanatrace uptake in ovarian cancer was best described by models of reversible binding. However, pharmacokinetic patterns of tracer uptake were somewhat variable, especially at later time points.
Collapse
Affiliation(s)
- Anthony J Young
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Austin R Pantel
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Varsha Viswanath
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tiffany L Dominguez
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mehran Makvandi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hsiaoju Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shihong Li
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erin K Schubert
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel A Pryma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael D Farwell
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fiona Simpkins
- Division of Gynecology and Oncology, Department of OBGYN, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Lilie L Lin
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David A Mankoff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| |
Collapse
|
43
|
Luo S, Wang Y, Tao Y, Li S, Wang Z, He W, Wang H, Wang N, Xu J, Song H. Application in Gene Editing in Ovarian Cancer Therapy. Cancer Invest 2021; 40:387-399. [PMID: 34758691 DOI: 10.1080/07357907.2021.1998521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The onset and progression of ovarian cancer (OC) are closely related to dysregulated gene expression. Current treatments for OC are mainly limited to surgery and chemotherapy. However, due to low drug sensitivity, the prognosis OC is exceptionally poor and the recurrence rate remains high. Hence, it is vital to develop new treatment strategies. Gene editing for site-specific genomic modification is a powerful novel tool for the treatment of OC. In this article, current gene editing research for the treatment of OC is reviewed to provide a reference for the clinical application of new approaches to improve treatment outcomes and prognosis.
Collapse
Affiliation(s)
- Shuang Luo
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, Guiyang, China.,Department of Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Yujiao Wang
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongyu Tao
- Department of Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Shuo Li
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Zirui Wang
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Wei He
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hangxing Wang
- Department of Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Nan Wang
- Department of Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Jianwei Xu
- National Joint Local Engineering Laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, Guiyang, China.,Department of Clinical Medical College, Guizhou Medical University, Guiyang, China.,Department of General Surgery, Dalang Hospital, Dongguan, China.,Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Hailiang Song
- Department of General Surgery, Dalang Hospital, Dongguan, China
| |
Collapse
|
44
|
Biegała Ł, Gajek A, Marczak A, Rogalska A. PARP inhibitor resistance in ovarian cancer: Underlying mechanisms and therapeutic approaches targeting the ATR/CHK1 pathway. Biochim Biophys Acta Rev Cancer 2021; 1876:188633. [PMID: 34619333 DOI: 10.1016/j.bbcan.2021.188633] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Ovarian cancer (OC) constitutes the most common cause of gynecologic cancer-related death in women worldwide. Despite consistent developments in treatment strategies for OC, the management of advanced-stage disease remains a significant challenge. Recent improvements in targeted treatments based on poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) have provided invaluable benefits to patients with OC. Unfortunately, numerous patients do not respond to PARPi due to intrinsic resistance or acquisition of resistance. Here, we discuss mechanisms of resistance to PARPi that have specifically emerged in OC including increased drug efflux, restoration of HR repair, re-establishment of replication fork stability, reduced PARP1 trapping, abnormalities in PARP signaling, and less common pathways associated with alternative DNA sensing and repair pathways. Elucidation of the precise mechanisms is essential for the development of novel strategies to re-sensitize OC cells to PARPi agents. Additionally, novel potential concepts for preventing and combating resistance to PARPi under development and relevant clinical reports on treatment strategies have been reviewed, with emphasis on the exploitation of the ATR/CHK1 kinase pathway in sensitization to PARPi to overcome resistance-induced vulnerability in ovarian cancer.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
45
|
Chen Z, Destro G, Guibbal F, Chan CY, Cornelissen B, Gouverneur V. Copper-Mediated Radiosynthesis of [ 18F]Rucaparib. Org Lett 2021; 23:7290-7294. [PMID: 34459606 DOI: 10.1021/acs.orglett.1c02770] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The poly(ADP-ribose) polymerase (PARP) inhibitor rucaparib is used in the clinic to treat BRCA-mutated cancers. Herein, we report two strategies to access the 18F-isotopologue of rucaparib by applying a copper-mediated nucleophilic 18F-fluorodeboronation. The most successful approach features an aldehydic boronic ester precursor that is subjected to reductive amination post-18F-labeling and affords [18F]rucaparib with an activity yield of 11% ± 3% (n = 3) and a molar activity (Am) up to 30 GBq/μmol. Preliminary in vitro studies are presented.
