1
|
Wang Z, Luo W, Zhao C, Yu M, Li H, Zhou F, Wang D, Bai F, Chen T, Xiong Y, Wu Y. FoxO1-modulated macrophage polarization regulates osteogenesis via PPAR-γ signaling. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167333. [PMID: 38960054 DOI: 10.1016/j.bbadis.2024.167333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Periodontitis, a common chronic inflammatory disease, epitomizes a significant impairment in the host immune system and an imbalance of bone metabolism. Macrophage polarization, a dynamic process dictated by the microenvironment, intricately contributes to the interplay between the immune system and bone remodeling, namely the osteoimmune system. Forkhead box protein O1 (FoxO1) has been shown to play a dramatic role in mediating oxidative stress, bone mass, as well as cellular metabolism. Nevertheless, the function and underlying mechanisms of FoxO1 in regulating macrophage polarization-mediated osteogenesis in periodontitis remain to be further elucidated. Here, we found that FoxO1 expression was closely linked to periodontitis, accompanied by aggravated inflammation. Notably, FoxO1 knockdown skewed macrophage polarization from M1 to the antiinflammatory M2 phenotype under inflammatory conditions, which rescued the impaired osteogenic potential. Mechanistically, we revealed that the enhancement of the transcription of peroxisome proliferator-activated receptor (PPAR) signaling in FoxO1-knockdown macrophages. In agreement with this contention, GW9662, a specific inhibitor of PPAR-γ signaling, greatly aggravated macrophage polarization from M2 to the M1 phenotype and attenuated osteogenic potential under inflammatory conditions. Additionally, PPAR-γ signaling agonist rosiglitazone (RSG) was applied to address ligature-induced periodontitis with attenuated inflammation. Our data lend conceptual credence to the function of FoxO1 in mediating macrophage polarization-regulated osteogenesis which serves as a novel therapeutic target for periodontitis.
Collapse
Affiliation(s)
- Zhanqi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenxin Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Muqiao Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Haiyun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dongyang Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fuwei Bai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Ayyasamy R, Fan S, Czernik P, Lecka-Czernik B, Chattopadhyay S, Chakravarti R. 14-3-3ζ suppresses RANKL signaling by destabilizing TRAF6. J Biol Chem 2024; 300:107487. [PMID: 38908751 PMCID: PMC11331427 DOI: 10.1016/j.jbc.2024.107487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024] Open
Abstract
Macrophages are essential regulators of inflammation and bone loss. Receptor activator of nuclear factor-κβ ligand (RANKL), a pro-inflammatory cytokine, is responsible for macrophage differentiation to osteoclasts and bone loss. We recently showed that 14-3-3ζ-knockout (YwhazKO) rats exhibit increased bone loss in the inflammatory arthritis model. 14-3-3ζ is a cytosolic adaptor protein that actively participates in many signaling transductions. However, the role of 14-3-3ζ in RANKL signaling or bone remodeling is unknown. We investigated how 14-3-3ζ affects osteoclast activity by evaluating its role in RANKL signaling. We utilized 14-3-3ζ-deficient primary bone marrow-derived macrophages obtained from wildtype and YwhazKO animals and RAW264.7 cells generated using CRISPR-Cas9. Our results showed that 14-3-3ζ-deficient macrophages, upon RANKL stimulation, have bigger and stronger tartrate-resistant acid phosphatase-positive multinucleated cells and increased bone resorption activity. The presence of 14-3-3ζ suppressed RANKL-induced MAPK and AKT phosphorylation, transcription factors (NFATC1 and p65) nuclear translocation, and subsequently, gene induction (Rank, Acp5, and Ctsk). Mechanistically, 14-3-3ζ interacts with TRAF6, an essential component of the RANKL receptor complex. Upon RANKL stimulation, 14-3-3ζ-TRAF6 interaction was increased, while RANK-TRAF6 interaction was decreased. Importantly, 14-3-3ζ supported TRAF6 ubiquitination and degradation by the proteasomal pathway, thus dampening the downstream RANKL signaling. Together, we show that 14-3-3ζ regulates TRAF6 levels to suppress inflammatory RANKL signaling and osteoclast activity. To the best of our knowledge, this is the first report on 14-3-3ζ regulation of RANKL signaling and osteoclast activation.
Collapse
Affiliation(s)
- R Ayyasamy
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - S Fan
- Department of Medical Microbiology & Immunology, College of Medicine & Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - P Czernik
- Department of Orthopedics, College of Medicine & Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - B Lecka-Czernik
- Department of Orthopedics, College of Medicine & Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - S Chattopadhyay
- Department of Medical Microbiology & Immunology, College of Medicine & Life Sciences, University of Toledo, Toledo, Ohio, USA; Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - R Chakravarti
- Department of Physiology & Pharmacology, College of Medicine & Life Sciences, University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
3
|
Apatzidou DA, Iliopoulos JM, Konstantinidis A, Verma M, Hardy P, Lappin DF, Nile CJ. Inflammatory and bone remodelling related biomarkers following periodontal transplantation of the tissue engineered biocomplex. Clin Oral Investig 2024; 28:361. [PMID: 38847929 DOI: 10.1007/s00784-024-05754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES To assess gingival crevicular fluid (GCF) levels of inflammatory and bone remodelling related biomarkers following transplantation of a tissue-engineered biocomplex into intrabony defects at several time-points over 12-months. MATERIALS AND METHODS Group-A (n = 9) received the Minimal Access Flap (MAF) surgical technique combined with a biocomplex of autologous clinical-grade alveolar bone-marrow mesenchymal stem cells in collagen scaffolds enriched with an autologous fibrin/platelet lysate (aFPL). Group-B (n = 10) received the MAF surgery, with collagen scaffolds enriched with aFPL and Group-C (n = 8) received the MAF surgery alone. GCF was collected from the osseous defects of subjects via paper strips/30 sec at baseline, 6-weeks, 3-, 6-, 9-, 12-months post-surgery. Levels of inflammatory and bone remodelling-related biomarkers in GCF were determined by ELISA. RESULTS Group-A demonstrated significantly higher GCF levels of BMP-7 at 6-9 months than baseline, with gradually decreasing levels of pro-inflammatory and pro-osteoclastogenic markers (TNF-α, RANKL) over the study-period; and an overall decrease in the RANKL/OPG ratio at 9-12 months than baseline (all p < 0.001). In comparison, only modest interim changes were observed in Groups-B and -C. CONCLUSIONS At the protein level, the approach of MAF and biocomplex transplantation provided greater tissue regeneration potential as cell-based therapy appeared to modulate inflammation and bone remodelling in residual periodontal defects. CLINICAL RELEVANCE Transplantation of a tissue engineered construct into periodontal intrabony defects demonstrated a biochemical pattern for inflammatory control and tissue regeneration over 12-months compared to the control treatments. Understanding the biological healing events of stem cell transplantation may facilitate the design of novel treatment strategies. CLINICAL DATABASE REGISTRATION ClinicalTrials.gov ID: NCT02449005.
Collapse
Affiliation(s)
- Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Jordan M Iliopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Konstantinidis
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mukul Verma
- Faculty of Medical Sciences, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Philip Hardy
- Faculty of Medical Sciences, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David F Lappin
- Oral Sciences Research Group, Dental School, University of Glasgow, Glasgow, UK
| | - Christopher J Nile
- Faculty of Medical Sciences, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Feng Q, Zhang M, Zhang G, Mei H, Su C, Liu L, Wang X, Wan Z, Xu Z, Hu L, Nie Y, Li J. A whole-course-repair system based on ROS/glucose stimuli-responsive EGCG release and tunable mechanical property for efficient treatment of chronic periodontitis in diabetic rats. J Mater Chem B 2024; 12:3719-3740. [PMID: 38529844 DOI: 10.1039/d3tb02898d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Elevated glucose levels, multiple pro-inflammatory cytokines and the generation of excessive reactive oxygen species (ROS) are pivotal characteristics within the microenvironments of chronic periodontitis with diabetes mellitus (CPDM). Control of inflammation and modulation of immune system are required in the initial phase of CPDM treatment, while late severe periodontitis requires a suitable scaffold to promote osteogenesis, rebuild periodontal tissue and reduce alveolar bone resorption. Herein, a whole-course-repair system is introduced by an injectable hydrogel using phenylboronic acid functionalized oxidized sodium alginate (OSA-PBA) and carboxymethyl chitosan (CMC). Epigallocatechin-3-gallate (EGCG) was loaded to simultaneously adjust the mechanical property of the OSA-PBA/CMC + EGCG hydrogel (OPCE). This hydrogel has distinctive adaptability, injectability, and ROS/glucose-triggered release of EGCG, making it an ideal drug delivery carrier. As expected, OPCE hydrogel shows favourable antioxidant and anti-inflammatory properties, along with a regulatory influence on the phenotypic transition of macrophages, providing a favourable immune microenvironment. Apart from that, it provides a favourable mechanical support for osteoblast/osteoclast differentiation regulation at the late proliferation stage of periodontal regeneration. The practical therapeutic effects of OPCE hydrogels were also confirmed when applied for treating periodontitis in diabetic rats. In summary, OPCE hydrogel may be a promising whole-course-repair system for the treatment of CPDM.
