1
|
Xu Y, Cheng X, Li Y, Shen H, Wan Y, Ping L, Yu H, Cheng Y, Xu X, Cui J, Zhou C. Shared and Distinct White Matter Alterations in Major Depression and Bipolar Disorder: A Systematic Review and Meta-Analysis. J Integr Neurosci 2024; 23:170. [PMID: 39344242 DOI: 10.31083/j.jin2309170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Identifying white matter (WM) microstructural similarities and differences between major depressive disorder (MDD) and bipolar disorder (BD) is an important way to understand the potential neuropathological mechanism in emotional disorders. Numerous diffusion tensor imaging (DTI) studies over recent decades have confirmed the presence of WM anomalies in these two affective disorders, but the results were inconsistent. This study aimed to determine the statistical consistency of DTI findings for BD and MDD by using the coordinate-based meta-analysis (CBMA) approach. METHODS We performed a systematic search of tract-based spatial statistics (TBSS) studies comparing MDD or BD with healthy controls (HC) as of June 30, 2024. The seed-based d-mapping (SDM) was applied to investigate fractional anisotropy (FA) changes. Meta-regression was then used to analyze the potential correlations between demographics and neuroimaging alterations. RESULTS Regional FA reductions in the body of the corpus callosum (CC) were identified in both of these two diseases. Besides, MDD patients also exhibited decreased FA in the genu and splenium of the CC, as well as the left anterior thalamic projections (ATP), while BD patients showed FA reduction in the left median network, and cingulum in addition to the CC. CONCLUSIONS The results highlighted that altered integrity in the body of CC served as the shared basis of MDD and BD, and distinct microstructural WM abnormalities also existed, which might induce the various clinical manifestations of these two affective disorders. The study was registered on PROSPERO (http://www.crd.york.ac.uk/PROSPERO), registration number: CRD42022301929.
Collapse
Affiliation(s)
- Yinghong Xu
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Xiaodong Cheng
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
| | - Ying Li
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Hailong Shen
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Yu Wan
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, 361012 Xiamen, Fujian, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Jian Cui
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
| | - Cong Zhou
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
- Department of Psychology, Affiliated Hospital of Jining Medical University, 272067 Jining, Shandong, China
| |
Collapse
|
2
|
Ahn JY, Kang Y, Kim A, Tae WS, Han KM, Ham BJ. Association Between White Matter Tract Integrity and Frontal-Executive Function in Non-Geriatric Adult Patients With Major Depressive Disorder. Psychiatry Investig 2024; 21:133-141. [PMID: 38321889 PMCID: PMC10910163 DOI: 10.30773/pi.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVE This study investigated the association between white matter tract integrity and frontal executive function in adult non-geriatric patients with major depressive disorder (MDD) and healthy controls (HCs) using diffusion tensor imaging (DTI). METHODS In total, 57 patients with MDD and 115 HCs participated in this study. We calculated the integrity of the white matter tracts using the Tracts Constrained by Underlying Anatomy tool (TRACULA) from FreeSurfer. We performed cognitive function tests. Oneway analysis of covariance was used to investigate the DTI parameters as dependent variables; diagnosis of MDD as an independent variable; and age, sex, and education level as covariates. For correlation analysis between the DTI parameters and cognitive function tests, Pearson's partial correlation analyses were performed in the MDD and HC groups. RESULTS The patients with MDD showed significantly decreased axial diffusivity (AD) in forceps major (FMajor), left corticospinal tract (CST), left superior longitudinal fasciculus-parietal bundle (SLFP), right anterior thalamic radiation (ATR), right CST, right inferior longitudinal fasciculus (ILF) and right superior longitudinal fasciculus-temporal bundle (SLFT) and mean diffusivity (MD) in the left CST, right CST, and right SLFT compared to HCs. We found that non-geriatric patients with MDD showed a significant negative correlation between the response time in the Stroop task and the AD value of the FMajor. CONCLUSION Our findings suggest that impaired structural connectivity in the FMajor may be associated with cognitive dysfunction in non-geriatric patients with MDD.
Collapse
Affiliation(s)
- Joo-Yeon Ahn
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Zou Y, Grigorian A, Kennedy KG, Zai CC, Shao S, Kennedy JL, Andreazza AC, Ameis SH, Heyn C, Maclntosh BJ, Goldstein BI. Differential association of antioxidative defense genes with white matter integrity in youth bipolar disorder. Transl Psychiatry 2022; 12:504. [PMID: 36476443 PMCID: PMC9729619 DOI: 10.1038/s41398-022-02261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is associated with white matter diffusion metrics in adults with bipolar disorder (BD). We examined the association of single-nucleotide polymorphisms in the oxidative stress system, superoxide dismutase-2 (SOD2) rs4880 and glutathione peroxidase-3 (GPX3) rs3792797 with fractional anisotropy (FA) and radial diffusivity (RD) in youth with BD. Participants included 104 youth (age 17.5 ± 1.7 years; 58 BD, 46 healthy controls). Saliva samples were obtained for genotyping, and diffusion tensor imaging was acquired. Voxel-wise whole-brain white matter diffusion analyses controlled for age, sex, and race. There were significant diagnosis-by-SOD2 rs4880 interaction effects for FA and RD in major white matter tracts. Within BD, the group with two copies of the G-allele (GG) showed lower FA and higher RD than A-allele carriers. Whereas within the control group, the GG group showed higher FA and lower RD than A-allele carriers. Additionally, FA was higher and RD was lower within the control GG group compared to the BD GG group. No significant findings were observed for GPX3 rs3793797. The current study revealed that, within matter tracts known to differ in BD, associations of SOD2 rs4880 GG genotype with both FA and RD differed between BD vs healthy control youth. The SOD2 enzyme encoded by the G-allele, has higher antioxidant capacity than the enzyme encoded by the A-allele. We speculate that the current findings of lower FA and higher RD of the BD GG group compared to the other groups reflects attenuation of the salutary antioxidant effects of GG genotype on white matter integrity in youth with BD, in part due to predisposition to oxidative stress. Future studies incorporating other genetic markers and oxidative stress biomarkers are warranted.
Collapse
Affiliation(s)
- Yi Zou
- grid.17063.330000 0001 2157 2938Department of Pharmacology, University of Toronto, Toronto, ON Canada ,grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Anahit Grigorian
- grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Kody G. Kennedy
- grid.17063.330000 0001 2157 2938Department of Pharmacology, University of Toronto, Toronto, ON Canada ,grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Clement C. Zai
- grid.155956.b0000 0000 8793 5925Psychiatric Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8 Canada
| | - Suyi Shao
- grid.17063.330000 0001 2157 2938Department of Pharmacology, University of Toronto, Toronto, ON Canada ,grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - James L. Kennedy
- grid.155956.b0000 0000 8793 5925Psychiatric Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8 Canada
| | - Ana C. Andreazza
- grid.17063.330000 0001 2157 2938Department of Pharmacology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8 Canada
| | - Stephanie H. Ameis
- grid.155956.b0000 0000 8793 5925Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada ,grid.42327.300000 0004 0473 9646Department of Psychiatry, The Hospital for Sick Children, Toronto, ON Canada
| | - Chinthaka Heyn
- grid.413104.30000 0000 9743 1587Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Bradley J. Maclntosh
- grid.17063.330000 0001 2157 2938Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON Canada
| | - Benjamin I. Goldstein
- grid.17063.330000 0001 2157 2938Department of Pharmacology, University of Toronto, Toronto, ON Canada ,grid.155956.b0000 0000 8793 5925Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8 Canada
| |
Collapse
|
4
|
Roberts G, Wen W, Ridgway K, Ho C, Gooch P, Leung V, Williams T, Breakspear M, Mitchell PB. Hippocampal cingulum white matter increases over time in young people at high genetic risk for bipolar disorder. J Affect Disord 2022; 314:325-332. [PMID: 35878837 DOI: 10.1016/j.jad.2022.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/23/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a strongly familial psychiatric disorder associated with white matter (WM) brain abnormalities. It is unclear whether such abnormalities are present in relatives without BD, and little is known about WM trajectories in those at increased genetic risk. METHODS Diffusion magnetic resonance imaging (dMRI) data were acquired at baseline and after two years in 91 unaffected individuals with a first-degree relative with bipolar disorder (HR), and 85 individuals with no family history of mental illness (CON). All participants were aged between 12 and 30 years at baseline. We examined longitudinal change in Fractional Anisotropy (FA) using tract-based spatial statistics (TBSS). RESULTS Compared to the CON group, HR participants showed a significant increase in FA in the right cingulum (hippocampus) (CGH) over a two-year period (p < .05, FDR corrected). This effect was more pronounced in HR individuals without a lifetime diagnosis of a mood disorder than those with a mood disorder. LIMITATIONS While our study is well powered to achieve the primary objectives, our sub-group analyses were under powered. CONCLUSIONS In one of the very few longitudinal neuroimaging studies of young people at high risk for BD, this study reports novel evidence of atypical white matter development in HR individuals in a key cortico-limbic tract involved in emotion regulation. Our findings also suggest that this different white matter developmental trajectory may be stronger in HR individuals without affective psychopathology. As such, increases in FA in the right CGH of HR participants may be a biomarker of resilience to mood disorders.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia.
| | - W Wen
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - K Ridgway
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - C Ho
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - P Gooch
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - V Leung
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - T Williams
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - M Breakspear
- School of Psychology, Faculty of Science, Discipline of Psychiatry, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
5
|
Roberts G, Perry A, Ridgway K, Leung V, Campbell M, Lenroot R, Mitchell PB, Breakspear M. Longitudinal Changes in Structural Connectivity in Young People at High Genetic Risk for Bipolar Disorder. Am J Psychiatry 2022; 179:350-361. [PMID: 35343756 DOI: 10.1176/appi.ajp.21010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Recent studies of patients with bipolar disorder or at high genetic risk reveal structural dysconnections among key brain networks supporting cognitive and affective processes. Understanding the longitudinal trajectories of these networks across the peak age range of bipolar disorder onset could inform mechanisms of illness onset or resilience. METHODS Longitudinal diffusion-weighted MRI and phenotypic data were acquired at baseline and after 2 years in 183 individuals ages 12-30 years in two cohorts: 97 unaffected individuals with a first-degree relative with bipolar disorder (the high-risk group) and 86 individuals with no family history of mental illness (the control group). Whole-brain structural networks were derived using tractography, and longitudinal changes in these networks were studied using network-based statistics and mixed linear models. RESULTS Both groups showed widespread longitudinal changes, comprising both increases and decreases in structural connectivity, consistent with a shared neurodevelopmental process. On top of these shared changes, high-risk participants showed weakening of connectivity in a network encompassing the left inferior and middle frontal areas, left striatal and thalamic structures, the left fusiform, and right parietal and occipital regions. Connections among these regions strengthened in the control group, whereas they weakened in the high-risk group, shifting toward a cohort with established bipolar disorder. There was marginal evidence for even greater network weakening in those who had their first manic or hypomanic episode before follow-up. CONCLUSIONS Neurodevelopment from adolescence into early adulthood is associated with a substantial reorganization of structural brain networks. Differences in these maturational processes occur in a multisystem network in individuals at high genetic risk of bipolar disorder. This may represent a novel candidate to understand resilience and predict conversion to bipolar disorder.
