1
|
Lin HC, Lao WL, Tseng TC, Yeh CJ. Persistent depressive symptom trajectory is associated with cognitive impairment: a population-based longitudinal study of aging in Taiwan. BMC Geriatr 2025; 25:60. [PMID: 39871182 PMCID: PMC11771045 DOI: 10.1186/s12877-025-05706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND To investigate the associations between five depressive symptom trajectories and cognitive impairment in Taiwan's older population. In addition, we investigated the moderating factors influencing these associations. METHODS This population-based, longitudinal, cohort study was conducted on the basis of the Taiwan Longitudinal Study on Aging. Data corresponding to the fifth (2003), sixth (2007), and seventh (2011) survey waves were analyzed, focusing on individuals aged ≥ 65 years. Depressive symptom trajectories were analyzed using the 10-item Centre for Epidemiological Studies Depression scale, and cognitive function was assessed using the Short Portable Mental State Questionnaire. Logistic regression models were adjusted for various covariates such as sociodemographic, lifestyle, and health-related variables. We also investigated moderating effects of sex, age, type 2 diabetes mellitus, hypertension, and coronary heart disease. RESULTS Five trajectories of depressive symptoms included 1,549 older individuals were identified. Approximately 36.09%, 47.13%, 5.68%, 6.20%, and 4.91% exhibited no, mild, decreasing, increasing, and persistent depressive symptom trajectories, respectively. The odds ratios for cognitive impairment were 3.17 (95% confidence interval [CI]: 1.41-7.15) in Model 1; 3.24 (95% CI: 1.42-7.41) in Model 2; and 2.95 (95% CI: 1.24-7.00) in Model 3 in individuals with persistent depressive symptom trajectory. Only persistent depressive symptom trajectory reached statistical significance in all three models. Cognitive decline was evident across all trajectories. The rate of cognitive decline was more rapidly in the persistent depressive symptom trajectory, nearly twofold to no depressive symptom trajectory, which the corresponding β values (score/year) were - 0.0862, - 0.1020, - 0.1192, - 0.1206, and - 0.1683 for the no, mild, decreasing, increasing, and persistent depressive symptom trajectories, respectively. Female sex, older age, type 2 diabetes mellitus, and coronary heart disease were significant moderators on the risk of cognitive impairment. DISCUSSION Persistent depressive symptoms is associated with cognitive impairment in older adults. Identifying high-risk subgroups is crucial for targeted assistance. Policymakers and health-care professionals should be informed accordingly.
Collapse
Affiliation(s)
- Hsiao-Chen Lin
- Department of Public Health, College of Health Care and Management, Chung Shan Medical University, Taichung, Taiwan
| | - Wai-Lam Lao
- Department of Public Health, College of Health Care and Management, Chung Shan Medical University, Taichung, Taiwan
| | - Te-Chia Tseng
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Jung Yeh
- Department of Public Health, College of Health Care and Management, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Schroeder RA, Thurston RC, Wu M, Aizenstein HJ, Derby CA, Maki PM. Endogenous Estrogens and Brain Activation During Verbal Memory Encoding and Recognition in the Postmenopause. J Clin Endocrinol Metab 2025; 110:452-461. [PMID: 39026459 DOI: 10.1210/clinem/dgae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
CONTEXT Changes in verbal memory have been reliably reported across the menopause transition. To understand the role of endogenous estrogens in verbal memory performance, this study assessed the associations of endogenous estradiol and estrone with brain network connectivity during a verbal memory fMRI task. OBJECTIVE Determine associations of endogenous estrogens with memory systems in the postmenopausal brain and evaluate clinical significance. METHODS In the MsBrain cohort (n = 199, mean age 59.3 ± 3.9 years, 83.9% White), we examined the cross-sectional association of serum estradiol (E2) and estrone (E1), measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS), during a functional magnetic resonance imaging (fMRI) task of word encoding and recognition. To characterize the clinical significance of those associations, we examined the magnitude of activation in relation to a neuropsychological measures of memory and affect. RESULTS Endogenous E2 was positively associated with activation in temporal and frontal cortices during encoding and negatively associated with one prefrontal region during recognition (P < .05). Activation in the left inferior frontal gyrus was associated with memory performance (β [SE] = 0.004 [0.002]; P < .05), and anxiety (β [SE] = -0.100 [0.050]; P < .05). The left middle frontal gyrus was associated with memory performance (β [SE] = 0.006 [0.002]; P < .01), depression, and anxiety. The left superior temporal gyrus (STG) was associated with depression (β [SE] = -0.083 [0.036]; P < .05) and anxiety (β [SE] = -0.134 [0.058]; P < .05). E1 was positively associated with activation in a range of brain areas including bilateral STG and right superior frontal gyrus during encoding (P < .05). Activation of the left insula and precentral gyrus were associated with symptoms of depression and anxiety. None related to memory. CONCLUSION The function of brain areas critical to memory performance varies with estrogen levels in the postmenopause, even though those levels are low. Higher levels of E2 may facilitate memory performance through enhanced function of temporal and frontal cortices during encoding of verbal material.
Collapse
Affiliation(s)
- Rachel A Schroeder
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rebecca C Thurston
- Departments of Psychiatry, Psychology, Epidemiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Howard J Aizenstein
- Departments of Psychiatry and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Carol A Derby
- Departments of Neurology and Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pauline M Maki
- Departments of Psychiatry, Psychology and Obstetrics & Gynecology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Peters JR, Schmalenberger KM, Eng AG, Stumper A, Martel MM, Eisenlohr-Moul TA. Dimensional Affective Sensitivity to Hormones across the Menstrual Cycle (DASH-MC): A transdiagnostic framework for ovarian steroid influences on psychopathology. Mol Psychiatry 2025; 30:251-262. [PMID: 39143323 PMCID: PMC12053596 DOI: 10.1038/s41380-024-02693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Fluctuations in progesterone (P4) and estradiol (E2) across the menstrual cycle can exert direct effects on biological systems implicated in neuropsychiatric disorders and represent a key biological source of variability in affective, cognitive, and behavioral disorders. Although these cyclical symptoms may be most readily identified when they occur exclusively in relation to the menstrual cycle, as in DSM-5 premenstrual dysphoric disorder, symptom changes of similar magnitude occur in a larger proportion of people with ongoing psychiatric disorders. Studies investigating cyclical regulation of brain and behavior often produce inconsistent results, which may be attributed to a lack of focus on specific hormonal events and individual differences in related sensitivities. We propose a transdiagnostic Dimensional Affective Sensitivity to Hormones across the Menstrual Cycle (DASH-MC) framework, postulating that atypical neural responses to several key hormonal events provoke specific temporal patterns of affective and behavioral change across the menstrual cycle. We review prospective and experimental evidence providing initial support for these dimensions, which include (1) luteal-onset negative affect caused by a sensitivity to E2 or P4 surges (mediated by neuroactive metabolites such as allopregnanolone), typified by irritability and hyperarousal; (2) perimenstrual-onset negative affect caused by a sensitivity to low or falling E2, typified by low mood and cognitive dysfunction; and (3) preovulatory-onset positive affect dysregulation caused by a sensitivity to E2 surges, typified by harmful substance use and other risky reward-seeking. This multidimensional, transdiagnostic framework for hormone sensitivity can inform more precise research on ovarian steroid regulation of psychopathology, including further mechanistic research, diagnostic refinement, and precision psychiatry treatment development. Additionally, given the high rates of hormone sensitivity across affective disorders, the DASH-MC may guide broader insights into the complex neurobiological vulnerabilities driving female-biased affective risk, as well as potential triggers and mechanisms of affective state change in psychiatric disorders.
Collapse
Affiliation(s)
- Jessica R Peters
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
| | | | - Ashley G Eng
- Department of Psychology, University of Kentucky, Lexington, KY, USA
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Allison Stumper
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Department of Psychiatry, Rhode Island Hospital, Providence, RI, USA
| | - Michelle M Martel
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
4
|
Andy C, Nerattini M, Jett S, Carlton C, Zarate C, Boneu C, Fauci F, Ajila T, Battista M, Pahlajani S, Christos P, Fink ME, Williams S, Brinton RD, Mosconi L. Systematic review and meta-analysis of the effects of menopause hormone therapy on cognition. Front Endocrinol (Lausanne) 2024; 15:1350318. [PMID: 38501109 PMCID: PMC10944893 DOI: 10.3389/fendo.2024.1350318] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Despite evidence from preclinical studies suggesting estrogen's neuroprotective effects, the use of menopausal hormone therapy (MHT) to support cognitive function remains controversial. Methods We used random-effect meta-analysis and multi-level meta-regression to derive pooled standardized mean difference (SMD) and 95% confidence intervals (C.I.) from 34 randomized controlled trials, including 14,914 treated and 12,679 placebo participants. Results Associations between MHT and cognitive function in some domains and tests of interest varied by formulation and treatment timing. While MHT had no overall effects on cognitive domain scores, treatment for surgical menopause, mostly estrogen-only therapy, improved global cognition (SMD=1.575, 95% CI 0.228, 2.921; P=0.043) compared to placebo. When initiated specifically in midlife or close to menopause onset, estrogen therapy was associated with improved verbal memory (SMD=0.394, 95% CI 0.014, 0.774; P=0.046), while late-life initiation had no effects. Overall, estrogen-progestogen therapy for spontaneous menopause was associated with a decline in Mini Mental State Exam (MMSE) scores as compared to placebo, with most studies administering treatment in a late-life population (SMD=-1.853, 95% CI -2.974, -0.733; P = 0.030). In analysis of timing of initiation, estrogen-progestogen therapy had no significant effects in midlife but was associated with improved verbal memory in late-life (P = 0.049). Duration of treatment >1 year was associated with worsening in visual memory as compared to shorter duration. Analysis of individual cognitive tests yielded more variable results of positive and negative effects associated with MHT. Discussion These findings suggest time-dependent effects of MHT on certain aspects of cognition, with variations based on formulation and timing of initiation, underscoring the need for further research with larger samples and more homogeneous study designs.
Collapse
Affiliation(s)
- Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Matilde Nerattini
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Fauci
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Trisha Ajila
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Michael Battista
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Paul Christos
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Matthew E Fink
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Neurology and Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
5
|
Myers AJ, Potts C, Makarewicz JA, McGee E, Dumas JA. Choline kinase alpha genotype is related to hippocampal brain volume and cognition in postmenopausal women. Heliyon 2024; 10:e23963. [PMID: 38226229 PMCID: PMC10788445 DOI: 10.1016/j.heliyon.2023.e23963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
This study examined how single nucleotide polymorphisms (SNPs) related to choline synthesis and metabolism, processes largely regulated by estrogen, influenced hippocampal volume and neuropsychological function following menopause. We investigated the effect of choline kinase alpha (CHKA) genotype on brain volume and neuropsychological performance in postmenopausal women. The effect alleles of certain CHKA SNPs (rs6591331 T, rs10791957 A) are associated with varied responses to choline deficiency and delegation of choline to physiological pathways. The presence of these alleles was hypothesized to correlate with worse cognitive performance in women after menopause. Results from structural MRI scans revealed larger right hippocampal volumes in subjects with a T/T CHKA rs6591331 genotype compared to A/A subjects. Delayed memory scores from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) were lower in subjects with T/T genotypes compared to those with the A/T genotype and the A/A genotype. Based on these findings, we proposed a CHKA-dependent mechanism present within the brain to compensate for the decreased estrogen and biosynthesized choline associated with menopause.
