1
|
Cho KIK, Zhang F, Penzel N, Seitz-Holland J, Tang Y, Zhang T, Xu L, Li H, Keshavan M, Whitfield-Gabrieli S, Niznikiewicz M, Stone WS, Wang J, Shenton ME, Pasternak O. Excessive interstitial free-water in cortical gray matter preceding accelerated volume changes in individuals at clinical high risk for psychosis. Mol Psychiatry 2024; 29:3623-3634. [PMID: 38830974 DOI: 10.1038/s41380-024-02597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Recent studies show that accelerated cortical gray matter (GM) volume reduction seen in anatomical MRI can help distinguish between individuals at clinical high risk (CHR) for psychosis who will develop psychosis and those who will not. This reduction is suggested to represent atypical developmental or degenerative changes accompanying an accumulation of microstructural changes, such as decreased spine density and dendritic arborization. Detecting the microstructural sources of these changes before they accumulate into volume loss is crucial. Our study aimed to detect these microstructural GM alterations using diffusion MRI (dMRI). We tested for baseline and longitudinal group differences in anatomical and dMRI data from 160 individuals at CHR and 96 healthy controls (HC) acquired in a single imaging site. Of the CHR individuals, 33 developed psychosis (CHR-P), while 127 did not (CHR-NP). Among all participants, longitudinal data was available for 45 HCs, 17 CHR-P, and 66 CHR-NP. Eight cortical lobes were examined for GM volume and GM microstructure. A novel dMRI measure, interstitial free water (iFW), was used to quantify GM microstructure by eliminating cerebrospinal fluid contribution. Additionally, we assessed whether these measures differentiated the CHR-P from the CHR-NP. In addition, for completeness, we also investigated changes in cortical thickness and in white matter (WM) microstructure. At baseline the CHR group had significantly higher iFW than HC in the prefrontal, temporal, parietal, and occipital lobes, while volume was reduced only in the temporal lobe. Neither iFW nor volume differentiated between the CHR-P and CHR-NP groups at baseline. However, in many brain areas, the CHR-P group demonstrated significantly accelerated changes (iFW increase and volume reduction) with time than the CHR-NP group. Cortical thickness provided similar results as volume, and there were no significant changes in WM microstructure. Our results demonstrate that microstructural GM changes in individuals at CHR have a wider extent than volumetric changes or microstructural WM changes, and they predate the acceleration of brain changes that occur around psychosis onset. Microstructural GM changes, as reflected by the increased iFW, are thus an early pathology at the prodromal stage of psychosis that may be useful for a better mechanistic understanding of psychosis development.
Collapse
Affiliation(s)
- Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nora Penzel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Huijun Li
- Department of Psychology, Florida A&M University, Tallahassee, FL, USA
| | - Matcheri Keshavan
- The Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, MA, USA
- The McGovern Institute for Brain Research and the Poitras Center for Affective Disorders Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret Niznikiewicz
- The Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - William S Stone
- The Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Ajunwa CC, Zhang J, Collin G, Keshavan MS, Tang Y, Zhang T, Li H, Shenton ME, Stone WS, Wang J, Niznikiewicz M, Whitfield-Gabrieli S. Dissociable Default Mode Network Connectivity Patterns Underlie Distinct Symptoms in Psychosis Risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620271. [PMID: 39484521 PMCID: PMC11527119 DOI: 10.1101/2024.10.25.620271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The Clinical High Risk (CHR) stage of psychosis is characterized by subthreshold symptoms of schizophrenia including negative symptoms, dysphoric mood, and functional deterioration. Hyperconnectivity of the default-mode network (DMN) has been observed in early schizophrenia, but the extent to which hyperconnectivity is present in CHR, and the extent to which such hyperconnectivity may underlie transdiagnostic symptoms, is not clear. As part of the Shanghai At-Risk for Psychosis (SHARP) program, resting-state fMRI data were collected from 251 young adults (158 CHR and 93 controls, M = 18.72, SD = 4.68, 129 male). We examined functional connectivity of the DMN by performing a whole-brain seed-to-voxel analysis with the MPFC as the seed. Symptom severity across a number of dimensions, including negative symptoms, positive symptoms, and affective symptoms were assessed. Compared to controls, CHRs exhibited significantly greater functional connectivity (p < 0.001 uncorrected) between the MPFC and 1) other DMN nodes including the posterior cingulate cortex (PCC), and 2) auditory cortices (superior and middle temporal gyri, STG/MTG). Furthermore, these two patterns of hyperconnectivity were differentially associated with distinct symptom clusters. Within CHR, MPFC-PCC connectivity was significantly correlated with anxiety (r= 0.23, p=0.006), while MPFC-STG/MTG connectivity was significantly correlated with negative symptom severity (r=0.26, p=0.001). Secondary analyses using item-level symptom scores confirmed a similar dissociation. These results demonstrate that two dissociable patterns of DMN hyperconnectivity found in the CHR stage may underlie distinct dimensions of symptomatology.
Collapse
Affiliation(s)
| | - Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA
| | - Guusje Collin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Radboudumc, Department of Psychiatry, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijun Li
- Department of Psychology, Florida A&M University, Tallahassee, FL
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Research and Development, VA Boston Healthcare System, Brockton Division, Brockton, MA
- Department of Radiology Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - William S. Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Margaret Niznikiewicz
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, MA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
3
|
Hara S, Hori M, Kamagata K, Andica C, Inaji M, Tanaka Y, Aoki S, Nariai T, Maehara T. Increased Parenchymal Free Water May Be Decreased by Revascularization Surgery in Patients with Moyamoya Disease. Magn Reson Med Sci 2024; 23:405-416. [PMID: 37081646 PMCID: PMC11447467 DOI: 10.2463/mrms.mp.2022-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/19/2023] [Indexed: 04/22/2023] Open
Abstract
PURPOSE Moyamoya disease (MMD) is a cerebrovascular disease associated with steno-occlusive changes in the arteries of the circle of Willis and with hemodynamic impairment. Previous studies have reported that parenchymal extracellular free water levels may be increased and the number of neurites may be decreased in patients with MMD. The aim of the present study was to investigate the postoperative changes in parenchymal free water and neurites and their relationship with cognitive improvement. METHODS Multi-shell diffusion MRI (neurite orientation dispersion and density imaging and free water imaging using a bi-tensor model) was performed in 15 hemispheres of 13 adult patients with MMD (11 female, mean age 37.9 years) who had undergone revascularization surgery as well as age- and sex-matched normal controls. Parameter maps of free water and free-water-eliminated neurites were created, and the regional parameter values were compared among controls, patients before surgery, and patients after surgery. RESULTS The anterior and middle cerebral artery territories of patients showed higher preoperative free water levels (P ≤ 0.007) and lower postoperative free water levels (P ≤ 0.001) than those of normal controls. The change in the dispersion of the white matter in the anterior cerebral artery territory correlated with cognitive improvement (r = -0.75; P = 0.004). CONCLUSION Our study suggests that increased parenchymal free water levels decreased after surgery and that postoperative changes in neurite parameters are related to postoperative cognitive improvement in adult patients with MMD. Diffusion analytical methods separately calculating free water and neurites may be useful for unraveling the pathophysiology of chronic ischemia and the postoperative changes that occur after revascularization surgery in this disease population.