Collapse
Affiliation(s)
- Gloria Roberts
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Alistair Perry
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Kate Ridgway
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Vivian Leung
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Megan Campbell
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Rhoshel Lenroot
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Michael Breakspear
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| |
Collapse
|
6
|
Xu M, Zhang W, Hochwalt P, Yang C, Liu N, Qu J, Sun H, DelBello MP, Lui S, Nery FG. Structural connectivity associated with familial risk for mental illness: A meta‐analysis of diffusion tensor imaging studies in relatives of patients with severe mental disorders. Hum Brain Mapp 2022; 43:2936-2950. [PMID: 35285560 PMCID: PMC9120564 DOI: 10.1002/hbm.25827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) are heritable conditions with overlapping genetic liability. Transdiagnostic and disorder‐specific brain changes associated with familial risk for developing these disorders remain poorly understood. We carried out a meta‐analysis of diffusion tensor imaging (DTI) studies to investigate white matter microstructure abnormalities in relatives that might correspond to shared and discrete biomarkers of familial risk for psychotic or mood disorders. A systematic search of PubMed and Embase was performed to identify DTI studies in relatives of SCZ, BD, and MDD patients. Seed‐based d Mapping software was used to investigate global differences in fractional anisotropy (FA) between overall and disorder‐specific relatives and healthy controls (HC). Our search identified 25 studies that met full inclusion criteria. A total of 1,144 relatives and 1,238 HC were included in the meta‐analysis. The overall relatives exhibited decreased FA in the genu and splenium of corpus callosum (CC) compared with HC. This finding was found highly replicable in jack‐knife analysis and subgroup analyses. In disorder‐specific analysis, compared to HC, relatives of SCZ patients exhibited the same changes while those of BD showed reduced FA in the left inferior longitudinal fasciculus (ILF). The present study showed decreased FA in the genu and splenium of CC in relatives of SCZ, BD, and MDD patients, which might represent a shared familial vulnerability marker of severe mental illness. The white matter abnormalities in the left ILF might represent a specific familial risk for bipolar disorder.
Collapse
Affiliation(s)
- Mengyuan Xu
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Wenjing Zhang
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Paul Hochwalt
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine Cincinnati Ohio USA
| | - Chengmin Yang
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Naici Liu
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Jiao Qu
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Hui Sun
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Melissa P. DelBello
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine Cincinnati Ohio USA
| | - Su Lui
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Fabiano G. Nery
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine Cincinnati Ohio USA
| |
Collapse
|
7
|
Ohashi K, Anderson CM, Khan A, Rohan ML, Bolger EA, McGreenery CE, Teicher MH. Sex and sensitive period differences in potential effects of maltreatment on axial versus radial diffusivity in the corpus callosum. Neuropsychopharmacology 2022; 47:953-964. [PMID: 35022536 PMCID: PMC8882181 DOI: 10.1038/s41386-021-01260-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/28/2021] [Accepted: 12/20/2021] [Indexed: 11/09/2022]
Abstract
Corpus callosum (CC) abnormalities have been observed in several psychiatric disorders. Maltreatment has also been associated with marked differences in CC anatomy and microstructure, though rarely controlled for in psychiatric neuroimaging studies. The aim of this study was to identify type and timing of maltreatment associated with alterations in CC microstructure and to ascertain if they differ by sex. T1 and diffusion-weighted MRIs were obtained from 345 (135 M/210 F) healthy 18-25-year-olds. The Maltreatment and Abuse Chronology of Exposure scale provided retrospective data on exposure to ten types of maltreatment across each year of childhood. AI predictive analytics were used to identify the most significant type and time risk factors. The most striking maltreatment-associated alterations in males were in axial diffusivity and were most specifically associated with exposure to emotional abuse or neglect during segment-specific sensitive periods. In contrast, maltreatment was associated with marked alteration in radial diffusivity and fractional anisotropy in females and was most specifically associated with early physical neglect during one common sensitive period involving all segments except the splenium. Overall sex differences, controlling for maltreatment, brain size, and sociodemographic factors were limited to the genu with greater fractional anisotropy in males and radial diffusivity in females. These findings suggest that maltreatment may target myelinization in females and axonal development in males and that these sex differences need to be taken into account in studies seeking to delineate the contribution of CC abnormalities and interhemispheric communication to psychiatric disorders.
Collapse
Affiliation(s)
- Kyoko Ohashi
- Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA. .,Developmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA.
| | - Carl M. Anderson
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115 USA ,grid.240206.20000 0000 8795 072XDevelopmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Alaptagin Khan
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115 USA ,grid.240206.20000 0000 8795 072XDevelopmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Michael L. Rohan
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115 USA ,grid.240206.20000 0000 8795 072XMcLean Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Elizabeth A. Bolger
- grid.240206.20000 0000 8795 072XDevelopmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Cynthia E. McGreenery
- grid.240206.20000 0000 8795 072XDevelopmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| | - Martin H. Teicher
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115 USA ,grid.240206.20000 0000 8795 072XDevelopmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478 USA
| |
Collapse
|
8
|
Xu E, Nguyen L, Hu R, Stavish CM, Leibenluft E, Linke JO. The uncinate fasciculus in individuals with and at risk for bipolar disorder: A meta-analysis. J Affect Disord 2022; 297:208-216. [PMID: 34699854 PMCID: PMC8631233 DOI: 10.1016/j.jad.2021.10.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a severe mental disorder, characterized by prominent mood swings and emotion regulation (ER) deficits. The uncinate fasciculus (UF), a white matter tract connecting the amygdala and the ventral prefrontal cortex, has been implicated in ER. Aberrancies in UF microstructure may be an endophenotype associated with increased risk for BD. However, studies in individuals with BD and their first-degree relatives (REL) have yielded inconsistent findings. This meta-analysis takes a region-of-interest approach to consolidate the available evidence and elucidate the role of the UF in the risk-architecture of BD. METHODS Using web-based search engines, we identified diffusion tensor imaging (DTI) studies focusing on the left and right UF and conducted meta-analyses comparing fractional anisotropy (FA) and radial diffusivity (RD) between BD or REL and healthy control participants (HC). RESULTS We included 32 studies (nBD=1186, nREL=289, nHC=2315). Compared to HC, individuals with BD showed lower FA in the right (WMD=-0.31, p<0.0001) and left UF (WMD=-0.21, p = 0.010), and higher RD in the right UF (WMD=0.32, p = 0.009). We found no significant differences between REL and HC. In the right but not left UF, REL showed higher FA than BD (p = 0.043). CONCLUSION Our findings support aberrant UF microstructure, potentially related to alterations in myelination, as a mechanism, but not as an endophenotype of BD. However, given the limited power in the REL subsample, the latter finding must be considered preliminary. Studies examining the role of the UF in individuals at familial risk for BD are warranted.
Collapse
Affiliation(s)
- Ellie Xu
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Lynn Nguyen
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Rebecca Hu
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Caitlin M. Stavish
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Ellen Leibenluft
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Julia O. Linke
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Integrity of the uncinate fasciculus is associated with the onset of bipolar disorder: a 6-year followed-up study. Transl Psychiatry 2021; 11:111. [PMID: 33547277 PMCID: PMC7864939 DOI: 10.1038/s41398-021-01222-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022] Open
Abstract
Patients with Bipolar Disorder (BD) are associated with aberrant uncinate fasciculus (UF) that connects amygdala-ventral prefrontal cortex (vPFC) system, but the casual relationship is still uncertain. The research aimed to investigate the integrity of UF among offspring of patients with BD and investigate its potential causal association with subsequent declaration of BD. The fractional anisotropy (FA) and mean diffusivity (MD) of UF were compared in asymptomatic offspring (AO, n = 46) and symptomatic offspring (SO, n = 45) with a parent with BD, and age-matched healthy controls (HCs, n = 35). Logistic regressions were performed to assess the predictive effect of UF integrity on the onset of BD. The three groups did not differ at baseline in terms of FA and MD of the UF. Nine out of 45 SO developed BD over a follow-up period of 6 years, and the right UF FA predicted the onset of BD (p = 0.038, OR = 0.212, 95% CI = 0.049-0.917). The ROC curve revealed that the right UF FA predicted BD onset (area-under-curve = 0.859) with sensitivity of 88.9% and specificity of 77.3%. The complementary whole-brain tract-based spatial statistics (TBSS) showed that widespread increases of FA were found in the SO group compared with HCs, but were not associated with the onset of BD. Our data provide evidence supporting the causal relationship between the white matter structural integrity of the amygdala-vPFC system and the onset of BD in genetically at-risk offspring of BD patients.
Collapse
|
10
|
Mak ADP, Leung ONW, Chou IWY, Wong SLY, Chu WCW, Yeung D, So SHW, Ma SL, Lam LCW, Leung CM, Lee S. White matter integrity in young medication-naïve bipolar II depressed adults. Sci Rep 2021; 11:1816. [PMID: 33469064 PMCID: PMC7815920 DOI: 10.1038/s41598-021-81355-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022] Open
Abstract
It is unknown if young medication-naïve bipolar II (BPII) depressed patients have increased white matter (WM) disruptions. 27 each of young (average 23 years) and treatment-naïve BPII depressed, unipolar depressed (UD) patients and age–sex–education matched healthy controls (HC) underwent 3 T MRIs with diffusion tensor imaging. Diagnostic ratings included Structured Clinical Interview for DSM Disorders (SCID), Montgomery-Åsberg Depression Rating Scale (MADRS), Young Mania Rating Scale (YMRS) and Hamilton Anxiety Rating Scale (HAM-A). Patients were clinically depressed (MADRS-BPII: 26.15 [SD9.25], UD: 25.56 [5.24], p = 0.86). Compared to UD, BPII had increased family bipolarity (BPII 13.6% vs UD 2.5%, p = 0.01, φc = 0.28), hypomanic symptoms (YMRS-BPII: 4.22 [4.24], UD: 1.33 [2], p = 0.02, d = 0.87), lifetime number of depressive episodes (BPII: 2.37 [1.23], UD: 1.44 [0.75], p = 0.02, d = 0.91), lifetime and current-year number of episodes (lifetime BPII: 50.85 [95.47], UD: 1.7 [1.03]; current-year BPII: 9.93 [16.29], UD: 1.11 [0.32], ps = 0.04, ds = 0.73–0.77) and longer illness duration (BPII: 4.96 years [3.96], UD: 2.99 [3.33], p = 0.15, d = 0.54). BPII showed no increased WM disruptions vs UD or HC in any of the 15 a priori WM tracts. UD had lower right superior longitudinal fasciculus (SLF) (temporal) axial diffusivity (AD) (1.14 vs 1.17 (BPII), 1.16 (HC); F = 6.93, 95% CI of\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${F}_{B}$$\end{document}FB: 0.00073, 5.22, ηp2 = 0.15). Principal component analysis followed by exploratory linear discriminant analysis showed that increased R-SLF (temporal) AD, YMRS and family bipolarity distinguished BPII from UD (81.5% sensitivity, 85.2% specificity) independent of episode number and frequency. Young, medication-naïve adults with BPII depression did not show the WM disruptions distinguishing more chronically ill BP patients from UD. These WM disruptions may therefore be partly attributable to illness chronicity. Longitudinal studies should examine the trajectory of WM changes in BPII and UD and predictive validity of these baseline clinical and imaging parameters.
Collapse
Affiliation(s)
- Arthur Dun Ping Mak
- Department of Psychiatry, G/F Multicentre, Tai Po Hospital, The Chinese University of Hong Kong, Tai Po, Hong Kong, SAR, China.
| | - Owen Ngo Wang Leung
- Department of Psychiatry, G/F Multicentre, Tai Po Hospital, The Chinese University of Hong Kong, Tai Po, Hong Kong, SAR, China
| | - Idy Wing Yi Chou
- Department of Psychiatry, G/F Multicentre, Tai Po Hospital, The Chinese University of Hong Kong, Tai Po, Hong Kong, SAR, China
| | - Sheila Lok Yiu Wong
- Department of Psychiatry, G/F Multicentre, Tai Po Hospital, The Chinese University of Hong Kong, Tai Po, Hong Kong, SAR, China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - David Yeung
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Suzanne Ho-Wai So
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Suk Ling Ma
- Department of Psychiatry, G/F Multicentre, Tai Po Hospital, The Chinese University of Hong Kong, Tai Po, Hong Kong, SAR, China
| | - Linda Chiu Wah Lam
- Department of Psychiatry, G/F Multicentre, Tai Po Hospital, The Chinese University of Hong Kong, Tai Po, Hong Kong, SAR, China
| | - Chi Ming Leung
- Department of Psychiatry, G/F Multicentre, Tai Po Hospital, The Chinese University of Hong Kong, Tai Po, Hong Kong, SAR, China
| | - Sing Lee
- Department of Psychiatry, G/F Multicentre, Tai Po Hospital, The Chinese University of Hong Kong, Tai Po, Hong Kong, SAR, China
| |
Collapse
|
11
|
Hu R, Stavish C, Leibenluft E, Linke JO. White Matter Microstructure in Individuals With and At Risk for Bipolar Disorder: Evidence for an Endophenotype From a Voxel-Based Meta-analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:1104-1113. [PMID: 32839153 PMCID: PMC11102922 DOI: 10.1016/j.bpsc.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aberrant white matter (WM) microstructure has been proposed as a mechanism underlying bipolar disorder (BD). Given the strong genetic underpinnings of both WM microstructure and BD, such WM aberrations may be not only a disease marker, but also an endophenotype of BD. If so, they should be observable in individuals at risk for BD (AR) (i.e., first-degree relatives). This meta-analysis integrates evidence on perturbed WM microstructure in individuals with or at risk for BD. METHODS A comprehensive search of literature published through April 2020 identified diffusion tensor imaging studies that used a voxel-based approach to compare fractional anisotropy (FA) and radial diffusivity between individuals with BD and/or AR individuals and healthy volunteers. Effect size comparison and conjunction analysis allowed identification of endophenotypes and disease markers of BD. Effects of age, sex, mood state, and psychotropic medication were explored using meta-regressions. RESULTS We included 57 studies in individuals with BD (N = 4631) and 10 in AR individuals (N = 753). Both individuals with and at risk for BD were associated with lower FA in the body and splenium of the corpus callosum. In the BD group, decreased FA and increased radial diffusivity comprised the entire corpus callosum, anterior thalamic radiation, fronto-orbito-polar tracts, and superior longitudinal fasciculus, and were influenced by age, sex, and mood state. Studies with higher proportions of individuals taking lithium or antipsychotics reported smaller FA reductions in BD. CONCLUSIONS Findings suggest that abnormalities in the body and splenium of the corpus callosum may be an endophenotype for BD, and they associate BD with WM tracts relevant for working memory performance, attention, and reward processing.