Collapse
Affiliation(s)
- Zijun Chen
- Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, U.K
| | - Gianluca Destro
- Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, U.K
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7LJ, U.K
| | - Florian Guibbal
- Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, U.K
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7LJ, U.K
| | - Chung Ying Chan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7LJ, U.K
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7LJ, U.K
| | | |
Collapse
|
46
|
Alves F, Antunes IF, Cazzola E, Cleeren F, Cornelissen B, Denkova A, Engle J, Faivre-Chauvet A, Gillings N, Hendrikx JJMA, Jalilian AR, van der Meulen NP, Mikolajczak R, Neels OC, Pillai MRA, Reilly R, Rubow S, Seimbille Y, Spreckelmeyer S, Szymanski W, Taddei C. Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharm Chem 2021; 6:31. [PMID: 34495412 PMCID: PMC8426445 DOI: 10.1186/s41181-021-00146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biyearly highlight commentary to update the readership on trends in the field of radiopharmaceutical development. RESULTS This commentary of highlights has resulted in 21 different topics selected by each member of the Editorial Board addressing a variety of aspects ranging from novel radiochemistry to first in man application of novel radiopharmaceuticals. Also the first contribution in relation to MRI-agents is included. CONCLUSIONS Trends in (radio)chemistry and radiopharmacy are highlighted demonstrating the progress in the research field being the scope of EJNMMI Radiopharmacy and Chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Oliver C. Neels
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Stotz S, Kinzler J, Nies AT, Schwab M, Maurer A. Two experts and a newbie: [ 18F]PARPi vs [ 18F]FTT vs [ 18F]FPyPARP-a comparison of PARP imaging agents. Eur J Nucl Med Mol Imaging 2021; 49:834-846. [PMID: 34486071 PMCID: PMC8803746 DOI: 10.1007/s00259-021-05436-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Purpose Imaging of PARP expression has emerged as valuable strategy for prediction of tumor malignancy. While [18F]PARPi and [18F]FTT are already in clinical translation, both suffer from mainly hepatobiliary clearance hampering their use for detection of abdominal lesions, e.g., liver metastases. Our novel radiotracer [18F]FPyPARP aims to bridge this gap with a higher renal clearance and an easily translatable synthesis route for potential clinical application. Methods We developed a less lipophilic variant of [18F]PARPi by exchange of the fluorobenzoyl residue with a fluoronicotinoyl group and automated the radiosyntheses of the three radiotracers. We then conducted a comparative side-by-side study of [18F]PARPi, [18F]FPyPARP, and [18F]FTT in NOD.CB17-Prkdcscid/J mice bearing HCC1937 xenografts to assess xenograft uptake and pharmacokinetics focusing on excretion pathways. Results Together with decent uptake of all three radiotracers in the xenografts (tumor-to-blood ratios 3.41 ± 0.83, 3.99 ± 0.99, and 2.46 ± 0.35, respectively, for [18F]PARPi, [18F]FPyPARP, and [18F]FTT), a partial shift from hepatobiliary to renal clearance of [18F]FPyPARP was observed, whereas [18F]PARPi and [18F]FTT show almost exclusive hepatobiliary clearance. Conclusion These findings imply that [18F]FPyPARP is an alternative to [18F]PARPi and [18F]FTT for PET imaging of PARP enzymes. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05436-7.