Collapse
Affiliation(s)
- Abigail J. Myers
- Department of Psychiatry, Larner College of Medicine, University of Vermont, USA
| | - Callum Potts
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont, USA
| | - Jenna A. Makarewicz
- Department of Psychiatry, Larner College of Medicine, University of Vermont, USA
| | - Elizabeth McGee
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont, USA
| | - Julie A. Dumas
- Department of Psychiatry, Larner College of Medicine, University of Vermont, USA
| |
Collapse
|
6
|
Cartier L, Guérin M, Saulnier F, Cotocea I, Mohammedi A, Moussaoui F, Kheloui S, Juster RP. Sex and gender correlates of sexually polymorphic cognition. Biol Sex Differ 2024; 15:3. [PMID: 38191503 PMCID: PMC10773055 DOI: 10.1186/s13293-023-00579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Sexually polymorphic cognition (SPC) results from the interaction between biological (birth-assigned sex (BAS), sex hormones) and socio-cultural (gender identity, gender roles, sexual orientation) factors. The literature remains quite mixed regarding the magnitude of the effects of these variables. This project used a battery of classic cognitive tests designed to assess the influence of sex hormones on cognitive performance. At the same time, we aimed to assess the inter-related and respective effects that BAS, sex hormones, and gender-related factors have on SPC. METHODS We recruited 222 adults who completed eight cognitive tasks that assessed a variety of cognitive domains during a 150-min session. Subgroups were separated based on gender identity and sexual orientation and recruited as follows: cisgender heterosexual men (n = 46), cisgender non-heterosexual men (n = 36), cisgender heterosexual women (n = 36), cisgender non-heterosexual women (n = 38), gender diverse (n = 66). Saliva samples were collected before, during, and after the test to assess testosterone, estradiol, progesterone, cortisol, and dehydroepiandrosterone. Psychosocial variables were derived from self-report questionnaires. RESULTS Cognitive performance reflects sex and gender differences that are partially consistent with the literature. Interestingly, biological factors seem to better explain differences in male-typed cognitive tasks (i.e., spatial), while psychosocial factors seem to better explain differences in female-typed cognitive tasks (i.e., verbal). CONCLUSION Our results establish a better comprehension of SPC over and above the effects of BAS as a binary variable. We highlight the importance of treating sex as a biological factor and gender as a socio-cultural factor together since they collectively influence SPC.
Collapse
Affiliation(s)
- Louis Cartier
- Center on Sex*Gender, Allostasis, and Resilience, Research Center of the Montreal Mental Health University Institute, 7331, Rue Hochelaga, Montreal, QC, H1N 3V2, Canada
- Department of Psychiatry and Addiction, University of Montreal, Montreal, QC, Canada
| | - Mina Guérin
- Center on Sex*Gender, Allostasis, and Resilience, Research Center of the Montreal Mental Health University Institute, 7331, Rue Hochelaga, Montreal, QC, H1N 3V2, Canada
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Fanny Saulnier
- Center on Sex*Gender, Allostasis, and Resilience, Research Center of the Montreal Mental Health University Institute, 7331, Rue Hochelaga, Montreal, QC, H1N 3V2, Canada
- Department of Psychiatry and Addiction, University of Montreal, Montreal, QC, Canada
| | - Ioana Cotocea
- Center on Sex*Gender, Allostasis, and Resilience, Research Center of the Montreal Mental Health University Institute, 7331, Rue Hochelaga, Montreal, QC, H1N 3V2, Canada
| | - Amine Mohammedi
- Center on Sex*Gender, Allostasis, and Resilience, Research Center of the Montreal Mental Health University Institute, 7331, Rue Hochelaga, Montreal, QC, H1N 3V2, Canada
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Fadila Moussaoui
- Center on Sex*Gender, Allostasis, and Resilience, Research Center of the Montreal Mental Health University Institute, 7331, Rue Hochelaga, Montreal, QC, H1N 3V2, Canada
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Sarah Kheloui
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Robert-Paul Juster
- Center on Sex*Gender, Allostasis, and Resilience, Research Center of the Montreal Mental Health University Institute, 7331, Rue Hochelaga, Montreal, QC, H1N 3V2, Canada.
- Department of Psychiatry and Addiction, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
7
|
Gender and Neurosteroids: Implications for Brain Function, Neuroplasticity and Rehabilitation. Int J Mol Sci 2023; 24:ijms24054758. [PMID: 36902197 PMCID: PMC10003563 DOI: 10.3390/ijms24054758] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Neurosteroids are synthesized de novo in the nervous system; they mainly moderate neuronal excitability, and reach target cells via the extracellular pathway. The synthesis of neurosteroids occurs in peripheral tissues such as gonads tissues, liver, and skin; then, because of their high lipophilia, they cross the blood-brain barrier and are stored in the brain structure. Neurosteroidogenesis occurs in brain regions such as the cortex, hippocampus, and amygdala by enzymes necessary for the in situ synthesis of progesterone from cholesterol. Neurosteroids could be considered the main players in both sexual steroid-induced hippocampal synaptic plasticity and normal transmission in the hippocampus. Moreover, they show a double function of increasing spine density and enhancing long term potentiation, and have been related to the memory-enhancing effects of sexual steroids. Estrogen and progesterone affect neuronal plasticity differently in males and females, especially regarding changes in the structure and function of neurons in different regions of the brain. Estradiol administration in postmenopausal women allowed for improving cognitive performance, and the combination with aerobic motor exercise seems to enhance this effect. The paired association between rehabilitation and neurosteroids treatment could provide a boosting effect in order to promote neuroplasticity and therefore functional recovery in neurological patients. The aim of this review is to investigate the mechanisms of action of neurosteroids as well as their sex-dependent differences in brain function and their role in neuroplasticity and rehabilitation.
Collapse
|
8
|
Schneider MA, Malhotra D, Spritzer PM, Hatchard T, Minuzzi L, Frey BN, Haefner SA, Nicholson A, McKinnon M, Syan SK, Cardoso TDA, Schwarz K, Anés M, Santos-Díaz A, Lobato MIR. Estradiol Replacement as a Potential Enhancer of Working Memory and Neuroplasticity in Hypogonadal Trans Women. Neuroendocrinology 2022; 113:489-500. [PMID: 36130584 DOI: 10.1159/000527130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The cognitive effects of cross-sex hormone therapy (CSHT) are not well understood. In cisgender individuals, sex hormone therapy can impact neurotransmitter levels and structural anatomy. Similarly, in gender-diverse persons, CSHT has been associated with neural adaptations, such as growth in brain structures resembling those observed in cisgender individuals of the same sex. Hormone-related changes in learning and memory, as seen in menopause, are associated with physiological hypogonadism or a decline in hormones, such as estradiol. The present study examined the effect of estradiol administration in humans on glutamate concentration in brain regions involved in semantic and working memory (i.e., the dorsolateral prefrontal cortex [DLPFC], the posterior hippocampus, and the pregenual anterior cingulate cortex) and its relationship with memory. METHODS Eighteen trans women (male biological sex assigned at birth) ceased CSHT for 30 days for a washout phase (t1) upon study enrollment to reach a hypogonadal state. Working and semantic memory, cognition, hormonal assays, and brain imaging were assessed. Participants resumed CSHT for 60 days for a replacement phase (t2), after which the same evaluations from t1 were repeated. RESULTS Estradiol increased among trans women after 60 days of resumed CSHT with significant improvements in semantic memory compared to the hypogonadal phase. Working memory recall was significantly and positively correlated to glutamate in the DLPFC during the reinstatement phase, although the relationship was not moderated by levels of estradiol. DISCUSSION These results may have clinical implications for the therapeutic effects of estradiol replacement, serving as a protective factor against cognitive decline and impairment for trans women post-gonadectomy.
Collapse
Affiliation(s)
- Maiko A Schneider
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Devon Malhotra
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Poli M Spritzer
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Taylor Hatchard
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Luciano Minuzzi
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Benicio N Frey
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Sasha A Haefner
- Ontario Institute for Studies in Education, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Nicholson
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Margaret McKinnon
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Sabrina K Syan
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Taiane de Azevedo Cardoso
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Karine Schwarz
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maurício Anés
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Maria I R Lobato
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
9
|
Genazzani AR, Monteleone P, Giannini A, Simoncini T. Hormone therapy in the postmenopausal years: considering benefits and risks in clinical practice. Hum Reprod Update 2021; 27:1115-1150. [PMID: 34432008 DOI: 10.1093/humupd/dmab026] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 05/03/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Menopausal symptoms can be very distressing and considerably affect a woman's personal and social life. It is becoming more and more evident that leaving bothersome symptoms untreated in midlife may lead to altered quality of life, reduced work productivity and, possibly, overall impaired health. Hormone therapy (HT) for the relief of menopausal symptoms has been the object of much controversy over the past two decades. At the beginning of the century, a shadow was cast on the use of HT owing to the concern for cardiovascular and cerebrovascular risks, and breast cancer, arising following publication of a large randomized placebo-controlled trial. Findings of a subanalysis of the trial data and extended follow-up studies, along with other more modern clinical trials and observational studies, have provided new evidence on the effects of HT. OBJECTIVE AND RATIONALE The goal of the following paper is to appraise the most significant clinical literature on the effects of hormones in postmenopausal women, and to report the benefits and risks of HT for the relief of menopausal symptoms. SEARCH METHODS A Pubmed search of clinical trials was performed using the following terms: estrogens, progestogens, bazedoxifene, tibolone, selective estrogen receptor modulators, tissue-selective estrogen complex, androgens, and menopause. OUTCOMES HT is an effective treatment for bothersome menopausal vasomotor symptoms, genitourinary syndrome, and prevention of osteoporotic fractures. Women should be made aware that there is a small increased risk of stroke that tends to persist over the years as well as breast cancer risk with long-term estrogen-progestin use. However, healthy women who begin HT soon after menopause will probably earn more benefit than harm from the treatment. HT can improve bothersome symptoms, all the while conferring offset benefits such as cardiovascular risk reduction, an increase in bone mineral density and a reduction in bone fracture risk. Moreover, a decrease in colorectal cancer risk is obtainable in women treated with estrogen-progestin therapy, and an overall but nonsignificant reduction in mortality has been observed in women treated with conjugated equine estrogens alone or combined with estrogen-progestin therapy. Where possible, transdermal routes of HT administration should be preferred as they have the least impact on coagulation. With combined treatment, natural progesterone should be favored as it is devoid of the antiapoptotic properties of other progestogens on breast cells. When beginning HT, low doses should be used and increased gradually until effective control of symptoms is achieved. Unless contraindications develop, patients may choose to continue HT as long as the benefits outweigh the risks. Regular reassessment of the woman's health status is mandatory. Women with premature menopause who begin HT before 50 years of age seem to have the most significant advantage in terms of longevity. WIDER IMPLICATIONS In women with bothersome menopausal symptoms, HT should be considered one of the mainstays of treatment. Clinical practitioners should tailor HT based on patient history, physical characteristics, and current health status so that benefits outweigh the risks.