Collapse
Affiliation(s)
- Rebecca Hu
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Caitlin Stavish
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Ellen Leibenluft
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Julia O Linke
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
12
|
Neurodevelopmental pathways in bipolar disorder. Neurosci Biobehav Rev 2020; 112:213-226. [PMID: 32035092 DOI: 10.1016/j.neubiorev.2020.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/03/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
Aberrations in neurodevelopmental trajectories have been implicated in the neurobiology of several mental disorders and evidence indicates a pathophysiological and genetic overlap of schizophrenia and bipolar disorder (BD). In this narrative review, we summarize findings related to developmental and perinatal factors as well as epidemiological, clinical, neuropsychological, brain imaging, postmortem brain and genomic studies that provide evidence for a putative neurodevelopmental pathogenesis and etiology of BD. Overall, aberrations in neurodevelopmental pathways have been more consistently implicated in the pathophysiology of schizophrenia compared to BD. Nevertheless, an accumulating body of evidence indicates that dysfunctional neurodevelopmental pathways may be implicated in the underlying pathophysiology of at least a subset of individuals with BD particularly those with an early age of illness onset and those exhibiting psychotic symptoms. A heuristic neurodevelopmental model for the pathophysiology of BD based on the findings of this review is proposed. Furthermore, we critically discuss clinical and research implications of this model. Finally, further research directions for this emerging field are provided.
Collapse
|
13
|
Han MR, Han KM, Kim A, Kang W, Kang Y, Kang J, Won E, Tae WS, Cho Y, Ham BJ. Whole-exome sequencing identifies variants associated with structural MRI markers in patients with bipolar disorders. J Affect Disord 2019; 249:159-168. [PMID: 30772743 DOI: 10.1016/j.jad.2019.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/29/2019] [Accepted: 02/10/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is one of the most heritable psychiatric disorders. A growing number of whole-exome sequencing (WES) studies for BD has been performed, however, no research has examined the association between single nucleotide variants (SNVs) from WES and structural magnetic resonance imaging (MRI) data. METHODS We sequenced whole-exomes in 53 patients with BD and 82 healthy control participants at an initial discovery stage and investigated the impacts of SNVs in risk genes from WES analysis on the cortical gray-matter thickness and integrity of white matter tracts and in the following stage. Cortical thickness and white matter integrity were investigated using the FreeSurfer and TRACULA (Tracts Constrained by UnderLying Anatomy). RESULTS We identified 122 BD-related genes including KMT2C, AHNAK, CDH23, DCHS1, FRAS1, MACF1 and RYR3 and observed 27 recurrent copy number alteration regions including gain on 8p23.1 and loss on 15q11.1 - q11.2. Among them, single nucleotide polymorphism (SNP) rs4639425 in KMT2C gene, which regulates histone H3 lysine 4 (H3K4) methylation involved in chromatin remodeling, was associated with widespread alterations of white matter integrity including the cingulum, uncinate fasciculus, cortico-spinal tract, and superior longitudinal fasciculus. LIMITATION The small sample size of patients with BD in the genome data may cause our study to be underpowered when searching for putative rare mutations. CONCLUSION This study first combined a WES approach and neuroimaging findings in psychiatric disorders. We postulate the rs4639425 may be associated with BD-related microstructural changes of white matter tracts.
Collapse
Affiliation(s)
- Mi-Ryung Han
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Yunjung Cho
- Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Yang C, Li L, Hu X, Luo Q, Kuang W, Lui S, Huang X, Dai J, He M, Kemp GJ, Sweeney JA, Gong Q. Psychoradiologic abnormalities of white matter in patients with bipolar disorder: diffusion tensor imaging studies using tract-based spatial statistics. J Psychiatry Neurosci 2019; 44:32-44. [PMID: 30565904 PMCID: PMC6306286 DOI: 10.1503/jpn.170221] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND An increasing number of psychoradiology studies that use tract-based spatial statistics (TBSS) of diffusion tensor imaging have reported abnormalities of white matter in patients with bipolar disorder; however, robust conclusions have proven elusive, especially considering some important clinical and demographic factors. In the present study, we performed a quantitative meta-analysis of TBSS studies to elucidate the most consistent white-matter abnormalities in patients with bipolar disorder. METHODS We conducted a systematic search up to May 2017 for all TBSS studies comparing fractional anisotropy (FA) between patients with bipolar disorder and healthy controls. We performed anisotropic effect size–signed differential mapping meta-analysis. RESULTS We identified a total of 22 data sets including 556 patients with bipolar disorder and 623 healthy controls. We found significant FA reductions in the genu and body of the corpus callosum in patients with bipolar disorder relative to healthy controls. No regions of increased FA were reported. In subgroup analyses, the FA reduction in the genu of the corpus callosum retained significance in patients with bipolar disorder type I, and the FA reduction in the body of the corpus callosum retained significance in euthymic patients with bipolar disorder. Meta-regression analysis revealed that the percentage of female patients was negatively correlated with reduced FA in the body of the corpus callosum. LIMITATIONS Data acquisition, patient characteristics and clinical variables in the included studies were heterogeneous. The small number of diffusion tensor imaging studies using TBSS in patients with bipolar disorder type II, as well as the lack of other clinical information, hindered the application of subgroup meta-analyses. CONCLUSION Our study consistently identified decreased FA in the genu and body of the corpus callosum, suggesting that interhemispheric communication may be the connectivity most affected in patients with bipolar disorder.
Collapse
Affiliation(s)
- Cheng Yang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Lei Li
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Xinyu Hu
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Qiang Luo
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Weihong Kuang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Su Lui
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Xiaoqi Huang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Jing Dai
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Manxi He
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Graham J. Kemp
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - John A Sweeney
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Qiyong Gong
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| |
Collapse
|
15
|
Hughes T, Sønderby IE, Polushina T, Hansson L, Holmgren A, Athanasiu L, Melbø-Jørgensen C, Hassani S, Hoeffding LK, Herms S, Bergen SE, Karlsson R, Song J, Rietschel M, Nöthen MM, Forstner AJ, Hoffmann P, Hultman CM, Landén M, Cichon S, Werge T, Andreassen OA, Le Hellard S, Djurovic S. Elevated expression of a minor isoform of ANK3 is a risk factor for bipolar disorder. Transl Psychiatry 2018; 8:210. [PMID: 30297702 PMCID: PMC6175894 DOI: 10.1038/s41398-018-0175-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 01/16/2023] Open
Abstract
Ankyrin-3 (ANK3) is one of the few genes that have been consistently identified as associated with bipolar disorder by multiple genome-wide association studies. However, the exact molecular basis of the association remains unknown. A rare loss-of-function splice-site SNP (rs41283526*G) in a minor isoform of ANK3 (incorporating exon ENSE00001786716) was recently identified as protective of bipolar disorder and schizophrenia. This suggests that an elevated expression of this isoform may be involved in the etiology of the disorders. In this study, we used novel approaches and data sets to test this hypothesis. First, we strengthen the statistical evidence supporting the allelic association by replicating the protective effect of the minor allele of rs41283526 in three additional large independent samples (meta-analysis p-values: 6.8E-05 for bipolar disorder and 8.2E-04 for schizophrenia). Second, we confirm the hypothesis that both bipolar and schizophrenia patients have a significantly higher expression of this isoform than controls (p-values: 3.3E-05 for schizophrenia and 9.8E-04 for bipolar type I). Third, we determine the transcription start site for this minor isoform by Pacific Biosciences sequencing of full-length cDNA and show that it is primarily expressed in the corpus callosum. Finally, we combine genotype and expression data from a large Norwegian sample of psychiatric patients and controls, and show that the risk alleles in ANK3 identified by bipolar disorder GWAS are located near the transcription start site of this isoform and are significantly associated with its elevated expression. Together, these results point to the likely molecular mechanism underlying ANK3´s association with bipolar disorder.