Collapse
Affiliation(s)
- Qingchen Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Guanning Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong, China
| | - Hongxiang Mei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Chongying Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Lisa Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Xiaoxia Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Ziqianhong Wan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Liangkui Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yu Nie
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Juan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| |
Collapse
|
5
|
Lei M, Wan H, Song J, Lu Y, Chang R, Wang H, Zhou H, Zhang X, Liu C, Qu X. Programmable Electro-Assembly of Collagen: Constructing Porous Janus Films with Customized Dual Signals for Immunomodulation and Tissue Regeneration in Periodontitis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305756. [PMID: 38189598 PMCID: PMC10987108 DOI: 10.1002/advs.202305756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Currently available guided bone regeneration (GBR) films lack active immunomodulation and sufficient osteogenic ability- in the treatment of periodontitis, leading to unsatisfactory treatment outcomes. Challenges remain in developing simple, rapid, and programmable manufacturing methods for constructing bioactive GBR films with tailored biofunctional compositions and microstructures. Herein, the controlled electroassembly of collagen under the salt effect is reported, which enables the construction of porous films with precisely tunable porous structures (i.e., porosity and pore size). In particular, bioactive salt species such as the anti-inflammatory drug diclofenac sodium (DS) can induce and customize porous structures while enabling the loading of bioactive salts and their gradual release. Sequential electro-assembly under pre-programmed salt conditions enables the manufacture of a Janus composite film with a dense and DS-containing porous layer capable of multiple functions in periodontitis treatment, which provides mechanical support, guides fibrous tissue growth, and acts as a barrier preventing its penetration into bone defects. The DS-containing porous layer delivers dual bio-signals through its morphology and the released DS, inhibiting inflammation and promoting osteogenesis. Overall, this study demonstrates the potential of electrofabrication as a customized manufacturing platform for the programmable assembly of collagen for tailored functions to adapt to specific needs in regenerative medicine.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Jia Song
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Ronghang Chang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Honglei Wang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Hang Zhou
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell MetabolismEast China University of Science and TechnologyShanghai200237China
- Wenzhou Institute of Shanghai UniversityWenzhou325000China
| |
Collapse
|
6
|
Tabassum A. Alveolar Bone Loss in Diabetic Patients: A Case-Control Study. Eur J Dent 2024; 18:168-173. [PMID: 36522180 PMCID: PMC10959629 DOI: 10.1055/s-0042-1758071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Based on literature, very few case-control studies have been executed to confirm the relationship between diabetes mellitus and the severity of mean alveolar bone loss. Therefore, the aim was to assess the differences in mean alveolar bone loss among diabetic (type 2) and nondiabetic patients in the Saudi population. MATERIALS AND METHODS Nine-hundred eighty-two patient records were seen in this retrospective study. Patient demographic data and medical records were examined. The mean alveolar bone loss was measured in posterior teeth by calculating the distance from the base of cementoenamel junction to the alveolar crest using the bitewing radiographs. SPSS 20.0 was used for data analysis. An unpaired t-test was utilized to analyze the mean alveolar bone loss across multiple variables. p-Value less than or equal to 0.05 was contemplated as significant. RESULTS The overall mean alveolar bone loss for all 124 patients was 2.83 ± 1.13 mm. Diabetic patients had greater mean alveolar bone loss measured in millimeters than nondiabetic patients (3.07 ± 1.14mm vs. 2.59 ± 1.08mm, respectively), and the difference was significant (p = 0.018). In terms of the severity of mean alveolar bone loss, diabetic patients experience statistically higher mean alveolar bone loss as compared with nondiabetic patients. CONCLUSION In our study population, the overall mean alveolar bone loss prevalence was greater in diabetes patients than in nondiabetic individuals. According to the severity of bone loss, the distribution of moderate and severe periodontitis was higher in diabetic patients. To enhance patients' quality of life, the awareness and education among patients regarding the association among diabetes mellitus and oral health, particularly periodontal disease, should be promoted.
Collapse
Affiliation(s)
- Afsheen Tabassum
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Shimada E, Kanetaka H, Hihara H, Kanno A, Kawashima R, Nakasato N, Igarashi K. Effects of pain associated with orthodontic tooth movement on tactile sensation of periodontal ligaments. Clin Oral Investig 2023; 28:36. [PMID: 38147159 PMCID: PMC10751255 DOI: 10.1007/s00784-023-05469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVES Pain associated with orthodontic tooth movement reportedly reduces periodontal ligament tactile sensation. However, the mechanism associated with the central nervous system remains unclear. This study was conducted by measuring somatosensory evoked magnetic fields (SEFs) during mechanical stimulation of teeth as they were being moved by separator elastics. Findings clarified the effects of pain on periodontal ligament tactile sensation during orthodontic tooth movement. MATERIALS AND METHODS Using magnetoencephalography, SEFs were measured during the application of mechanical stimuli to the mandibular right first molars of 23 right-handed healthy participants (0 h). Separator elastics were subsequently inserted into the mesial and distal interdental portions of the mandibular right first molars. The same mechanical stimuli were applied again 24 h later while the SEFs were measured (24 h). After each SEF measurements, pain was also evaluated using the Visual Analog Scale (VAS). RESULTS The VAS values were significantly higher at 24 h than at 0 h (p < 0.05). No significant difference in the peak latencies was found between those obtained at 0 h and 24 h, but the intensities around 40.0 ms in the contralateral hemisphere were significantly lower at 24 h than at 0 h (p < 0.01). CONCLUSIONS Pain associated with orthodontic tooth movement might suppress periodontal ligament tactile sensation in the primary somatosensory cortex. CLINICAL RELEVANCE Pain associated with orthodontic tooth movement might affect periodontal ligament sensation, consequently causing discomfort during occlusion.
Collapse
Affiliation(s)
- Eriya Shimada
- Division of Craniofacial Anomalies, Tohoku University Graduate School of Dentistry, Sendai, Japan.
- Department of Orthodontics and Speech Therapy for Craniofacial Anomalies, Tohoku University Hospital, Sendai, Japan.
| | - Hiroyasu Kanetaka
- Department of Orthodontics and Speech Therapy for Craniofacial Anomalies, Tohoku University Hospital, Sendai, Japan
- Division of Interdisciplinary Integration, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroki Hihara
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Akitake Kanno
- Department of Advanced Spintronics Medical Engineering, Tohoku University Graduate School of Engineering, Sendai, Japan
| | - Ryuta Kawashima
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Nobukazu Nakasato
- Department of Advanced Spintronics Medical Engineering, Tohoku University Graduate School of Engineering, Sendai, Japan
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaoru Igarashi
- Division of Craniofacial Anomalies, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Department of Orthodontics and Speech Therapy for Craniofacial Anomalies, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
8
|
Epicoco L, Pellegrino R, Madaghiele M, Friuli M, Giannotti L, Di Chiara Stanca B, Palermo A, Siculella L, Savkovic V, Demitri C, Nitti P. Recent Advances in Functionalized Electrospun Membranes for Periodontal Regeneration. Pharmaceutics 2023; 15:2725. [PMID: 38140066 PMCID: PMC10747510 DOI: 10.3390/pharmaceutics15122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Periodontitis is a global, multifaceted, chronic inflammatory disease caused by bacterial microorganisms and an exaggerated host immune response that not only leads to the destruction of the periodontal apparatus but may also aggravate or promote the development of other systemic diseases. The periodontium is composed of four different tissues (alveolar bone, cementum, gingiva, and periodontal ligament) and various non-surgical and surgical therapies have been used to restore its normal function. However, due to the etiology of the disease and the heterogeneous nature of the periodontium components, complete regeneration is still a challenge. In this context, guided tissue/bone regeneration strategies in the field of tissue engineering and regenerative medicine have gained more and more interest, having as a goal the complete restoration of the periodontium and its functions. In particular, the use of electrospun nanofibrous scaffolds has emerged as an effective strategy to achieve this goal due to their ability to mimic the extracellular matrix and simultaneously exert antimicrobial, anti-inflammatory and regenerative activities. This review provides an overview of periodontal regeneration using electrospun membranes, highlighting the use of these nanofibrous scaffolds as delivery systems for bioactive molecules and drugs and their functionalization to promote periodontal regeneration.
Collapse
Affiliation(s)
- Luana Epicoco
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
- Institute of Medical Physics and Biophysics, University of Leipzig, 04103 Leipzig, Germany
| | - Rebecca Pellegrino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Marco Friuli
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Benedetta Di Chiara Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Vuk Savkovic
- Clinic and Polyclinic for Oral and Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Christian Demitri
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Paola Nitti
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| |
Collapse
|
9
|
Andriankaja OM, Adatorwovor R, Kantarci A, Hasturk H, Shaddox L, Levine MA. Periodontal Disease, Local and Systemic Inflammation in Puerto Ricans with Type 2 Diabetes Mellitus. Biomedicines 2023; 11:2770. [PMID: 37893143 PMCID: PMC10604368 DOI: 10.3390/biomedicines11102770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Periodontal disease (PD) is prevalent in type 2 diabetic condition (T2DM). OBJECTIVES We assessed the associations between serum or gingival crevicular fluid (GCF) endothelial and inflammatory mediators and chronic PD among T2DM Hispanic adults. METHODS We enrolled 248 Puerto Rican residents with T2DM aged 40-65 years. The exposures included serum inflammatory mediators (IL-1b, IL-6, IL-10, and TNF-α), endothelial adhesion molecules, RANKL levels, and the GCF content of these analytes from a subset of 158 samples. The outcomes included the percent of sites with a probing pocket depth (PPD) ≥ 4 mm and clinical attachment loss ≥ 4 mm. Adjusted logistic regression models were fit to the categorized outcomes. RESULTS Increased serum IL-10 (Adj. OR: 1.10, p = 0.04), sICAM-1 (Adj. OR: 1.01; p = 0.06), and elevated serum IL-1β (Adj. OR: 1.93; p = 0.06) were statistically significant or close to being significantly associated with a percent of sites with PPD ≥ 4 mm. An increase in GCF IL-1α (Adj. OR: 1.16; p < 0.01) and IL-1β (Adj: 2.40; p = 0.02) was associated with periodontal parameters. CONCLUSIONS Our findings suggested that oral and systemic endothelial and inflammatory mediators are associated with periodontal clinical parameters among Hispanic adults with T2DM.
Collapse
Affiliation(s)
- Oelisoa M. Andriankaja
- Center for Oral Health Research (COHR), University of Kentucky College of Dentistry, Lexington, KY 40536, USA;
| | - Reuben Adatorwovor
- College of Public Health, University of Kentucky, Lexington, KY 40536, USA;
| | | | - Hatice Hasturk
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA 02142, USA;
| | - Luciana Shaddox
- Center for Oral Health Research (COHR), University of Kentucky College of Dentistry, Lexington, KY 40536, USA;
| | - Michael A. Levine
- Center for Bone Health, Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| |
Collapse
|
10
|
Gür B, Afacan B, Çevik Ö, Köse T, Emingil G. Gingival crevicular fluid periodontal ligament-associated protein-1, sclerostin, and tumor necrosis factor-alpha levels in periodontitis. J Periodontol 2023; 94:1166-1175. [PMID: 37006132 DOI: 10.1002/jper.22-0750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND In periodontitis, the equilibrium between bone formation and resorption skews in favor of bone loss. Periodontal ligament-associated protein-1 (PLAP-1) and sclerostin play a significant role in the suppression of bone formation. Tumor necrosis factor-alpha (TNF-α) is a central proinflammatory cytokine related to periodontal bone loss. This study aims to assess gingival crevicular fluid (GCF) PLAP-1, sclerostin, and TNF-α levels in individuals with periodontal disease. METHODS Seventy-one individuals diagnosed with generalized stage III grade C periodontitis (n = 23), gingivitis (n = 24), and periodontal health (n = 24) were included in the study. Full-mouth clinical periodontal measurements were performed. PLAP-1, sclerostin, and TNF-α total amounts in GCF were quantified by ELISA. Nonparametric methods were used for the data analyses. RESULTS Periodontitis group exhibited significantly higher GCF PLAP-1, sclerostin and TNF-α levels compared with gingivitis and periodontally healthy groups (p < 0.05). GCF PLAP-1 and TNF-α levels of gingivitis group were higher than healthy controls (p < 0.05) whereas GCF sclerostin levels were similar in two groups (p > 0.05). Significant positive correlations were found between GCF PLAP-1, sclerostin and TNF-α levels and all clinical parameters (p < 0.01). CONCLUSIONS To our knowledge, this is the first study showing GCF PLAP-1 levels in periodontal health and disease. Increased GCF PLAP-1 and sclerostin levels and their correlations with TNF-α in periodontitis imply that those molecules might be involved in the pathogenesis of periodontal disease. Further studies in larger mixed cohorts are needed to enlighten the possible role of PLAP-1 and sclerostin in periodontal bone loss.