Collapse
Affiliation(s)
- Andrea R Genazzani
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Giannini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Tommaso Simoncini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Prakapenka AV, Korol DL. Estradiol selectively regulates metabolic substrates across memory systems in models of menopause. Climacteric 2021; 24:366-372. [PMID: 33982614 DOI: 10.1080/13697137.2021.1917537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Estrogen loss at menopause is thought to contribute to specific memory problems commonly encountered by women who are transitioning through or who have experienced menopause. Work in preclinical models suggests that estrogens bidirectionally regulate cognition through direct actions on different neural systems called memory systems, enhancing some types of learning and memory while impairing others. The energy load in the brain during cognitive activity is notoriously high, requiring sufficient provisions of metabolic substrates such as glucose, lactate, or ketones for optimal cognition. Thus, it is possible that estrogens bidirectionally regulate energy substrate availability within each system to produce the improvements and impairments in learning and memory. Indeed, estradiol increases extracellular levels of glucose in the hippocampus, a shift that corresponds to the hormone's beneficial effects on hippocampus-sensitive cognition. In contrast, estradiol decreases levels of lactate and ketones in the striatum, a shift that corresponds to the impairing effects of estradiol on striatum-sensitive cognition. Menopause may thus be associated with both cognitive improvements and impairments depending on estradiol status and on the problem to be solved. We propose that regulation of neural metabolism is one likely mechanism for these bidirectional effects of estradiol on cognition.
Collapse
Affiliation(s)
- A V Prakapenka
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - D L Korol
- Biology Department, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
11
|
Abstract
Since the introduction of menopausal hormone therapy (MHT) in the 1940s, randomized clinical trials and observational studies have been performed to determine the benefits and risks of MHT. However, MHT therapeutic impact remains under debate as multiple factors including genetic biomarkers and medical history contribute to inter-individual variations in neurodegenerative diseases. Herein, we review the characteristics of women who participated in clinical studies and methodological approaches for study analyses to assess the critical variables influencing an association between MHT and risk of neurodegenerative diseases. Outcomes of the review indicated that: (1) observational studies assessed outcomes of MHT in symptomatic women whereas MHT clinical trials were conducted in asymptomatic postmenopausal women not treated for menopausal symptoms, (2) in asymptomatic postmenopausal women, late MHT intervention was of no benefit, (3) different MHT treatments and regimens between observational studies and clinical trials may impact outcomes, and (4) observational studies may provide greater predictive validity for long-term neurological health outcomes as MHT was introduced in symptomatic women and administered over a long period of time. Going forward, achieving precision hormone therapy will require a priori identification of symptomatic women appropriate for MHT and the type and dose of MHT appropriate for their genetic profile and health risks.
Collapse
Affiliation(s)
- Y J Kim
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - R D Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
12
|
Garrett MD. Multiple Causes of Dementia as Engineered Senescence. EUROPEAN JOURNAL OF MEDICAL AND HEALTH SCIENCES 2020; 2. [DOI: 10.24018/ejmed.2020.2.2.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
All traumas—cranial, cardiovascular, hormone, viral, bacterial, fungi, parasites, misfolded protein, genetic, behavior, environmental and medication—affect the brain. This paper itemizes studies showing the many different causes of dementia including Alzheimer’s disease. Causes interact with each other, act sequentially by preparing the optimal conditions for its successor, initiate other diseases, allow for other traumas to accumulate and degrade protective features of the brain. Since such age-related cognitive impairment is not exclusively a human attribute there might be support for an evolutionary theory of dementia. Relying on theories of antagonistic pleiotropy and polymorphism, the brain has been designed to sequester trauma. Because of increased longevity, the short-term tactic of sequestering trauma becomes a long-term liability. We are engineered to sequester these insults until a tipping point is reached. Dementia is an evolutionary trade-off for longevity. We cannot cure dementia without understanding the overall biology of aging.
Collapse
|
13
|
Uddin MS, Rahman MM, Jakaria M, Rahman MS, Hossain MS, Islam A, Ahmed M, Mathew B, Omar UM, Barreto GE, Ashraf GM. Estrogen Signaling in Alzheimer's Disease: Molecular Insights and Therapeutic Targets for Alzheimer's Dementia. Mol Neurobiol 2020; 57:2654-2670. [PMID: 32297302 DOI: 10.1007/s12035-020-01911-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/23/2020] [Indexed: 01/04/2023]
Abstract
Estrogens play a crucial physiological function in the brain; however, debates exist concerning the role of estrogens in Alzheimer's disease (AD). Women during pre-, peri-, or menopause periods are more susceptible for developing AD, suggesting the connection of sex factors and a decreased estrogen signaling in AD pathogenesis. Yet, the underlying mechanism of estrogen-mediated neuroprotection is unclarified and is complicated by the existence of estrogen-related factors. Consequently, a deeper analysis of estrogen receptor (ER) expression and estrogen-metabolizing enzymes could interpret the importance of estrogen in age-linked cognitive alterations. Previous studies propose that hormone replacement therapy may attenuate AD onset in postmenopausal women, demonstrating that estrogen signaling is important for the development and progression of AD. For example, ERα exerts neuroprotection against AD by maintaining intracellular signaling cascades and study reported reduced expression of ERα in hippocampal neurons of AD patients. Similarly, reduced expression of ERβ in female AD patients has been associated with abnormal function in mitochondria and improved markers of oxidative stress. In this review, we discuss the critical interaction between estrogen signaling and AD. Moreover, we highlight the potential of targeting estrogen-related signaling for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Md Motiar Rahman
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Md Jakaria
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Md Sohanur Rahman
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Md Sarwar Hossain
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Ariful Islam
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Muniruddin Ahmed
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Ulfat Mohammed Omar
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Immunology Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
- Health Research Institute, University of Limerick, Limerick, Ireland.
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
14
|
Wang Y, Mishra A, Brinton RD. Transitions in metabolic and immune systems from pre-menopause to post-menopause: implications for age-associated neurodegenerative diseases. F1000Res 2020; 9. [PMID: 32047612 PMCID: PMC6993821 DOI: 10.12688/f1000research.21599.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The brain undergoes two aging programs: chronological and endocrinological. This is particularly evident in the female brain, which undergoes programs of aging associated with reproductive competency. Comprehensive understanding of the dynamic metabolic and neuroinflammatory aging process in the female brain can illuminate windows of opportunities to promote healthy brain aging. Bioenergetic crisis and chronic low-grade inflammation are hallmarks of brain aging and menopause and have been implicated as a unifying factor causally connecting genetic risk factors for Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss metabolic phenotypes of pre-menopausal, peri-menopausal, and post-menopausal aging and their consequent impact on the neuroinflammatory profile during each transition state. A critical aspect of the aging process is the dynamic metabolic neuro-inflammatory profiles that emerge during chronological and endocrinological aging. These dynamic systems of biology are relevant to multiple age-associated neurodegenerative diseases and provide a therapeutic framework for prevention and delay of neurodegenerative diseases of aging. While these findings are based on investigations of the female brain, they have a broader fundamental systems of biology strategy for investigating the aging male brain. Molecular characterization of alterations in fuel utilization and neuroinflammatory mechanisms during these neuro-endocrine transition states can inform therapeutic strategies to mitigate the risk of Alzheimer's disease in women. We further discuss a precision hormone replacement therapy approach to target symptom profiles during endocrine and chronological aging to reduce risk for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
15
|
Schneider MA, Spritzer PM, Suh JS, Minuzzi L, Frey BN, Schwarz K, Costa AB, da Silva DC, Garcia CCG, Fontanari AMV, Anes M, Castan JU, Cunegatto FR, Picon FA, Luders E, Lobato MIR. The Link between Estradiol and Neuroplasticity in Transgender Women after Gender-Affirming Surgery: A Bimodal Hypothesis. Neuroendocrinology 2020; 110:489-500. [PMID: 31461715 DOI: 10.1159/000502977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/28/2019] [Indexed: 11/19/2022]
Abstract
For transgender individuals, gender-affirming surgery (GAS) and cross-sex hormone therapy (CSHT) are part of the gender transition process. Scientific evidence supporting the maintenance of CSHT after GAS-related gonadectomy is accumulating. However, few data are available on the impact of CSHT on the brain structure following hypogonadism. Thus, we aimed to investigate links between estradiol and brain cortical thickness (CTh) and cognition in 18 post-gonadectomy transgender women using a longitudinal design. For this purpose, the participants underwent a voluntary period of CSHT washout of at least 30 days, followed by estradiol re-institution for 60 days. High-resolution T1-weighted brain images, hormonal measures, working and verbal memory were collected at 2 time points: on the last day of the washout (t1) and on the last day of the 2-month CSHT period (t2). Between these 2 time points, CTh increased within the left precentral gyrus and right precuneus but decreased within the right lateral occipital cortex. However, these findings did not survive corrections of multiple comparisons. Nevertheless, there was a significant negative correlation between changes in estradiol levels and changes in CTh. This effect was evident in the left superior frontal gyrus, the left middle temporal gyrus, the right precuneus, the right superior temporal gyrus, and the right pars opercularis. Although there was an improvement in verbal memory following hypogonadism correction, we did not observe a significant relationship between changes in memory scores and CTh. Altogether, these findings suggest that there is a link between estradiol and CTh.