Collapse
Affiliation(s)
- Timothy Hughes
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway. .,NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Ida E. Sønderby
- 0000 0004 0389 8485grid.55325.34Department of Medical Genetics, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tatiana Polushina
- 0000 0004 1936 7443grid.7914.bDepartment of Clinical Science, NORMENT, KG Jebsen Centre for Psychosis Research, University of Bergen, Bergen, Norway ,0000 0000 9753 1393grid.412008.fDr Einar Martens Research Group for Biological Psychiatry, Centre for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lars Hansson
- 0000 0004 0389 8485grid.55325.34Department of Medical Genetics, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 8921grid.5510.1NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Asbjørn Holmgren
- 0000 0004 0389 8485grid.55325.34Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Lavinia Athanasiu
- 0000 0004 1936 8921grid.5510.1NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christian Melbø-Jørgensen
- 0000 0004 1936 8921grid.5510.1NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sahar Hassani
- 0000 0004 1936 8921grid.5510.1NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Louise K. Hoeffding
- 0000 0004 0646 7373grid.4973.9Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark ,0000 0000 9817 5300grid.452548.aiPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Stefan Herms
- 0000 0004 1937 0642grid.6612.3Department of Biomedicine, Human Genomics Research Group, University of Basel, Basel, Switzerland ,0000 0001 2240 3300grid.10388.32Institute of Human Genetics, University of Bonn, Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Sarah E. Bergen
- 0000 0004 1937 0626grid.4714.6Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Robert Karlsson
- 0000 0004 1937 0626grid.4714.6Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jie Song
- 0000 0004 1937 0626grid.4714.6Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marcella Rietschel
- 0000 0001 2190 4373grid.7700.0Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Markus M. Nöthen
- 0000 0001 2240 3300grid.10388.32Institute of Human Genetics, University of Bonn, Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Andreas J. Forstner
- 0000 0004 1937 0642grid.6612.3Department of Biomedicine, Human Genomics Research Group, University of Basel, Basel, Switzerland ,0000 0001 2240 3300grid.10388.32Institute of Human Genetics, University of Bonn, Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany ,0000 0004 1937 0642grid.6612.3Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Per Hoffmann
- 0000 0004 1937 0642grid.6612.3Department of Biomedicine, Human Genomics Research Group, University of Basel, Basel, Switzerland ,0000 0001 2240 3300grid.10388.32Institute of Human Genetics, University of Bonn, Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Christina M. Hultman
- 0000 0004 1937 0626grid.4714.6Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Landén
- 0000 0004 1937 0626grid.4714.6Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden ,0000 0000 9919 9582grid.8761.8Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Sven Cichon
- 0000 0004 1937 0642grid.6612.3Department of Biomedicine, Human Genomics Research Group, University of Basel, Basel, Switzerland ,0000 0001 2240 3300grid.10388.32Institute of Human Genetics, University of Bonn, Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany ,0000 0001 2297 375Xgrid.8385.6Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany
| | - Thomas Werge
- 0000 0004 0646 7373grid.4973.9Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark ,0000 0000 9817 5300grid.452548.aiPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark ,0000 0001 0674 042Xgrid.5254.6Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole A. Andreassen
- 0000 0004 1936 8921grid.5510.1NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway ,0000 0004 0389 8485grid.55325.34NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Stephanie Le Hellard
- 0000 0004 1936 7443grid.7914.bDepartment of Clinical Science, NORMENT, KG Jebsen Centre for Psychosis Research, University of Bergen, Bergen, Norway ,0000 0000 9753 1393grid.412008.fDr Einar Martens Research Group for Biological Psychiatry, Centre for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Srdjan Djurovic
- 0000 0004 0389 8485grid.55325.34Department of Medical Genetics, Oslo University Hospital, Oslo, Norway ,0000 0004 1936 7443grid.7914.bDepartment of Clinical Science, NORMENT, KG Jebsen Centre for Psychosis Research, University of Bergen, Bergen, Norway
| |
Collapse
|
16
|
Foley SF, Bracher-Smith M, Tansey KE, Harrison JR, Parker GD, Caseras X. Fractional anisotropy of the uncinate fasciculus and cingulum in bipolar disorder type I, type II, unaffected siblings and healthy controls. Br J Psychiatry 2018; 213:548-554. [PMID: 30113288 PMCID: PMC6130806 DOI: 10.1192/bjp.2018.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Fractional anisotropy in the uncinate fasciculus and the cingulum may be biomarkers for bipolar disorder and may even be distinctly affected in different subtypes of bipolar disorder, an area in need of further research.AimsThis study aims to establish if fractional anisotropy in the uncinate fasciculus and cingulum shows differences between healthy controls, patients with bipolar disorder type I (BD-I) and type II (BD-II), and their unaffected siblings. METHOD Fractional anisotropy measures from the uncinate fasciculus, cingulum body and parahippocampal cingulum were compared with tractography methods in 40 healthy controls, 32 patients with BD-I, 34 patients with BD-II, 17 siblings of patients with BD-I and 14 siblings of patients with BD-II. RESULTS The main effects were found in both the right and left uncinate fasciculus, with patients with BD-I showing significantly lower fractional anisotropy than both patients with BD-II and healthy controls. Participants with BD-II did not differ from healthy controls. Siblings showed similar effects in the left uncinate fasciculus. In a subsequent complementary analysis, we investigated the association between fractional anisotropy in the uncinate fasciculus and polygenic risk for bipolar disorder and psychosis in a large cohort (n = 570) of healthy participants. However, we found no significant association. CONCLUSIONS Fractional anisotropy in the uncinate fasciculus differs significantly between patients with BD-I and patients with BD-II and healthy controls. This supports the hypothesis of differences in the physiological sub-tract between bipolar disorder subtypes. Similar results were found in unaffected siblings, suggesting the potential for this biomarker to represent an endophenotype for BD-I. However, fractional anisotropy in the uncinate fasciculus seems unrelated to polygenic risk for bipolar disorder or psychosis.Declaration of interestNone.
Collapse
Affiliation(s)
- Sonya F. Foley
- scientific support staff, Cardiff University Brain Research Imaging Centre, Cardiff University, UK
| | - Matthew Bracher-Smith
- PhD student, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK
| | - Katherine E. Tansey
- Core Bioinformatics and Statistics Team, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Judith R. Harrison
- clinical research fellow, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK
| | - Greg D. Parker
- senior data analyst, Cardiff University Brain Research Imaging Centre, Cardiff University, UK
| | - Xavier Caseras
- faculty member, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK,Correspondence: Xavier Caseras, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis building, Maindy Road, Cardiff CF24 4HQ, UK.
| |
Collapse
|
17
|
Ganzola R, McIntosh AM, Nickson T, Sprooten E, Bastin ME, Giles S, Macdonald A, Sussmann J, Duchesne S, Whalley HC. Diffusion tensor imaging correlates of early markers of depression in youth at high-familial risk for bipolar disorder. J Child Psychol Psychiatry 2018; 59:917-927. [PMID: 29488219 DOI: 10.1111/jcpp.12879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mood disorders are familial psychiatric diseases, in which patients show reduced white matter (WM) integrity. We sought to determine whether WM integrity was affected in young offspring at high-familial risk of mood disorder before they go on to develop major depressive disorder (MDD). METHODS The Bipolar Family study is a prospective longitudinal study examining young individuals (age 16-25 years) at familial risk of mood disorder on three occasions 2 years apart. This study used baseline imaging data, categorizing groups according to clinical outcome at follow-up. Diffusion tensor MRI data were acquired for 61 controls and 106 high-risk individuals, the latter divided into 78 high-risk subjects who remained well throughout the study ('high-risk well') and 28 individuals who subsequently developed MDD ('high-risk MDD'). Voxel-wise between-group comparison of fractional anisotropy (FA) based on diagnostic status was performed using tract-based spatial statistics (TBSS). RESULTS Compared to controls, both high-risk groups showed widespread decreases in FA (pcorr < .05) at baseline. Although FA in the high-risk MDD group negatively correlated with subthreshold depressive symptoms at the time of scanning (pcorr < .05), there were no statistically significant differences at p-corrected levels between the two high-risk groups. CONCLUSIONS These results suggest that decreased FA is related to the presence of familial risk for mood disorder along with subdiagnostic symptoms at the time of scanning rather than predictive of subsequent diagnosis. Due to the difficulties performing such longitudinal prospective studies, we note, however, that this latter analysis may be underpowered due to sample size within the high-risk MDD group. Further clinical follow-up may clarify these findings.
Collapse
Affiliation(s)
- Rossana Ganzola
- Centre de Recherche CERVO, Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada
| | | | - Thomas Nickson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Emma Sprooten
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Stephen Giles
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Alix Macdonald
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | | | - Simon Duchesne
- Centre de Recherche CERVO, Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada.,Départment de Radiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | | |
Collapse
|
18
|
Czéh B, Nagy SA. Clinical Findings Documenting Cellular and Molecular Abnormalities of Glia in Depressive Disorders. Front Mol Neurosci 2018. [PMID: 29535607 PMCID: PMC5835102 DOI: 10.3389/fnmol.2018.00056] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Depressive disorders are complex, multifactorial mental disorders with unknown neurobiology. Numerous theories aim to explain the pathophysiology. According to the “gliocentric theory”, glial abnormalities are responsible for the development of the disease. The aim of this review article is to summarize the rapidly growing number of cellular and molecular evidences indicating disturbed glial functioning in depressive disorders. We focus here exclusively on the clinical studies and present the in vivo neuroimaging findings together with the postmortem molecular and histopathological data. Postmortem studies demonstrate glial cell loss while the in vivo imaging data reveal disturbed glial functioning and altered white matter microstructure. Molecular studies report on altered gene expression of glial specific genes. In sum, the clinical findings provide ample evidences on glial pathology and demonstrate that all major glial cell types are affected. However, we still lack convincing theories explaining how the glial abnormalities develop and how exactly contribute to the emotional and cognitive disturbances. Abnormal astrocytic functioning may lead to disturbed metabolism affecting ion homeostasis and glutamate clearance, which in turn, affect synaptic communication. Abnormal oligodendrocyte functioning may disrupt the connectivity of neuronal networks, while microglial activation indicates neuroinflammatory processes. These cellular changes may relate to each other or they may indicate different endophenotypes. A theory has been put forward that the stress-induced inflammation—mediated by microglial activation—triggers a cascade of events leading to damaged astrocytes and oligodendroglia and consequently to their dysfunctions. The clinical data support the “gliocentric” theory, but future research should clarify whether these glial changes are truly the cause or simply the consequences of this devastating disorder.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,Department of Laboratory Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Szilvia A Nagy
- Neurobiology of Stress Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,Department of Neurosurgery, University of Pécs, Medical School, Pécs, Hungary.,MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary.,Pécs Diagnostic Centre, Pécs, Hungary
| |
Collapse
|
19
|
Deng F, Wang Y, Huang H, Niu M, Zhong S, Zhao L, Qi Z, Wu X, Sun Y, Niu C, He Y, Huang L, Huang R. Abnormal segments of right uncinate fasciculus and left anterior thalamic radiation in major and bipolar depression. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:340-349. [PMID: 28912043 DOI: 10.1016/j.pnpbp.2017.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/03/2017] [Accepted: 09/10/2017] [Indexed: 12/22/2022]
Abstract
Differential brain structural abnormalities between bipolar disorder (BD) and major depressive disorder (MDD) may reflect different pathological mechanisms underlying these two brain disorders. However, few studies have directly compared the brain structural properties, especially in white matter (WM) tracts, between BD and MDD. Using automated fiber-tract quantification (AFQ), we utilized diffusion tensor images (DTI) from 67 unmedicated depressed patients, including 31 BD and 36 MDD, and 45 healthy controls (HC) to create fractional anisotropy (FA) tract profiles along 20 major WM tracts. Then, we compared between-group differences in FA values at each node along the fiber tracts. To differentiate the BD and the MDD, we enrolled the diffusion measures of the tract profiles into support vector machine (SVM), a type of machine learning algorithm. The BD showed lower FA in the insular cortex portion of the right uncinate fasciculus (UF) compared to the MDD and in the prefrontal lobe portion of the right UF compared to the HC. The MDD showed lower FA in the prefrontal lobe portion of the left anterior thalamic radiation (ATR) compared to the HC. Using the SVM approach, we found the FA tract profile of the left ATR can be used to differentiate the BD and the MDD at an accuracy up to 68.33% (p=0.018). These findings suggested that the BD and the MDD may be characterized by different abnormalities in specific segments of brain WM tracts, especially in two frontal-situated tracts, the right UF and the left ATR.