Collapse
Affiliation(s)
- Berkay Gür
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Beral Afacan
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Özge Çevik
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, İzmir Ege University, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, Faculty of Dentistry, İzmir Ege University, İzmir, Turkey
| |
Collapse
|
11
|
Li S, Zeng W, Liu G, Zang J, Yu X. Evaluation of morphological, histological, and immune-related cellular changes in ligature-induced experimental periodontitis in mice. J Dent Sci 2023; 18:1716-1722. [PMID: 37799858 PMCID: PMC10547956 DOI: 10.1016/j.jds.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
Background/purpose The ligature-induced periodontitis model is an effective approach to induce inflammation and bone loss similar to that of human periodontitis. Previous clinical and in vitro studies have shown the involvement of lymphocytes in periodontitis, while, the local and systemic profile of immune cells associated with periodontitis in the ligature-induced periodontitis model in mice remains unclear. Materials and methods Experimental periodontitis was constructed in mice by ligating around the maxillary second molars for 14 and 28 days, respectively. Alveolar bone loss was assessed by micro-computed tomography (micro-CT). Hematoxylin and eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining were used to evaluate the histological changes in the periodontal tissues. B and T cells in the cervical lymph nodes, spleen, and peripheral blood were analyzed by flow cytometry. Results The 14-day ligation effectively induced significant periodontal inflammation and alveolar bone loss in C57BL/6J mice, which were progressive and maintained for a relatively long-term period until day 28. In addition, CD3+ T cells and CD19+ B cells were the dominant population in both health and disease, and the B cell population within the cervical lymph nodes (LN) increased significantly under periodontitis condition, while, no significant differences of the T and B cell population among the spleen and peripheral blood were observed. Conclusion The ligature-induced periodontitis mice model was established to perform a longitudinal assessment of changes in periodontal tissues morphologically and histologically, meanwhile, explore the local and systemic changes of the predominant immune-associated cells.
Collapse
Affiliation(s)
- Shiyi Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenmin Zeng
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Guojing Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jing Zang
- Department of Periodontology, Peking University Third Hospital, Beijing, China
| | - Xiaoqian Yu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
12
|
Jiang T, Su W, Li Y, Jiang M, Zhang Y, Xian CJ, Zhai Y. Research Progress on Nanomaterials for Tissue Engineering in Oral Diseases. J Funct Biomater 2023; 14:404. [PMID: 37623649 PMCID: PMC10455101 DOI: 10.3390/jfb14080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Due to their superior antibacterial properties, biocompatibility and high conductivity, nanomaterials have shown a broad prospect in the biomedical field and have been widely used in the prevention and treatment of oral diseases. Also due to their small particle sizes and biodegradability, nanomaterials can provide solutions for tissue engineering, especially for oral tissue rehabilitation and regeneration. At present, research on nanomaterials in the field of dentistry focuses on the biological effects of various types of nanomaterials on different oral diseases and tissue engineering applications. In the current review, we have summarized the biological effects of nanoparticles on oral diseases, their potential action mechanisms and influencing factors. We have focused on the opportunities and challenges to various nanomaterial therapy strategies, with specific emphasis on overcoming the challenges through the development of biocompatible and smart nanomaterials. This review will provide references for potential clinical applications of novel nanomaterials in the field of oral medicine for the prevention, diagnosis and treatment of oral diseases.
Collapse
Affiliation(s)
- Tong Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Wen Su
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yan Li
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Mingyuan Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yonghong Zhang
- Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Cory J. Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| |
Collapse
|
13
|
Liang F, Zhou Y, Zhang Z, Zhang Z, Shen J. Association of vitamin D in individuals with periodontitis: an updated systematic review and meta-analysis. BMC Oral Health 2023; 23:387. [PMID: 37312090 PMCID: PMC10265775 DOI: 10.1186/s12903-023-03120-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND There are differences in vitamin D levels between periodontitis and healthy individuals, but the effect of vitamin D on periodontitis is controversial. The purpose of this Meta-analysis is twofold: (1) compare vitamin D levels in individuals with or without periodontitis; (2) assess the effects of vitamin D supplementation during scaling and root planing (SRP) on periodontal clinical parameters in individuals with periodontitis. METHODS A systematic search was conducted in five databases (PubMed, Web of Science, MEDLINE, EMBASE, and Cochrane library), published from the database inception to 12 September 2022. The Cochrane Collaboration Risk of bias (ROB) assessment tool, the risk of bias in non-randomized studies of intervention (ROBINS-I) tool, the Newcastle-Ottawa Quality Assessment Scale (NOS), and Agency for Healthcare Quality and Research (AHRQ) were used to evaluate randomized controlled trial (RCT), non-RCT, case-control study, and cross-sectional study, respectively. Statistical analysis was performed using RevMan 5.3 and Stata 14.0 software, with weighted mean difference (WMD), standardized mean difference (SMD) and 95% confidence intervals (CI) as the effect measures, and heterogeneity was tested by subgroup analysis, sensitivity analysis, Meta-regression. RESULTS A total of 16 articles were included. The results of Meta-analysis showed that periodontitis was associated with lower serum vitamin D levels compared to normal population (SMD = -0.88, 95%CI -1.75 ~ -0.01, P = 0.048), while there was no significant difference in serum or saliva 25(OH)D levels between periodontitis and normal population. Additionally, the Meta-analysis showed that SRP + vitamin D and SRP alone had a statistically significant effect on serum vitamin D levels in individuals with periodontitis (SMD = 23.67, 95%CI 8.05 ~ 32.29, P = 0.003; SMD = 1.57, 95%CI 1.08 ~ 2.06, P < 0.01). And SRP + vitamin D could significantly reduce clinical attachment level compared to SRP alone (WMD = -0.13, 95%CI -0.19 ~ -0.06, P < 0.01), but had no meaningful effect on probing depth, gingival index, bleeding index, respectively. CONCLUSION The evidence from this Meta-analysis suggests that the serum vitamin D concentration of individuals with periodontitis is lower than that of normal people, and SRP along with vitamin D supplementation has been shown to play a significant role in improving periodontal clinical parameters. Therefore, vitamin D supplementation as an adjuvant to nonsurgical periodontal therapy has a positive impact on the prevention and treatment of periodontal disease in clinical practice.
Collapse
Affiliation(s)
- Fangfang Liang
- School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300000, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Yuanzhu Zhou
- School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300000, China
| | - Zhenyu Zhang
- The School of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Zheng Zhang
- School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300000, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| | - Jing Shen
- School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300000, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| |
Collapse
|
14
|
Wang C, Zhao Q, Chen C, Li J, Zhang J, Qu S, Tang H, Zeng H, Zhang Y. CD301b + macrophage: the new booster for activating bone regeneration in periodontitis treatment. Int J Oral Sci 2023; 15:19. [PMID: 37198150 DOI: 10.1038/s41368-023-00225-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 05/19/2023] Open
Abstract
Periodontal bone regeneration is a major challenge in the treatment of periodontitis. Currently the main obstacle is the difficulty of restoring the regenerative vitality of periodontal osteoblast lineages suppressed by inflammation, via conventional treatment. CD301b+ macrophages were recently identified as a subpopulation that is characteristic of a regenerative environment, but their role in periodontal bone repair has not been reported. The current study indicates that CD301b+ macrophages may be a constituent component of periodontal bone repair, and that they are devoted to bone formation in the resolving phase of periodontitis. Transcriptome sequencing suggested that CD301b+ macrophages could positively regulate osteogenesis-related processes. In vitro, CD301b+ macrophages could be induced by interleukin 4 (IL-4) unless proinflammatory cytokines such as interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) were present. Mechanistically, CD301b+ macrophages promoted osteoblast differentiation via insulin-like growth factor 1 (IGF-1)/thymoma viral proto-oncogene 1 (Akt)/mammalian target of rapamycin (mTOR) signaling. An osteogenic inducible nano-capsule (OINC) consisting of a gold nanocage loaded with IL-4 as the "core" and mouse neutrophil membrane as the "shell" was designed. When injected into periodontal tissue, OINCs first absorbed proinflammatory cytokines in inflamed periodontal tissue, then released IL-4 controlled by far-red irradiation. These events collectively promoted CD301b+ macrophage enrichment, which further boosted periodontal bone regeneration. The current study highlights the osteoinductive role of CD301b+ macrophages, and suggests a CD301b+ macrophage-targeted induction strategy based on biomimetic nano-capsules for improved therapeutic efficacy, which may also provide a potential therapeutic target and strategy for other inflammatory bone diseases.