Collapse
Affiliation(s)
- Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Radiology, Juntendo University, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University, Tokyo, Japan
- Department of Diagnostic Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University, Tokyo, Japan
| | | | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, Tokyo, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Seitz-Holland J, Alemán-Gómez Y, Cho KIK, Pasternak O, Cleusix M, Jenni R, Baumann PS, Klauser P, Conus P, Hagmann P, Do KQ, Kubicki M, Dwir D. Matrix metalloproteinase 9 (MMP-9) activity, hippocampal extracellular free water, and cognitive deficits are associated with each other in early phase psychosis. Neuropsychopharmacology 2024; 49:1140-1150. [PMID: 38431757 PMCID: PMC11109110 DOI: 10.1038/s41386-024-01814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Increasing evidence points toward the role of the extracellular matrix, specifically matrix metalloproteinase 9 (MMP-9), in the pathophysiology of psychosis. MMP-9 is a critical regulator of the crosstalk between peripheral and central inflammation, extracellular matrix remodeling, hippocampal development, synaptic pruning, and neuroplasticity. Here, we aim to characterize the relationship between plasma MMP-9 activity, hippocampal microstructure, and cognition in healthy individuals and individuals with early phase psychosis. We collected clinical, blood, and structural and diffusion-weighted magnetic resonance imaging data from 39 individuals with early phase psychosis and 44 age and sex-matched healthy individuals. We measured MMP-9 plasma activity, hippocampal extracellular free water (FW) levels, and hippocampal volumes. We used regression analyses to compare MMP-9 activity, hippocampal FW, and volumes between groups. We then examined associations between MMP-9 activity, FW levels, hippocampal volumes, and cognitive performance assessed with the MATRICS battery. All analyses were controlled for age, sex, body mass index, cigarette smoking, and years of education. Individuals with early phase psychosis demonstrated higher MMP-9 activity (p < 0.0002), higher left (p < 0.05) and right (p < 0.05) hippocampal FW levels, and lower left (p < 0.05) and right (p < 0.05) hippocampal volume than healthy individuals. MMP-9 activity correlated positively with hippocampal FW levels (all participants and individuals with early phase psychosis) and negatively with hippocampal volumes (all participants and healthy individuals). Higher MMP-9 activity and higher hippocampal FW levels were associated with slower processing speed and worse working memory performance in all participants. Our findings show an association between MMP-9 activity and hippocampal microstructural alterations in psychosis and an association between MMP-9 activity and cognitive performance. Further, more extensive longitudinal studies should examine the therapeutic potential of MMP-9 modulators in psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yasser Alemán-Gómez
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Medical Image Analysis Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Zhang T, Xu L, Wei Y, Cui H, Tang X, Hu Y, Tang Y, Wang Z, Liu H, Chen T, Li C, Wang J. Advancements and Future Directions in Prevention Based on Evaluation for Individuals With Clinical High Risk of Psychosis: Insights From the SHARP Study. Schizophr Bull 2024:sbae066. [PMID: 38741342 DOI: 10.1093/schbul/sbae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND HYPOTHESIS This review examines the evolution and future prospects of prevention based on evaluation (PBE) for individuals at clinical high risk (CHR) of psychosis, drawing insights from the SHARP (Shanghai At Risk for Psychosis) study. It aims to assess the effectiveness of non-pharmacological interventions in preventing psychosis onset among CHR individuals. STUDY DESIGN The review provides an overview of the developmental history of the SHARP study and its contributions to understanding the needs of CHR individuals. It explores the limitations of traditional antipsychotic approaches and introduces PBE as a promising framework for intervention. STUDY RESULTS Three key interventions implemented by the SHARP team are discussed: nutritional supplementation based on niacin skin response blunting, precision transcranial magnetic stimulation targeting cognitive and brain functional abnormalities, and cognitive behavioral therapy for psychotic symptoms addressing symptomatology and impaired insight characteristics. Each intervention is evaluated within the context of PBE, emphasizing the potential for tailored approaches to CHR individuals. CONCLUSIONS The review highlights the strengths and clinical applications of the discussed interventions, underscoring their potential to revolutionize preventive care for CHR individuals. It also provides insights into future directions for PBE in CHR populations, including efforts to expand evaluation techniques and enhance precision in interventions.
Collapse
Affiliation(s)
- TianHong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - HuiRu Cui
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - YeGang Hu
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - YingYing Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - ZiXuan Wang
- Department of Psychology, Shanghai Xinlianxin Psychological Counseling Center, Shanghai, China
| | - HaiChun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Ontario, Canada
- Labor and Worklife Program, Harvard University, Cambridge, MA, USA
| | - ChunBo Li
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai, PR China
- Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, PR China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
6
|
Tabata K, Son S, Miyata J, Toriumi K, Miyashita M, Suzuki K, Itokawa M, Takahashi H, Murai T, Arai M. Association of homocysteine with white matter dysconnectivity in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:39. [PMID: 38509166 PMCID: PMC10954654 DOI: 10.1038/s41537-024-00458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Several studies have shown white matter (WM) dysconnectivity in people with schizophrenia (SZ). However, the underlying mechanism remains unclear. We investigated the relationship between plasma homocysteine (Hcy) levels and WM microstructure in people with SZ using diffusion tensor imaging (DTI). Fifty-three people with SZ and 83 healthy controls (HC) were included in this retrospective observational study. Tract-Based Spatial Statistics (TBSS) were used to evaluate group differences in WM microstructure. A significant negative correlation between plasma Hcy levels and WM microstructural disruption was noted in the SZ group (Spearman's ρ = -.330, P = 0.016) but not in the HC group (Spearman's ρ = .041, P = 0.712). These results suggest that increased Hcy may be associated with WM dysconnectivity in SZ, and the interaction between Hcy and WM dysconnectivity could be a potential mechanism of the pathophysiology of SZ. Further, longitudinal studies are required to investigate whether high Hcy levels subsequently cause WM microstructural disruption in people with SZ.
Collapse
Grants
- 19K17061 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18H02749 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 18H05130 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H05064 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04979 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H02849 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H05173 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H02844 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP18dm0307008 Japan Agency for Medical Research and Development (AMED)
- JP21uk1024002 Japan Agency for Medical Research and Development (AMED)
- JPMJCR22P3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- The Novartis Pharma Research Grant; SENSHIN Medical Research Foundation; SUZUKEN Memorial Foundation; the Takeda Science Foundation.
- the Brain/MINDS Beyond program (23dm0307008) from the Japan Agency for Medical Research
Collapse
Affiliation(s)
- Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuraku Son
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
7
|
Wu D, Wu Q, Li F, Wang Y, Zeng J, Tang B, Bishop JR, Xiao L, Lui S. Free water alterations in different inflammatory subgroups in schizophrenia. Brain Behav Immun 2024; 115:557-564. [PMID: 37972880 DOI: 10.1016/j.bbi.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that inflammatory dysregulation both in blood and the brain is implicated in the pathogenesis of schizophrenia. Alterations in peripheral cytokines are not evident in all patients and there may be discrete altered inflammatory subgroups in schizophrenia. Recent studies using a novel and in vivo free-water imaging to detect inflammatory processes, have shown increased free water in white matter in schizophrenia. However, no studies to date have investigated the free water alterations in different inflammatory subgroups in schizophrenia. METHODS Forty-four patients with schizophrenia and 49 controls were recruited. The serum levels of interleukin-1 beta (IL-1β), IL-6, IL-10, and IL-12p70 were measured and used for cluster analysis with K-means and hierarchical algorithms. Diffusion tensor imaging (DTI) images were collected for all participants and voxel-wise free water and fractional anisotropy of tissue (FA-t) were compared between groups with Randomise running in FSL. Partial correlation analysis was employed to explore the association of the peripheral cytokine levels with free water. RESULTS We identified two statistically quantifiable discrete subgroups of patients based on the cluster analysis of cytokine measures. The peripheral levels of IL-1β (P < 0.001), IL-10 (P = 0.041), and IL-12p70 (P < 0.001) showed significant differences between the two different inflammatory subgroups. In the inflammatory subgroup with a predominantly higher IL-1β level, increased free water values in white matter were found mainly in the left posterior limb of the internal capsule, posterior corona radiata, and partly in the left sagittal stratum. These affected areas did not overlap with the regions that showed significant free water differences between patients and healthy controls. In the inflammatory subgroup with lower IL-1β levels, peripheral IL-1β was significantly associated with free water values in white matter while no such association was detected in the patient group. CONCLUSIONS Localized free water differences were demonstrated between the two identified inflammatory subgroups in our data, and free water appears to be a feasible in vivo neuroimaging biomarker guiding the target of inflammatory intervention and development of new therapeutic strategies in an individualized manner in schizophrenia.
Collapse
Affiliation(s)
- Dongsheng Wu
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China.
| | - Qi Wu
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| | - Yaxuan Wang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jiaxin Zeng
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Biqiu Tang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States.
| | - Li Xiao
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Zhang T, Xu L, Tang X, Wei Y, Hu Y, Cui H, Tang Y, Li C, Wang J. Comprehensive review of multidimensional biomarkers in the ShangHai At Risk for Psychosis (SHARP) program for early psychosis identification. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e152. [PMID: 38868725 PMCID: PMC11114265 DOI: 10.1002/pcn5.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 06/14/2024]
Abstract
Psychosis is recognized as one of the largest contributors to nonfatal health loss, and early identification can largely improve routine clinical activity by predicting the psychotic course and guiding treatment. Clinicians have used the clinical high-risk for psychosis (CHR) paradigm to better understand the risk factors that contribute to the onset of psychotic disorders. Clinical factors have been widely applied to calculate the individualized risks for conversion to psychosis 1-2 years later. However, there is still a dearth of valid biomarkers to predict psychosis. Biomarkers, in the context of this paper, refer to measurable biological indicators that can provide valuable information about the early identification of individuals at risk for psychosis. The aim of this paper is to critically review studies assessing CHR and suggest possible biomarkers for application of prediction. We summarized the studies on biomarkers derived from the findings of the ShangHai at Risk for Psychosis (SHARP) program, including those that are considered to have the most potential. This comprehensive review was conducted based on expert opinions within the SHARP research team, and the selection of studies and results presented in this paper reflects the collective expertise of the team in the field of early psychosis identification. The three dimensions with potential candidates include neuroimaging dimension of brain structure and function, electrophysiological dimension of event-related potentials (ERPs), and immune dimension of inflammatory cytokines and complement proteins, which proved to be useful in supporting the prediction of psychosis from the CHR state. We suggest that these three dimensions could be useful as risk biomarkers for treatment optimization. In the future, when available for the integration of multiple dimensions, clinicians may be able to obtain a comprehensive report with detailed information of psychosis risk and specific indications about preferred prevention.