Collapse
Affiliation(s)
- Maiko A Schneider
- Gender Identity Program, Psychiatry Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil,
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Ontario, Canada,
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada,
| | - Poli M Spritzer
- Gender Identity Program, Psychiatry Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jee Su Suh
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Ontario, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Luciano Minuzzi
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Ontario, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Benicio N Frey
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Ontario, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Karine Schwarz
- Gender Identity Program, Psychiatry Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Angelo B Costa
- Graduate Program in Psychology, Pontifícia Universidade do Rio Grande do Sul, Porto Alegre, Brazil
| | - Dhiordan C da Silva
- Gender Identity Program, Psychiatry Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduation Program, Universidade Federal do Rio Grand do Sul, Porto Alegre, Brazil
| | - Claudia C G Garcia
- Gender Identity Program, Psychiatry Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduation Program, Universidade Federal do Rio Grand do Sul, Porto Alegre, Brazil
| | - Anna M V Fontanari
- Gender Identity Program, Psychiatry Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduation Program, Universidade Federal do Rio Grand do Sul, Porto Alegre, Brazil
| | - Mauricio Anes
- Medical Physics and Radiation Protection Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Juliana U Castan
- Psychology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Felipe A Picon
- ADHD Outpatient Program, Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland, New Zealand
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Maria I R Lobato
- Gender Identity Program, Psychiatry Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Ontario, Canada
- Psychiatry and Forensic Medical Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
16
|
Wang Y, Hernandez G, Mack WJ, Schneider LS, Yin F, Brinton RD. Retrospective analysis of phytoSERM for management of menopause-associated vasomotor symptoms and cognitive decline: a pilot study on pharmacogenomic effects of mitochondrial haplogroup and APOE genotype on therapeutic efficacy. Menopause 2020; 27:57-65. [PMID: 31567873 PMCID: PMC7100617 DOI: 10.1097/gme.0000000000001418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE PhytoSERM is a selective estrogen receptor beta (ERβ) modulator comprised of three phytoestrogens: genistein, daidzein, and S-equol. The PhytoSERM formulation promotes estrogenic action in the brain while largely inactive or inhibitory in reproductive tissue. A phase Ib/IIa clinical trial (ClinicalTrial.gov ID: NCT01723917) of PhytoSERM demonstrated safety and pharmacokinetics profile of PhytoSERM. While this study was not powered for efficacy analysis, we conducted a pilot, retrospective analysis to identify potential responders to PhytoSERM treatment, and to determine the optimal populations to pursue in a phase II clinical trial of efficacy of the PhytoSERM formulation. METHODS In this retrospective analysis involving 46 participants (n = 16, placebo; n = 18, 50 mg/d PhytoSERM; and n = 12, 100 mg/d PhytoSERM), the therapeutic effect of PhytoSERM was stratified by 2 genetic risk modulators for Alzheimer's disease: mitochondrial haplogroup and APOE genotype. RESULTS Our retrospective responder analysis indicated that participants on 50 mg of daily PhytoSERM (PS50) for 12 weeks significantly reduced hot flash frequency compared with their baseline (mean [95% CI])-1.61, [-2.79, -0.42], P = 0.007). Participants on 50 mg of PhytoSERM also had significantly greater reduction in hot flash frequency at 12 weeks compared with the placebo group (-1.38, -0.17 [median PS50, median placebo], P = 0.04). Fifty milligrams of daily PhytoSERM also preserved cognitive function in certain aspects of verbal learning and executive function. Our analysis further suggests that mitochondrial haplogroup and APOE genotype can modify PhytoSERM response. CONCLUSION Our data support a precision medicine approach for further development of PhytoSERM as a safe and effective alternative to hormone therapy for menopause-associated hot flash and cognitive decline. While definitive determination of PhytoSERM efficacy is limited by the small sample size, these data provide a reasonable rationale to extend analyses to a larger study set powered to address statistical significance.
Collapse
Affiliation(s)
- Yiwei Wang
- School of Pharmacy, University of Southern California, Los Angeles, CA
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ
| | - Gerson Hernandez
- School of Pharmacy, University of Southern California, Los Angeles, CA
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ
| | - Wendy J Mack
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lon S Schneider
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Fei Yin
- School of Pharmacy, University of Southern California, Los Angeles, CA
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ
| | - Roberta D Brinton
- School of Pharmacy, University of Southern California, Los Angeles, CA
- Center for Innovation in Brain Science and Department of Pharmacology, University of Arizona, Tucson, AZ
| |
Collapse
|
17
|
An alternative theory for hormone effects on sex differences in PTSD: The role of heightened sex hormones during trauma. Psychoneuroendocrinology 2019; 109:104416. [PMID: 31472433 DOI: 10.1016/j.psyneuen.2019.104416] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023]
Abstract
Women are at least twice as susceptible to developing post-traumatic stress disorder (PTSD) compared to men. Although most research seeking to explain this discrepancy has focussed on the role of oestradiol during fear extinction learning, the role of progesterone has been overlooked, despite relatively consistent findings being reported concerning the role of progesterone during consolidation of emotional and intrusive memories. In this review article, we outline literature supporting the role of progesterone on memory formation, with particular emphasis on potential memory-enhancing properties of progesterone when subjects are placed under stress. It is possible that progesterone directly and indirectly exerts memory-enhancing effects at the time of trauma, which is an effect that may not be necessarily captured during non-stressful paradigms. We propose a model whereby progesterone's steroidogenic relationship to cortisol and brain-derived neurotrophic factor in combination with elevated oestradiol may enhance emotional memory consolidation during trauma and therefore present a specific vulnerability to PTSD formation in women, particularly during the mid-luteal phase of the menstrual cycle.
Collapse
|
18
|
Wang YX, Zhu L, Li LX, Xu HN, Wang HG, An D, Heng B, Zhao Q, Liu YQ. Postnatal Expression Patterns of Estrogen Receptor Subtypes and Choline Acetyltransferase in Different Regions of the Papez Circuit. Dev Neurosci 2019; 41:203-211. [PMID: 31536986 DOI: 10.1159/000502686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
The Papez circuit is crucial for several brain functions, including long-term memory and emotion. Estradiol modulates cognitive functions based on the expression pattern of its receptor subtypes including estrogen receptor (ER) α, β, and G protein-coupled receptor 30 (GPR30). Similarly, the activity in the cholinergic system correlates with several brain functions, such as learning and memory. In this study, we used immunofluorescence to examine the expression patterns of ERβ and Western blotting to analyze GPR30 and choline acetyltransferase (ChAT) expression, in different regions of the Papez circuit, including the prefrontal cortex, hippocampus, hypothalamus, anterior nucleus of the thalamus, and cingulum in female rats at postnatal days (PND) 1, 10, and 56. Our main finding was that the highest expression of ERβ and GPR30 was noted in each brain area of the Papez circuit in the PND1 rats, whereas the expression of ChAT was the highest in PND10 rats. These results provide vital information on the postnatal expression patterns of ER subtypes and ChAT in different regions of the Papez circuit.
Collapse
Affiliation(s)
- Yu-Xiang Wang
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Lin Zhu
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Li-Xia Li
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Hui-Nan Xu
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Hong-Gang Wang
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Di An
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Bin Heng
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Qiang Zhao
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Yan-Qiang Liu
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China,
| |
Collapse
|
19
|
Schneider MA, Spritzer PM, Minuzzi L, Frey BN, Syan SK, Fighera TM, Schwarz K, Costa ÂB, da Silva DC, Garcia CCG, Fontanari AMV, Real AG, Anes M, Castan JU, Cunegatto FR, Lobato MIR. Effects of Estradiol Therapy on Resting-State Functional Connectivity of Transgender Women After Gender-Affirming Related Gonadectomy. Front Neurosci 2019; 13:817. [PMID: 31440128 PMCID: PMC6692765 DOI: 10.3389/fnins.2019.00817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
An extreme incongruence between sex and gender identity leads individuals with gender dysphoria (GD) to seek cross-sex hormone therapy (CSHT), and gender-affirming surgery (GAS). Although few studies have investigated the effects of CSHT on the brain prior to GAS, no studies in the extant literature have evaluated its impact during hypogonadism in post-GAS individuals. Here, we aimed to evaluate the effects of estradiol on resting-state functional connectivity (rs-FC) of the sensorimotor cortex (SMC) and basal ganglia following surgical hypogonadism. Eighteen post-GAS (male-to-female) participants underwent functional magnetic resonance imaging (fMRI) and neuropsychiatric and hormonal assessment at two time points (t1, hormonal washout; t2, CSHT reintroduction). Based on the literature, the thalamus was selected as a seed, while the SMC and the dorsolateral striatum were targets for seed-based functional connectivity (sbFC). A second sbFC investigation consisted of a whole-brain voxel exploratory analysis again using the thalamus as a seed. A final complementary data-driven approach using multivoxel pattern analysis (MVPA) was conducted to identify a potential seed for further sbFC analyses. An increase in the rs-FC between the left thalamus and the left SCM/putamen followed CSHT. MVPA identified a cluster within the subcallosal cortex (SubCalC) representing the highest variation in peak activation between time points. Setting the SubCalC as a seed, whole-brain analysis showed a decoupling between the SubCalC and the medial frontal cortex during CSHT. These results indicate that CSHT with estradiol post-GAS, modulates rs-FC in regions engaged in cognitive, emotional, and sensorimotor processes.
Collapse
Affiliation(s)
- Maiko A Schneider
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Mood Disorders Program, Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Poli M Spritzer
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Division of Endocrinoloy, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luciano Minuzzi
- Mood Disorders Program, Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Benicio N Frey
- Mood Disorders Program, Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.,Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Sabrina K Syan
- Mood Disorders Program, Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Peter Boris Centre for Addictions Research, McMaster University, Hamilton, ON, Canada
| | - Tayane M Fighera
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Division of Endocrinoloy, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Karine Schwarz
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Ângelo B Costa
- Graduate Program in Psychology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Dhiordan C da Silva
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Post-Graduation Program, Universidade Federal do Rio Grand do Sul, Porto Alegre, Brazil
| | - Cláudia C G Garcia
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Post-Graduation Program, Universidade Federal do Rio Grand do Sul, Porto Alegre, Brazil
| | - Anna M V Fontanari
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Post-Graduation Program, Universidade Federal do Rio Grand do Sul, Porto Alegre, Brazil
| | - André G Real
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Post-Graduation Program, Universidade Federal do Rio Grand do Sul, Porto Alegre, Brazil
| | - Maurício Anes
- Medical Physics and Radiation Protection Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Juliana U Castan
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Psychology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Maria I R Lobato
- Gender Identity Program (PROTIG), Psychiatric Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Post-Graduation Program, Universidade Federal do Rio Grand do Sul, Porto Alegre, Brazil.,Psychiatric and Forensic Medical Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
20
|
Kandasamy M, Radhakrishnan RK, Poornimai Abirami GP, Roshan SA, Yesudhas A, Balamuthu K, Prahalathan C, Shanmugaapriya S, Moorthy A, Essa MM, Anusuyadevi M. Possible Existence of the Hypothalamic-Pituitary-Hippocampal (HPH) Axis: A Reciprocal Relationship Between Hippocampal Specific Neuroestradiol Synthesis and Neuroblastosis in Ageing Brains with Special Reference to Menopause and Neurocognitive Disorders. Neurochem Res 2019; 44:1781-1795. [PMID: 31254250 DOI: 10.1007/s11064-019-02833-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
The hippocampus-derived neuroestradiol plays a major role in neuroplasticity, independent of circulating estradiol that originates from gonads. The response of hypothalamus-pituitary regions towards the synthesis of neuroestradiol in the hippocampus is an emerging scientific concept in cognitive neuroscience. Hippocampal plasticity has been proposed to be regulated via neuroblasts, a major cellular determinant of functional neurogenesis in the adult brain. Defects in differentiation, integration and survival of neuroblasts in the hippocampus appear to be an underlying cause of neurocognitive disorders. Gonadotropin receptors and steroidogenic enzymes have been found to be expressed in neuroblasts in the hippocampus of the brain. However, the reciprocal relationship between hippocampal-specific neuroestradiol synthesis along neuroblastosis and response of pituitary based feedback regulation towards regulation of estradiol level in the hippocampus have not completely been ascertained. Therefore, this conceptual article revisits (1) the cellular basis of neuroestradiol synthesis (2) a potential relationship between neuroestradiol synthesis and neuroblastosis in the hippocampus (3) the possible involvement of aberrant neuroestradiol production with mitochondrial dysfunctions and dyslipidemia in menopause and adult-onset neurodegenerative disorders and (4) provides a hypothesis for the possible existence of the hypothalamic-pituitary-hippocampal (HPH) axis in the adult brain. Eventually, understanding the regulation of hippocampal neurogenesis by abnormal levels of neuroestradiol concentration in association with the feedback regulation of HPH axis might provide additional cues to establish a neuroregenerative therapeutic management for mood swings, depression and cognitive decline in menopause and neurocognitive disorders.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
- Faculty Recharge Programme, University Grants Commission(UGC-FRP), New Delhi, India.
| | - Risna Kanjirassery Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - G P Poornimai Abirami
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Syed Aasish Roshan
- Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Ajisha Yesudhas
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Kadalmani Balamuthu
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Chidambaram Prahalathan
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620024, India
| | | | - Anbalagan Moorthy
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Muthuswamy Anusuyadevi
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, 620024, India
| |
Collapse
|
21
|
Abstract
There are 3 common physiological estrogens, of which estradiol (E2) is seen to decline rapidly over the menopausal transition. This decline in E2 has been associated with a number of changes in the brain, including cognitive changes, effects on sleep, and effects on mood. These effects have been demonstrated in both rodent and non-human preclinical models. Furthermore, E2 interactions have been indicated in a number of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, and depression. In normal brain aging, there are a number of systems that undergo changes and a number of these show interactions with E2, particularly the cholinergic system, the dopaminergic system, and mitochondrial function. E2 treatment has been shown to ameliorate some of the behavioral and morphological changes seen in preclinical models of menopause; however, in clinical populations, the effects of E2 treatment on cognitive changes after menopause are mixed. The future use of sex hormone treatment will likely focus on personalized or precision medicine for the prevention or treatment of cognitive disturbances during aging, with a better understanding of who may benefit from such treatment.