Collapse
Affiliation(s)
- Feng Deng
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Huiyuan Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Meiqi Niu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ling Zhao
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaoyan Wu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Yao Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chen Niu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Yuan He
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ruiwang Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
20
|
Roberts G, Perry A, Lord A, Frankland A, Leung V, Holmes-Preston E, Levy F, Lenroot RK, Mitchell PB, Breakspear M. Structural dysconnectivity of key cognitive and emotional hubs in young people at high genetic risk for bipolar disorder. Mol Psychiatry 2018; 23:413-421. [PMID: 27994220 PMCID: PMC5794888 DOI: 10.1038/mp.2016.216] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023]
Abstract
Emerging evidence suggests that psychiatric disorders are associated with disturbances in structural brain networks. Little is known, however, about brain networks in those at high risk (HR) of bipolar disorder (BD), with such disturbances carrying substantial predictive and etiological value. Whole-brain tractography was performed on diffusion-weighted images acquired from 84 unaffected HR individuals with at least one first-degree relative with BD, 38 young patients with BD and 96 matched controls (CNs) with no family history of mental illness. We studied structural connectivity differences between these groups, with a focus on highly connected hubs and networks involving emotional centres. HR participants showed lower structural connectivity in two lateralised sub-networks centred on bilateral inferior frontal gyri and left insular cortex, as well as increased connectivity in a right lateralised limbic sub-network compared with CN subjects. BD was associated with weaker connectivity in a small right-sided sub-network involving connections between fronto-temporal and temporal areas. Although these sub-networks preferentially involved structural hubs, the integrity of the highly connected structural backbone was preserved in both groups. Weaker structural brain networks involving key emotional centres occur in young people at genetic risk of BD and those with established BD. In contrast to other psychiatric disorders such as schizophrenia, the structural core of the brain remains intact, despite the local involvement of network hubs. These results add to our understanding of the neurobiological correlates of BD and provide predictions for outcomes in young people at high genetic risk for BD.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - A Perry
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Metro North Mental Health Service, Brisbane, QLD, Australia,Centre for Healthy Brain Ageing, Randwick, NSW, Australia
| | - A Lord
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - A Frankland
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - V Leung
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - E Holmes-Preston
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - F Levy
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Prince of Wales Hospital, Randwick, NSW, Australia
| | - R K Lenroot
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Neuroscience Research Australia, Randwick, NSW, Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia,Prince of Wales Hospital, Randwick, NSW, Australia
| | - M Breakspear
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Metro North Mental Health Service, Brisbane, QLD, Australia,Systems Neuroscience Group, QIMR Berghofer Institute of Medical Research, 300 Herston Road, Herston, QLD, Australia. E-mail:
| |
Collapse
|
21
|
Fullerton JM, Klauser P, Lenroot RK, Shaw AD, Overs B, Heath A, Cairns MJ, Atkins J, Scott R, Schofield PR, Weickert CS, Pantelis C, Fornito A, Whitford TJ, Weickert TW, Zalesky A. Differential effect of disease-associated ST8SIA2 haplotype on cerebral white matter diffusion properties in schizophrenia and healthy controls. Transl Psychiatry 2018; 8:21. [PMID: 29353880 PMCID: PMC5802561 DOI: 10.1038/s41398-017-0052-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/23/2017] [Indexed: 11/09/2022] Open
Abstract
Brain white matter abnormalities are evident in individuals with schizophrenia, and also their first-degree relatives, suggesting that some alterations may relate to underlying genetic risk. The ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2 (ST8SIA2) gene, which encodes the alpha-2,8-sialyltransferase 8B enzyme that aids neuronal migration and synaptic plasticity, was previously implicated as a schizophrenia susceptibility gene. This study examined the extent to which specific haplotypes in ST8SIA2 influence white matter microstructure using diffusion-weighted imaging of individuals with schizophrenia (n = 281) and healthy controls (n = 172), recruited across five Australian sites. Interactions between diagnostic status and the number of haplotype copies (0 or ≥1) were tested across all white matter voxels with cluster-based statistics. Fractional anisotropy (FA) in the right parietal lobe was found to show a significant interaction between diagnosis and ST8SIA2 protective haplotype (p < 0.05, family-wise error rate (FWER) cluster-corrected). The protective haplotype was associated with increased FA in controls, but this effect was reversed in people with schizophrenia. White matter fiber tracking revealed that the region-of-interest was traversed by portions of the superior longitudinal fasciculus, corona radiata, and posterior limb of internal capsule. Post hoc analysis revealed that reduced FA in this regional juncture correlated with reduced IQ in people with schizophrenia. The ST8SIA2 risk haplotype copy number did not show any differential effects on white matter. This study provides a link between a common disease-associated haplotype and specific changes in white matter microstructure, which may relate to resilience or risk for mental illness, providing further compelling evidence for involvement of ST8SIA2 in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Janice M. Fullerton
- 0000 0000 8900 8842grid.250407.4Neuroscience Research Australia, Randwick, Sydney, NSW Australia ,0000 0004 4902 0432grid.1005.4School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW Australia ,0000 0000 8696 2171grid.419558.4Schizophrenia Research Institute, Sydney, NSW Australia
| | - Paul Klauser
- 0000 0004 1936 7857grid.1002.3Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, VIC Australia ,0000 0001 2179 088Xgrid.1008.9Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, VIC Australia
| | - Rhoshel K. Lenroot
- 0000 0000 8900 8842grid.250407.4Neuroscience Research Australia, Randwick, Sydney, NSW Australia ,0000 0000 8696 2171grid.419558.4Schizophrenia Research Institute, Sydney, NSW Australia ,0000 0004 4902 0432grid.1005.4School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW Australia
| | - Alex D. Shaw
- 0000 0000 8900 8842grid.250407.4Neuroscience Research Australia, Randwick, Sydney, NSW Australia ,0000 0000 8696 2171grid.419558.4Schizophrenia Research Institute, Sydney, NSW Australia
| | - Bronwyn Overs
- 0000 0000 8900 8842grid.250407.4Neuroscience Research Australia, Randwick, Sydney, NSW Australia
| | - Anna Heath
- 0000 0000 8900 8842grid.250407.4Neuroscience Research Australia, Randwick, Sydney, NSW Australia
| | - Murray J. Cairns
- 0000 0000 8696 2171grid.419558.4Schizophrenia Research Institute, Sydney, NSW Australia ,0000 0000 8831 109Xgrid.266842.cSchool of Biomedical Sciences, University of Newcastle, Newcastle, NSW Australia
| | - Joshua Atkins
- 0000 0000 8831 109Xgrid.266842.cSchool of Biomedical Sciences, University of Newcastle, Newcastle, NSW Australia
| | - Rodney Scott
- 0000 0000 8696 2171grid.419558.4Schizophrenia Research Institute, Sydney, NSW Australia ,0000 0000 8831 109Xgrid.266842.cSchool of Biomedical Sciences, University of Newcastle, Newcastle, NSW Australia
| | | | - Peter R. Schofield
- 0000 0000 8900 8842grid.250407.4Neuroscience Research Australia, Randwick, Sydney, NSW Australia ,0000 0004 4902 0432grid.1005.4School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW Australia ,0000 0000 8696 2171grid.419558.4Schizophrenia Research Institute, Sydney, NSW Australia
| | - Cyndi Shannon Weickert
- 0000 0000 8900 8842grid.250407.4Neuroscience Research Australia, Randwick, Sydney, NSW Australia ,0000 0000 8696 2171grid.419558.4Schizophrenia Research Institute, Sydney, NSW Australia ,0000 0004 4902 0432grid.1005.4School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW Australia
| | - Christos Pantelis
- 0000 0001 2179 088Xgrid.1008.9Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, VIC Australia
| | - Alex Fornito
- 0000 0004 1936 7857grid.1002.3Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, VIC Australia
| | - Thomas J. Whitford
- 0000 0004 4902 0432grid.1005.4School of Psychology, Faculty of Science, University of New South Wales, Sydney, NSW Australia
| | - Thomas W. Weickert
- 0000 0000 8900 8842grid.250407.4Neuroscience Research Australia, Randwick, Sydney, NSW Australia ,0000 0000 8696 2171grid.419558.4Schizophrenia Research Institute, Sydney, NSW Australia ,0000 0004 4902 0432grid.1005.4School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW Australia
| | - Andrew Zalesky
- 0000 0001 2179 088Xgrid.1008.9Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, VIC Australia
| |
Collapse
|
22
|
Mahapatra A, Khandelwal SK, Sharan P, Garg A, Mishra NK. Diffusion tensor imaging tractography study in bipolar disorder patients compared to first-degree relatives and healthy controls. Psychiatry Clin Neurosci 2017; 71:706-715. [PMID: 28419638 DOI: 10.1111/pcn.12530] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
AIM We aimed to compare white matter structural changes in specific tracts by diffusion tensor imaging (DTI) tractography in patients with bipolar disorder (BD) I, non-ill first-degree relatives (FDR) of the patients, and healthy controls (HC). METHODS In a cross-sectional study, we studied right-handed subjects consisting of 16 euthymic BD I patients, 15 FDR, and 15 HC. The anterior thalamic radiation, uncinate fasciculus, corpus callosum, and cingulum bundle were reconstructed by DTI tractography. Mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were compared for group differences followed by post-hoc analysis. RESULTS The three groups did not differ in terms of sociodemographic variables. There were significant group differences in the FA values among the BD I patients, their FDR, and the HC for the corpus callosum, the dorsal part of the right cingulum bundle, the hippocampal part of the cingulum bundle bilaterally, and the uncinate fasciculus (P < 0.001). The FA values in the patients were significantly lower than in controls, and FDR also showed similar differences; however, they were smaller than those in patients. No significant difference was found between the groups for FA values of the dorsal part of the left cingulum bundle and anterior thalamic radiation. Significant differences were present for ADC values among the groups for the corpus callosum, the dorsal and hippocampal parts of the cingulum, anterior thalamic radiation, and uncinate fasciculus bilaterally (P < 0.01). The FA and ADC values did not correlate significantly with age or any clinical variables. CONCLUSION These findings suggest that BD patients and their FDR show alterations in microstructural integrity of white matter tracts, compared to the healthy population.
Collapse
Affiliation(s)
- Ananya Mahapatra
- Department of Psychiatry & National Drug Dependence Treatment Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sudhir K Khandelwal
- Department of Psychiatry & National Drug Dependence Treatment Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Pratap Sharan
- Department of Psychiatry & National Drug Dependence Treatment Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Garg
- Department of Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - Nalini K Mishra
- Department of Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
23
|
Dong D, Wang Y, Chang X, Jiang Y, Klugah-Brown B, Luo C, Yao D. Shared abnormality of white matter integrity in schizophrenia and bipolar disorder: A comparative voxel-based meta-analysis. Schizophr Res 2017; 185:41-50. [PMID: 28082140 DOI: 10.1016/j.schres.2017.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/06/2016] [Accepted: 01/03/2017] [Indexed: 01/04/2023]
Abstract
Patients with schizophrenia and bipolar disorder (BD) shared a significant overlap in genetic susceptibility, pharmacological treatment responses, neuropsychological deficits, and epidemiological features. However, it remains unknown whether these clinical overlaps are mediated by shared or disorder-specific abnormalities of white matter integrity. In this voxel-based meta-analytic comparison of whole-brain white matter integrity, we aimed to identify the shared or disorder-specific structural abnormalities between schizophrenia and BD. A comprehensive literature search was conducted up to February 2016 to identify studies that compared between patients and healthy controls (HC) by using whole-brain diffusion approach (schizophrenia: 24 datasets with 754 patients vs. 775 HC; BD: 23 datasets with 705 patients vs. 679 HC). Voxel-wise meta-analyses were conducted and restricted to unified template using seed-based d-Mapping. Abnormal white matter integrity was calculated within each condition and a direct comparison of effect size was performed of alterations between two conditions. Two regions with significant reductions of fractional anisotropy (FA) characterized abnormal water diffusion in both disorders: the genu of the corpus callosum (CC) and posterior cingulum fibers. There was no significant difference found between the two disorders. Our results highlighted shared impairments of FA at genu of the CC and left posterior cingulum fibers, which suggests that, phenotypic overlap between schizophrenia and BD could be related to common brain circuit dysfunction.
Collapse
Affiliation(s)
- Debo Dong
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yulin Wang
- Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Research Group of Biological Psychology, Vrije Universiteit Brussel, Brussels 1040, Belgium; Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Henri Dunantlaan 2, Ghent B-9000, Belgium.
| | - Xuebin Chang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yuchao Jiang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Benjamin Klugah-Brown
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
24
|
Ganzola R, Nickson T, Bastin ME, Giles S, Macdonald A, Sussmann J, McIntosh AM, Whalley HC, Duchesne S. Longitudinal differences in white matter integrity in youth at high familial risk for bipolar disorder. Bipolar Disord 2017; 19:158-167. [PMID: 28470928 DOI: 10.1111/bdi.12489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/04/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Previous neuroimaging studies have reported abnormalities in white matter (WM) pathways in subjects at high familial risk of mood disorders. In the current study, we examined the trajectory of these abnormalities during the early stages of illness development using longitudinal diffusion tensor imaging (DTI) data. METHODS Subjects (16-28 years old) were recruited in the Scottish Bipolar Family Study, a prospective longitudinal study that has examined individuals at familial risk of mood disorder on three occasions, 2 years apart. The current study concerns imaging data from the first and second assessments. We analysed DTI data for 43 controls and 69 high-risk individuals who were further subdivided into a group of 53 high-risk subjects who remained well (high-risk well) and 16 who met diagnostic criteria for major depressive disorder (high-risk MDD) at follow-up. Longitudinal differences in fractional anisotropy (FA) between groups based on diagnostic status were investigated using the tract-based spatial statistics technique (TBSS). RESULTS We found a significant reduction in FA (Pcorr <.05) across widespread brain regions over 2 years in all three groups. The trajectory of FA reduction did not differ significantly between groups. CONCLUSIONS These results suggest that there are similar trajectories of FA reductions for controls and high-risk young adults, despite high-risk individuals being at a disadvantaged starting point considering their reduced WM integrity detected at baseline in previous studies. Difference in WM integrity between high-risk individuals and controls could therefore occur in earlier childhood and be a necessary but not sufficient condition to develop future mood disorders.