Collapse
Affiliation(s)
- Can Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chen Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiaojiao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuyuan Qu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hua Tang
- Institute of Infection and Immunity, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Hao Zeng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Alghamdi B, Jeon HH, Ni J, Qiu D, Liu A, Hong JJ, Ali M, Wang A, Troka M, Graves DT. Osteoimmunology in Periodontitis and Orthodontic Tooth Movement. Curr Osteoporos Rep 2023; 21:128-146. [PMID: 36862360 PMCID: PMC10696608 DOI: 10.1007/s11914-023-00774-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW To review the role of the immune cells and their interaction with cells found in gingiva, periodontal ligament, and bone that leads to net bone loss in periodontitis or bone remodeling in orthodontic tooth movement. RECENT FINDINGS Periodontal disease is one of the most common oral diseases causing inflammation in the soft and hard tissues of the periodontium and is initiated by bacteria that induce a host response. Although the innate and adaptive immune response function cooperatively to prevent bacterial dissemination, they also play a major role in gingival inflammation and destruction of the connective tissue, periodontal ligament, and alveolar bone characteristic of periodontitis. The inflammatory response is triggered by bacteria or their products that bind to pattern recognition receptors that induce transcription factor activity to stimulate cytokine and chemokine expression. Epithelial, fibroblast/stromal, and resident leukocytes play a key role in initiating the host response and contribute to periodontal disease. Single-cell RNA-seq (scRNA-seq) experiments have added new insight into the roles of various cell types in the response to bacterial challenge. This response is modified by systemic conditions such as diabetes and smoking. In contrast to periodontitis, orthodontic tooth movement (OTM) is a sterile inflammatory response induced by mechanical force. Orthodontic force application stimulates acute inflammatory responses in the periodontal ligament and alveolar bone stimulated by cytokines and chemokines that produce bone resorption on the compression side. On the tension side, orthodontic forces induce the production of osteogenic factors, stimulating new bone formation. A number of different cell types, cytokines, and signaling/pathways are involved in this complex process. Inflammatory and mechanical force-induced bone remodeling involves bone resorption and bone formation. The interaction of leukocytes with host stromal cells and osteoblastic cells plays a key role in both initiating the inflammatory events as well as inducing a cellular cascade that results in remodeling in orthodontic tooth movement or in tissue destruction in periodontitis.
Collapse
Affiliation(s)
- Bushra Alghamdi
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
- Department of Restorative Dental Sciences, College of Dentistry, Taibah University, Medina, 42353, Kingdom of Saudi Arabia
| | - Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dongxu Qiu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssia Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Julie J Hong
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Mamoon Ali
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Albert Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Michael Troka
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA.
| |
Collapse
|
16
|
Indrelid SH, Dongre HN, Nunes IP, Virtej A, Bletsa A, Berggreen E. Human gingival epithelial cells stimulate proliferation, migration, and tube formation of lymphatic endothelial cells in vitro. J Periodontal Res 2023; 58:596-606. [PMID: 36843064 DOI: 10.1111/jre.13110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/28/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the response of gingival epithelial cells to microbial and inflammatory signals. BACKGROUND The gingival epithelial barrier provides the first line of defense and supports tissue homeostasis by maintaining the cross-talk between gingival epithelium, oral microbiota, and immune cells. Lymphatic vessels are essential to sustaining this homeostasis. The gingival epithelial cells have been shown to produce prolymphangiogenic factors during physiologic conditions, but their role in response to microbial and inflammatory signals is unknown. METHODS Immortalized human gingival epithelial cells (HGEC) and human dermal lymphatic microvascular endothelial cells (LEC) were cultured. HGEC were exposed to Porphyromonas gingivalis derived-LPS, human IL-1 beta/IL-1F2 protein, or recombinant human IL-6/IL-6R. Levels of vascular growth factors (VEGF-A, VEGF-C, and VEGF-D) in cell supernatants were determined by ELISA. LEC were grown to confluence, and a scratch was induced in the monolayer. Uncovered area was measured up to 48 h after exposure to conditioned medium (CM) from HGEC. Tube formation assays were performed with LEC cocultured with labelled HGEC or exposed to CM. RESULTS VEGF-A, VEGF-C, and low levels of VEGF-D were constitutively expressed by HGEC. The expression of VEGF-C and VEGF-D, but not VEGF-A, was upregulated in response to proinflammatory mediators. VEGF-C was upregulated in response to P. gingivalis LPS, but not to Escherichia coli LPS. A scratch migration assay showed that LEC migration was significantly increased by CM from HGEC. Both the CM and coculture with HGEC induced significant tube formation of LEC. CONCLUSIONS HGEC can regulate production of lymphangiogenic/angiogenic factors during inflammatory insults and can stimulate proliferation, migration, and tube formation of LEC in vitro in a paracrine manner.
Collapse
Affiliation(s)
| | - Harsh Nitin Dongre
- Centre for Cancer Biomarkers and Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | | | - Anca Virtej
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Oral and Maxillofacial Surgery, Haukeland University Hospital, Bergen, Norway
| | - Athanasia Bletsa
- Oral Health Center of Expertise, Western Norway, Bergen, Norway.,Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Ellen Berggreen
- Oral Health Center of Expertise, Western Norway, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Dexamethasone-loaded zeolitic imidazolate frameworks nanocomposite hydrogel with antibacterial and anti-inflammatory effects for periodontitis treatment. Mater Today Bio 2022; 16:100360. [PMID: 35937574 PMCID: PMC9352959 DOI: 10.1016/j.mtbio.2022.100360] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022] Open
Abstract
Periodontitis is a bacterial-induced, chronic inflammatory disease characterized by progressive destruction of tooth-supporting structures. Pathogenic bacteria residing in deep periodontal pockets after traditional manual debridement can still lead to local inflammatory microenvironment, which remains a challenging problem and an urgent need for better therapeutic strategies. Here, we integrated the advantages of metal-organic frameworks (MOFs) and hydrogels to prepare an injectable nanocomposite hydrogel by incorporating dexamethasone-loaded zeolitic imidazolate frameworks-8 (DZIF) nanoparticles into the photocrosslinking matrix of methacrylic polyphosphoester (PPEMA) and methacrylic gelatin (GelMA). The injectable hydrogel could be easily injected into deep periodontal pockets, achieving high local concentrations without leading to antibiotic resistance. The nanocomposite hydrogel had high antibacterial activity and constructs with stable microenvironments maintain cell viability, proliferation, spreading, as well as osteogenesis, and down-regulated inflammatory genes expression in vitro. When evaluated on an experimental periodontitis rat model, micro-computed tomography and histological analyses showed that the nanocomposite hydrogel effectively reduced periodontal inflammation and attenuated inflammation-induced bone loss in a rat model of periodontitis. These findings suggest that the nanocomposite hydrogel might be a promising therapeutic candidate for treating periodontal disease.
Collapse
|
18
|
Mattos MCDO, Chagas LGADA, Stefani CM, Damé-Teixeira N, Grisi DC, Salles LP, Oliveira LAD, Carneiro VMDA, Guimarães MDCM. Expression of inflammatory mediators in periodontitis and T2D patients: a systematic review and meta-analysis. Braz Oral Res 2022; 36:e098. [PMID: 35830142 DOI: 10.1590/1807-3107bor-2022.vol36.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
The high concentration of glucose in the blood in Type 2 diabetes (T2D) may be related to either insulin resistance or insulin deficiency. Moreover, the literature points to periodontitis as the main oral disease caused by glycemia imbalance. The quantification of inflammatory markers in blood or saliva samples of T2D patients may represent a valuable tool in revealing how well an individual's immune system can respond to injuries and periodontal treatment. In addition, an evaluation of the cytokine expression is extremely relevant to help understand the connection between periodontitis and T2D. This systematic review and meta-analysis aimed to evaluate the expression of inflammatory markers in T2D patients with periodontitis, compared with non-diabetic patients with periodontitis. A total of 3,894 studies were retrieved after a systematic literature search, 15 of which were included in the systematic review, and 4 of these 15, in the meta-analysis. The results did not indicate any statistical difference between the groups regarding TNF-α and IL-6 markers. T2D patients with periodontitis had increased levels of IL-10, compared with non-diabetic individuals with periodontitis (p = 0.003). On the other hand, the IL-4 concentration in non-diabetic individuals with periodontitis was high, compared with the T2D group (p< 0.001). Several studies did not include quantitative results and were excluded from the meta-analysis. The high IL-10 expression and low IL-4 expression in the T2D group suggest an association between the level of these markers and the impairment of the immune response in T2D patients with periodontitis.
Collapse
Affiliation(s)
| | | | - Cristine Miron Stefani
- Universidade de Brasília - UNB, School of Health Sciences, Department of Dentistry, Brasília, DF, Brazil
| | - Nailê Damé-Teixeira
- Universidade de Brasília - UNB, School of Health Sciences, Department of Dentistry, Brasília, DF, Brazil
| | - Daniela Correa Grisi
- Universidade de Brasília - UNB, School of Health Sciences, Department of Dentistry, Brasília, DF, Brazil
| | - Loise Pedrosa Salles
- Universidade de Brasília - UNB, School of Health Sciences, Department of Dentistry, Brasília, DF, Brazil
| | - Laudimar Alves de Oliveira
- Universidade de Brasília - UNB, School of Health Sciences, Department of Dentistry, Brasília, DF, Brazil
| | | | | |
Collapse
|
19
|
D’Ambrosio F, Pisano M, Amato A, Iandolo A, Caggiano M, Martina S. Periodontal and Peri-Implant Health Status in Traditional vs. Heat-Not-Burn Tobacco and Electronic Cigarettes Smokers: A Systematic Review. Dent J (Basel) 2022; 10:103. [PMID: 35735645 PMCID: PMC9222105 DOI: 10.3390/dj10060103] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/19/2022] Open
Abstract
The aim of the present systematic review was to evaluate and possibly differentiate the effects of traditional cigarettes, heat-not-burn tobacco, and electronic cigarettes on periodontal and peri-implant health status. Electronic cigarettes and heat-not-burn tobacco have become very popular in recent years and have been proposed to consumers as a safer alternative to conventional tobacco smoke, although their effect on periodontal and peri-implant health remains unclear. The study protocol was developed according to PRISMA guidelines, and the focus question was formulated according to the PICO strategy. A literature search was conducted across PubMed/MEDLINE and the COCHRANE library from 2003 to April 2022. From the 1935 titles initially identified, 18 articles were finally included in the study and extracted data were qualitatively synthesized. It may be carefully concluded that e-cigarettes may cause attenuated clinical inflammatory signs of periodontitis and, hypothetically, of peri-implantitis when compared to conventional tobacco smoke. Both alternative smoking products, containing nicotine, may likewise exert negative effects on periodontal and peri-implant health, as demonstrated by in vitro studies. Further investigations are needed to assess the impact of electronic cigarettes and heat-not-burn tobacco products on periodontal and peri-implant health status.