Collapse
Affiliation(s)
- Sophie Stotz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 15, 72076, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Kinzler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 15, 72076, Tuebingen, Germany
| | - Anne T Nies
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, Tuebingen, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, Tuebingen, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and Eberhard Karls University Tuebingen, Tuebingen, Germany
- Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 15, 72076, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
48
|
Sellmyer MA, Lee IK, Mankoff DA. Building the Bridge: Molecular Imaging Biomarkers for 21 st Century Cancer Therapies. J Nucl Med 2021; 62:jnumed.121.262484. [PMID: 34446450 PMCID: PMC8612205 DOI: 10.2967/jnumed.121.262484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/17/2023] Open
Abstract
Precision medicine, where the molecular underpinnings of the disease are assessed for tailored therapies, has greatly impacted cancer care. In parallel, a new pillar of therapeutics has emerged with profound success, including immunotherapies such as checkpoint inhibitors and cell-based therapies. Nonetheless, it remains essential to develop paradigms to predict and monitor for therapeutic response. Molecular imaging has the potential to add substantially to all phases of cancer patient care: predicative, companion diagnostics can illuminate therapeutic target density within a tumor, and pharmacodynamic imaging biomarkers can complement traditional modalities to judge a favorable treatment response. This "Focus on Molecular Imaging" article discusses the current role of molecular imaging in oncology and highlights an additional step in clinical paradigm termed a "therapeutic biomarker," which serves to assess whether next generation drugs reach their target to elicit a favorable clinical response.
Collapse
Affiliation(s)
- Mark A. Sellmyer
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Iris K. Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A. Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Friedman SN, Itani M, Dehdashti F. PET Imaging for Gynecologic Malignancies. Radiol Clin North Am 2021; 59:813-833. [PMID: 34392921 DOI: 10.1016/j.rcl.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This review article summarizes the clinical applications of established and emerging PET tracers in the evaluation of the 5 most common gynecologic malignancies: endometrial, ovarian, cervical, vaginal, and vulvar cancers. Emphasis is given to 2-deoxy-2-[18F]fluoro-d-glucose as the most widely used and studied tracer, with additional clinical tracers also explored. The common imaging protocols are discussed, including standard dose ranges and uptake times, established roles, as well as the challenges and future directions of these imaging techniques. The key points are emphasized with images from selected cases.
Collapse
Affiliation(s)
- Saul N Friedman
- Division of Nuclear Medicine, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St Louis, MO 63110, USA
| | - Malak Itani
- Section of Abdominal Imaging, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St Louis, MO 63110, USA
| | - Farrokh Dehdashti
- Division of Nuclear Medicine, Edward Mallinckrodt Institute of Radiology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 510 South Kingshighway Boulevard, St Louis, MO 63110, USA.
| |
Collapse
|
50
|
Palleschi M, Tedaldi G, Sirico M, Virga A, Ulivi P, De Giorgi U. Moving beyond PARP Inhibition: Current State and Future Perspectives in Breast Cancer. Int J Mol Sci 2021; 22:ijms22157884. [PMID: 34360649 PMCID: PMC8346118 DOI: 10.3390/ijms22157884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the most frequent and lethal tumor in women and finding the best therapeutic strategy for each patient is an important challenge. PARP inhibitors (PARPis) are the first, clinically approved drugs designed to exploit synthetic lethality in tumors harboring BRCA1/2 mutations. Recent evidence indicates that PARPis have the potential to be used both in monotherapy and combination strategies in breast cancer treatment. In this review, we show the mechanism of action of PARPis and discuss the latest clinical applications in different breast cancer treatment settings, including the use as neoadjuvant and adjuvant approaches. Furthermore, as a class, PARPis show many similarities but also certain critical differences which can have essential clinical implications. Finally, we report the current knowledge about the resistance mechanisms to PARPis. A systematic PubMed search, using the entry terms “PARP inhibitors” and “breast cancer”, was performed to identify all published clinical trials (Phase I-II-III) and ongoing trials (ClinicalTrials.gov), that have been reported and discussed in this review.
Collapse
Affiliation(s)
- Michela Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.P.); (M.S.); (U.D.G.)
| | - Gianluca Tedaldi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.U.)
- Correspondence: ; Tel.: +39-0543-739232; Fax: +39-0543-739221
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.P.); (M.S.); (U.D.G.)
| | - Alessandra Virga
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.U.)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.V.); (P.U.)
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.P.); (M.S.); (U.D.G.)
| |
Collapse
|