Collapse
Affiliation(s)
- TianHong Zhang
- Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - LiHua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - XiaoChen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - YanYan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - YeGang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - HuiRu Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - YingYing Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - ChunBo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - JiJun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT)Chinese Academy of SciencesShanghaiChina
- Institute of Psychology and Behavioral ScienceShanghai Jiaotong UniversityShanghaiChina
| |
Collapse
|
9
|
Kang IC, Pasternak O, Zhang F, Penzel N, Seitz-Holland J, Tang Y, Zhang T, Xu L, Li H, Keshavan M, Whitfield-Gabrielli S, Niznikiewicz M, Stone W, Wang J, Shenton M. Microstructural Cortical Gray Matter Changes Preceding Accelerated Volume Changes in Individuals at Clinical High Risk for Psychosis. RESEARCH SQUARE 2023:rs.3.rs-3179575. [PMID: 37841868 PMCID: PMC10571628 DOI: 10.21203/rs.3.rs-3179575/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Recent studies show that accelerated cortical gray matter (GM) volume reduction seen in anatomical MRI can help distinguish between individuals at clinical high risk (CHR) for psychosis who will develop psychosis and those who will not. This reduction is thought to result from an accumulation of microstructural changes, such as decreased spine density and dendritic arborization. Detecting the microstructural sources of these changes before they accumulate is crucial, as volume reduction likely indicates an underlying neurodegenerative process. Our study aimed to detect these microstructural GM alterations using diffusion MRI (dMRI). We tested for baseline and longitudinal group differences in anatomical and dMRI data from 160 individuals at CHR and 96 healthy controls (HC) acquired in a single imaging site. Eight cortical lobes were examined for GM volume and GM microstructure. A novel dMRI measure, interstitial free water (iFW), was used to quantify GM microstructure by eliminating cerebrospinal fluid contribution. Additionally, we assessed whether these measures differentiated the 33 individuals at CHR who developed psychosis (CHR-P) from the 127 individuals at CHR who did not (CHR-NP). At baseline the CHR group had significantly higher iFW than HC in the prefrontal, temporal, parietal, and occipital lobes, while volume was reduced only in the temporal lobe. Neither iFW nor volume differentiated between the CHR-P and CHR-NP groups at baseline. However, in most brain areas, the CHR-P group demonstrated significantly accelerated iFW increase and volume reduction with time than the CHR-NP group. Our results demonstrate that microstructural GM changes in individuals at CHR have a wider extent than volumetric changes and they predate the acceleration of brain changes that occur around psychosis onset. Microstructural GM changes are thus an early pathology at the prodromal stage of psychosis that may be useful for early detection and a better mechanistic understanding of psychosis development.
Collapse
Affiliation(s)
| | | | | | | | - Johanna Seitz-Holland
- Brigham and Women's Hospital and Massachusetts General Hospital, Harvard Medical School
| | - Yingying Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, PR China
| | | | | | | | | | | | | | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | | |
Collapse
|
10
|
Seitz-Holland J, Nägele FL, Kubicki M, Pasternak O, Cho KIK, Hough M, Mulert C, Shenton ME, Crow TJ, James ACD, Lyall AE. Shared and distinct white matter abnormalities in adolescent-onset schizophrenia and adolescent-onset psychotic bipolar disorder. Psychol Med 2023; 53:4707-4719. [PMID: 35796024 PMCID: PMC11119277 DOI: 10.1017/s003329172200160x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need. METHODS Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence. RESULTS Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age. CONCLUSIONS We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix L. Nägele
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang Ik K. Cho
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Morgan Hough
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University, Giessen, Germany
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy J. Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Anthony C. D. James
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Amanda E. Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Langhein M, Lyall AE, Steinmann S, Seitz-Holland J, Nägele FL, Cetin-Karayumak S, Zhang F, Rauh J, Mußmann M, Billah T, Makris N, Pasternak O, O’Donnell LJ, Rathi Y, Leicht G, Kubicki M, Shenton ME, Mulert C. The decoupling of structural and functional connectivity of auditory networks in individuals at clinical high-risk for psychosis. World J Biol Psychiatry 2023; 24:387-399. [PMID: 36083108 PMCID: PMC10399965 DOI: 10.1080/15622975.2022.2112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVES Disrupted auditory networks play an important role in the pathophysiology of psychosis, with abnormalities already observed in individuals at clinical high-risk for psychosis (CHR). Here, we examine structural and functional connectivity of an auditory network in CHR utilising state-of-the-art electroencephalography and diffusion imaging techniques. METHODS Twenty-six CHR subjects and 13 healthy controls (HC) underwent diffusion MRI and electroencephalography while performing an auditory task. We investigated structural connectivity, measured as fractional anisotropy in the Arcuate Fasciculus (AF), Cingulum Bundle, and Superior Longitudinal Fasciculus-II. Gamma-band lagged-phase synchronisation, a functional connectivity measure, was calculated between cortical regions connected by these tracts. RESULTS CHR subjects showed significantly higher structural connectivity in the right AF than HC (p < .001). Although non-significant, functional connectivity between cortical areas connected by the AF was lower in CHR than HC (p = .078). Structural and functional connectivity were correlated in HC (p = .056) but not in CHR (p = .29). CONCLUSIONS We observe significant differences in structural connectivity of the AF, without a concomitant significant change in functional connectivity in CHR subjects. This may suggest that the CHR state is characterised by a decoupling of structural and functional connectivity, possibly due to abnormal white matter maturation.
Collapse
Affiliation(s)
- Mina Langhein
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E. Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix L. Nägele
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Mußmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tashrif Billah
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren J O’Donnell
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Psychiatry, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
12
|
Su W, Yuan A, Tang Y, Xu L, Wei Y, Wang Y, Li Z, Cui H, Qian Z, Tang X, Hu Y, Zhang T, Feng J, Li Z, Zhang J, Wang J. Effects of polygenic risk of schizophrenia on interhemispheric callosal white matter integrity and frontotemporal functional connectivity in first-episode schizophrenia. Psychol Med 2023; 53:2868-2877. [PMID: 34991756 DOI: 10.1017/s0033291721004840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Schizophrenia is a severely debilitating psychiatric disorder with high heritability and polygenic architecture. A higher polygenic risk score for schizophrenia (SzPRS) has been associated with smaller gray matter volume, lower activation, and decreased functional connectivity (FC). However, the effect of polygenic inheritance on the brain white matter microstructure has only been sparsely reported. METHODS Eighty-four patients with first-episode schizophrenia (FES) patients and ninety-three healthy controls (HC) with genetics, diffusion tensor imaging (DTI), and resting-state functional magnetic resonance imaging (rs-fMRI) data were included in our study. We investigated impaired white matter integrity as measured by fractional anisotropy (FA) in the FES group, further examined the effect of SzPRS on white matter FA and FC in the regions connected by SzPRS-related white matter tracts. RESULTS Decreased FA was observed in FES in many commonly identified regions. Among these regions, we observed that in the FES group, but not the HC group, SzPRS was negatively associated with the mean FA in the genu and body of corpus callosum, right anterior corona radiata, and right superior corona radiata. Higher SzPRS was also associated with lower FCs between the left inferior frontal gyrus (IFG)-left inferior temporal gyrus (ITG), right IFG-left ITG, right IFG-left middle frontal gyrus (MFG), and right IFG-right MFG in the FES group. CONCLUSION Higher polygenic risks are linked with disrupted white matter integrity and FC in patients with schizophrenia. These correlations are strongly driven by the interhemispheric callosal fibers and the connections between frontotemporal regions.