Collapse
Affiliation(s)
- Francesco D’Ambrosio
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.P.); (A.A.); (A.I.); (M.C.); (S.M.)
| | | | | | | | | | | |
Collapse
|
20
|
Zhao Y, Hao X, Li Z, Feng X, Katz J, Michalek SM, Jiang H, Zhang P. Role of chromatin modulator Dpy30 in osteoclast differentiation and function. Bone 2022; 159:116379. [PMID: 35307321 PMCID: PMC9063347 DOI: 10.1016/j.bone.2022.116379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022]
Abstract
Osteoclasts are the principal bone resorption cells crucial for homeostatic bone remodeling and pathological bone destruction. Increasing data demonstrate a vital role of histone methylation in osteoclastogenesis. As an integral core subunit of H3K4 methyltransferases, Dpy30 is notal as a key chromatin regulator for cell growth and differentiation and stem cell fate determination, particularly in the hematopoietic system. However, its role in osteoclastogenesis is currently unknown. Herein, we generated Dpy30F/F; LysM-Cre+/+ mice, which deletes Dpy30 in myeloid cells, to characterize its involvement in osteoclast differentiation and function. Dpy30F/F; LysM-Cre+/+ mice showed increased bone mass, evident by impaired osteoclastogenesis and defective osteoclast activity, but no alteration of osteoblast numbers and bone formation. Additionally, our ex vivo analysis showed that the loss of Dpy30 significantly impedes osteoclast differentiation and suppresses osteoclast-related gene expression. Moreover, Dpy30 deficiency significantly decreased the enrichment of H3K4me3 on the promoter region of NFATc1. Thus, we revealed a novel role for Dpy30 in osteoclastogenesis through epigenetic mechanisms, and that it could potentially be a therapeutic target for bone destruction diseases.
Collapse
Affiliation(s)
- Yanfang Zhao
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xiaoxiao Hao
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhaofei Li
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xu Feng
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jannet Katz
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Suzanne M Michalek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Ping Zhang
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
21
|
Choi B, Kim JE, Park SO, Kim EY, Oh S, Choi H, Yoon D, Min HJ, Kim HR, Chang EJ. Sphingosine-1-phosphate hinders the osteogenic differentiation of dental pulp stem cells in association with AKT signaling pathways. Int J Oral Sci 2022; 14:21. [PMID: 35459199 PMCID: PMC9033766 DOI: 10.1038/s41368-022-00173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important lipid mediator that regulates a diverse range of intracellular cell signaling pathways that are relevant to tissue engineering and regenerative medicine. However, the precise function of S1P in dental pulp stem cells (DPSCs) and its osteogenic differentiation remains unclear. We here investigated the function of S1P/S1P receptor (S1PR)-mediated cellular signaling in the osteogenic differentiation of DPSCs and clarified the fundamental signaling pathway. Our results showed that S1P-treated DPSCs exhibited a low rate of differentiation toward the osteogenic phenotype in association with a marked reduction in osteogenesis-related gene expression and AKT activation. Of note, both S1PR1/S1PR3 and S1PR2 agonists significantly downregulated the expression of osteogenic genes and suppressed AKT activation, resulting in an attenuated osteogenic capacity of DPSCs. Most importantly, an AKT activator completely abrogated the S1P-mediated downregulation of osteoblastic markers and partially prevented S1P-mediated attenuation effects during osteogenesis. Intriguingly, the pro-inflammatory TNF-α cytokine promoted the infiltration of macrophages toward DPSCs and induced S1P production in both DPSCs and macrophages. Our findings indicate that the elevation of S1P under inflammatory conditions suppresses the osteogenic capacity of the DPSCs responsible for regenerative endodontics.
Collapse
Affiliation(s)
- Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Eun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Si-On Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Young Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soyoon Oh
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyuksu Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dohee Yoon
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo-Jin Min
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, Korea.
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea. .,Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea. .,Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
22
|
Wang H, Peng W, Zhang G, Jiang M, Zhao J, Zhao X, Pan Y, Lin L. Role of PG0192 and PG0193 in the modulation of pro-inflammatory cytokines in macrophages in response to Porphyromonas gingivalis. Eur J Oral Sci 2022; 130:e12851. [PMID: 35049069 DOI: 10.1111/eos.12851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022]
Abstract
Porphyromonas gingivalis is the main pathogen of chronic periodontitis. However, the specific mechanisms through which P. gingivalis induces immune and inflammatory responses in periodontitis have not been completely elucidated. In this study, we investigated the effects of the P. gingivalis outer membrane protein OmpH (encoded by PG0192 and PG0193) on interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression in macrophages to assess the pro-inflammatory cytokine responses. A PG0192-PG0193 deletion mutant strain and a com△PG0192-0193 strain were constructed. Furthermore, rOmpH-1 and rOmpH-2 encoded by PG0192 and PG0193, respectively, were cloned, expressed, and purified for subsequent experiments. Notably, the expression of IL-6 and TNF-α at mRNA and protein levels was downregulated upon treatment of macrophages with the PG0192-PG0193 deletion mutant strain, whereas treatment of macrophages with P. gingivalis W83 co-incubated with rOmpH-1 or rOmpH-2 upregulated IL-6 and TNF-α mRNA levels. The addition of C5aR antagonist blocked this induction. Overall, our findings provided important insights into the roles of PG0192 and PG0193 for promoting IL-6 and TNF-α expression in macrophages exposed to P. gingivalis and revealed the involvement of C5aR in the pro-inflammatory response.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Wenying Peng
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China.,Department of Oral Medicine, Luohu District, Shenzhen Stomatological Hospital, Shenzhen, China
| | - Guangyu Zhang
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China.,China Aerospace Science & Industry Corp 731 Hospital, Beijing, China
| | - Muzhou Jiang
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Jian Zhao
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Xue Zhao
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Yaping Pan
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| | - Li Lin
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
23
|
Roberts JL, Mella-Velazquez G, Dar HY, Liu G, Drissi H. Deletion of IL-17ra in osteoclast precursors increases bone mass by decreasing osteoclast precursor abundance. Bone 2022; 157:116310. [PMID: 34973492 PMCID: PMC10084774 DOI: 10.1016/j.bone.2021.116310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
Abstract
Metabolic bone diseases, such as osteoporosis, typically reflect an increase in the number and activity of bone-resorbing osteoclasts that result in a loss of bone mass. Inflammatory mediators have been identified as drivers of both osteoclast formation and activity. The IL-17 family of inflammatory cytokines has gained attention as important contributors to both bone formation and resorption. The majority of IL-17 cytokines signal through receptor complexes containing IL-17a receptor (IL-17ra); however, the role of IL-17ra signaling in osteoclasts remains elusive. In this study, we conditionally deleted Il17ra in osteoclast precursors using LysM-Cre and evaluated the phenotypes of skeletally mature male and female conditional knockout and control mice. The conditional knockout mice displayed an increase in trabecular bone microarchitecture in both the appendicular and axial skeleton. Assessment of osteoclast formation in vitro revealed that deletion of Il17ra decreased osteoclast number, which was confirmed in vivo using histomorphometry. This phenotype was likely driven by a lower abundance of osteoclast precursors in IL-17ra conditional knockout mice. This study suggests that IL-17ra signaling in preosteoclasts can contribute to osteoclast formation and subsequent bone loss.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | | | - Hamid Y Dar
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Guanglu Liu
- The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; The Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA.
| |
Collapse
|
24
|
Hashimoto H, Hashimoto S, Shimazaki Y. Functional Impairment and Periodontitis in Rheumatoid Arthritis. Int Dent J 2022; 72:641-647. [PMID: 35241287 PMCID: PMC9485534 DOI: 10.1016/j.identj.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/24/2023] Open
Abstract
Background This study explored the association of functional impairment due to rheumatoid arthritis (RA) and RA disease activity with periodontal disease in patients with RA. Methods Ninety-three patients with RA were included. Their RA functional status was assessed using the Steinbrocker classification. The serum level of matrix metalloproteinase-3 (MMP-3) was used as an indicator of RA disease activity. Probing depth (PD) and clinical attachment level (CAL) were used as indicators of periodontal status. We examined the association of RA severity and MMP-3 levels with periodontal status using a generalised linear model (GLM). Results In a multivariate GLM, the coefficient for the mean PD was significantly positive in those with RA severity classes III or IV (reference: class I; β = 0.14; 95% confidence interval [CI], 0.03–0.25; P = .02) independent of other confounding variables. In multivariate GLM using the mean CAL as the dependent variable, the coefficient was significant in patients with high MMP-3 levels (10 ng/mL; β = 0.005; 95% CI, 0.001–0.008; P = .02). Conclusions Functional impairment due to RA may affect PD, and high serum levels of MMP-3 may affect CAL.
Collapse
Affiliation(s)
- Hiroko Hashimoto
- Department of Preventive Dentistry and Dental Public Health, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | | | - Yoshihiro Shimazaki
- Department of Preventive Dentistry and Dental Public Health, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| |
Collapse
|
25
|
Computer vision-aided bioprinting for bone research. Bone Res 2022; 10:21. [PMID: 35217642 PMCID: PMC8881598 DOI: 10.1038/s41413-022-00192-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
Bioprinting is an emerging additive manufacturing technology that has enormous potential in bone implantation and repair. The insufficient accuracy of the shape of bioprinted parts is a primary clinical barrier that prevents widespread utilization of bioprinting, especially for bone design with high-resolution requirements. During the last five years, the use of computer vision for process control has been widely practiced in the manufacturing field. Computer vision can improve the performance of bioprinting for bone research with respect to various aspects, including accuracy, resolution, and cell survival rate. Hence, computer vision plays a substantial role in addressing the current defect problem in bioprinting for bone research. In this review, recent advances in the application of computer vision in bioprinting for bone research are summarized and categorized into three groups based on different defect types: bone scaffold process control, deep learning, and cell viability models. The collection of printing parameters, data processing, and feedback of bioprinting information, which ultimately improves printing capabilities, are further discussed. We envision that computer vision may offer opportunities to accelerate bioprinting development and provide a new perception for bone research.