Collapse
Affiliation(s)
- Jason K Russell
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Paul A Newhouse
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.
- Geriatric Research, Education, and Clinical Center (GRECC), Tennessee VA Health Systems, Nashville, TN, 37212, USA.
| |
Collapse
|
22
|
Zhang K, Yang Q, Yang L, Li YJ, Wang XS, Li YJ, Dang RL, Guan SY, Guo YY, Sun T, Wu YM, Liu A, Zhang Y, Liu SB, Zhao MG. CB1 agonism prolongs therapeutic window for hormone replacement in ovariectomized mice. J Clin Invest 2019; 129:2333-2350. [PMID: 31063987 DOI: 10.1172/jci123689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/19/2019] [Indexed: 01/01/2023] Open
Abstract
Hormone therapy (HT) is reported to be deficient in improving learning and memory in older postmenopausal women according to recent clinical studies; however, the reason for failure is unknown. A "window of opportunity" for estrogen treatment is proposed to explain this deficiency. Here, we found that facilitation of memory extinction and long-term depression by 17β-estradiol (E2) was normal in mice 1 week after ovariectomy (OVXST), but it was impaired in mice 3 months after ovariectomy (OVXLT). High-throughput sequencing revealed a decrease of miR-221-5p, which promoted cannabinoid receptor 1 (CB1) ubiquitination by upregulation of Neurl1a/b in E2-treated OVXLT mice. Blood samples from postmenopausal women aged 56-65 indicated decreases of miR-221-5p and 2-arachidonoylglycerol compared with samples from perimenopausal women aged 46-55. Replenishing of miR-221-5p or treatment with a CB1 agonist rescued the impairment of fear extinction in E2-treated OVXLT mice. The present study demonstrates that an HT time window in mice can be prolonged by cotreatment with a CB1 agonist, implying a potential strategy for HT in long-term menopausal women.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qi Yang
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Le Yang
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan-Jiao Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin-Shang Wang
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu-Jiao Li
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rui-Li Dang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shao-Yu Guan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan-Yan Guo
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ting Sun
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - An Liu
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Zhang
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ming-Gao Zhao
- Department of Pharmacy, Precision Pharmacy and Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
23
|
Alese MO, Agbaje MA, Alese OO. Cadmium induced damage in Wistar rats, ameliorative potentials of progesterone. J Trace Elem Med Biol 2018; 50:276-282. [PMID: 30262291 DOI: 10.1016/j.jtemb.2018.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 11/17/2022]
Abstract
Asides the increased human exposure to Cadmium containing products; the adverse effects of Cadmium on human health is further exacerbated by its toxicity at low dosage, long biologic half-life and low rate of excretion from the body. This study investigated the protective potential of progesterone on cadmium-induced damage in Wistar rats. Adult male Wistar rats received CdCl2 once daily for 21 days. Progesterone was given 30 min. after administration of CdCl2 while 3 other groups were given distilled water, CdCl2 and progesterone alone. Blood samples were collected from the animals for the determination of liver function and antioxidant status while the liver, kidney, cerebellar and hippocampal tissues were excised and fixed in Neutral buffered formalin for histopathological studies. While Cadmium caused changes in liver function parameters which were indicative of oxidative stress, pre-treatment with progesterone caused restoration to values which were non-significant to the control. Similar findings were made for G6PD, GSH, SOD, CAT and MDA. Histopathology revealed tissue damage in the Cd treated group; this was attenuated by prior treatment with progesterone. Progesterone ameliorated the free radical induced oxidative stress and tissue injury arising from exposure to Cadmium; attention should be given to its antioxidant role in Cadmium toxicity.
Collapse
Affiliation(s)
- M O Alese
- Department of Anatomy, College of Medicine, Ekiti State University, Ado-Ekiti, Nigeria.
| | - M A Agbaje
- Department of Anatomy, College of Medicine, Ekiti State University, Ado-Ekiti, Nigeria
| | - O O Alese
- Department of Physiology, College of Medicine, Ekiti State University, Ado-Ekiti, Nigeria
| |
Collapse
|
24
|
Graves LV, Moreno CC, Seewald M, Holden HM, Van Etten EJ, Uttarwar V, McDonald CR, Delano-Wood L, Bondi MW, Woods SP, Delis DC, Gilbert PE. Effects of Age and Gender on Recall and Recognition Discriminability. Arch Clin Neuropsychol 2018; 32:972-979. [PMID: 28334345 DOI: 10.1093/arclin/acx024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/06/2017] [Indexed: 11/12/2022] Open
Abstract
Objective Recall and recognition memory abilities are known to decline with increasing age, yet much of the evidence stems from studies that used simple measures of total target recall or recognition. The California Verbal Learning Test-Second Edition (CVLT-II) includes a new measure of recall discriminability that is analogous to recognition discriminability. These discriminability measures yield more thorough assessments of recall and recognition by accounting for intrusion and false positive errors, respectively. Research also has shown that women outperform men on verbal episodic memory tests. However, gender differences in recall and recognition discriminability and the age-by-gender interaction on these constructs have not been thoroughly examined. Method Cognitively healthy adults (N = 223) 18-91 years in age completed the CVLT-II. Multiple regression analyses were conducted to examine effects of age, gender, and the age-by-gender interaction on CVLT-II subtypes of recall and recognition discriminability. Results Discriminability scores decreased with increasing age, and women outperformed men. There was an age-by-gender interaction on total, immediate, and free recall discriminability - the negative association between age and scores was stronger in men than in women. Exploratory analyses revealed an inverted U-shaped relationship between age and recall discriminability scores in women. Conclusions The present findings support and expand upon the extant literature on aging, gender, and verbal episodic memory, plus describe a novel age-by-gender interaction intrinsic to subtypes of recall discriminability. The findings suggest that methods traditionally used to assess recognition memory function can be used to elucidate age- and gender-related changes in recall ability across the adult lifespan.
Collapse
Affiliation(s)
- Lisa V Graves
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92120, USA
| | - Charles C Moreno
- Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Michelle Seewald
- Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Heather M Holden
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92120, USA
| | - Emily J Van Etten
- Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Vedang Uttarwar
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Carrie R McDonald
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92120, USA.,Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA 92093, USA.,Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Lisa Delano-Wood
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92120, USA.,Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Mark W Bondi
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92120, USA.,Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Steven Paul Woods
- Department of Psychology, University of Houston, Houston, TX 77004, USA
| | - Dean C Delis
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92120, USA.,Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Paul E Gilbert
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, 92120, USA.,Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| |
Collapse
|
25
|
Berger J, Demin K, Holtkamp M, Bengner T. Female verbal memory advantage in temporal, but not frontal lobe epilepsy. Epilepsy Res 2018; 139:129-134. [DOI: 10.1016/j.eplepsyres.2017.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
|
26
|
Underwood EA, Rochon PA, Moineddin R, Lee PE, Wu W, Pritchard KI, Tierney MC. Cognitive sequelae of endocrine therapy in women treated for breast cancer: a meta-analysis. Breast Cancer Res Treat 2017; 168:299-310. [PMID: 29264751 DOI: 10.1007/s10549-017-4627-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE Evidence suggests anti-estrogen endocrine therapy (ET) is associated with adverse cognitive effects; however, findings are based on small samples and vary in the cognitive abilities affected. We conducted a meta-analysis to quantitatively synthesize the evidence. METHODS Electronic databases were searched in November 2016. Fourteen studies totaling 911 BC patients on aromatase inhibitors (AIs) or tamoxifen (TAM) and 911 controls (i.e., non-cancer controls and BC controls not using ET) were included. Neuropsychological tests were categorized into six domains. Effect sizes were computed to compare (1) ET patients versus controls and (2) TAM patients versus AI patients. RESULTS In cross-sectional comparisons, ET patients performed worse than control groups on verbal learning/memory, visual learning/memory, frontal executive function, and processing speed, but did not differ on psychomotor efficiency or visuospatial function. Subgroup analyses revealed that verbal learning/memory was the only domain where ET patients performed worse than both non-cancer and BC controls. In other domains, ET patients and BC controls performed equivalently. Regarding change from pre-treatment performance, ET patients did not differ from controls on any domain. TAM and AI patients did not from one another differ overall; however, subgroup analyses indicated that TAM patients performed better than non-steroidal AI patients on several domains, but showed few performance differences relative to steroidal AI patients. CONCLUSIONS Verbal learning/memory was the only domain where ET patients performed worse than both non-cancer and BC controls, suggesting specific adverse effects on this domain. Additional studies assessing change from pre-treatment performance and differences between steroidal and non-steroidal AIs are warranted.
Collapse
Affiliation(s)
- E A Underwood
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Primary Care Research Unit, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Suite E349, Toronto, ON, M4N 3M5, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - P A Rochon
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
| | - R Moineddin
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - P E Lee
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - W Wu
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| | - K I Pritchard
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - M C Tierney
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Primary Care Research Unit, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Suite E349, Toronto, ON, M4N 3M5, Canada. .,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
27
|
Gervais NJ, Mong JA, Lacreuse A. Ovarian hormones, sleep and cognition across the adult female lifespan: An integrated perspective. Front Neuroendocrinol 2017; 47:134-153. [PMID: 28803147 PMCID: PMC7597864 DOI: 10.1016/j.yfrne.2017.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022]
Abstract
Loss of ovarian function in women is associated with sleep disturbances and cognitive decline, which suggest a key role for estrogens and/or progestins in modulating these symptoms. The effects of ovarian hormones on sleep and cognitive processes have been studied in separate research fields that seldom intersect. However, sleep has a considerable impact on cognitive function. Given the tight connections between sleep and cognition, ovarian hormones may influence selective aspects of cognition indirectly, via the modulation of sleep. In support of this hypothesis, a growing body of evidence indicates that the development of sleep disorders following menopause contributes to accelerated cognitive decline and dementia in older women. This paper draws from both the animal and human literature to present an integrated view of the effects of ovarian hormones on sleep and cognition across the adult female lifespan.
Collapse
Affiliation(s)
- Nicole J Gervais
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 135 Hicks Way, Amherst, MA 01003, United States.