Collapse
Affiliation(s)
- Wenjun Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Aihua Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yingying Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lihua Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yanyan Wei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yingchan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhixing Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Huiru Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhenying Qian
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaochen Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yegang Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Zhiqiang Li
- Affiliated Hospital of Qingdao University & Biomedical Sciences Institute of Qingdao University, Qingdao University, Qingdao 266000, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai 200031, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Li G, Zhu J, Wu X, Liu T, Hu P, Tian Y, Wang K. Baseline free water within the visual processing system predicts future psychosis in Parkinson disease. Eur J Neurol 2023; 30:892-901. [PMID: 36583634 DOI: 10.1111/ene.15668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE As psychosis is associated with decreased quality of life, increased institutionalization, and mortality in Parkinson disease (PD), it is essential to identify individuals at risk for future psychosis. This longitudinal study aimed to investigate whether diffusion tensor imaging (DTI) metrics of white matter hold independent utility for predicting future psychosis in PD, and whether they could be combined with clinical predictors to improve the prognostication of PD psychosis. METHODS This study included 123 newly diagnosed PD patients collected in the Parkinson's Progression Markers Initiative. Tract-based spatial statistics were used to compare baseline DTI metrics between PD patients who developed psychosis and those who did not during follow-up. Binary logistic regression analyses were performed to identify the clinical and white matter markers predictive of psychosis. RESULTS Among DTI measures, both higher baseline whole brain (odds ratio [OR] = 1.711, p = 0.016) free water (FW) and visual processing system (OR = 1.680, p < 0.001) FW were associated with an increased risk of future psychosis. Baseline FW remained a significant indicator of future psychosis in PD after controlling for clinical predictors. Moreover, the accuracy of prediction of psychosis using clinical predictors alone (area under the curve [AUC] = 0.742, 95% confidence interval [CI] = 0.655-0.816) was significantly improved by the addition of the visual processing system FW (AUC = 0.856, 95% CI = 0.781-0.912; Delong method, p = 0.022). CONCLUSIONS Baseline FW of the visual processing system incurs an independent risk of future psychosis in PD, thus providing an opportunity for multiple-modality marker models to include a white matter marker.
Collapse
Affiliation(s)
- Guanglu Li
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingqi Wu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tingting Liu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Panpan Hu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Yanghua Tian
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorder and Mental Health, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Department of Psychology and Sleep Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kai Wang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorder and Mental Health, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
14
|
Bosma MJ, Cox SR, Ziermans T, Buchanan CR, Shen X, Tucker-Drob EM, Adams MJ, Whalley HC, Lawrie SM. White matter, cognition and psychotic-like experiences in UK Biobank. Psychol Med 2023; 53:2370-2379. [PMID: 37310314 PMCID: PMC10123836 DOI: 10.1017/s0033291721004244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Psychotic-like experiences (PLEs) are risk factors for the development of psychiatric conditions like schizophrenia, particularly if associated with distress. As PLEs have been related to alterations in both white matter and cognition, we investigated whether cognition (g-factor and processing speed) mediates the relationship between white matter and PLEs. METHODS We investigated two independent samples (6170 and 19 891) from the UK Biobank, through path analysis. For both samples, measures of whole-brain fractional anisotropy (gFA) and mean diffusivity (gMD), as indications of white matter microstructure, were derived from probabilistic tractography. For the smaller sample, variables whole-brain white matter network efficiency and microstructure were also derived from structural connectome data. RESULTS The mediation of cognition on the relationships between white matter properties and PLEs was non-significant. However, lower gFA was associated with having PLEs in combination with distress in the full available sample (standardized β = -0.053, p = 0.011). Additionally, lower gFA/higher gMD was associated with lower g-factor (standardized β = 0.049, p < 0.001; standardized β = -0.027, p = 0.003), and partially mediated by processing speed with a proportion mediated of 7% (p = < 0.001) for gFA and 11% (p < 0.001) for gMD. CONCLUSIONS We show that lower global white matter microstructure is associated with having PLEs in combination with distress, which suggests a direction of future research that could help clarify how and why individuals progress from subclinical to clinical psychotic symptoms. Furthermore, we replicated that processing speed mediates the relationship between white matter microstructure and g-factor.
Collapse
Affiliation(s)
- M. J. Bosma
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - S. R. Cox
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - T. Ziermans
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - C. R. Buchanan
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - X. Shen
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, Scotland, UK
| | - E. M. Tucker-Drob
- Department of Psychology, University of Texas at Austin, Austin, USA
| | - M. J. Adams
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, Scotland, UK
| | - H. C. Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, Scotland, UK
| | - S. M. Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, Scotland, UK
| |
Collapse
|
15
|
Barth C, Kelly S, Nerland S, Jahanshad N, Alloza C, Ambrogi S, Andreassen OA, Andreou D, Arango C, Baeza I, Banaj N, Bearden CE, Berk M, Bohman H, Castro-Fornieles J, Chye Y, Crespo-Facorro B, de la Serna E, Díaz-Caneja CM, Gurholt TP, Hegarty CE, James A, Janssen J, Johannessen C, Jönsson EG, Karlsgodt KH, Kochunov P, Lois NG, Lundberg M, Myhre AM, Pascual-Diaz S, Piras F, Smelror RE, Spalletta G, Stokkan TS, Sugranyes G, Suo C, Thomopoulos SI, Tordesillas-Gutiérrez D, Vecchio D, Wedervang-Resell K, Wortinger LA, Thompson PM, Agartz I. In vivo white matter microstructure in adolescents with early-onset psychosis: a multi-site mega-analysis. Mol Psychiatry 2023; 28:1159-1169. [PMID: 36510004 PMCID: PMC10005938 DOI: 10.1038/s41380-022-01901-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests brain white matter alterations in adolescents with early-onset psychosis (EOP; age of onset <18 years). However, as neuroimaging methods vary and sample sizes are modest, results remain inconclusive. Using harmonized data processing protocols and a mega-analytic approach, we compared white matter microstructure in EOP and healthy controls using diffusion tensor imaging (DTI). Our sample included 321 adolescents with EOP (median age = 16.6 years, interquartile range (IQR) = 2.14, 46.4% females) and 265 adolescent healthy controls (median age = 16.2 years, IQR = 2.43, 57.7% females) pooled from nine sites. All sites extracted mean fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) for 25 white matter regions of interest per participant. ComBat harmonization was performed for all DTI measures to adjust for scanner differences. Multiple linear regression models were fitted to investigate case-control differences and associations with clinical variables in regional DTI measures. We found widespread lower FA in EOP compared to healthy controls, with the largest effect sizes in the superior longitudinal fasciculus (Cohen's d = 0.37), posterior corona radiata (d = 0.32), and superior fronto-occipital fasciculus (d = 0.31). We also found widespread higher RD and more localized higher MD and AD. We detected significant effects of diagnostic subgroup, sex, and duration of illness, but not medication status. Using the largest EOP DTI sample to date, our findings suggest a profile of widespread white matter microstructure alterations in adolescents with EOP, most prominently in male individuals with early-onset schizophrenia and individuals with a shorter duration of illness.
