1
|
Oxidative Stress and Lipid Dysregulation in Lipid Droplets: A Connection to Chronic Kidney Disease Revealed in Human Kidney Cells. Antioxidants (Basel) 2022; 11:antiox11071387. [PMID: 35883878 PMCID: PMC9312214 DOI: 10.3390/antiox11071387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic kidney disease (CKD), which is defined as a condition causing the gradual loss of kidney function, shows renal lipid droplet (LD) accumulation that is associated with oxidative damage. There is a possibility that an LD abnormality in quality plays a role in CKD development. This study aimed to explore the chemical composition of LDs that are induced in human kidney cells during exposure to free fatty acids as an LD source and oxidized lipoproteins as oxidative stress. The LDs were aspirated directly from cells using nanotips, followed by in-tip microextraction, and the LD lipidomic profiling was conducted using nanoelectrospray mass spectrometry. As a result, the free fatty acids increased the LD lipid content and, at the same time, changed their composition significantly. The oxidized lipoproteins caused distorted proportions of intact lipids, such as triacylglycerols (TG), phosphatidylcholines (PC), phosphatidylethanolamines (PE), and cholesteryl esters (CE). Notably, the oxidized lipids, including the hydroperoxides of TG, PC, and PE, exhibited significant elevations in dose-dependent manners. Furthermore, the dysregulation of intact lipids was paralleled with the accumulation of lipid hydroperoxides. The present study has revealed that the oxidation of lipids and the dysregulation of the lipid metabolism coexisted in LDs in the kidney cells, which has provided a potential new target for diagnosis and new insights into CKD.
Collapse
|
2
|
Ferreira HB, Barros C, Melo T, Paiva A, Domingues MR. Looking in Depth at Oxidized Cholesteryl Esters by LC-MS/MS: Reporting Specific Fragmentation Fingerprints and Isomer Discrimination. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:793-802. [PMID: 35438496 DOI: 10.1021/jasms.1c00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cholesteryl esters (CE) are prone to oxidation under increased oxidative stress conditions, but little is known about oxidized CE species (oxCE). To date, only a few oxCE have been identified, however, mainly based on the detection of molecular ions by mass spectrometry (MS) or target approaches for specific oxCE. The study of oxCE occurring from radical oxidation is still scarcely addressed. In this work, we made a comprehensive assessment of oxCE derivatives and their specific fragmentation patterns to identify detailed structural features and isomer differentiation using high-resolution C18 HPLC-MS- and MS/MS-based lipidomic approaches. The LC-MS/MS analysis allowed us to pinpoint oxCE structural isomers of long-chain and short-chain species, eluting at different retention times (tR). Data analysis revealed that oxCE can be modified either in the fatty acyl moiety or in the cholesterol ring. The location of the hydroxy/hydroperoxy group originates characteristic fragment ions, namely the unmodified cholestenyl cation (m/z 369) for the isomer with oxidation in the fatty acyl chain or ions at m/z 367 and m/z 385 (369 + 16) when oxygenation occurs in the cholesterol ring. Additionally, we identified CE 18:2 and 20:4 aldehydic and carboxylic short-chain products that showed a clear fragmentation pattern that confirmed the modification in the fatty acyl chain. Specific fragmentation fingerprinting allowed discrimination of the isobaric short-chain species, namely carboxylic short-chain products, from hydroxy aldehyde short-chain products, with a hydroxycholesterol moiety. This new information is important to identify different oxCE in biological samples and will contribute to unraveling their role in biological conditions and diseases such as cardiovascular disease.
Collapse
Affiliation(s)
- Helena Beatriz Ferreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Cristina Barros
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), 3004-561 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854 Coimbra, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Wang X, Li H, Zou X, Yan X, Cong P, Li H, Wang H, Xue C, Xu J. Deep mining and quantification of oxidized cholesteryl esters discovers potential biomarkers involved in breast cancer by liquid chromatography-mass spectrometry. J Chromatogr A 2021; 1663:462764. [PMID: 34954533 DOI: 10.1016/j.chroma.2021.462764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Oxidized cholesteryl ester (OxCE) is produced by the oxidation of cholesteryl ester (CE) in the cores of lipoproteins. OxCE production and oxidative stress have been largely associated with breast cancer. Herein, we developed a novel reverse-phase liquid chromatography coupling quadrupole time-of-flight mass spectrometry (RPLC‒Q-TOF‒MS) method based on the iterative acquisition mode and used the MS/MS mode for deep mining and simultaneous quantification of cholesterol (Chol), CEs and OxCEs in human serum. A mathematical model was used to globally profile 57 molecular species of both CEs and OxCEs in the serum of both healthy volunteers and patients with breast cancer, and the qualitative results were verified based on the retention regularity. An abnormal elevation of OxCEs was found in serum samples of breast cancer patients, where OxCEs were produced by the oxidation of the fatty acyl chain of CE (20:4), such as CE (20:1)+3O, CE (20:2)+2O and CE (20:3)+O, which could be regarded as biomarkers. This comprehensive method for the global profiling of Chol, OxCEs and CEs sheds light on the role OxCEs and CEs play in breast cancer and has enabled the discovery of breast cancer biomarkers.