Collapse
|
26
|
Thomas SC, Xu F, Pushalkar S, Lin Z, Thakor N, Vardhan M, Flaminio Z, Khodadadi-Jamayran A, Vasconcelos R, Akapo A, Queiroz E, Bederoff M, Janal MN, Guo Y, Aguallo D, Gordon T, Corby PM, Kamer AR, Li X, Saxena D. Electronic Cigarette Use Promotes a Unique Periodontal Microbiome. mBio 2022; 13:e0007522. [PMID: 35189698 PMCID: PMC8903898 DOI: 10.1128/mbio.00075-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Electronic cigarettes (e-cigs) have become prevalent as an alternative to conventional cigarette smoking, particularly in youth. E-cig aerosols contain unique chemicals which alter the oral microbiome and promote dysbiosis in ways we are just beginning to investigate. We conducted a 6-month longitudinal study involving 84 subjects who were either e-cig users, conventional smokers, or nonsmokers. Periodontal condition, cytokine levels, and subgingival microbial community composition were assessed, with periodontal, clinical, and cytokine measures reflecting cohort habit and positively correlating with pathogenic taxa (e.g., Treponema, Saccharibacteria, and Porphyromonas). α-Diversity increased similarly across cohorts longitudinally, yet each cohort maintained a unique microbiome. The e-cig microbiome shared many characteristics with the microbiome of conventional smokers and some with nonsmokers, yet it maintained a unique subgingival microbial community enriched in Fusobacterium and Bacteroidales (G-2). Our data suggest that e-cig use promotes a unique periodontal microbiome, existing as a stable heterogeneous state between those of conventional smokers and nonsmokers and presenting unique oral health challenges. IMPORTANCE Electronic cigarette (e-cig) use is gaining in popularity and is often perceived as a healthier alternative to conventional smoking. Yet there is little evidence of the effects of long-term use of e-cigs on oral health. Conventional cigarette smoking is a prominent risk factor for the development of periodontitis, an oral disease affecting nearly half of adults over 30 years of age in the United States. Periodontitis is initiated through a disturbance in the microbial biofilm communities inhabiting the unique space between teeth and gingival tissues. This disturbance instigates host inflammatory and immune responses and, if left untreated, leads to tooth and bone loss and systemic diseases. We found that the e-cig user's periodontal microbiome is unique, eliciting unique host responses. Yet some similarities to the microbiomes of both conventional smokers and nonsmokers exist, with strikingly more in common with that of cigarette smokers, suggesting that there is a unique periodontal risk associated with e-cig use.
Collapse
Affiliation(s)
- Scott C. Thomas
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Fangxi Xu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Smruti Pushalkar
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Ziyan Lin
- Applied Bioinformatics Labs, New York University School of Medicine, New York, New York, USA
| | - Nirali Thakor
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Mridula Vardhan
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Zia Flaminio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | | | - Rebeca Vasconcelos
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Adenike Akapo
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Erica Queiroz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Maria Bederoff
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Malvin N. Janal
- Department of Epidemiology & Health Promotion, New York University College of Dentistry, New York, New York, USA
| | - Yuqi Guo
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Deanna Aguallo
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Patricia M. Corby
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Angela R. Kamer
- Department of Periodontology and Implant Dentistry, New York University College of Dentistry, New York, New York, USA
| | - Xin Li
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Deepak Saxena
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| |
Collapse
|
27
|
Yan W, Li L, Ge L, Zhang F, Fan Z, Hu L. The cannabinoid receptor I (CB1) enhanced the osteogenic differentiation of BMSCs by rescue impaired mitochondrial metabolism function under inflammatory condition. Stem Cell Res Ther 2022; 13:22. [PMID: 35063024 PMCID: PMC8781353 DOI: 10.1186/s13287-022-02702-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/22/2021] [Indexed: 11/12/2022] Open
Abstract
Background Periodontitis is a chronic infectious disease leading to bone resorption and periodontal tissue disruption under inflammatory stimulation. The osteogenic differentiation ability of mesenchymal stem cells (MSCs) is impaired under the inflammatory environment, which limits the effect of treatment. The cannabinoid receptor I (CB1)
is the main effector of the endogenous cannabinoid system (ECS), and our previous study verified that CB1 could enhance the osteo/dentinogenic differentiation of dental MSCs, which might be a target for alveolar bone regeneration. However, the effect of CB1 on the osteogenic differentiation of MSCs derived from bone remains unknown. In present study, we investigated the role and mechanism of CB1 on mitochondrial function and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) under inflammatory environment. Methods Alkaline phosphatase (ALP) activity, alizarin red staining, quantitative calcium analysis, and osteogenic markers were used to detect the osteogenic differentiation ability of BMSCs. Real-time RT-PCR and Western blot were used to detect the gene expression. Seahorse Cell Mito Stress Test was used to detect the oxygen consumption rate (OCR). JC-10 assay was used to determine the mitochondrial membrane potential (MMP). Results CB1 increased osteogenic differentiation potential and mitochondrial energy metabolism, including the OCR, MMP, and enhanced the expressions of Nrf1 and Nrf2 in hBMSCs without or with TNF-α or INF-γ stimulation. Then, the inhibitor of mitochondrial electron transport chain (ETC), rotenone (ROT), inhibited the osteogenic differentiation in hBMSCs, and CB1 could rescue ROT impaired osteogenic differentiation potentials of hBMSCs without or with TNF-α or INF-γ stimulation. Activation of ETC by Coenzyme Q10 (CoQ10) could restore the impaired osteogenic differentiation of hBMSCs by depletion of CB1 without or with TNF-α or INF-γ stimulation. Mechanismly, CB1 could activate the JNK signaling pathway, p38 MAPK signaling pathway, and inhibit the Erk1/2 signaling pathway. Conclusions The activating of CB1 enhanced the osteogenic differentiation by rescuing the mitochondrial metabolism function in hBMSCs under the inflammatory environment, suggesting that CB1 is a potential target for enhancing bone regeneration under the inflammatory environment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02702-9.
Collapse
|
28
|
Wu X, Sun Y, Cui R, Qiu W, Zhang J, Hu Z, Bi W, Yang F, Ma D, Van Dyke T, Tu Q, Yu Y, Chen J. A novel adiponectin receptor agonist (AdipoAI) ameliorates type 2 diabetes-associated periodontitis by enhancing autophagy in osteoclasts. J Periodontal Res 2022; 57:381-391. [PMID: 34984683 DOI: 10.1111/jre.12969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Type 2 diabetes (T2D)-associated periodontitis is severe and refractory in many cases. Considered an inflammatory disease, T2D predisposes to periodontitis by increasing whole-body inflammation. One mechanism of increased inflammation is thatT2D is mediated by loss of production or function of the anti-inflammatory hormone adiponectin. In our previous report, AdipoRon, an adiponectin receptor agonist, and AdipoAI, a newly discovered, more specific agonist, attenuated T2D-associated inflammation by inhibiting osteoclastogenesis and LPS-induced endotoxemia. Autophagy plays an important role during osteoclast differentiation and function. The impact of AdipoAI on osteoclast function and autophagy involved in osteoclastogenesis is not known. Here, we compare AdipoRon and AdipoAI potency, side effects and mechanism of action in T2D-associated periodontitis. METHODS The RAW 264.7 cell line was used for in vitro studies. We analyzed the potential cytotoxicity of AdipoAI using the CCK-8 assay. The anti-osteoclastogenic potential of AdipoAI was studied by real-time qPCR and tartrate-resistant acid phosphatase staining. The actions of AdipoAI involved in autophagy were tested by real-time qPCR, western blot and immunofluorescence staining. In the diet-induced obesity model of T2D, we investigated the impact of AdipoAI on fasting blood glucose, alveolar bone loss, and gingival inflammation in mice with experimental periodontitis. RESULTS AdipoRon inhibited osteoclastogenesis and AdipoAI inhibited osteoclastogenesis at lower doses than AdipoRon without any cytotoxicity. In DIO mice with experimental periodontitis, AdipoAI reduced mouse body weight in 14 days, reducing fasting glucose levels, alveolar bone destruction, osteoclast number along the alveolar bone surface, and decreased the expression of pro-inflammatory factors in periodontal tissues. AdipoAI and AdipoRon also enhanced LC3A/B expression when cultured with RANKL.3-Methyladenine, a known autophagy inhibitor, decreased LC3A/B expression and reversed the inhibition of osteoclastogenesis during AdipoAI treatment. CONCLUSIONS Our results demonstrate that AdipoAI ameliorates the severity of T2D-associated periodontitis by enhancing autophagy in osteoclasts at lower doses than AdipoRon without demonstrable side effects. Thus, AdipoAI has pharmaceutical potential for treating diabetes-associated periodontal disease.