Collapse
Affiliation(s)
- Rossana Ganzola
- Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada
| | - Thomas Nickson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Stephen Giles
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Alix Macdonald
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | | | | | | | - Simon Duchesne
- Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada.,Départment de Radiologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
25
|
Nery FG, Norris M, Eliassen JC, Weber WA, Blom TJ, Welge JA, Barzman DA, Strawn JR, Adler CM, Strakowski SM, DelBello MP. White matter volumes in youth offspring of bipolar parents. J Affect Disord 2017; 209:246-253. [PMID: 27936454 PMCID: PMC10530655 DOI: 10.1016/j.jad.2016.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/25/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Studying youth at high risk of developing bipolar disorder may clarify neurobiological factors associated with vulnerability to this illness. We present here a baseline characterization of brain structure in youth at-risk for bipolar disorder. METHODS Magnetic resonance images were obtained from 115 child and adolescent offspring of bipolar disorder type I subjects and 57 healthy child and adolescent offspring of healthy parents (healthy control offspring). Offspring of parents with bipolar disorder were divided into healthy bipolar offspring (n=47) or symptomatic bipolar offspring (n=68), according to presence or absence of childhood-onset psychopathology. All bipolar offspring were free of major mood and psychotic disorders. Gray (GM) and white matter (WM) volumes were compared between groups using voxel-based morphometry. RESULTS No differences in GM volumes were found across groups. Healthy bipolar offspring presented with decreased WM volumes in areas of the right frontal, temporal and parietal lobes, and in the left temporal and parietal lobes compared to healthy control offspring. Symptomatic bipolar offspring did not present with any differences in WM volumes compared to either healthy bipolar offspring or healthy control offspring. LIMITATIONS Cross-sectional design and heterogeneous sample of symptomatic bipolar offspring. CONCLUSIONS WM volume decreases in areas of the frontal, occipital, and parietal lobes are present in bipolar offspring prior to the development of any psychiatric symptoms, and may be a correlate of familial risk to bipolar disorder. In this large cohort, we have not found evidence for regional GM volume abnormalities as an endophenotype for bipolar disorder.
Collapse
Affiliation(s)
- Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Matthew Norris
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James C Eliassen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wade A Weber
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Thomas J Blom
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey A Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Drew A Barzman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephen M Strakowski
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
26
|
Domen P, Peeters S, Michielse S, Gronenschild E, Viechtbauer W, Roebroeck A, Os JV, Marcelis M. Differential Time Course of Microstructural White Matter in Patients With Psychotic Disorder and Individuals at Risk: A 3-Year Follow-up Study. Schizophr Bull 2017; 43:160-170. [PMID: 27190279 PMCID: PMC5216846 DOI: 10.1093/schbul/sbw061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Although widespread reduced white matter (WM) integrity is a consistent finding in cross-sectional diffusion tensor imaging (DTI) studies of schizophrenia, little is known about the course of these alterations. This study examined to what degree microstructural WM alterations display differential trajectories over time as a function of level of psychosis liability. METHODS Two DTI scans with a 3-year time interval were acquired from 159 participants (55 patients with a psychotic disorder, 55 nonpsychotic siblings and 49 healthy controls) and processed with tract-based spatial statistics. The mean fractional anisotropy (FA) change over time was calculated. Main effects of group, as well as group × region interactions in the model of FA change were examined with multilevel (mixed-effects) models. RESULTS Siblings revealed a significant mean FA decrease over time compared to controls (B = -0.004, P = .04), resulting in a significant sibling-control difference at follow-up (B = -0.007, P = .03). Patients did not show a significant change over time, but their mean FA was lower than controls both at baseline and at follow-up. A significant group × region interaction (χ2 = 105.4, P = .01) revealed group differences in FA change in the right cingulum, left posterior thalamic radiation, right retrolenticular part of the internal capsule, and the right posterior corona radiata. CONCLUSION Whole brain mean FA remained stable over a 3-year period in patients with psychotic disorder and declined over time in nonaffected siblings, so that at follow-up both groups had lower FA with respect to controls. The results suggest that liability for psychosis may involve a process of WM alterations.
Collapse
Affiliation(s)
- Patrick Domen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands;
| | - Sanne Peeters
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Faculty of Psychology and Educational Sciences, Open University of the Netherlands, Heerlen, The Netherlands
| | - Stijn Michielse
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ed Gronenschild
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Wolfgang Viechtbauer
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- King's College London, King's Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, UK
| | - Machteld Marcelis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands
| |
Collapse
|
27
|
Özerdem A, Ceylan D, Can G. Neurobiology of Risk for Bipolar Disorder. CURRENT TREATMENT OPTIONS IN PSYCHIATRY 2016; 3:315-329. [PMID: 27867834 PMCID: PMC5093194 DOI: 10.1007/s40501-016-0093-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bipolar disorder (BD) is a chronic mental illness which follows a relapsing and remitting course and requires lifetime treatment. The lack of biological markers for BD is a major difficulty in clinical practice. Exploring multiple endophenotypes to fit in multivariate genetic models for BD is an important element in the process of finding tools to facilitate early diagnosis, early intervention, prevention of new episodes, and follow-up of treatment response in BD. Reviewing of studies on neuroimaging, neurocognition, and biochemical parameters in populations with high genetic risk for the illness can yield an integrative perspective on the neurobiology of risk for BD. The most up-to-date data reveals consistent deficits in executive function, response inhibition, verbal memory/learning, verbal fluency, and processing speed in risk groups for BD. Functional magnetic resonance imaging (fMRI) studies report alterations in the activity of the inferior frontal gyrus, medial prefrontal cortex, and limbic areas, particularly in the amygdala in unaffected first-degree relatives (FDR) of BD compared to healthy controls. Risk groups for BD also present altered immune and neurochemical modulation. Despite inconsistencies, accumulating data reveals cognitive and imaging markers for risk and to a less extent resilience of BD. Findings on neural modulation markers are preliminary and require further studies. Although the knowledge on the neurobiology of risk for BD has been inadequate to provide benefits for clinical practice, further studies on structural and functional changes in the brain, neurocognitive functioning, and neurochemical modulation have a potential to reveal biomarkers for risk and resilience for BD. Multimodal, multicenter, population-based studies with large sample size allowing for homogeneous subgroup analyses will immensely contribute to the elucidation of biological markers for risk for BD in an integrative model.
Collapse
Affiliation(s)
- Ayşegül Özerdem
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
- Department of Neuroscience, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Deniz Ceylan
- Department of Neuroscience, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
- Department of Psychiatry, Gümüşhane State Hospital, Gümüşhane, Turkey
| | - Güneş Can
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
28
|
Alhusaini S, Whelan CD, Sisodiya SM, Thompson PM. Quantitative magnetic resonance imaging traits as endophenotypes for genetic mapping in epilepsy. NEUROIMAGE-CLINICAL 2016; 12:526-534. [PMID: 27672556 PMCID: PMC5030372 DOI: 10.1016/j.nicl.2016.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/21/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022]
Abstract
Over the last decade, the field of imaging genomics has combined high-throughput genotype data with quantitative magnetic resonance imaging (QMRI) measures to identify genes associated with brain structure, cognition, and several brain-related disorders. Despite its successful application in different psychiatric and neurological disorders, the field has yet to be advanced in epilepsy. In this article we examine the relevance of imaging genomics for future genetic studies in epilepsy from three perspectives. First, we discuss prior genome-wide genetic mapping efforts in epilepsy, considering the possibility that some studies may have been constrained by inherent theoretical and methodological limitations of the genome-wide association study (GWAS) method. Second, we offer a brief overview of the imaging genomics paradigm, from its original inception, to its role in the discovery of important risk genes in a number of brain-related disorders, and its successful application in large-scale multinational research networks. Third, we provide a comprehensive review of past studies that have explored the eligibility of brain QMRI traits as endophenotypes for epilepsy. While the breadth of studies exploring QMRI-derived endophenotypes in epilepsy remains narrow, robust syndrome-specific neuroanatomical QMRI traits have the potential to serve as accessible and relevant intermediate phenotypes for future genetic mapping efforts in epilepsy. QMRI traits have the potential to serve as robust intermediate phenotypes for brain-related disorders. Hippocampal volume is the most promising neuroimaging endophenotype for MTLE + HS. Imaging genomics holds great promise in advancing epilepsy genetic research. Studies are encouraged to explore the validity of QMRI traits as endophenotypes for epilepsy.
Collapse
Affiliation(s)
- Saud Alhusaini
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christopher D Whelan
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, UK
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Roberts G, Wen W, Frankland A, Perich T, Holmes-Preston E, Levy F, Lenroot RK, Hadzi-Pavlovic D, Nurnberger JI, Breakspear M, Mitchell PB. Interhemispheric white matter integrity in young people with bipolar disorder and at high genetic risk. Psychol Med 2016; 46:2385-2396. [PMID: 27291060 DOI: 10.1017/s0033291716001161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND White matter (WM) impairments have been reported in patients with bipolar disorder (BD) and those at high familial risk of developing BD. However, the distribution of these impairments has not been well characterized. Few studies have examined WM integrity in young people early in the course of illness and in individuals at familial risk who have not yet passed the peak age of onset. METHOD WM integrity was examined in 63 BD subjects, 150 high-risk (HR) individuals and 111 participants with no family history of mental illness (CON). All subjects were aged 12 to 30 years. RESULTS This young BD group had significantly lower fractional anisotropy within the genu of the corpus callosum (CC) compared with the CON and HR groups. Moreover, the abnormality in the genu of the CC was also present in HR participants with recurrent major depressive disorder (MDD) (n = 16) compared with CON participants. CONCLUSIONS Our findings provide important validation of interhemispheric abnormalities in BD patients. The novel finding in HR subjects with recurrent MDD - a group at particular risk of future hypo/manic episodes - suggests that this may potentially represent a trait marker for BD, though this will need to be confirmed in longitudinal follow-up studies.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - W Wen
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - A Frankland
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - T Perich
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - E Holmes-Preston
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - F Levy
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - R K Lenroot
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - D Hadzi-Pavlovic
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - J I Nurnberger
- Department of Psychiatry,Indiana University School of Medicine,Indianapolis, IN,USA
| | - M Breakspear
- Division of Mental Health Research,Queensland Institute of Medical Research,Brisbane,QLD,Australia
| | - P B Mitchell
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| |
Collapse
|
30
|
Sprooten E, Barrett J, McKay DR, Knowles EE, Mathias SR, Winkler AM, Brumbaugh MS, Landau S, Cyr L, Kochunov P, Glahn DC. A comprehensive tractography study of patients with bipolar disorder and their unaffected siblings. Hum Brain Mapp 2016; 37:3474-85. [PMID: 27198848 DOI: 10.1002/hbm.23253] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 04/01/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diffusion tensor imaging studies show reductions in fractional anisotropy (FA) in individuals with bipolar disorder and their unaffected siblings. However, the use of various analysis methods is an important source of between-study heterogeneity. Using tract-based spatial statistics, we previously demonstrated widespread FA reductions in patients and unaffected relatives. To better interpret the neuroanatomical pattern of this previous finding and to assess the influence of methodological heterogeneity, we here applied tractography to the same sample. METHODS Diffusion-weighted images were acquired for 96 patients, 69 unaffected siblings and 56 controls. We applied TRACULA, an extension of a global probabilistic tractography algorithm, to automatically segment 18 major fiber tracts. Average FA within each tract and at each cross-section along each tract was compared between groups. RESULTS Patients had reduced FA compared to healthy controls and their unaffected siblings in general, and in particular in the parietal part of the superior longitudinal fasciculus. In unaffected siblings, FA was nominally reduced compared to controls in the corpus callosum. Point-wise analyses indicated that similar effects were present along extended sections, but with variable effect sizes. Current symptom severity negatively correlated with FA in several fronto-limbic association tracts. CONCLUSIONS The differential sensitivity of analysis techniques likely explains between-study heterogeneity in anatomical localization of FA reductions. The present tractography analysis confirms the presence of overall FA reductions in patients with bipolar disorder, which are most pronounced in the superior longitudinal fasciculus. Unaffected siblings may display similar, albeit more subtle and anatomically restricted FA reductions. Hum Brain Mapp 37:3474-3485, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emma Sprooten
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jennifer Barrett
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - D Reese McKay
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Emma E Knowles
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Samuel R Mathias
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Anderson M Winkler
- Oxford Centre for Functional MRI Of the Brain, University of Oxford, Oxford, United Kingdom
| | - Margaret S Brumbaugh
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - Stefanie Landau
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - Lindsay Cyr
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Maryland Psychiatric Research Center, Baltimore, Maryland
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| |
Collapse
|
31
|
Sarıçiçek A, Zorlu N, Yalın N, Hıdıroğlu C, Çavuşoğlu B, Ceylan D, Ada E, Tunca Z, Özerdem A. Abnormal white matter integrity as a structural endophenotype for bipolar disorder. Psychol Med 2016; 46:1547-1558. [PMID: 26947335 DOI: 10.1017/s0033291716000180] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Several lines of evidence suggest that bipolar disorder (BD) is associated with white matter (WM) pathology. Investigation of unaffected first-degree relatives of BD patients may help to distinguish structural biomarkers of genetic risk without the confounding effects of burden of illness, medication or clinical state. In the present study, we applied tract-based spatial statistics to study WM changes in patients with BD, unaffected siblings and controls. METHOD A total of 27 euthymic patients with BD type I, 20 unaffected siblings of bipolar patients and 29 healthy controls who did not have any current or past diagnosis of Axis I psychiatric disorders were enrolled in the study. RESULTS Fractional anisotropy (FA) was significantly lower in BD patients than in the control group in the corpus callosum, fornix, bilateral superior longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, anterior thalamic radiation, posterior thalamic radiation, cingulum, uncinate fasciculus, superior corona radiata, anterior corona radiata and left external capsule. In region-of-interest (ROI) analyses, we found that both unaffected siblings and bipolar patients had significantly reduced FA in the left posterior thalamic radiation, the left sagittal stratum, and the fornix compared with healthy controls. Average FA for unaffected siblings was intermediate between the healthy controls and bipolar patients within these ROIs. CONCLUSIONS Decreased FA in the fornix, left posterior thalamic radiation and left sagittal stratum in both bipolar patients and unaffected siblings may represent a potential structural endophenotype or a trait-based marker for BD.