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, United States
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 135 Hicks Way, Amherst, MA 01003, United States
| |
Collapse
|
28
|
Hormone therapy at early post-menopause increases cognitive control-related prefrontal activity. Sci Rep 2017; 7:44917. [PMID: 28322310 PMCID: PMC5359606 DOI: 10.1038/srep44917] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022] Open
Abstract
Clinical data have been equivocal and controversial as to the benefits to the brain and cognition of hormone therapy (HT) in postmenopausal women. Recent reevaluation of the role of estrogens proposed that HT may effectively prevent the deleterious effects of aging on cognition, and reduces the risks of dementia, including Alzheimer's disease, if initiated early at the beginning of menopause. Yet, little is known about the effects of HT on brain activation related to cognitive control, the ability to make flexible decisions in relation to internal goals. Here, we used fMRI to directly test for a modulation of sequential 17β estradiol (2 mg/day) plus oral progesterone (100 mg/day) on task switching-related brain activity in women at early postmenopause. The results showed that HT enhanced dorsolateral prefrontal cortex recruitment during task switching. Between-subjects correlation analyses revealed that women who engaged more the dorsolateral prefrontal cortex showed higher task switching performance after HT administration. These results suggest that HT, when taken early at the beginning of postmenopause, may have beneficial effect on cognitive control prefrontal mechanisms. Together, these findings demonstrate that HT can prevent the appearance of reduced prefrontal cortex activity, a neurophysiological measure observed both in healthy aging and early dementia.
Collapse
|
29
|
Hejazian SH, Karimi S, Hosseini M, Mousavi SM, Soukhtanloo M. Protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments in ovariectomized rats. Adv Biomed Res 2016; 5:123. [PMID: 27563633 PMCID: PMC4976525 DOI: 10.4103/2277-9175.186981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/11/2016] [Indexed: 11/18/2022] Open
Abstract
Background: Regarding the anti-oxidative effects on the central nervous system, the possible protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments was investigated in ovariectomized (OVX) rats. Materials and Methods: The OVX rats treated by (1) vehicle, (2) scopolamine, and (3–4) scopolamine plus estradiol (20 or 20 or 60 μg/kg). Estradiol was administered (20 or 60 μg/kg, intraperitoneally) daily for 6 weeks after ovariectomy. The rats were examined for learning and memory using passive avoidance test. Scopolamine (2 mg/kg) was injected 30 min after training in the test. The brains were then removed to determine malondialdehyde (MDA) and thiol contents. Results: Scopolamine shortened the time latency to enter the dark compartment in (P < 0.01). Compared to scopolamine, pretreatment by both doses of estradiol prolonged the latency to enter the dark compartment (P < 0.01). The brain tissues MDA concentration as an index of lipid peroxidation was decreased (P < 0.05). Pretreatment by estradiol lowered the concentration of MDA, while it increased thiol content compared to scopolamine (P < 0.05 and P < 0.01). Conclusions: These results allow us to suggest a protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments in OVX rats.
Collapse
Affiliation(s)
| | - Sareh Karimi
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mojtaba Mousavi
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Modulation of spatial and response strategies by phase of the menstrual cycle in women tested in a virtual navigation task. Psychoneuroendocrinology 2016; 70:108-17. [PMID: 27213559 DOI: 10.1016/j.psyneuen.2016.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 11/21/2022]
Abstract
Different memory systems are employed to navigate an environment. It has been consistently shown in rodents that estrogen impacts multiple memory system bias such that low estradiol (E2) is associated with increased use of a striatal-mediated response strategy whereas high E2 increases use of a hippocampal-dependent spatial memory. Low E2 also enhances performance on a response-based task whereas high E2 levels improve learning on a spatial task. The purpose of the present cross-sectional study was to investigate navigational strategies in young, healthy, naturally cycling women. Participants were split into either an early follicular (i.e., when E2 levels are low), ovulatory (i.e., when E2 levels are high) or mid/late luteal (i.e., end of the cycle, when E2 levels decrease and progesterone levels rise) phase group, using self-reported date of the menstrual cycle. Serum hormone level measurements (E2, progesterone, testosterone) were used to confirm cycle phase assignment. Participants were administered a verbal memory task as well as a virtual navigation task that can be solved by using either a response or spatial strategy. Women tested in the ovulatory phase, under high E2 conditions, performed better on a verbal memory task than women tested during the other phases of the cycle. Interestingly, women tested in the mid/late luteal phase, when progesterone is high, predominantly used a spatial strategy, whereas the opposite pattern was observed in the early follicular and ovulatory groups. Our data suggest that the specific memory system engaged differs depending on the phase of the menstrual cycle and may be mediated by both E2 and progesterone, rather than E2 alone.
Collapse
|
31
|
Nguyen-Louie TT, Tracas A, Squeglia LM, Matt GE, Eberson-Shumate S, Tapert SF. Learning and Memory in Adolescent Moderate, Binge, and Extreme-Binge Drinkers. Alcohol Clin Exp Res 2016; 40:1895-904. [PMID: 27462830 DOI: 10.1111/acer.13160] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/21/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Binge drinking has been linked to neurocognitive disadvantages in youth, but it is unclear whether drinking at particularly heavy levels uniquely affects neurocognitive performance. This study prospectively examined (1) whether initiating moderate, binge, or extreme-binge drinking in adolescence differentially influences subsequent learning and memory performances, and (2) whether dosage of alcohol consumption is linearly associated with changes in learning and memory over 6 years of adolescence. METHODS Participants, who later transitioned into drinking, were administered verbal learning and memory (VLM) assessments at project intake prior to the onset of substance use (age 12 to 16 years), and at follow-up approximately 6 years later (N = 112). Participants were grouped based on alcohol involvement at follow-up as follows: moderate (≤4 drinks per occasion), binge (5+ drinks per occasion), or extreme-binge (10+ drinks per occasion) drinkers. RESULTS Despite equivalent performances prior to onset of drinking, extreme-binge drinkers performed worse than moderate drinkers on verbal learning, and cued and free short delayed recall (ps < 0.05); binge drinkers did not differ from the other groups. No distinct thresholds in alcohol quantity to differentiate the 3 groups were detected, but estimated peak blood alcohol concentrations were linearly associated with verbal learning (β^ = -0.24), and immediate (β^ = -0.27), short delay free (β^ = -0.28) and cued (β^ = -0.30), and long delay free (β^ = -0.24) and cued (β^ = -0.27) recall (ps < 0.05). CONCLUSIONS Drinking quantity during adolescence appears to adversely affect VLM in a dose-dependent manner. The acquisition of new verbal information may be particularly affected, notably for those who initiated drinking 10+ drinks in an occasion. Although classification of drinkers into categories remains critical in the study of alcohol, it is important to consider that subtle differences may exist within drinking categories.
Collapse
Affiliation(s)
- Tam T Nguyen-Louie
- Department of Psychiatry, University of California San Diego, La Jolla, California.,San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Ashley Tracas
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Georg E Matt
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California.,Department of Psychology, San Diego State University, San Diego, California
| | | | - Susan F Tapert
- Department of Psychiatry, University of California San Diego, La Jolla, California.,San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| |
Collapse
|
32
|
Braden BB, Dassel KB, Bimonte-Nelson HA, O'Rourke HP, Connor DJ, Moorhous S, Sabbagh MN, Caselli RJ, Baxter LC. Sex and post-menopause hormone therapy effects on hippocampal volume and verbal memory. AGING NEUROPSYCHOLOGY AND COGNITION 2016; 24:227-246. [PMID: 27263667 DOI: 10.1080/13825585.2016.1182962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Many studies suggest sex differences in memory and hippocampal size, and that hormone therapy (HT) may positively affect these measures in women; however, the parameters of HT use that most likely confer benefits are debated. We evaluated the impact of sex and postmenopausal HT use on verbal learning and memory and hippocampal size in 94 cognitively intact women and 49 men. Using analysis of covariance that controlled for age and education, women had better total word learning and delayed verbal memory performance than men. HT analyses showed that non-HT users performed similarly to men, while HT users performed better than men in Delayed Memory regardless of whether use was current or in the past. Women had larger hippocampal volumes than men regardless of whether they were HT users. Using univariate linear models, we assessed group differences in the predictive value of hippocampal volumes for verbal learning and memory. Hippocampal size significantly predicted memory performance for men and non-HT users, but not for HT users. This lack of relationship between hippocampal size and verbal learning and memory performance in HT users suggests HT use may impact memory through extra-hippocampal neural systems.
Collapse
Affiliation(s)
- B Blair Braden
- a Department of Neuropsychology , Barrow Neurological Institute , Phoenix , AZ , USA
| | - Kara B Dassel
- a Department of Neuropsychology , Barrow Neurological Institute , Phoenix , AZ , USA
| | | | - Holly P O'Rourke
- b Department of Psychology , Arizona State University , Tempe , AZ , USA
| | - Donald J Connor
- c The Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute , Sun City , AZ , USA
| | - Sallie Moorhous
- a Department of Neuropsychology , Barrow Neurological Institute , Phoenix , AZ , USA
| | - Marwan N Sabbagh
- c The Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute , Sun City , AZ , USA
| | - Richard J Caselli
- d Department of Neurology , Mayo Clinic Arizona , Scottsdale , AZ , USA
| | - Leslie C Baxter
- a Department of Neuropsychology , Barrow Neurological Institute , Phoenix , AZ , USA
| |
Collapse
|
33
|
Everhart DE, Demaree HA, Shipley AJ. Perception of Emotional Prosody: Moving Toward a Model That Incorporates Sex-Related Differences. ACTA ACUST UNITED AC 2016; 5:92-102. [PMID: 16801685 DOI: 10.1177/1534582306289665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The overall purpose of this article is to review the literature that addresses the theoretical models, neuroanatomical mechanisms, and sex-related differences in the perception of emotional prosody. Specifically, the article focuses on the right-hemisphere model of emotion processing as it pertains to the perception of emotional prosody. This article also reviews more recent research that implicates a role for the left hemisphere and subcortical structures in the perception of emotional prosody. The last major section of this article addresses sex-related differences and the potential influence of hormones on the perception of emotional prosody. The article concludes with a section that offers directions for future research.
Collapse
|
34
|
Laws KR, Irvine K, Gale TM. Sex differences in cognitive impairment in Alzheimer’s disease. World J Psychiatry 2016; 6:54-65. [PMID: 27014598 PMCID: PMC4804268 DOI: 10.5498/wjp.v6.i1.54] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/14/2015] [Accepted: 01/22/2016] [Indexed: 02/05/2023] Open
Abstract
Sex differences in neurocognitive abilities have been extensively explored both in the healthy population and in many disorders. Until recently, however, little work has examined such differences in people with Alzheimer’s disease (AD). This is despite clear evidence that AD is more prevalent in women, and converging lines of evidence from brain imaging, post-mortem analyses, hormone therapy and genetics suggesting that AD affects men and women differently. We provide an overview of evidence attesting to the poorer cognitive profiles in women than in men at the same stage of AD. Indeed, men significantly outperform women in several cognitive domains, including: Language and semantic abilities, visuospatial abilities and episodic memory. These differences do not appear to be attributable to any differences in age, education, or dementia severity. Reasons posited for this female disadvantage include a reduction of estrogen in postmenopausal women, greater cognitive reserve in men, and the influence of the apolipoprotein E ε4 allele. Assessment of cognitive abilities contributes to the diagnosis of the condition and thus, it is crucial to identify the role of sex differences if potentially more accurate diagnoses and treatments are to emerge.