Collapse
Affiliation(s)
- Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Sinead Kelly
- Department of Psychosis Studies, King's College London, London, UK
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Clara Alloza
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Madrid, Spain
| | - Sonia Ambrogi
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Dimitrios Andreou
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Inmaculada Baeza
- Department Child and Adolescent Psychiatry and Psychology, 2017SGR881 Institute of Neuroscience, Hospital Clinic Barcelona. CIBERSAM. August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Michael Berk
- Deakin University, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Hannes Bohman
- Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Castro-Fornieles
- Department Child and Adolescent Psychiatry and Psychology, 2017SGR881 Institute of Neuroscience, Hospital Clinic Barcelona. CIBERSAM. August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Yann Chye
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Benedicto Crespo-Facorro
- Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Department of Psychiatry, CIBERSAM, IBiS-CSIC, Sevilla, Spain
| | - Elena de la Serna
- Department Child and Adolescent Psychiatry and Psychology, 2017SGR881 Institute of Neuroscience, Hospital Clinic Barcelona. CIBERSAM. August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Covadonga M Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | | - Anthony James
- Highfield Unit, Warneford Hospital, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Madrid, Spain
| | - Cecilie Johannessen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Katherine H Karlsgodt
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MA, USA
| | - Noemi G Lois
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain
| | - Mathias Lundberg
- Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Anne M Myhre
- Section of Child and Adolescent Mental Health Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Saül Pascual-Diaz
- Magnetic Resonance Imaging Core Facility, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Runar E Smelror
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Therese S Stokkan
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gisela Sugranyes
- Department Child and Adolescent Psychiatry and Psychology, 2017SGR881 Institute of Neuroscience, Hospital Clinic Barcelona. CIBERSAM. August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Chao Suo
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Diana Tordesillas-Gutiérrez
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander (Cantabria), Spain
- Advanced Computing and e-Science, Instituto de Física de Cantabria (UC-CSIC), Santander (Cantabria), Spain
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Kirsten Wedervang-Resell
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Laura A Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
16
|
Oestreich LKL, O'Sullivan MJ. Transdiagnostic In Vivo Magnetic Resonance Imaging Markers of Neuroinflammation. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:638-658. [PMID: 35051668 DOI: 10.1016/j.bpsc.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 05/13/2023]
Abstract
Accumulating evidence suggests that inflammation is not limited to archetypal inflammatory diseases such as multiple sclerosis, but instead represents an intrinsic feature of many psychiatric and neurological disorders not typically classified as neuroinflammatory. A growing body of research suggests that neuroinflammation can be observed in early and prodromal stages of these disorders and, under certain circumstances, may lead to tissue damage. Traditional methods to assess neuroinflammation include serum or cerebrospinal fluid markers and positron emission tomography. These methods require invasive procedures or radiation exposure and lack the exquisite spatial resolution of magnetic resonance imaging (MRI). There is, therefore, an increasing interest in noninvasive neuroimaging tools to evaluate neuroinflammation reliably and with high specificity. While MRI does not provide information at a cellular level, it facilitates the characterization of several biophysical tissue properties that are closely linked to neuroinflammatory processes. The purpose of this review is to evaluate the potential of MRI as a noninvasive, accessible, and cost-effective technology to image neuroinflammation across neurological and psychiatric disorders. We provide an overview of current and developing MRI methods used to study different aspects of neuroinflammation and weigh their strengths and shortcomings. Novel MRI contrast agents are increasingly able to target inflammatory processes directly, therefore offering a high degree of specificity, particularly if used in conjunction with multitissue, biophysical diffusion MRI compartment models. The capability of these methods to characterize several aspects of the neuroinflammatory milieu will likely push MRI to the forefront of neuroimaging modalities used to characterize neuroinflammation transdiagnostically.
Collapse
Affiliation(s)
- Lena K L Oestreich
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.
| | - Michael J O'Sullivan
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia; Institute of Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Xie S, Zhuo J, Song M, Chu C, Cui Y, Chen Y, Wang H, Li L, Jiang T. Tract-specific white matter microstructural alterations in subjects with schizophrenia and unaffected first-degree relatives. Brain Imaging Behav 2022; 16:2110-2119. [PMID: 35732912 DOI: 10.1007/s11682-022-00681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
Abstract
White matter tracts alterations have been reported in schizophrenia (SZ), but whether such abnormalities are associated with the effects of the disorder itself and/or genetic vulnerability remains unclear. Moreover, the specific patterns of different parts of these altered tracts have been less well studied. Thus, diffusion-weighted images were acquired from 38 healthy controls (HCs), 48 schizophrenia patients, and 33 unaffected first-degree relatives of SZs (FDRs). Diffusion properties of the 25 major tracts automatically extracted with probabilistic tractography were calculated and compared among groups. Regarding the peripheral regions of the tracts, significantly higher diffusivity values in the left superior longitudinal fasciculus (SLF) and the left anterior thalamic radiation (ATR) were observed in SZs than in HCs and unaffected FDRs. However, there were no significant differences between HCs and FDRs in these two tracts. While no main effects of group with respect to the core regions of the 25 tracts survived multiple comparisons correction, FDRs had significantly higher diffusivity values in the left medial lemniscus and lower diffusivity values in the middle cerebellar peduncle than HCs and SZs. These findings enhance the understanding of the abnormal patterns in the peripheral and core regions of the tracts in SZs and those at high genetic risk for schizophrenia. Our results suggest that alterations in the peripheral regions of the left SLF and ATR are features of established illness rather than genetic predisposition, which may serve as critical neural substrates for the psychopathology of schizophrenia.
Collapse
Affiliation(s)
- Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Junjie Zhuo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, 570228, Haikou, China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, 710032, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, 710032, Xi'an, China
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100190, Beijing, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China.
| |
Collapse
|
18
|
Ning L, Rathi Y, Barbour T, Makris N, Camprodon JA. White matter markers and predictors for subject-specific rTMS response in major depressive disorder. J Affect Disord 2022; 299:207-214. [PMID: 34875281 PMCID: PMC8766915 DOI: 10.1016/j.jad.2021.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has established therapeutic efficacy for major depressive disorder (MDD). While translational research has focused primarily on understanding the mechanism of action of TMS on functional activation and connectivity, the effects on structural connectivity remain largely unknown especially when rTMS is applied using subject-specific brain targets. This study aims to use novel diffusion magnetic resonance imaging (dMRI) analysis to examine microstructural changes related to rTMS treatment response using a unique cohort of 21 patients with MDD treated using rTMS with subject-specific targets. White matter dMRI microstructural measures and clinical scores were captured before and after the full course of treatment. We defined disease-relevant fiber bundles connected to different subregions of the left prefrontal cortex and analyzed changes in diffusion properties as well as correlations between the changes of dMRI measures and the changes in Hamilton Depression Rating Scale (HAMD). No significant changes were observed in tracts connected to the TMS targets. rTMS significantly increased the extra-axonal free-water volume, fractional anisotropy and decreased the radial diffusivity in anterior-medial prefrontal fiber bundles but did not lead to raw changes in lateral prefrontal tracts. That said, the microstructural changes in the lateral prefrontal white matter were significantly correlated with treatment response. Moreover, pre-rTMS dMRI measures of the dorsal anterior cingulate cortex and lateral prefrontal cortex connections are correlated with changes in HAMD scores. Microstructural changes in the anterior-medial and lateral prefrontal white matter are potentially involved in treatment response to TMS, though further investigation is needed using larger datasets.
Collapse
Affiliation(s)
- Lipeng Ning
- Brigham and Women's Hospital, Boston, MA, United States of America; Massachusetts General Hospital, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| | - Yogesh Rathi
- Brigham and Women’s Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Tracy Barbour
- Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Nikos Makris
- Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Joan A. Camprodon
- Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Li MJ, Yeh FC, Huang SH, Huang CX, Zhang H, Liu J. Differential Tractography and Correlation Tractography Findings on Patients With Mild Traumatic Brain Injury: A Pilot Study. Front Hum Neurosci 2022; 16:751902. [PMID: 35126076 PMCID: PMC8811572 DOI: 10.3389/fnhum.2022.751902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Differential tractography and correlation tractography are new tractography modalities to study neuronal changes in brain diseases, but their performances in detecting neuronal injuries are yet to be investigated in patients with mild traumatic brain injury (mTBI). Here we investigated the white matter injury in mTBI patients using differential and correlation tractography. The diffusion MRI was acquired at 33 mTBI patients and 31 health controls. 7 of the mTBI patients had one-year follow-up scans, and differential tractography was used to evaluate injured fiber bundles on these 7 patients. All subjects were evaluated using digital symbol substitution test (DSST) and trail making test A (TMT-A), and the correlation tractography was performed to explore the exact pathways related to the cognitive performance. Our results showed that differential tractography revealed neuronal changes in the corpus callosum in all 7 follow-up mTBI patients with FDR between 0.007 and 0.17. Further, the correlation tractography showed that the splenium of the corpus callosum, combined with the right superior longitudinal fasciculus and right cingulum, were correlated with DSST (FDR = 0.001669) in the acute mTBI patients. The cognitive impairment findings in the acute stage and the longitudinal findings in the corpus callosum in the chronic stage of mTBI patients suggest that differential tractography and correlation tractography are valuable tools in the diagnostic and prognostic evaluation of neuronal injuries in mTBI patients.