Collapse
Affiliation(s)
- Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
| | - He Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
| | - Xiao Zou
- Qingdao Central Hospital, No. 127, Siliu Nan Road, Qingdao, Shandong 266500, China
| | - Xiong Yan
- Qingdao Central Hospital, No. 127, Siliu Nan Road, Qingdao, Shandong 266500, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
| | - Hongyan Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hui Wang
- Agilent Technologies Co. Ltd., No. 9 Hongkong Zhong Road, Qingdao Shandong 266071, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1, Wenhai Road, Qingdao, Shandong 266237, China.
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China.
| |
Collapse
|
4
|
Gladine C, Fedorova M. The clinical translation of eicosanoids and other oxylipins, although challenging, should be actively pursued. J Mass Spectrom Adv Clin Lab 2021; 21:27-30. [PMID: 34820674 PMCID: PMC8600996 DOI: 10.1016/j.jmsacl.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Key Words
- CE, cholesteryl ester
- CVD, cardiovascular disease
- LDL, low density lipoprotein
- NFκB, nuclear factor kappa B
- PC, phosphatidylcholine
- PL, phospholipid
- PPAR, peroxisome proliferator-activated receptor
- PUFA, polyunsaturated fatty acid
- TG, triglyceride
- oxCE, oxidized CE
- oxLDL, oxidized LDL
- oxTG, oxidized TG
Collapse
Affiliation(s)
- Cécile Gladine
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.,Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Li L, Zhong S, Shen X, Li Q, Xu W, Tao Y, Yin H. Recent development on liquid chromatography-mass spectrometry analysis of oxidized lipids. Free Radic Biol Med 2019; 144:16-34. [PMID: 31202785 DOI: 10.1016/j.freeradbiomed.2019.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) in the cellular membrane can be oxidized by various enzymes or reactive oxygen species (ROS) to form many oxidized lipids. These metabolites are highly bioactive, participating in a variety of physiological and pathophysiological processes. Mass spectrometry (MS), coupled with Liquid Chromatography, has been increasingly recognized as an indispensable tool for the analysis of oxidized lipids due to its excellent sensitivity and selectivity. We will give an update on the understanding of the molecular mechanisms related to generation of various oxidized lipids and recent progress on the development of LC-MS in the detection of these bioactive lipids derived from fatty acids, cholesterol esters, and phospholipids. The purpose of this review is to provide an overview of the formation mechanisms and technological advances in LC-MS for the study of oxidized lipids in human diseases, and to shed new light on the potential of using oxidized lipids as biomarkers and mechanistic clues of pathogenesis related to lipid metabolism. The key technical problems associated with analysis of oxidized lipids and challenges in the field will also discussed.
Collapse
Affiliation(s)
- Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China
| | - Shanshan Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China
| | - Xia Shen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Qiujing Li
- Department of Pharmacy, Zhangzhou Health Vocational College, Zhangzhou, 363000, China
| | - Wenxin Xu
- Department of Medical Technology, Zhangzhou Health Vocational College, Zhangzhou, 363000, China
| | - Yongzhen Tao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China; University of Chinese Academy of Sciences, CAS, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, 100000, China.
| |
Collapse
|
6
|
Shrestha R, Chen Z, Miura Y, Yamamoto Y, Sakurai T, Chiba H, Hui SP. Identification of molecular species of phosphatidylcholine hydroperoxides in native and copper-oxidized triglyceride-rich lipoproteins in humans. Ann Clin Biochem 2019; 57:95-98. [PMID: 31537082 DOI: 10.1177/0004563219880932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Triglyceride-rich lipoproteins are considered to be independent predictors of atherosclerotic cardiovascular disease. The molecular basis of its atherogenicity is uncertain. Here, we aim to identify molecular species of phosphatidylcholine hydroperoxides (PCOOH) in triglyceride-rich lipoproteins. For comparison, copper-oxidized triglyceride-rich lipoproteins were investigated as well. Methods A fasting EDTA blood sample was collected from six healthy human volunteers to isolate two major triglyceride-rich lipoproteins fractions – very low-density lipoproteins (VLDL) and intermediate-density lipoproteins (IDL) using sequential ultracentrifugation. Triglyceride-rich lipoproteins and plasma samples were studied for PCOOH by liquid chromatography (LC) coupled with Orbitrap mass spectrometry. Results Twelve molecular species of PCOOH in triglyceride-rich lipoproteins and/or plasma were identified using the following criteria: (1) high-resolution mass spectrometry (MS) with mass accuracy within 5 ppm, (2) retention time in LC and (3) fragmentation pattern in MS2 and MS3. PC36:4-OOH was most often detected in VLDL, IDL and plasma. The ratio of total PCOOH to phosphatidylcholine progressively increased with the duration of oxidation in both VLDL and IDL. Conclusion This study demonstrated the presence of 12 molecular species of PCOOH in native triglyceride-rich lipoproteins. The frequent detection of PCOOH in triglyceride-rich lipoproteins provides a molecular basis of the atherogenicity of triglyceride-rich lipoproteins. PCOOH in triglyceride-rich lipoproteins might serve as a molecular basis of the atherogenicity of triglyceride-rich lipoproteins.