Collapse
|
35
|
Hampson E, Duff-Canning SJ. Salivary cortisol and explicit memory in postmenopausal women using hormone replacement therapy. Psychoneuroendocrinology 2016; 64:99-107. [PMID: 26630390 DOI: 10.1016/j.psyneuen.2015.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 01/30/2023]
Abstract
Circulating cortisol levels are known to influence explicit memory in humans and other primates. The present study investigated salivary cortisol and its association with explicit memory performance in 99 postmenopausal women (64 treated with conjugated equine estrogens or estradiol, and 35 matched controls not using any form of hormone therapy). Controls were compared with treated women taking estrogens alone (n=39), or taking estrogens in combination with a progestin (n=25). Mean time on hormone therapy was approximately 5 years, with initiation of treatment in close proximity to the onset of menopause. Explicit memory was assessed with the California Verbal Learning Test (CVLT). Saliva was collected before (basal or resting sample) and after (post-test sample) completing a set of cognitive tasks. Cortisol was measured using a high-sensitivity radioimmunoassay. Treated women were found to have higher resting cortisol concentrations than controls matched for time of day. Basal cortisol was a modest predictor of learning and memory on the CVLT. Higher cortisol was associated with better recall and fewer memory errors, which is consistent with experimental studies examining explicit memory under small increases in circulating cortisol load. Potential cumulative effects on the central nervous system of sustained exposure to mildly increased cortisol in conjunction with the long-term use of oral estrogens are discussed in the context of aging and dementia.
Collapse
Affiliation(s)
- Elizabeth Hampson
- Department of Psychology and Graduate Program in Neuroscience, University of Western Ontario, London, N6A 5C2, Canada.
| | | |
Collapse
|
36
|
The Protective Effect of Icariin on Mitochondrial Transport and Distribution in Primary Hippocampal Neurons from 3× Tg-AD Mice. Int J Mol Sci 2016; 17:ijms17020163. [PMID: 26828481 PMCID: PMC4783897 DOI: 10.3390/ijms17020163] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 01/08/2023] Open
Abstract
Icariin, a pharmacologically active component isolated from the Chinese herb Epimedium, has been shown to improve spatial learning and memory abilities in Alzheimer's disease (AD) rats through inhibition of Aβ production and tau protein hyperphosphorylation. However, the potential mechanism of icariin-induced protective effects against mitochondrial dysfunctions in AD still remains unclear. In the present study, we investigated the effect of icariin on the modulation of mitochondrial transport and distribution in primary hippocampal cultures from triple-transgenic (3× Tg) AD mice. The results showed that icariin enhanced mitochondrial motility and increased mitochondrial index and mitochondrial length and size in the diseased neurons. Additionally, the expression of the key mitochondrial enzyme, pyruvate dehydrogenase-E1α (PDHE1α), and the post synaptic density protein 95 (PSD95), was preserved in AD neurons after icariin treatment, accompanied by a downregulation of Aβ and phosphorylated tau expression in the corresponding areas. Further study showed that icariin treatment resulted in a decrease in mitochondrial fission protein dynamin-related protein 1 (Drp1) and an increase in fusion protein Mitofusin 2 (Mfn2). These data indicate that icariin can promote mitochondrial transport, protect mitochondria against fragmentation and preserve the expression of mitochondrial and synaptic functional proteins in AD neurons. Thus, icariin may be a potential therapeutic complement for AD and other mitochondrial malfunction-related neuronal degenerative diseases.
Collapse
|
37
|
Guerrieri GM, Wakim PG, Keenan PA, Schenkel LA, Berlin K, Gibson CJ, Rubinow DR, Schmidt PJ. Sex differences in visuospatial abilities persist during induced hypogonadism. Neuropsychologia 2015; 81:219-229. [PMID: 26719236 DOI: 10.1016/j.neuropsychologia.2015.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/04/2015] [Accepted: 12/19/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Despite well-established sex differences in the performance on tests of several cognitive domains (e.g., visuospatial ability), few studies in humans have evaluated if these sex differences are evident both in the presence of circulating sex hormones and during sex steroid hormonal suppression. Sex differences identified in the relative absence of circulating levels of estradiol and testosterone suggest that differences in brain structure or function exist independent of current hormonal environment and are more likely a reflection of differing developmental exposures and/or genetic substrates. OBJECTIVE To evaluate cognitive performance in healthy eugonadal men and women before and again during GnRH agonist-induced hypogonadism. METHODS Men (n=16) and women (n=15) without medical or psychiatric illness were matched for IQ. Cognitive tests were performed at baseline (when eugonadal) and after 6-8 weeks of GnRH agonist-induced gonadal suppression. The test batteries included measures of verbal and spatial memory, spatial ability, verbal fluency, motor speed/dexterity, and attention/concentration. Data were analyzed using repeated-measures models. RESULTS During both eugonadism and hypogonadism, men performed significantly better than women on several measures of visuospatial performance including mental rotation, line orientation, Money Road Map, Porteus maze, and complex figure drawing. Although some test performances showed an effect of hormone treatment, the majority of these differences reflected an improved performance during hypogonadism compared with baseline (and probably reflected practice effects). CONCLUSION The well-documented male advantage in visuospatial performance, which we observed during eugonadal conditions, was maintained in the context of short-term suppression of gonadal function in both men and women. These findings suggest that, in humans, sex differences in visuospatial performance are not merely dependent on differences in the current circulating sex steroid environment. Thus sex differences in visuospatial performance in adulthood could reflect early developmental effects of sex steroid exposure or other environmental exposures differing across the sexes as our data confirm that these differences are independent of circulating estradiol or testosterone levels in men and women.
Collapse
Affiliation(s)
- Gioia M Guerrieri
- Section on Behavioral Endocrinology, National Institute of Mental Health, National Institutes of Health, Department of Health & Human Services, Bldg. 10-CRC, Room 25330, 10 Center Drive, MSC 1277, Bethesda, MD 20892-1277, United States
| | - Paul G Wakim
- Biostatistics and Clinical Epidemiology Service, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - P A Keenan
- Cronos Clinical Consulting (formerly Wayne State University), 22 Tanglewood Drive, Titusville, NJ 08560, United States
| | - Linda A Schenkel
- Section on Behavioral Endocrinology, National Institute of Mental Health, National Institutes of Health, Department of Health & Human Services, Bldg. 10-CRC, Room 25330, 10 Center Drive, MSC 1277, Bethesda, MD 20892-1277, United States
| | - Kate Berlin
- Section on Behavioral Endocrinology, National Institute of Mental Health, National Institutes of Health, Department of Health & Human Services, Bldg. 10-CRC, Room 25330, 10 Center Drive, MSC 1277, Bethesda, MD 20892-1277, United States
| | - Carolyn J Gibson
- Section on Behavioral Endocrinology, National Institute of Mental Health, National Institutes of Health, Department of Health & Human Services, Bldg. 10-CRC, Room 25330, 10 Center Drive, MSC 1277, Bethesda, MD 20892-1277, United States
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - Peter J Schmidt
- Section on Behavioral Endocrinology, National Institute of Mental Health, National Institutes of Health, Department of Health & Human Services, Bldg. 10-CRC, Room 25330, 10 Center Drive, MSC 1277, Bethesda, MD 20892-1277, United States.
| |
Collapse
|
38
|
McCarrey AC, Resnick SM. Postmenopausal hormone therapy and cognition. Horm Behav 2015; 74:167-72. [PMID: 25935728 PMCID: PMC4573348 DOI: 10.1016/j.yhbeh.2015.04.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 01/17/2023]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Prior to the publication of findings from the Women's Health Initiative (WHI) in 2002, estrogen-containing hormone therapy (HT) was used to prevent age-related disease, especially cardiovascular disease, and to treat menopausal symptoms such as hot flushes and sleep disruptions. Some observational studies of HT in midlife and aging women suggested that HT might also benefit cognitive function, but randomized clinical trials have produced mixed findings in terms of health and cognitive outcomes. This review focuses on hormone effects on cognition and risk for dementia in naturally menopausal women as well as surgically induced menopause, and highlights findings from the large-scale WHI Memory Study (WHIMS) which, contrary to expectation, showed increased dementia risk and poorer cognitive outcomes in older postmenopausal women randomized to HT versus placebo. We consider the 'critical window hypothesis', which suggests that a window of opportunity may exist shortly after menopause during which estrogen treatments are most effective. In addition, we highlight emerging evidence that potential adverse effects of HT on cognition are most pronounced in women who have other health risks, such as lower global cognition or diabetes. Lastly, we point towards implications for future research and clinical treatments.
Collapse
Affiliation(s)
- Anna C McCarrey
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, 21224, USA.
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
39
|
How self-reported hot flashes may relate to affect, cognitive performance and sleep. Maturitas 2015; 81:449-55. [DOI: 10.1016/j.maturitas.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022]
|
40
|
Chang SL, Tsai AC. Gender differences in the longitudinal associations of depressive symptoms and leisure-time physical activity with cognitive decline in ≥57year-old Taiwanese. Prev Med 2015; 77:68-73. [PMID: 25964077 DOI: 10.1016/j.ypmed.2015.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study investigates the role of gender in the associations of long-term depressive symptoms and leisure-time physical activity (LTPA) with the risk of cognitive decline in elderly Taiwanese. METHOD We analyzed 3679 subjects (age ≥57) in the 2003 and 2007 datasets of the Taiwan Longitudinal Survey on Aging, of which data were collected via face-to-face interviews by trained interviewers. We excluded proxy respondents. Multivariable logistic regression analysis examined the associations of long-term depressive symptoms (increased symptoms: CES-D10 scores from <10 to ≥10; decreased symptoms: from ≥10 to <10) and LTPA (frequency, duration, and intensity) with cognitive decline (a decrease of two or more SPMSQ scores). RESULTS Women had significant higher percentages of cognitive impairment, compared to men, at the baseline (5.9 vs. 1.5%; χ(2)=51.24, p<0.001) and end-point (10.8 vs. 5.2%;χ(2)=39.5, p<0.001). Men with long-term depressive symptoms had 5.28 greater odds of cognitive decline (OR=5.28, 95%CI=2.84-9.82, p<0.001) and men with increased depressive symptoms had 2.09 greater odds (2.09, 1.24-3.51, p=0.006). No such association was observed in women. Men with consistently high LTPA had 65% (0.35, 0.19-0.65, p=0.001) and women with increased LTPA had 43% (0.57, 0.34-0.93, p=0.024) reduction in odds of developing cognitive decline. CONCLUSION We found gender differences in the longitudinal association between depressive symptoms and cognitive decline. Long-term LTPA may loosen the association between long-term depressive symptoms and cognitive decline. These findings are useful in the identification of vulnerable elderly in the Taiwanese population and public health interventions should focus on assisting their cognitive aging.