Collapse
Affiliation(s)
- Xingwen Wu
- Department of Dentistry, Zhongshan Hospital, Fudan University, Shanghai, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA
| | - Yang Sun
- Department of Dentistry, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Renjie Cui
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Qiu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhekai Hu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA
| | - Wei Bi
- Department of Dentistry, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Yang
- Department of Dentistry, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Thomas Van Dyke
- Clinical and Translational Research, Forsyth Institute, Cambridge,, Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, USA
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, USA
| | - Youcheng Yu
- Department of Dentistry, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jake Chen
- Department of Dentistry, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine. Cell, Molecular and Developmental Biology, Tufts University Sackler School of Graduate Biomedical Sciences
| |
Collapse
|
29
|
Peña-Oyarzún D, San Martin C, Hernández-Cáceres MP, Lavandero S, Morselli E, Budini M, Burgos PV, Criollo A. Autophagy in aging-related oral diseases. Front Endocrinol (Lausanne) 2022; 13:903836. [PMID: 35992149 PMCID: PMC9390882 DOI: 10.3389/fendo.2022.903836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Autophagy is an intracellular degradation mechanism that allows recycling of organelles and macromolecules. Autophagic function increases metabolite availability modulating metabolic pathways, differentiation and cell survival. The oral environment is composed of several structures, including mineralized and soft tissues, which are formed by complex interactions between epithelial and mesenchymal cells. With aging, increased prevalence of oral diseases such as periodontitis, oral cancer and periapical lesions are observed in humans. These aging-related oral diseases are chronic conditions that alter the epithelial-mesenchymal homeostasis, disrupting the oral tissue architecture affecting the quality of life of the patients. Given that autophagy levels are reduced with age, the purpose of this review is to discuss the link between autophagy and age-related oral diseases.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzún
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Interdisciplinary Center for Research in Territorial Health of the Aconcagua Valley (CIISTe Aconcagua), School of Medicine, Faculty of Medicine, San Felipe Campus, Universidad de Valparaíso, San Felipe, Chile
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carla San Martin
- Interdisciplinary Center for Research in Territorial Health of the Aconcagua Valley (CIISTe Aconcagua), School of Medicine, Faculty of Medicine, San Felipe Campus, Universidad de Valparaíso, San Felipe, Chile
| | - María Paz Hernández-Cáceres
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago de Chile, Chile
- Autophagy Research Center, Universidad de Chile, Santiago de Chile, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Autophagy Research Center, Universidad de Chile, Santiago de Chile, Chile
| | - Patricia V. Burgos
- Autophagy Research Center, Universidad de Chile, Santiago de Chile, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Autophagy Research Center, Universidad de Chile, Santiago de Chile, Chile
- *Correspondence: Alfredo Criollo,
| |
Collapse
|
30
|
Hosseinpour-Moghadam R, Mehryab F, Torshabi M, Haeri A. Applications of Novel and Nanostructured Drug Delivery Systems for the Treatment of Oral Cavity Diseases. Clin Ther 2021; 43:e377-e402. [PMID: 34844769 DOI: 10.1016/j.clinthera.2021.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Novel drug delivery systems (DDSs) hold great promise for the treatment of oral cavity diseases. The main objective of this article was to provide a detailed overview regarding recent advances in the use of novel and nanostructured DDSs in alleviating and treating unpleasant conditions of the oral cavity. Strategies to maximize the benefits of these systems in the treatment of oral conditions and future directions to overcome these issues are also discussed. METHODS Publications from the last 10 years investigating novel and nanostructured DDSs for pathologic oral conditions were browsed in a systematic search using the PubMed/MEDLINE, Web of Science, and Scopus databases. Research on applications of novel DDSs for periodontitis, oral carcinomas, oral candidiasis, xerostomia, lichen planus, aphthous stomatitis, and oral mucositis is summarized. A narrative exploratory review of the most recent literature was undertaken. FINDINGS Conventional systemic administration of therapeutic agents could exhibit high clearance of drugs from the bloodstream and low accumulation at the target site. In contrast, conventional topical systems face problems such as short residence time in the affected region and low patient compliance. Novel and nanostructured DDSs are among the most effective and commonly used methods for overcoming the problems of conventional DDSs. The main advantages of these systems are that they possess the ability to protect active agents from systemic and local clearance, enhance bioavailability and cellular uptake, and provide immediate or modified release of therapeutic agents after administration. In the design of local drug delivery devices such as nanofiber mats, films, and patches, components and excipients can significantly affect factors such as drug release rate, residence time in the oral cavity, and taste in the mouth. Choosing appropriate additives is therefore essential. IMPLICATIONS Local drug delivery devices such as nanofiber mats, nanoparticles, liposomes, hydrogels, films, and patches for oral conditions can significantly affect drug efficacy and safety. However, more precise clinical studies should be designed and conducted to confirm promising in vitro and in vivo results. In recent years, novel and nanostructured DDSs increasingly attracted the attention of researchers as a means of treatment and alleviation of oral diseases and unpleasant conditions. However, more clinical studies should be performed to confirm promising in vitro and in vivo results. To transform a successful laboratory model into a marketable product, the long-term stability of prepared formulations is essential. Also, proper scale-up methods with optimum preparation costs should be addressed.
Collapse
Affiliation(s)
- Reza Hosseinpour-Moghadam
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021; 10:5383. [PMID: 34830663 PMCID: PMC8618619 DOI: 10.3390/jcm10225383&set/a 912874875+940716348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
|
32
|
State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021. [DOI: 10.3390/jcm10225383
expr 893869204 + 932072443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
|
33
|
González-Moles MÁ, Ramos-García P. State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021; 10:5383. [PMID: 34830663 PMCID: PMC8618619 DOI: 10.3390/jcm10225383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
Affiliation(s)
- Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
34
|
Martin-Piedra MA, Gironés-Camarasa B, España-López A, Fernández-Valadés Gámez R, Blanco-Elices C, Garzón I, Alaminos M, Fernández-Valadés R. Usefulness of a Nanostructured Fibrin-Agarose Bone Substitute in a Model of Severely Critical Mandible Bone Defect. Polymers (Basel) 2021; 13:3939. [PMID: 34833238 PMCID: PMC8618832 DOI: 10.3390/polym13223939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
Critical defects of the mandibular bone are very difficult to manage with currently available materials and technology. In the present work, we generated acellular and cellular substitutes for human bone by tissue engineering using nanostructured fibrin-agarose biomaterials, with and without adipose-tissue-derived mesenchymal stem cells differentiated to the osteogenic lineage using inductive media. Then, these substitutes were evaluated in an immunodeficient animal model of severely critical mandibular bone damage in order to assess the potential of the bioartificial tissues to enable bone regeneration. The results showed that the use of a cellular bone substitute was associated with a morpho-functional improvement of maxillofacial structures as compared to negative controls. Analysis of the defect site showed that none of the study groups fully succeeded in generating dense bone tissue at the regeneration area. However, the use of a cellular substitute was able to improve the density of the regenerated tissue (as determined via CT radiodensity) and form isolated islands of bone and cartilage. Histologically, the regenerated bone islands were comparable to control bone for alizarin red and versican staining, and superior to control bone for toluidine blue and osteocalcin in animals grafted with the cellular substitute. Although these results are preliminary, cellular fibrin-agarose bone substitutes show preliminary signs of usefulness in this animal model of severely critical mandibular bone defect.
Collapse
Affiliation(s)
- Miguel-Angel Martin-Piedra
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain; (M.-A.M.-P.); (C.B.-E.); (I.G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18012 Granada, Spain
| | - Belén Gironés-Camarasa
- Division of Pediatric Surgery, University Hospital Virgen de las Nieves, E18014 Granada, Spain;
- Doctoral Program in Biomedicine, University of Granada, E18071 Granada, Spain
| | - Antonio España-López
- Craniofacial Malformations and Cleft Lip and Palate Management Unit, University Hospital Virgen de las Nieves, E18014 Granada, Spain;
| | | | - Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain; (M.-A.M.-P.); (C.B.-E.); (I.G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18012 Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain; (M.-A.M.-P.); (C.B.-E.); (I.G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18012 Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain; (M.-A.M.-P.); (C.B.-E.); (I.G.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18012 Granada, Spain
| | - Ricardo Fernández-Valadés
- Instituto de Investigación Biosanitaria ibs.GRANADA, E18012 Granada, Spain
- Division of Pediatric Surgery, University Hospital Virgen de las Nieves, E18014 Granada, Spain;
- Craniofacial Malformations and Cleft Lip and Palate Management Unit, University Hospital Virgen de las Nieves, E18014 Granada, Spain;
| |
Collapse
|
35
|
Luong A, Tawfik AN, Islamoglu H, Gobriel HS, Ali N, Ansari P, Shah R, Hung T, Patel T, Henson B, Thankam F, Lewis J, Mintline M, Boehm T, Tumur Z, Seleem D. Periodontitis and diabetes mellitus co-morbidity: A molecular dialogue. J Oral Biosci 2021; 63:360-369. [PMID: 34728373 DOI: 10.1016/j.job.2021.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and periodontitis are two biologically linked diseases that often coexist in complex interaction. While periodontitis may lead to insulin receptor desensitization, diabetes may increase the expression of inflammatory cytokines, such as Tumor Necrosis Factor-α (TNF-α) and Interleukin 6 (IL-6), in the gingival crevicular fluid and activate osteoclasts via Receptor activator of nuclear factor kappa-Β ligand (RANK-L) production, leading to bone resorption. However, the association between the two diseases processes, where one may exacerbate the progression of the other, is unclear. In addition, both diseases have similar mechanistic themes, such as chronic inflammation and oxidative stress. This review aimed to investigate the pathophysiological and molecular mechanisms underlying T2DM and periodontitis. HIGHLIGHT Uncontrolled diabetes is often associated with severe periodontitis, measured by clinical attachment loss. Alteration in the oral microbiome composition, which may activate the host inflammatory response and lead to irreversible oxidative stress, is a common finding in both diseases. An understanding of the molecular crosstalk between the two disease processes is crucial for developing therapeutic targets that inhibit bone resorption and halt the progression of periodontitis in patients with diabetes. CONCLUSION The Oral microbiome composition in T2DM and periodontitis shifts toward dysbiosis, favoring bacterial pathogens, such as Fusobacteria and Porphyromonas species. Both conditions are marked by pro-inflammatory immune activity via the activation of Interleukin 17 (IL-17), Interleukin 1 (IL-1), TNF-α, and Nuclear Factor Kappa Beta (NF-κB). Common molecular crosstalk signaling appears to involve advanced glycation end products (AGEs) and oxidative stress. Thus, future drug targets are multifactorial, ranging from modulatory of host inflammatory response to preventing the accumulation of AGEs and oxidative free radicals.
Collapse
Affiliation(s)
- Anthony Luong
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Andy Nassif Tawfik
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Hicret Islamoglu
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Hanaa Selim Gobriel
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Nada Ali
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Pouya Ansari
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Ruchita Shah
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Tiffany Hung
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Tanusha Patel
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Bradley Henson
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Finosh Thankam
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Jill Lewis
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Mark Mintline
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Tobias Boehm
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Zohra Tumur
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Dalia Seleem
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA.
| |
Collapse
|
36
|
Zeng W, Liu G, Luan Q, Yang C, Li S, Yu X, Su L. B-Cell Deficiency Exacerbates Inflammation and Bone Loss in Ligature-Induced Experimental Periodontitis in Mice. J Inflamm Res 2021; 14:5367-5380. [PMID: 34703274 PMCID: PMC8526950 DOI: 10.2147/jir.s330875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Objective Periodontitis, one of the most prevalent chronic oral infectious diseases in humans, is induced by the breakdown in the balance between the biofilm and host immune system. Previous studies have shown the presence of large numbers of B cells in periodontitis lesions, implicating that B lymphocytes play a predominant role during the pathogenesis of periodontitis. This study aimed to investigate the role of all B cells in the initiation of periodontitis. Methods Experimental periodontitis was induced in B cell-deficient (CD19Cre) mice and wild-type (WT) control mice by 5-0 silk ligation around the maxillary second molar. Four weeks after ligation, alveolar bone loss was determined by micro-computed tomography. The levels of inflammatory cytokines and receptor activator of NF-κB ligand (RANKL)/osteoprotegerin in periodontal lesions were analyzed using real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemistry. Lymphocyte populations in the cervical lymph nodes and spleen and among the peripheral blood mononuclear cells were detected by flow cytometry. Results B-cell deficiency resulted in increased severity of alveolar bone loss in mouse experimental periodontitis, which was associated with increased osteoclast activity and upregulated RANKL expression in the periodontal lesions. In addition, gingiva cytokine expression profiles were shifted to T helper type 1 (Th1) and Th17 in the CD19Cre mice with ligature-induced periodontitis compared with WT mice. In addition, a reduced CD4+/CD8+ T cell ratio was observed in the CD19Cre mice. Conclusion B-cell deficiency exacerbates the inflammation and alveolar bone loss in ligature-induced experimental periodontitis in mice, implicating that B cells may overall play a protective role in the initiation of periodontitis.