Collapse
Affiliation(s)
- Rojeet Shrestha
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Zhen Chen
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Miura
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Yamamoto
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Toshihiro Sakurai
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hitoshi Chiba
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.,Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Japan
| | - Shu-Ping Hui
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Furukawa T, Hinou H, Takeda S, Chiba H, Nishimura SI, Hui SP. An Efficient Glycoblotting-Based Analysis of Oxidized Lipids in Liposomes and a Lipoprotein. Chembiochem 2017; 18:1903-1909. [PMID: 28779513 DOI: 10.1002/cbic.201700384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 11/07/2022]
Abstract
Although widely occurring lipid oxidation, which is triggered by reactive oxygen species (ROS), produces a variety of oxidized lipids, practical methods to efficiently analyze oxidized lipids remain elusive. Herein, it is shown that the glycoblotting platform can be used to analyze oxidized lipids. Analysis is based on the principle that lipid aldehydes, one of the oxidized lipid species, can be captured selectively, enriched, and detected. Moreover, 3-methyl-1-p-tolyltriazene (MTT) methylates phosphoric and carboxylic acids, and this MTT-mediated methylation is, in combination with conventional tandem mass spectrometry (MS/MS) analysis, an effective method for the structural analysis of oxidized lipids. By using three classes of standards, liposomes, and a lipoprotein, it is demonstrated that glycoblotting represents a powerful approach for focused lipidomics, even in complex macromolecules.
Collapse
Affiliation(s)
- Takayuki Furukawa
- Graduate School of Health Science, Hokkaido University, N12 W5, Kita-ku, Sapporo, 0600812, Japan
| | - Hiroshi Hinou
- Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 0010021, Japan
| | - Seiji Takeda
- Graduate School of Health Science, Hokkaido University, N12 W5, Kita-ku, Sapporo, 0600812, Japan
| | - Hitoshi Chiba
- Graduate School of Health Science, Hokkaido University, N12 W5, Kita-ku, Sapporo, 0600812, Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Life Science, Hokkaido University, N21 W11, Kita-ku, Sapporo, 0010021, Japan
| | - Shu-Ping Hui
- Graduate School of Health Science, Hokkaido University, N12 W5, Kita-ku, Sapporo, 0600812, Japan
| |
Collapse
|
8
|
Chen Z, Wu Y, Ma YS, Kobayashi Y, Zhao YY, Miura Y, Chiba H, Hui SP. Profiling of cardiolipins and their hydroperoxides in HepG2 cells by LC/MS. Anal Bioanal Chem 2017; 409:5735-5745. [DOI: 10.1007/s00216-017-0515-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 01/02/2023]
|
9
|
Shrestha R, Hui SP, Miura Y, Yagi A, Takahashi Y, Takeda S, Fuda H, Chiba H. Identification of molecular species of oxidized triglyceride in plasma and its distribution in lipoproteins. ACTA ACUST UNITED AC 2015; 53:1859-69. [DOI: 10.1515/cclm-2014-1088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/11/2015] [Indexed: 02/01/2023]
Abstract
AbstractThe role of triglycerides carried in the triglyceride-rich lipoproteins (TRL) in the progression of atherosclerosis is uncertain. Identification of oxidized triglycerides and its possible association with atherosclerosis were largely ignored. Here we applied mass spectrometric approach to detect and identify triglyceride hydroperoxides (TGOOH) in human plasma and lipoproteins.EDTA plasma was collected from healthy human volunteers (n=9) after 14–16 h of fasting. Very low-density lipoprotein (VLDL)We identified 11 molecular species of TGOOH in either plasma or VLDL and IDL, of which TGOOH-18:1/18:2/16:0, TGOOH-18:1/18:1/16:0, TGOOH-16:0/18:2/16:0, TGOOH-18:1/18:1/18:1, and TGOOH-16:0/20:4/16:0 were most dominant. These TGOOH molecules are carried by TRL but not by LDL and HDL. Mean concentration of TGOOH in plasma, VLDL and IDL were, respectively, 56.1±25.6, 349.8±253.6 and 512.5±173.2 μmol/mol of triglycerides.This is the first report to identify several molecular species of oxidized triglycerides in TRL. Presence of oxidized triglyceride may contribute to the atherogenicity of TRL. Further work is needed to elucidate the association of the oxidized triglyceride in atherosclerosis.
Collapse
|