Collapse
Affiliation(s)
- A Sarıçiçek
- Department of Psychiatry,Faculty of Medicine,Izmir Katip Celebi University,Ataturk Training and Research Hospital,Izmir,Turkey
| | - N Zorlu
- Department of Psychiatry,Faculty of Medicine,Izmir Katip Celebi University,Ataturk Training and Research Hospital,Izmir,Turkey
| | - N Yalın
- Department of Neuroscience,Health Sciences Institute,Dokuz Eylul University,Izmir,Turkey
| | - C Hıdıroğlu
- Department of Neuroscience,Health Sciences Institute,Dokuz Eylul University,Izmir,Turkey
| | - B Çavuşoğlu
- Department of Neuroscience,Health Sciences Institute,Dokuz Eylul University,Izmir,Turkey
| | - D Ceylan
- Department of Neuroscience,Health Sciences Institute,Dokuz Eylul University,Izmir,Turkey
| | - E Ada
- Department of Radiology,Faculty of Medicine,Dokuz Eylul University,Izmir,Turkey
| | - Z Tunca
- Department of Neuroscience,Health Sciences Institute,Dokuz Eylul University,Izmir,Turkey
| | - A Özerdem
- Department of Neuroscience,Health Sciences Institute,Dokuz Eylul University,Izmir,Turkey
| |
Collapse
|
32
|
Magioncalda P, Martino M, Conio B, Piaggio N, Teodorescu R, Escelsior A, Marozzi V, Rocchi G, Roccatagliata L, Northoff G, Inglese M, Amore M. Patterns of microstructural white matter abnormalities and their impact on cognitive dysfunction in the various phases of type I bipolar disorder. J Affect Disord 2016; 193:39-50. [PMID: 26766032 DOI: 10.1016/j.jad.2015.12.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/30/2015] [Accepted: 12/24/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND In recent years, diffusion tensor imaging (DTI) studies have detected subtle microstructural abnormalities of white matter (WM) in type I bipolar disorder (BD). However, WM alterations in the different phases of BD remain to be explored. The aims of this study is to investigate the WM alterations in the various phases of illness and their correlations with clinical and neurocognitive features. METHODS We investigated the DTI-derived fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD) in patients with type I BD (n=61) subdivided in manic (n=21), depressive (n=20) and euthymic phases (n=20) vs. healthy controls (n=42), using a tract-based spatial statistics (TBSS) approach. Then, we investigated whether the subgroups of patients in the various phases of illness present different patterns of WM abnormalities. Finally we studied the correlations between WM alterations and clinical-cognitive parameters. RESULTS We found a widespread alteration in WM microstructure (decrease in FA and increase in MD and RD) in BD when compared to controls. The various subgroups of BD showed different spatial patterns of WM alterations. A gradient of increasing WM abnormalities from the euthymic (low degree and localized WM alterations mainly in the midline structures) to the manic (more diffuse WM alterations affecting both midline and lateral structures) and, finally, to the depressive phase (high degree and widespread WM alterations), was found. Furthermore, the WM diffuse alterations correlated with cognitive deficits in BD, such as decreased fluency prompted by letter and decreased hits and increased omission errors at the continuous performance test. LIMITATIONS Patients under treatment. CONCLUSIONS The WM alterations in type I BD showed different spatial patterns in the various phases of illness, mainly affecting the active phases, and correlated with some cognitive deficits. This suggests a complex trait- and state-dependent pathogenesis of WM abnormalities in BD.
Collapse
Affiliation(s)
- Paola Magioncalda
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Matteo Martino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Benedetta Conio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Niccolò Piaggio
- Department of Radiology, Section of Neuroradiology, University of Genoa, Genoa, Italy.
| | - Roxana Teodorescu
- Department of Neurology, Radiology and Neuroscience, Mount Sinai School of Medicine, New York, USA.
| | - Andrea Escelsior
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Valentina Marozzi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Giulio Rocchi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Luca Roccatagliata
- Magnetic Resonance Research Center on Nervous System Diseases, University of Genoa, Genoa, Italy.
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada; Taipei Medical University, Graduate Institute of Humanities in Medicine, Taipei, Taiwan; Taipei Medical University-Shuang Ho Hospital, Brain and Consciousness Research Center, New Taipei City, Taiwan; National Chengchi University, Research Center for Mind, Brain and Learning, Taipei, Taiwan; Centre for Cognition and Brain Disorders (CCBD), Normal University Hangzhou, Hangzhou, China.
| | - Matilde Inglese
- Department of Neurology, Radiology and Neuroscience, Mount Sinai School of Medicine, New York, USA; Magnetic Resonance Research Center on Nervous System Diseases, University of Genoa, Genoa, Italy.
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| |
Collapse
|
33
|
Mallas EJ, Carletti F, Chaddock CA, Woolley J, Picchioni MM, Shergill SS, Kane F, Allin MP, Barker GJ, Prata DP. Genome-wide discovered psychosis-risk gene ZNF804A impacts on white matter microstructure in health, schizophrenia and bipolar disorder. PeerJ 2016; 4:e1570. [PMID: 26966642 PMCID: PMC4782689 DOI: 10.7717/peerj.1570] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/15/2015] [Indexed: 01/10/2023] Open
Abstract
Background. Schizophrenia (SZ) and bipolar disorder (BD) have both been associated with reduced microstructural white matter integrity using, as a proxy, fractional anisotropy (FA) detected using diffusion tensor imaging (DTI). Genetic susceptibility for both illnesses has also been positively correlated in recent genome-wide association studies with allele A (adenine) of single nucleotide polymorphism (SNP) rs1344706 of the ZNF804A gene. However, little is known about how the genomic linkage disequilibrium region tagged by this SNP impacts on the brain to increase risk for psychosis. This study aimed to assess the impact of this risk variant on FA in patients with SZ, in those with BD and in healthy controls. Methods. 230 individuals were genotyped for the rs1344706 SNP and underwent DTI. We used tract-based spatial statistics (TBSS) followed by an analysis of variance, with threshold-free cluster enhancement (TFCE), to assess underlying effects of genotype, diagnosis and their interaction, on FA. Results. As predicted, statistically significant reductions in FA across a widely distributed brain network (p < 0.05, TFCE-corrected) were positively associated both with a diagnosis of SZ or BD and with the double (homozygous) presence of the ZNF804A rs1344706 risk variant (A). The main effect of genotype was medium (d = 0.48 in a 44,054-voxel cluster) and the effect in the SZ group alone was large (d = 1.01 in a 51,260-voxel cluster), with no significant effects in BD or controls, in isolation. No areas under a significant diagnosis by genotype interaction were found. Discussion. We provide the first evidence in a predominantly Caucasian clinical sample, of an association between ZNF804A rs1344706 A-homozygosity and reduced FA, both irrespective of diagnosis and particularly in SZ (in overlapping brain areas). This suggests that the previously observed involvement of this genomic region in psychosis susceptibility, and in impaired functional connectivity, may be conferred through it inducing abnormalities in white matter microstructure.
Collapse
Affiliation(s)
- Emma-Jane Mallas
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Francesco Carletti
- Department of Neuroradiology, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Christopher A. Chaddock
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - James Woolley
- Psychological Medicine, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Marco M. Picchioni
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
- St Andrew’s Academic Department, St Andrew’s Healthcare, Northampton, United Kingdom
| | - Sukhwinder S. Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Fergus Kane
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Matthew P.G. Allin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Diana P. Prata
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, University of London, London, United Kingdom
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
34
|
Wise T, Radua J, Nortje G, Cleare AJ, Young AH, Arnone D. Voxel-Based Meta-Analytical Evidence of Structural Disconnectivity in Major Depression and Bipolar Disorder. Biol Psychiatry 2016; 79:293-302. [PMID: 25891219 DOI: 10.1016/j.biopsych.2015.03.004] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/03/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Identification of white matter microstructure differences and similarities between major depression and bipolar disorder is a necessary step to better understand the underlying brain abnormalities in affective disorders and target more effective treatments. However, research has not yet yielded robust conclusions. We report here a meta-analysis of diffusion tensor imaging studies in these conditions. METHODS A comprehensive literature search was conducted up to 2014 to identify studies comparing fractional anisotropy (FA) between patients and control subjects. Results were combined to identify white matter abnormalities in major depression (736 patients vs. 668 control subjects) and bipolar disorder (536 patients vs. 489 control subjects). Effect size comparison and conjunction analysis allowed identification of similarities and differences between the disorders. RESULTS A significant decrease in FA in the genu of the corpus callosum characterized both conditions. The comparison between unipolar and bipolar disorders revealed a greater decrease in FA in the left posterior cingulum in bipolar disorder. Studies that adopted tract-based spatial statistics methodology showed more pronounced reductions in these regions compared with voxel-based analyses. CONCLUSIONS Major depression and bipolar disorder are characterized by abnormalities in white matter tracts of the genu of the corpus callosum that connect the two hemispheres of the prefrontal cortex implicated in mood regulation. Bipolar disorder was associated with reduced white matter integrity in the left posterior cingulum, which may contribute to cognitive impairment described in this condition. Tract-based spatial statistics may be a more sensitive technique to detect white matter abnormalities in these regions compared with voxel-based analyses.
Collapse
Affiliation(s)
- Toby Wise
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, United Kingdom.
| | - Joaquim Radua
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, United Kingdom; Research Unit, FIDMAG Germanes Hospitalàries-Centro de Investigación Biomédica en Red de Salud Mental, Sant Boi de Llobregat, Barcelona, Spain
| | - Gareth Nortje
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Anthony J Cleare
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Danilo Arnone
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, United Kingdom
| |
Collapse
|
35
|
Dysregulation of the NF-κB pathway as a potential inducer of bipolar disorder. J Psychiatr Res 2015; 70:18-27. [PMID: 26424419 DOI: 10.1016/j.jpsychires.2015.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 11/20/2022]
Abstract
A century of investigations enhanced our understanding of bipolar disorder although it remains a complex multifactorial disorder with a mostly unknown pathophysiology and etiology. The role of the immune system in this disorder is one of the most controversial topics in genetic psychiatry. Though inflammation has been consistently reported in bipolar patients, it remains unclear how the immunologic process influences the disorder. One of the core components of the immune system is the NF-κB pathway, which plays an essential role in the development of innate and adaptive immunity. Remarkably, the NF-κB pathway received only little attention in bipolar studies, as opposed to studies of related psychiatric disorders where immune dysregulation has been proposed to explain the neurodegeneration in patient conditions. If immune dysregulation can also explains the neurodegeneration in bipolar disorder, it will underscore the role of the immune system in the chronicity and pathophysiology of the disorder and may promote personalized therapeutic strategies. This is the first review to summarize the current knowledge of the pathophysiological functions of NF-κB in bipolar disorder.