Collapse
Affiliation(s)
- Meng-Jun Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Si-Hong Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chu-Xin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthcare Ltd., Wuhan, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Jun Liu,
| |
Collapse
|
20
|
Di Biase MA, Cetin-Karayumak S, Lyall AE, Zalesky A, Cho KIK, Zhang F, Kubicki M, Rathi Y, Lyons MG, Bouix S, Billah T, Anticevic A, Schleifer C, Adkinson BD, Ji JL, Tamayo Z, Addington J, Bearden CE, Cornblatt BA, Keshavan MS, Mathalon DH, McGlashan TH, Perkins DO, Cadenhead KS, Tsuang MT, Woods SW, Stone WS, Shenton ME, Cannon TD, Pasternak O. White matter changes in psychosis risk relate to development and are not impacted by the transition to psychosis. Mol Psychiatry 2021; 26:6833-6844. [PMID: 34024906 PMCID: PMC8611104 DOI: 10.1038/s41380-021-01128-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/14/2021] [Indexed: 02/04/2023]
Abstract
Subtle alterations in white matter microstructure are observed in youth at clinical high risk (CHR) for psychosis. However, the timing of these changes and their relationships to the emergence of psychosis remain unclear. Here, we track the evolution of white matter abnormalities in a large, longitudinal cohort of CHR individuals comprising the North American Prodrome Longitudinal Study (NAPLS-3). Multi-shell diffusion magnetic resonance imaging data were collected across multiple timepoints (1-5 over 1 year) in 286 subjects (aged 12-32 years): 25 CHR individuals who transitioned to psychosis (CHR-P; 61 scans), 205 CHR subjects with unknown transition outcome after the 1-year follow-up period (CHR-U; 596 scans), and 56 healthy controls (195 scans). Linear mixed effects models were fitted to infer the impact of age and illness-onset on variation in the fractional anisotropy of cellular tissue (FAT) and the volume fraction of extracellular free water (FW). Baseline measures of white matter microstructure did not differentiate between HC, CHR-U and CHR-P individuals. However, age trajectories differed between the three groups in line with a developmental effect: CHR-P and CHR-U groups displayed higher FAT in adolescence, and 4% lower FAT by 30 years of age compared to controls. Furthermore, older CHR-P subjects (20+ years) displayed 4% higher FW in the forceps major (p < 0.05). Prospective analysis in CHR-P did not reveal a significant impact of illness onset on regional FAT or FW, suggesting that transition to psychosis is not marked by dramatic change in white matter microstructure. Instead, clinical high risk for psychosis-regardless of transition outcome-is characterized by subtle age-related white matter changes that occur in tandem with development.
Collapse
Affiliation(s)
- Maria A Di Biase
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia.
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E Lyall
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Kang Ik Kevin Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Monica G Lyons
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan Anticevic
- Department of Psychiatry and Psychology, Yale University, New Haven, CT, USA
| | | | - Brendan D Adkinson
- Yale Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Jie Lisa Ji
- Department of Psychiatry and Psychology, Yale University, New Haven, CT, USA
| | - Zailyn Tamayo
- Department of Psychiatry and Psychology, Yale University, New Haven, CT, USA
| | - Jean Addington
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Barbara A Cornblatt
- Department of Psychiatry and Psychology, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Department of Psychology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
- The Zucker Hillside Hospital, New York, NY, USA
| | - Matcheri S Keshavan
- Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel H Mathalon
- University of California, San Francisco, San Francisco, CA, USA
- San Francisco VA Medical Center, San Francisco, CA, USA
| | - Thomas H McGlashan
- Department of Psychiatry and Psychology, Yale University, New Haven, CT, USA
| | - Diana O Perkins
- Department of Psychology, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA
- University of North Carolina (UNC), Chapel Hill, NC, USA
| | - Kristen S Cadenhead
- Department of Psychiatry, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Scott W Woods
- Department of Psychiatry and Psychology, Yale University, New Haven, CT, USA
| | - William S Stone
- Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tyrone D Cannon
- Department of Psychiatry and Psychology, Yale University, New Haven, CT, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Elad D, Cetin‐Karayumak S, Zhang F, Cho KIK, Lyall AE, Seitz‐Holland J, Ben‐Ari R, Pearlson GD, Tamminga CA, Sweeney JA, Clementz BA, Schretlen DJ, Viher PV, Stegmayer K, Walther S, Lee J, Crow TJ, James A, Voineskos AN, Buchanan RW, Szeszko PR, Malhotra AK, Keshavan MS, Shenton ME, Rathi Y, Bouix S, Sochen N, Kubicki MR, Pasternak O. Improving the predictive potential of diffusion MRI in schizophrenia using normative models-Towards subject-level classification. Hum Brain Mapp 2021; 42:4658-4670. [PMID: 34322947 PMCID: PMC8410550 DOI: 10.1002/hbm.25574] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/04/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Diffusion MRI studies consistently report group differences in white matter between individuals diagnosed with schizophrenia and healthy controls. Nevertheless, the abnormalities found at the group-level are often not observed at the individual level. Among the different approaches aiming to study white matter abnormalities at the subject level, normative modeling analysis takes a step towards subject-level predictions by identifying affected brain locations in individual subjects based on extreme deviations from a normative range. Here, we leveraged a large harmonized diffusion MRI dataset from 512 healthy controls and 601 individuals diagnosed with schizophrenia, to study whether normative modeling can improve subject-level predictions from a binary classifier. To this aim, individual deviations from a normative model of standard (fractional anisotropy) and advanced (free-water) dMRI measures, were calculated by means of age and sex-adjusted z-scores relative to control data, in 18 white matter regions. Even though larger effect sizes are found when testing for group differences in z-scores than are found with raw values (p < .001), predictions based on summary z-score measures achieved low predictive power (AUC < 0.63). Instead, we find that combining information from the different white matter tracts, while using multiple imaging measures simultaneously, improves prediction performance (the best predictor achieved AUC = 0.726). Our findings suggest that extreme deviations from a normative model are not optimal features for prediction. However, including the complete distribution of deviations across multiple imaging measures improves prediction, and could aid in subject-level classification.
Collapse
Affiliation(s)
- Doron Elad
- Department of MathematicsTel‐Aviv UniversityTel‐AvivIsrael
| | - Suheyla Cetin‐Karayumak
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Fan Zhang
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Kang Ik K. Cho
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Amanda E. Lyall
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Departments of Psychiatry and NeuroscienceMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Johanna Seitz‐Holland
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryUniversity Hospital, Ludwig Maximilian University of MunichMunichGermany
| | | | | | - Carol A. Tamminga
- Department of PsychiatryUT Southwestern Medical CenterDallasTexasUSA
| | - John A. Sweeney
- Department of Psychiatry and Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOhioUSA
| | - Brett A. Clementz
- Departments of Psychology and NeuroscienceBio‐Imaging Research Center, University of GeorgiaAthensGeorgiaUSA
| | - David J. Schretlen
- Department of Psychiatry and Behavioral Sciences, Morgan Department of Radiology and Radiological ScienceJohns Hopkins Medical InstitutionsBaltimoreMarylandUSA
| | - Petra Verena Viher
- Translational Research CenterUniversity Hospital of Psychiatry, University of BernBernSwitzerland
| | - Katharina Stegmayer
- Translational Research CenterUniversity Hospital of Psychiatry, University of BernBernSwitzerland
| | - Sebastian Walther
- Translational Research CenterUniversity Hospital of Psychiatry, University of BernBernSwitzerland
| | - Jungsun Lee
- Department of PsychiatryUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulSouth Korea
| | - Tim J. Crow
- Department of Psychiatry, SANE POWICWarneford Hospital, University of OxfordOxfordUK
| | - Anthony James
- Department of Psychiatry, SANE POWICWarneford Hospital, University of OxfordOxfordUK
| | - Aristotle N. Voineskos
- Centre for Addiction and Mental Health, Department of PsychiatryUniversity of TorontoTorontoCanada
| | - Robert W. Buchanan
- Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Philip R. Szeszko
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical CenterJames J. Peters VA Medical CenterNew YorkNew YorkUSA
| | - Anil K. Malhotra
- The Feinstein Institute for Medical Research and Zucker Hillside HospitalManhassetNew YorkUSA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical CentreHarvard Medical SchoolBostonMassachusettsUSA
| | - Martha E. Shenton
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Departments of Psychiatry and NeuroscienceMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Sylvain Bouix
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nir Sochen
- Department of MathematicsTel‐Aviv UniversityTel‐AvivIsrael
| | - Marek R. Kubicki
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Departments of Psychiatry and NeuroscienceMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Ofer Pasternak
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
22
|
Yu X, Yin X, Hong H, Wang S, Jiaerken Y, Zhang F, Pasternak O, Zhang R, Yang L, Lou M, Zhang M, Huang P. Increased extracellular fluid is associated with white matter fiber degeneration in CADASIL: in vivo evidence from diffusion magnetic resonance imaging. Fluids Barriers CNS 2021; 18:29. [PMID: 34193191 PMCID: PMC8247253 DOI: 10.1186/s12987-021-00264-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/19/2021] [Indexed: 11/18/2022] Open
Abstract
Background White matter hyperintensities (WMHs) are one of the hallmarks of cerebral small vessel disease (CSVD), but the pathological mechanisms underlying WMHs remain unclear. Recent studies suggest that extracellular fluid (ECF) is increased in brain regions with WMHs. It has been hypothesized that ECF accumulation may have detrimental effects on white matter microstructure. To test this hypothesis, we used cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) as a unique CSVD model to investigate the relationships between ECF and fiber microstructural changes in WMHs. Methods Thirty-eight CADASIL patients underwent 3.0 T MRI with multi-model sequences. Parameters of free water (FW) and apparent fiber density (AFD) obtained from diffusion-weighted imaging (b = 0 and 1000 s/mm2) were respectively used to quantify the ECF and fiber density. WMHs were split into four subregions with four levels of FW using quartiles (FWq1 to FWq4) for each participant. We analyzed the relationships between FW and AFD in each subregion of WMHs. Additionally, we tested whether FW of WMHs were associated with other accompanied CSVD imaging markers including lacunes and microbleeds. Results We found an inverse correlation between FW and AFD in WMHs. Subregions of WMHs with high-level of FW (FWq3 and FWq4) were accompanied with decreased AFD and with changes in FW-corrected diffusion tensor imaging parameters. Furthermore, FW was also independently associated with lacunes and microbleeds. Conclusions Our study demonstrated that increased ECF was associated with WM degeneration and the occurrence of lacunes and microbleeds, providing important new insights into the role of ECF in CADASIL pathology. Improving ECF drainage might become a therapeutic strategy in future. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00264-1.