Collapse
Affiliation(s)
- Shujen L Chang
- Department of Psychology, Asia University, Wu-feng, Taichung, Taiwan.
| | - Alan C Tsai
- Department of Healthcare Administration, Asia University, Wu-feng, Taichung, Taiwan; Department of Health Services Management, School of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|
41
|
Vierk R, Bayer J, Freitag S, Muhia M, Kutsche K, Wolbers T, Kneussel M, Sommer T, Rune GM. Structure-function-behavior relationship in estrogen-induced synaptic plasticity. Horm Behav 2015; 74:139-48. [PMID: 26012713 DOI: 10.1016/j.yhbeh.2015.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/23/2015] [Accepted: 05/17/2015] [Indexed: 01/06/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". In estrogen-induced synaptic plasticity, a correlation of structure, function and behavior in the hippocampus has been widely established. 17ß-estradiol has been shown to increase dendritic spine density on hippocampal neurons and is accompanied by enhanced long-term potentiation and improved performance of animals in hippocampus-dependent memory tests. After inhibition of aromatase, the final enzyme of estradiol synthesis, with letrozole we consistently found a strong and significant impairment of long-term potentiation (LTP) in female mice as early as after six hours of treatment. LTP impairment was followed by loss of hippocampal spine synapses in the hippocampal CA1 area. Interestingly, these effects were not found in male animals. In the Morris water maze test, chronic administration of letrozole did not alter spatial learning and memory in either female or male mice. In humans, analogous effects of estradiol on hippocampal morphology and physiology were observed using neuroimaging techniques. However, similar to our findings in mice, an effect of estradiol on memory performance has not been consistently observed.
Collapse
Affiliation(s)
- R Vierk
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - J Bayer
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - S Freitag
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20151 Hamburg, Germany
| | - M Muhia
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20151 Hamburg, Germany
| | - K Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - T Wolbers
- Center for Behavioral Brain Sciences, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - M Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20151 Hamburg, Germany
| | - T Sommer
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - G M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
42
|
Ycaza Herrera A, Mather M. Actions and interactions of estradiol and glucocorticoids in cognition and the brain: Implications for aging women. Neurosci Biobehav Rev 2015; 55:36-52. [PMID: 25929443 DOI: 10.1016/j.neubiorev.2015.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/30/2015] [Accepted: 04/17/2015] [Indexed: 02/03/2023]
Abstract
Menopause involves dramatic declines in estradiol production and levels. Importantly, estradiol and the class of stress hormones known as glucocorticoids exert countervailing effects throughout the body, with estradiol exerting positive effects on the brain and cognition, glucocorticoids exerting negative effects on the brain and cognition, and estradiol able to mitigate negative effects of glucocorticoids. Although the effects of these hormones in isolation have been extensively studied, the effects of estradiol on the stress response and the neuroprotection offered against glucocorticoid exposure in humans are less well known. Here we review evidence suggesting that estradiol-related protection against glucocorticoids mitigates stress-induced interference with cognitive processes. Animal and human research indicates that estradiol-related mitigation of glucocorticoid damage and interference is one benefit of estradiol supplementation during peri-menopause or soon after menopause. The evidence for estradiol-related protection against glucocorticoids suggests that maintaining estradiol levels in post-menopausal women could protect them from stress-induced declines in neural and cognitive integrity.
Collapse
Affiliation(s)
- Alexandra Ycaza Herrera
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, United States.
| | - Mara Mather
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089, United States.
| |
Collapse
|
43
|
Barros LA, Tufik S, Andersen ML. The role of progesterone in memory: an overview of three decades. Neurosci Biobehav Rev 2014; 49:193-204. [PMID: 25434881 DOI: 10.1016/j.neubiorev.2014.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022]
Abstract
Memory comprises acquisition, consolidation and retrieval of information. Many substances can influence these different phases. It is well demonstrated that sex hormones, mainly estrogen, impact cognitive function. More recently, progesterone has also been documented as playing an important role in cognition, since it influences brain regions involved in memory. Currently, many women are under hormone treatment, which contain progesterone to decrease the risk of development of endometrial cancer. This affords the opportunity to study the real effects of this hormonal replacement on cognition. There are many contradictory results regarding the role of progesterone in memory. Therefore, the aim of this review was to synthesize these studies using the new perspective of the influence of hormone replacement on cognition in women.
Collapse
Affiliation(s)
- L A Barros
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil
| | - S Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil
| | - M L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil.
| |
Collapse
|
44
|
Sexual neurosteroids and synaptic plasticity in the hippocampus. Brain Res 2014; 1621:162-9. [PMID: 25452021 DOI: 10.1016/j.brainres.2014.10.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/18/2014] [Indexed: 11/23/2022]
Abstract
Sexual neurosteroids (SN), namely 17β-estradiol (E2) and 5α-dehydrotestosterone (DHT), are synthesized in the hippocampus, where they induce circuit modifications by changing the number of excitatory spine synapses in a paracrine and sex-specific manner. The mechanisms of this sex-specific synapse turnover, which are likely to affect cognitive functions, are poorly understood. We found that hippocampal neurons synthesize estradiol, which maintains LTP and synapses in females but not in males. In females, inhibition of estradiol synthesis results in impairment of LTP and synapse loss. These effects were not seen in males. The essential role of local estrogen on the stability and maintenance of connectivity in the hippocampus is consistent with age-related cognitive decline in women after menopause. In male animals the regulation of synaptic stability and plasticity by locally synthesized sexual steroids remains to be clarified. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
|
45
|
Hippocampal estradiol synthesis and its significance for hippocampal synaptic stability in male and female animals. Neuroscience 2014; 274:24-32. [DOI: 10.1016/j.neuroscience.2014.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/23/2014] [Accepted: 05/04/2014] [Indexed: 01/18/2023]
|
46
|
Li R, Singh M. Sex differences in cognitive impairment and Alzheimer's disease. Front Neuroendocrinol 2014; 35:385-403. [PMID: 24434111 PMCID: PMC4087048 DOI: 10.1016/j.yfrne.2014.01.002] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/31/2013] [Accepted: 01/06/2014] [Indexed: 12/15/2022]
Abstract
Studies have shown differences in specific cognitive ability domains and risk of Alzheimer's disease between the men and women at later age. However it is important to know that sex differences in cognitive function during adulthood may have their basis in both organizational effects, i.e., occurring as early as during the neuronal development period, as well as in activational effects, where the influence of the sex steroids influence brain function in adulthood. Further, the rate of cognitive decline with aging is also different between the sexes. Understanding the biology of sex differences in cognitive function will not only provide insight into Alzheimer's disease prevention, but also is integral to the development of personalized, gender-specific medicine. This review draws on epidemiological, translational, clinical, and basic science studies to assess the impact of sex differences in cognitive function from young to old, and examines the effects of sex hormone treatments on Alzheimer's disease in men and women.
Collapse
Affiliation(s)
- Rena Li
- Center for Hormone Advanced Science and Education (CHASE), Roskamp Institute, Sarasota, FL 34243, United States.
| | - Meharvan Singh
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research (IAADR), Center FOR HER, University of North Texas, Health Science Center, Fort Worth, TX 76107, United States
| |
Collapse
|
47
|
Rosic S, Rosic M, Samardzic R, Kendic S. Receptive functions at childbearing age, perimenopause and postmenopause. Mater Sociomed 2014; 26:49-50. [PMID: 24757402 PMCID: PMC3990395 DOI: 10.5455/msm.2014.26.49-50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/05/2014] [Indexed: 11/05/2022] Open
Abstract
Introduction: Receptive functions represents higher mental processes by which people carry out normal daily living tasks. The specificity of these functions is that they stimulate specific physiological functions in the body. They are reflected in the ability to select, classify and integrate the information received. Material and Methods: We performed an assessment of visual-perceptual abilities by Purdue nonverbal test (PNT-TV) in 135 patients. Patients are classified into three age groups of 45 patients. The first group consisted of patients of childbearing age (25-39 years), second group of patients in perimenopausal age (40-54 years) and a third group of postmenopausal patients (≥55 years).
Results: The distribution of the results are statistically different between groups, suggesting that at the onset of menopause there is a decrease of visual-perceptual abilities in patients (Friedman test was significant with p<0.001). Conclusion: By the distribution of the results of our study, and the statistical significance of Friedman’s, it can be concluded that patients who enter menopause have tendency to decrease of receptive functions.
Collapse
Affiliation(s)
- Semso Rosic
- Dispensary for Women's Health, Health Care Center, Cazin, Bosnia and Herzegovina
| | - Muhamed Rosic
- Primary Health Care, Health Care Center, Cazin, Bosnia and Herzegovina
| | - Remzo Samardzic
- Internist Consultative Service, Health Care Center, Cazin, Bosnia and Herzegovina
| | - Sulejman Kendic
- School of Health Studies, University of Bihac, Bosnia and Herzegovina
| |
Collapse
|
48
|
Persistent cognitive changes in breast cancer patients 1 year following completion of chemotherapy. J Int Neuropsychol Soc 2014; 20:370-9. [PMID: 24229809 DOI: 10.1017/s1355617713001215] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Numerous studies have shown that there are acute cognitive side-effects of chemotherapy for breast cancer. Presumably, patients are more concerned about chronic treatment effects. This report from a prospective longitudinal study compares cognitive functioning in 56 breast cancer patients 1 year after chemotherapy to that of 56 healthy individuals. Neuropsychological test scores were combined into verbal memory, visual memory, working memory, and processing speed scores, as well as an overall summary score, and analyzed using multi-level growth modeling. Frequency of cognitive decline was assessed using regression-based change scores. There was significant rebound in the overall summary score from end of treatment to 1-year follow-up as well as a substantial reduction in the frequency of cognitive decline. However, more than one-third of the breast cancer patients who showed cognitive decline immediately following completion of chemotherapy showed persistent cognitive decline 1 year later. Furthermore, recovery was not seen in all cognitive domains. In fact, the rebound was significant only for working memory. Longer multi-site studies are recommended to explore the risk factors for and the permanence of these longer-term cognitive effects.
Collapse
|
49
|
Alexander JL, Sommer BR, Dennerstein L, Grigorova M, Neylan T, Kotz K, Richardson G, Rosenbaum R. Role of psychiatric comorbidity on cognitive function during and after the menopausal transition. Expert Rev Neurother 2014; 7:S157-80. [DOI: 10.1586/14737175.7.11s.s157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Abstract
As persons living with HIV/AIDS live longer, both the prevalence and incidence of HIV infection in older women is expected to increase, and this review presents a model and review of the extant literature on older women with HIV/AIDS in the United States. Older women are rarely addressed in the discourse about HIV risk and prevention, and their concerns are often missed by risk-reduction programs that typically target men and younger adults. Societal biases around aging can compound factors such as stigma and disclosure for older women. Primary care providers are often not recommending routine HIV testing to older women, or addressing the impact of age-related physiological changes on risk and sexual health. Many older women may be starting new relationships, so it is important that providers understand the relational variables specific to this group of women. Empirical research focused on the needs of older women, and recognition of the diverse composition and needs of this group, are needed to inform prevention, intervention, and best practices with this population of women.
Collapse
Affiliation(s)
- Ramani Durvasula
- California State University Los Angeles, Department of Psychology
| |
Collapse
|