Collapse
|
36
|
Forde NJ, O'Donoghue S, Scanlon C, Emsell L, Chaddock C, Leemans A, Jeurissen B, Barker GJ, Cannon DM, Murray RM, McDonald C. Structural brain network analysis in families multiply affected with bipolar I disorder. Psychiatry Res 2015; 234:44-51. [PMID: 26382105 DOI: 10.1016/j.pscychresns.2015.08.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/17/2015] [Accepted: 08/19/2015] [Indexed: 01/06/2023]
Abstract
Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its endophenotypic potential. Magnetic resonance diffusion images for 19 BP type I patients in remission, 21 of their first degree unaffected relatives, and 18 unrelated healthy controls underwent tractography. With the automated anatomical labelling atlas being used to define nodes, a connectivity matrix was generated for each subject. Network metrics were extracted with the Brain Connectivity Toolbox and then analysed for group differences, accounting for potential confounding effects of age, gender and familial association. Whole brain analysis revealed no differences between groups. Analysis of specific mainly frontal regions, previously implicated as potentially endophenotypic by functional magnetic resonance imaging analysis of the same cohort, revealed a significant effect of group in the right medial superior frontal gyrus and left middle frontal gyrus driven by reduced organisation in patients compared with controls. The organisation of whole brain networks of those affected with BP I does not differ from their unaffected relatives or healthy controls. In discreet frontal regions, however, anatomical connectivity is disrupted in patients but not in their unaffected relatives.
Collapse
Affiliation(s)
- Natalie J Forde
- Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; Department of Psychiatry, University Medical Centre Groningen, The Netherlands.
| | - Stefani O'Donoghue
- Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Cathy Scanlon
- Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Louise Emsell
- Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; Translational MRI, Department of Imaging & Pathology, KU Leuven & Radiology, University Hospitals Leuven, Belgium
| | - Chris Chaddock
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, The Netherlands
| | | | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Dara M Cannon
- Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Robin M Murray
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
37
|
Roybal DJ, Barnea-Goraly N, Kelley R, Bararpour L, Howe ME, Reiss AL, Chang KD. Widespread white matter tract aberrations in youth with familial risk for bipolar disorder. Psychiatry Res 2015; 232:184-92. [PMID: 25779034 PMCID: PMC6147249 DOI: 10.1016/j.pscychresns.2015.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/21/2014] [Accepted: 02/18/2015] [Indexed: 11/15/2022]
Abstract
Few studies have examined multiple measures of white matter (WM) differences in youth with familial risk for bipolar disorder (FR-BD). To investigate WM in the FR-BD group, we used three measures of WM structure and two methods of analysis. We used fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) to analyze diffusion tensor imaging (DTI) findings in 25 youth with familial risk for bipolar disorder, defined as having both a parent with BD and mood dysregulation, and 16 sex-, age-, and IQ-matched healthy controls. We conducted a whole brain voxelwise analysis using tract based spatial statistics (TBSS). Subsequently, we conducted a complementary atlas-based, region-of-interest analysis using Diffeomap to confirm results seen in TBSS. When TBSS was used, significant widespread between-group differences were found showing increased FA, increased AD, and decreased RD in the FR-BD group in the bilateral uncinate fasciculus, cingulum, cingulate, superior fronto-occipital fasciculus (SFOF), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus, and corpus callosum. Atlas-based analysis confirmed significant between-group differences, with increased FA and decreased RD in the FR-BD group in the SLF, cingulum, and SFOF. We found significant widespread WM tract aberrations in youth with familial risk for BD using two complementary methods of DTI analysis.
Collapse
Affiliation(s)
- Donna J Roybal
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine(,) Stanford University, Stanford, CA, USA.
| | - Naama Barnea-Goraly
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan Kelley
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
| | - Layla Bararpour
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
| | - Meghan E Howe
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine(,) Stanford University, Stanford, CA, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
| | - Kiki D Chang
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine(,) Stanford University, Stanford, CA, USA
| |
Collapse
|
38
|
Arat HE, Chouinard VA, Cohen BM, Lewandowski KE, Öngür D. Diffusion tensor imaging in first degree relatives of schizophrenia and bipolar disorder patients. Schizophr Res 2015; 161:329-39. [PMID: 25542860 PMCID: PMC4308443 DOI: 10.1016/j.schres.2014.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES White matter (WM) abnormalities are one of the most widely and consistently reported findings in schizophrenia (SZ) and bipolar disorder (BD). If these abnormalities are inherited determinants of illness, suitable to be classified as an endophenotype, relatives of patients must also have them at higher rate compared to the general population. In this review, we evaluate published diffusion tensor imaging (DTI) studies comparing first degree relatives of SZ and BD patients and healthy control subjects. METHODS We searched PubMed, Embase and PsychInfo for DTI studies which included an unaffected relative and a healthy comparison group. RESULTS 22 studies fulfilled the inclusion criteria. WM abnormalities were found in many diverse regions in relatives of SZ patients. Although the findings were not completely consistent across studies, the most implicated areas were the frontal and temporal WM regions and the corpus callosum. Studies in relatives of BD patients were fewer in number with less consistent findings reported across studies. CONCLUSIONS Our review supports the concept of WM abnormalities as an endophenotype in SZ, with somewhat weaker evidence in BD, but larger and higher quality studies are needed to make a definitive comment.
Collapse
Affiliation(s)
- Hidayet E. Arat
- Dokuz Eylul University, Faculty of Medicine Department of Psychiatry, Izmir, Turkey,McLean Hospital, 115 Mill St., Belmont, MA, 02478 USA
| | - Virginie-Anne Chouinard
- McLean Hospital, 115 Mill St., Belmont, MA, 02478 USA,Harvard Medical School, Department of Psychiatry, Boston, MA, 02114 USA
| | - Bruce M. Cohen
- McLean Hospital, 115 Mill St., Belmont, MA, 02478 USA,Harvard Medical School, Department of Psychiatry, Boston, MA, 02114 USA
| | - Kathryn E. Lewandowski
- McLean Hospital, 115 Mill St., Belmont, MA, 02478 USA,Harvard Medical School, Department of Psychiatry, Boston, MA, 02114 USA
| | - Dost Öngür
- McLean Hospital, 115 Mill St., Belmont, MA 02478, USA; Harvard Medical School, Department of Psychiatry, Boston, MA 02114, USA.
| |
Collapse
|
39
|
Preserved white matter in unmedicated pediatric bipolar disorder. Neurosci Lett 2014; 579:41-5. [PMID: 25017827 DOI: 10.1016/j.neulet.2014.06.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/17/2014] [Accepted: 06/29/2014] [Indexed: 02/02/2023]
Abstract
White matter (WM) abnormalities have been reported in bipolar disorder (BD) patients, as well as in their non-BD relatives, both children and adults. Although it is considered an emerging vulnerability marker for BD, there are no studies investigating WM alterations in pediatric unmedicated patients and young healthy offspring. In this study, we evaluated the presence of WM alterations in 18 pediatric, non medicated BD patients, as well as in 18 healthy offspring of BD type I parents and 20 healthy controls. 3T DT-MRI data were acquired and scans were processed with tract-based spatial statistics to provide measures of fractional anisotropy and diffusivity. We found no significant differences in WM microstructure between BD patients, healthy offspring and healthy controls. Previous studies that reported WM alterations investigated older subjects, either on medication (BD patients) or with psychiatric diagnoses other than BD (unaffected offspring). Our findings highlight the importance of the understanding of disease ontogeny and brain development dynamics in the search for early vulnerability markers for psychiatric disorders.
Collapse
|
40
|
Sprooten E, Knowles EE, McKay DR, Göring HH, Curran JE, Kent JW, Carless MA, Dyer TD, Drigalenko EI, Olvera RL, Fox PT, Almasy L, Duggirala R, Kochunov P, Blangero J, Glahn DC. Common genetic variants and gene expression associated with white matter microstructure in the human brain. Neuroimage 2014; 97:252-61. [PMID: 24736177 DOI: 10.1016/j.neuroimage.2014.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/29/2014] [Accepted: 04/07/2014] [Indexed: 12/29/2022] Open
Abstract
Identifying genes that contribute to white matter microstructure should provide insights into the neurobiological processes that regulate white matter development, plasticity and pathology. We detected five significant SNPs using genome-wide association analysis on a global measure of fractional anisotropy in 776 individuals from large extended pedigrees. Genetic correlations and genome-wide association results indicated that the genetic signal was largely homogeneous across white matter regions. Using RNA transcripts derived from lymphocytes in the same individuals, we identified two genes (GNA13 and CCDC91) that are likely to be cis-regulated by top SNPs, and whose expression levels were also genetically correlated with fractional anisotropy. A transcript of HTR7 was phenotypically associated with FA, and was associated with an intronic genome-wide significant SNP. These results encourage further research in the mechanisms by which GNA13, HTR7 and CCDC91 influence brain structure, and emphasize a role for g-protein signaling in the development and maintenance of white matter microstructure in health and disease.
Collapse
Affiliation(s)
- Emma Sprooten
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA; Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, 200 Retreat Avenue, CT, USA.
| | - Emma E Knowles
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA; Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, 200 Retreat Avenue, CT, USA
| | - D Reese McKay
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA; Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, 200 Retreat Avenue, CT, USA
| | - Harald H Göring
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Joanne E Curran
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Thomas D Dyer
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Eugene I Drigalenko
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Rene L Olvera
- Department of Psychiatry, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, USA; South Texas Veterans Health System, 7400 Merton Minter, San Antonio, TX 78229, USA
| | - Laura Almasy
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Ravi Duggirala
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA; Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, 200 Retreat Avenue, CT, USA
| |
Collapse
|
41
|
Glahn DC, Knowles EE, McKay DR, Sprooten E, Raventós H, Blangero J, Gottesman I, Almasy L. Arguments for the sake of endophenotypes: examining common misconceptions about the use of endophenotypes in psychiatric genetics. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:122-30. [PMID: 24464604 PMCID: PMC4078653 DOI: 10.1002/ajmg.b.32221] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022]
Abstract
Endophenotypes are measurable biomarkers that are correlated with an illness, at least in part, because of shared underlying genetic influences. Endophenotypes may improve our power to detect genes influencing risk of illness by being genetically simpler, closer to the level of gene action, and with larger genetic effect sizes or by providing added statistical power through their ability to quantitatively rank people within diagnostic categories. Furthermore, they also provide insight into the mechanisms underlying illness and will be valuable in developing biologically-based nosologies, through efforts such as RDoC, that seek to explain both the heterogeneity within current diagnostic categories and the overlapping clinical features between them. While neuroimaging, electrophysiological, and cognitive measures are currently most used in psychiatric genetic studies, researchers currently are attempting to identify candidate endophenotypes that are less genetically complex and potentially closer to the level of gene action, such as transcriptomic and proteomic phenotypes. Sifting through tens of thousands of such measures requires automated, high-throughput ways of assessing, and ranking potential endophenotypes, such as the Endophenotype Ranking Value. However, despite the potential utility of endophenotypes for gene characterization and discovery, there is considerable resistance to endophenotypic approaches in psychiatry. In this review, we address and clarify some of the common issues associated with the usage of endophenotypes in the psychiatric genetics community.
Collapse
Affiliation(s)
- David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| | - Emma E Knowles
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| | - D Reese McKay
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| | - Emma Sprooten
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| | - Henriette Raventós
- Centro de Investigación en Biología Molecular y Celular, Universidad de Costa Rica, San José, CR
- Escuela de Biología, Universidad de Costa Rica, San José, CR
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Irving Gottesman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Laura Almasy
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
42
|
Torres CV, Manzanares R, Sola RG. Integrating Diffusion Tensor Imaging-Based Tractography into Deep Brain Stimulation Surgery: A Review of the Literature. Stereotact Funct Neurosurg 2014; 92:282-90. [DOI: 10.1159/000362937] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/13/2014] [Indexed: 11/19/2022]
|