Collapse
Affiliation(s)
- Xinfeng Yu
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Xinzhen Yin
- Department of Neurology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Shuyue Wang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Yeerfan Jiaerken
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruiting Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
| | - Linglin Yang
- Department of Psychiatry, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Lou
- Department of Neurology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China.
| | - Peiyu Huang
- Department of Radiology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China.
| |
Collapse
|
23
|
Waszczuk K, Rek-Owodziń K, Tyburski E, Mak M, Misiak B, Samochowiec J. Disturbances in White Matter Integrity in the Ultra-High-Risk Psychosis State-A Systematic Review. J Clin Med 2021; 10:jcm10112515. [PMID: 34204171 PMCID: PMC8201371 DOI: 10.3390/jcm10112515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is a severe and disabling mental illness whose etiology still remains unclear. The available literature indicates that there exist white matter (WM) abnormalities in people with schizophrenia spectrum disorders. Recent developments in modern neuroimaging methods have enabled the identification of the structure, morphology, and function of the underlying WM fibers in vivo. The purpose of this paper is to review the existing evidence about WM abnormalities in individuals at ultra-high risk of psychosis (UHR) with the use of diffusion tensor imaging (DTI) available from the National Center for Biotechnology Information PubMed (Medline) and Health Source: Nursing/Academic Edition databases. Of 358 relevant articles identified, 25 papers published in the years 2008–2020 were ultimately included in the review. Most of them supported the presence of subtle aberrations in WM in UHR individuals, especially in the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF). These alterations may therefore be considered a promising neurobiological marker for the risk of psychosis. However, due to methodological discrepancies and the relative scarcity of evidence, further investigation is called for, especially into connectome analysis in UHR patients.
Collapse
Affiliation(s)
- Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland;
- Correspondence: ; Tel./Fax: +48-91-35-11-358
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.)
| | - Ernest Tyburski
- Institute of Psychology, SWPS University of Social Sciences and Humanities, Tadeusza Kutrzeby 10 Street, 61-719 Poznan, Poland;
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (K.R.-O.); (M.M.)
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, K. Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland;
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland;
| |
Collapse
|
24
|
Song W, Qian W, Wang W, Yu S, Lin GN. Mendelian randomization studies of brain MRI yield insights into the pathogenesis of neuropsychiatric disorders. BMC Genomics 2021; 22:342. [PMID: 34078268 PMCID: PMC8171058 DOI: 10.1186/s12864-021-07661-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Observational studies have identified various associations between neuroimaging alterations and neuropsychiatric disorders. However, whether such associations could truly reflect causal relations remains still unknown. RESULTS Here, we leveraged genome-wide association studies (GWAS) summary statistics for (1) 11 psychiatric disorders (sample sizes varied from n = 9,725 to 1,331,010); (2) 110 diffusion tensor imaging (DTI) measurement (sample size n = 17,706); (3) 101 region-of-interest (ROI) volumes, and investigate the causal relationship between brain structures and neuropsychiatric disorders by two-sample Mendelian randomization. Among all DTI-Disorder combinations, we observed a significant causal association between the superior longitudinal fasciculus (SLF) and the risk of Anorexia nervosa (AN) (Odds Ratio [OR] = 0.62, 95 % confidence interval: 0.50 ~ 0.76, P = 6.4 × 10- 6). Similar significant associations were also observed between the body of the corpus callosum (fractional anisotropy) and Alzheimer's disease (OR = 1.07, 95 % CI: 1.03 ~ 1.11, P = 4.1 × 10- 5). By combining all observations, we found that the overall p-value for DTI - Disorder associations was significantly elevated compared to the null distribution (Kolmogorov-Smirnov P = 0.009, inflation factor λ = 1.37), especially for DTI - Bipolar disorder (BP) (λ = 2.64) and DTI - AN (λ = 1.82). In contrast, for ROI-Disorder combinations, we only found a significant association between the brain region of pars triangularis and Schizophrenia (OR = 0.48, 95 % CI: 0.34 ~ 0.69, P = 5.9 × 10- 5) and no overall p-value elevation for ROI-Disorder analysis compared to the null expectation. CONCLUSIONS As a whole, we show that SLF degeneration may be a risk factor for AN, while DTI variations could be causally related to some neuropsychiatric disorders, such as BP and AN. Also, the white matter structure might have a larger impact on neuropsychiatric disorders than subregion volumes.
Collapse
Affiliation(s)
- Weichen Song
- Shanghai Mental Health Center, School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Wei Qian
- Shanghai Mental Health Center, School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Weidi Wang
- Shanghai Mental Health Center, School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, 200030, Shanghai, China
| | - Shunying Yu
- Shanghai Mental Health Center, School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, 200030, Shanghai, China
| | - Guan Ning Lin
- Shanghai Mental Health Center, School of Biomedical Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, 200030, Shanghai, China.
| |
Collapse
|
25
|
Dennis EL, Caeyenberghs K, Asarnow RF, Babikian T, Bartnik-Olson B, Bigler ED, Figaji A, Giza CC, Goodrich-Hunsaker NJ, Hodges CB, Hoskinson KR, Königs M, Levin HS, Lindsey HM, Livny A, Max JE, Merkley TL, Newsome MR, Olsen A, Ryan NP, Spruiell MS, Suskauer SJ, Thomopoulos SI, Ware AL, Watson CG, Wheeler AL, Yeates KO, Zielinski BA, Thompson PM, Tate DF, Wilde EA. Challenges and opportunities for neuroimaging in young patients with traumatic brain injury: a coordinated effort towards advancing discovery from the ENIGMA pediatric moderate/severe TBI group. Brain Imaging Behav 2021; 15:555-575. [PMID: 32734437 PMCID: PMC7855317 DOI: 10.1007/s11682-020-00363-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population, and specific developmental issues require a unique context since findings from adult research do not necessarily directly translate to children. Findings in pediatric cohorts tend to lag behind those in adult samples. This may be due, in part, both to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate/Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis of neuroimaging data. In this paper, we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. With the paucity of research studies examining neuroimaging biomarkers in pediatric patients with TBI and the challenges of recruiting large numbers of participants, collaborating to improve statistical power and to address technical challenges like lesions will significantly advance the field. We conclude with recommendations for future research in this field of study.
Collapse
Affiliation(s)
- Emily L Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA.
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA.
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- Brain Research Institute, UCLA, Los Angeles, CA, USA
- Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Erin D Bigler
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Anthony Figaji
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christopher C Giza
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Naomi J Goodrich-Hunsaker
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Cooper B Hodges
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Kristen R Hoskinson
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marsh Königs
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Emma Neuroscience Group, Amsterdam, The Netherlands
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Hannah M Lindsey
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan, Tel-Hashomer, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Tel-Hashomer, Israel
| | - Jeffrey E Max
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, USA
- Department of Psychiatry, Rady Children's Hospital, San Diego, CA, USA
| | - Tricia L Merkley
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Mary R Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Nicholas P Ryan
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- Department of Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Matthew S Spruiell
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Stacy J Suskauer
- Kennedy Krieger Institute, Baltimore, MD, USA
- Departments of Physical Medicine & Rehabilitation and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Christopher G Watson
- Department of Pediatrics, Children's Learning Institute, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anne L Wheeler
- Hospital for Sick Children, Neuroscience and Mental Health Program, Toronto, Canada
- Physiology Department, University of Toronto, Toronto, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Brandon A Zielinski
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - David F Tate
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
- Missouri Institute of Mental Health and University of Missouri, St Louis, MO, USA
| | - Elisabeth A Wilde
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Nägele FL, Pasternak O, Bitzan LV, Mußmann M, Rauh J, Kubicki M, Leicht G, Shenton ME, Lyall AE, Mulert C. Cellular and extracellular white matter alterations indicate conversion to psychosis among individuals at clinical high-risk for psychosis. World J Biol Psychiatry 2021; 22:214-227. [PMID: 32643526 PMCID: PMC7798359 DOI: 10.1080/15622975.2020.1775890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES It is important to find biomarkers associated with transition to illness in individuals at clinical high-risk for psychosis (CHR). Here, we use free-water imaging, an advanced diffusion MRI technique, to identify white matter alterations in the brains of CHR subjects who subsequently develop psychosis (CHR-P) compared to those who do not (CHR-NP). METHODS Twenty-four healthy controls (HC) and 30 CHR individuals, 8 of whom converted to schizophrenia after a mean follow-up of 15.16 months, received baseline MRI scans. Maps of fractional anisotropy (FA), FA of cellular tissue (FAT), and extracellular free-water (FW) were extracted using tract-based spatial statistics after which voxel-wise non-parametric group statistics and correlations with symptom severity were performed. RESULTS There were no significant differences between HCs and the combined CHR group. However, prior to conversion, CHR-P showed widespread lower FA compared to CHR-NP (pFWE < 0.05). FA changes in CHR-P were associated with significantly lower FAT and higher FW, compared to CHR-NP. Positive symptoms correlated significantly with diffusion parameters in similar regions as those discriminating CHR-P from CHR-NP. CONCLUSIONS Our study suggests that cellular (FAT) and extracellular (FW) white matter alterations are associated with positive symptom severity and indicate an elevated illness risk among CHR individuals.
Collapse
Affiliation(s)
- Felix L. Nägele
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany;,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lisa V. Bitzan
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany;,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marius Mußmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA;,VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Amanda E. Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany;,Centre for Psychiatry and Psychotherapy, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
27
|
Zhang F, Cho KIK, Tang Y, Zhang T, Kelly S, Biase MD, Xu L, Li H, Matcheri K, Whitfield-Gabrieli S, Niznikiewicz M, Stone WS, Wang J, Shenton ME, Pasternak O. MK-Curve improves sensitivity to identify white matter alterations in clinical high risk for psychosis. Neuroimage 2021; 226:117564. [PMID: 33285331 PMCID: PMC7873589 DOI: 10.1016/j.neuroimage.2020.117564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022] Open
Abstract
Diffusion kurtosis imaging (DKI) is a diffusion MRI approach that enables the measurement of brain microstructural properties, reflecting molecular restrictions and tissue heterogeneity. DKI parameters such as mean kurtosis (MK) provide additional subtle information to that provided by popular diffusion tensor imaging (DTI) parameters, and thus have been considered useful to detect white matter abnormalities, especially in populations that are not expected to show severe brain pathologies. However, DKI parameters often yield artifactual output values that are outside of the biologically plausible range, which diminish sensitivity to identify true microstructural changes. Recently we have proposed the mean-kurtosis-curve (MK-Curve) method to correct voxels with implausible DKI parameters, and demonstrated its improved performance against other approaches that correct artifacts in DKI. In this work, we aimed to evaluate the utility of the MK-Curve method to improve the identification of white matter abnormalities in group comparisons. To do so, we compared group differences, with and without the MK-Curve correction, between 115 individuals at clinical high risk for psychosis (CHR) and 93 healthy controls (HCs). We also compared the correlation of the corrected and uncorrected DKI parameters with clinical characteristics. Following the MK-curve correction, the group differences had larger effect sizes and higher statistical significance (i.e., lower p-values), demonstrating increased sensitivity to detect group differences, in particular in MK. Furthermore, the MK-curve-corrected DKI parameters displayed stronger correlations with clinical variables in CHR individuals, demonstrating the clinical relevance of the corrected parameters. Overall, following the MK-curve correction our analyses found widespread lower MK in CHR that overlapped with lower fractional anisotropy (FA), and both measures were significantly correlated with a decline in functioning and with more severe symptoms. These observations further characterize white matter alterations in the CHR stage, demonstrating that MK and FA abnormalities are widespread, and mostly overlap. The improvement in group differences and stronger correlation with clinical variables suggest that applying MK-curve would be beneficial for the detection and characterization of subtle group differences in other experiments as well.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang Ik Kevin Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sinead Kelly
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; The Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Maria Di Biase
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Huijun Li
- Department of Psychology, Florida A&M University, Tallahassee, FL,USA
| | - Keshevan Matcheri
- The Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, MA, USA; The McGovern Institute for Brain Research and the Poitras Center for Affective Disorders Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret Niznikiewicz
- The Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - William S Stone
- The Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - Ofer Pasternak
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Steinmann S, Lyall AE, Langhein M, Nägele FL, Rauh J, Cetin-Karayumak S, Zhang F, Mussmann M, Billah T, Makris N, Pasternak O, O'Donnell LJ, Rathi Y, Kubicki M, Leicht G, Shenton ME, Mulert C. Sex-Related Differences in White Matter Asymmetry and Its Implications for Verbal Working Memory in Psychosis High-Risk State. Front Psychiatry 2021; 12:686967. [PMID: 34194350 PMCID: PMC8236502 DOI: 10.3389/fpsyt.2021.686967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Objective: Sexual dimorphism has been investigated in schizophrenia, although sex-specific differences among individuals who are at clinical high-risk (CHR) for developing psychosis have been inconclusive. This study aims to characterize sexual dimorphism of language areas in the brain by investigating the asymmetry of four white matter tracts relevant to verbal working memory in CHR patients compared to healthy controls (HC). HC typically show a leftward asymmetry of these tracts. Moreover, structural abnormalities in asymmetry and verbal working memory dysfunctions have been associated with neurodevelopmental abnormalities and are considered core features of schizophrenia. Methods: Twenty-nine subjects with CHR (17 female/12 male) for developing psychosis and twenty-one HC (11 female/10 male) matched for age, sex, and education were included in the study. Two-tensor unscented Kalman filter tractography, followed by an automated, atlas-guided fiber clustering approach, were used to identify four fiber tracts related to verbal working memory: the superior longitudinal fasciculi (SLF) I, II and III, and the superior occipitofrontal fasciculus (SOFF). Using fractional anisotropy (FA) of tissue as the primary measure, we calculated the laterality index for each tract. Results: There was a significantly greater right>left asymmetry of the SLF-III in CHR females compared to HC females, but no hemispheric difference between CHR vs. HC males. Moreover, the laterality index of SLF-III for CHR females correlated negatively with Backward Digit Span performance, suggesting a greater rightward asymmetry was associated with poorer working memory functioning. Conclusion: This study suggests increased rightward asymmetry of the SLF-III in CHR females. This finding of sexual dimorphism in white matter asymmetry in a language-related area of the brain in CHR highlights the need for a deeper understanding of the role of sex in the high-risk state. Future work investigating early sex-specific pathophysiological mechanisms, may lead to the development of novel personalized treatment strategies aimed at preventing transition to a more chronic and difficult-to-treat disorder.
Collapse
Affiliation(s)
- Saskia Steinmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital Harvard Medical School, Boston, MA, United States
| | - Mina Langhein
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Felix L Nägele
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital Harvard Medical School, Boston, MA, United States
| | - Marius Mussmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tashrif Billah
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital Harvard Medical School, Boston, MA, United States
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States.,Department of Radiology, Brigham and Women's Hospital Harvard Medical School, Boston, MA, United States
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital Harvard Medical School, Boston, MA, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States.,Department of Radiology, Brigham and Women's Hospital Harvard Medical School, Boston, MA, United States
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital Harvard Medical School, Boston, MA, United States
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital Harvard Medical School, Boston, MA, United States.,Department of Radiology, Brigham and Women's Hospital Harvard Medical School, Boston, MA, United States
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Psychiatry and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
29
|
Karlsgodt KH. Using Advanced Diffusion Metrics to Probe White Matter Microstructure in Individuals at Clinical High Risk for Psychosis. Am J Psychiatry 2019; 176:777-779. [PMID: 31569992 DOI: 10.1176/appi.ajp.2019.19080808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katherine H Karlsgodt
- Department of Psychology and Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles
| |
Collapse
|
30
|
Kalin NH. Gaining Ground on Schizophrenia: Conceptualizing How to Use Neuroimaging and Genomics in Its Diagnosis and Treatment. Am J Psychiatry 2019; 176:771-773. [PMID: 31569991 DOI: 10.1176/appi.ajp.2019.19080828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|