Collapse
Affiliation(s)
- Wenmin Zeng
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Guojing Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Chunyu Yang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Shiyi Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Xiaoqian Yu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, People's Republic of China
| |
Collapse
|
37
|
Enhancement of Osteoblast Differentiation Using No-Ozone Cold Plasma on Human Periodontal Ligament Cells. Biomedicines 2021; 9:biomedicines9111542. [PMID: 34829771 PMCID: PMC8615272 DOI: 10.3390/biomedicines9111542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
Periodontitis is an inflammatory disease that leads to periodontal tissue destruction and bone resorption. Proliferation and differentiation of cells capable of differentiating into osteoblasts is important for reconstructing periodontal tissues destroyed by periodontitis. In this study, the effects of the nozone (no-ozone) cold plasma (NCP) treatment on osteoblastic differentiation in periodontal ligament (PDL) cells were investigated. To test the toxicity of NCP on PDL cells, various NCP treatment methods and durations were tested, and time-dependent cell proliferation was analyzed using a water-soluble tetrazolium salts-1 assay. To determine the effect of NCP on PDL cell differentiation, the cells were provided with osteogenic media immediately after an NCP treatment to induce differentiation; the cells were then analyzed using alkaline phosphatase (ALP) staining, an ALP activity assay, real time PCR, and Alizarin Red S staining. The NCP treatment without toxicity on PDL cells was the condition of 1-min NCP treatment immediately followed by the replacement with fresh media. NCP increased ALP, osteocalcin, osteonectin, and osteopontin expression, as well as mineralization nodule formation. NCP treatment promotes osteoblastic differentiation of PDL cells; therefore, it may be beneficial for treating periodontitis.
Collapse
|
38
|
Novaes VCN, Ervolino E, Fernandes GL, Cunha CP, Theodoro LH, Garcia VG, de Almeida JM. Influence of the treatment with the antineoplastic agents 5-fluorouracil and cisplatin on the severity of experimental periodontitis in rats. Support Care Cancer 2021; 30:1967-1980. [PMID: 34633539 DOI: 10.1007/s00520-021-06586-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE The determination on how antineoplastic agents interfere on the progression of periodontitis is critical for improvement and even development of novel therapeutic approaches for periodontal management. This study evaluated the influence of chemotherapy with 5-fluorouracil (5-FU) or cisplatin (CIS) on healthy periodontal tissues and on the progression of experimental periodontitis (EP). METHODS One hundred forty-four male rats were divided into six groups (n = 24). Each group was treated with physiological saline solution (PSS) 0.9%, 5-FU, or CIS. Experimental periodontitis (EP) was induced by ligature placement. Animals were euthanized at 7, 15, and 30 days after treatment. Data were statistically analyzed (p ≤ 0.05). RESULTS The groups with EP and treated with 5-FU or CIS showed lower percentage of bone volume in the furcation region and higher percentage of alveolar bone loss, higher number of TRAP-positive cells, and lower number of PCNA-positive cells when compared group with EP and treated with PSS (p ≤ 0.05). Groups with EP and treated with 5-FU or CIS showed high immunolabelling pattern of RANKL, TNF-α, and IL-1β, moderate of BAX, and low of HIF-1α. Histological analysis showed severe tissue breakdown in the groups with EP and treated with 5-FU or CIS. CONCLUSIONS Chemotherapy with antineoplastic agents 5-FU and CIS increased the intensity and duration of the inflammation and compromised tissue repair by reduction in cellular and vascular turnover. The more severe periodontal breakdown was caused by 5-FU.
Collapse
Affiliation(s)
- Vivian Cristina Noronha Novaes
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Edilson Ervolino
- Department of Basic Science, Histology Division, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Giovani Lopes Fernandes
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Clara Possarle Cunha
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Leticia Helena Theodoro
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Valdir Gouveia Garcia
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil.
| |
Collapse
|
39
|
Influence of Depression and Anxiety on Non-Surgical Periodontal Treatment Outcomes: A 6-Month Prospective Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179394. [PMID: 34501984 PMCID: PMC8431014 DOI: 10.3390/ijerph18179394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 01/10/2023]
Abstract
Periodontal treatment could be worsened by risk factors. Depression and anxiety have been suggested as potentially influencing periodontal treatment outcomes. The aim of this study was to determine their association with non-surgical periodontal treatment outcomes in patients with generalized severe periodontitis (stage III/IV generalized periodontitis) at 6 months. A total of 68 patients diagnosed with generalized severe periodontitis were treated with scaling and root planing (SRP) and were followed at 3 and 6 months. The data of the 54 patients that followed the entire protocol were considered for analysis. Depression and anxiety levels were determined at baseline by the Beck Depression Inventory (BDI) and State-Trait Inventory (STAI) questionnaires. The association between psychological scores and periodontal parameters was evaluated by multivariate analysis. At 3 and 6 months, SRP induced an improvement for all periodontal parameters (plaque index (PI), bleeding on probing (BOP), periodontal probing depth (PPD) and clinical attachment loss (CAL)). BDI and STAI scores were associated with the evolution of PI, BOP, mean PPD and number of sites with PPD > 3 mm and with CAL > 3 mm. Depression and anxiety should be considered as risk factors for SRP and the identification of at-risk patients should be performed using well-established tools.
Collapse
|
40
|
Motahari P, Pourzare Mehrbani S, Jabbarvand H. Evaluation of Salivary Level of Heat Shock Protein 70 in Patients with Chronic Periodontitis. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2021; 22:175-179. [PMID: 34514064 PMCID: PMC8417541 DOI: 10.30476/dentjods.2020.87080.1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022]
Abstract
STATEMENT OF THE PROBLEM Traditional clinical criteria are usually not sufficient for determining the sites of active periodontal disease, monitoring the response to treatment, or measuring the susceptibility to future disease development. Past studies have shown that heat shock protein 70 (HSP70) are involved in the etiology of periodontal disease. PURPOSE The aim of this study was to evaluate the level of HSP70 in saliva of patients with chronic periodontitis (CP). MATERIALS AND METHOD In our case-control study, the saliva samples of 45 patients with CP and 45 age- and sex-matched healthy subjects were collected. Salivary HSP70 was measured by enzyme-linked immunosorbent assay method. The results were analyzed by statistical tests using SPSS 16 and the statistically significant difference was set at p< 0.05. RESULTS In this study, the mean salivary HSP70 level was 2.81±0.61ng/ml in the patient group and 1.96±0.77ng/ml in the healthy group, with a significant difference (p< 0.05). In addition, the results of spearman correlation analysis showed a positive correlation between salivary HSP 70 and clinical periodontal index. CONCLUSION The results of this study showed that the salivary HSP70 level in patients with CP is higher than that in healthy subjects. As a result, salivary HSP70 might be considered as a marker in the pathogenesis of CP.
Collapse
Affiliation(s)
- Paria Motahari
- Dept. of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Pourzare Mehrbani
- Dept. of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Jabbarvand
- Dept. of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Micro-Computed Tomography Analysis on Administration of Mesenchymal Stem Cells - Bovine Teeth Scaffold Composites for Alveolar Bone Tissue Engineering. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2021. [DOI: 10.4028/www.scientific.net/jbbbe.52.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tissue engineering approach for periodontal tissue regeneration using a combination of stem cells and scaffold has been vastly developed. Mesenchymal Stem Cells (MSCs) seeded with Bovine Teeth Scaffold (BTSc) can repair alveolar bone damage in periodontitis cases. The alveolar bone regeneration process was analyzed by micro-computed tomography (µ-CT) to observe the structure of bone growth and to visualize the scaffold in 3-Dimensional (3D). The purpose of this study is to analyze alveolar bone regeneration by µ-CT following the combination of MSCs and bovine teeth scaffold (MSCs-BTSc) implantation in the Wistar rat periodontitis model. Methods. MSCs were cultured from adipose-derived mesenchymal stem cells of rats. BTSc was taken from bovine teeth and freeze-dried with a particle size of 150-355 µm. MSCs were seeded on BTSc for 24 hours and transplanted in a rat model of periodontitis. Thirty-five Wistar rats were made as periodontitis models with LPS induction from P. gingivalis injected to the buccal section of interproximal gingiva between the first and the second mandibular right-molar teeth for six weeks. There were seven groups (control group, BTSc group on day 7, BTSc group on day 14, BTSc group on day 28, MSCs-BTSc group on day 7, MSCs-BTSc group on day 14, MSCs-BTSc group on day 28). The mandibular alveolar bone was analyzed and visualized in 3D with µ-CT to observe any new bone growth. Statistical Analysis. Group data were subjected to the Kruskal Wallis test followed by the Mann-Whitney (p <0.05). The µ-CT qualitative analysis shows a fibrous structure, which indicates the existence of new bone regeneration. Quantitative analysis of the periodontitis model showed a significant difference between the control model and the model with the alveolar bone resorption (p <0.05). The bone volume and density measurements revealed that the MSCs-BTSc group on day 28 formed new bone compared to other groups (p <0.05). Administration of MSCs-BTSc combination has the potential to form new alveolar bone.
Collapse
|
42
|
Tar I, Csősz É, Végh E, Lundberg K, Kharlamova N, Soós B, Szekanecz Z, Márton I. Salivary citrullinated proteins in rheumatoid arthritis and associated periodontal disease. Sci Rep 2021; 11:13525. [PMID: 34188155 PMCID: PMC8241986 DOI: 10.1038/s41598-021-93008-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/11/2021] [Indexed: 01/22/2023] Open
Abstract
Periodontal disease (PD) can be an important precipitating factor in the production of citrullinated proteins. Its importance is emphasized, but it is not the only way to produce citrullinated proteins. The aim of the current study was to determine the periodontal conditions and the salivary citrullinated protein content in patients with rheumatoid arthritis (RA) compared to healthy controls. We also wished to correlate citrullinated protein levels in the saliva and serum biomarkers with the periodontal status and temporomandibular joint (TMJ) involvement of patients with RA. Twenty-three patients with RA and 17 healthy controls participated the study. Saliva samples were taken: citrulline content of saliva was measured. Blood test results for patients with RA were collected. TMJ disorders were described. Cariological and periodontal indices were registered. Periodontal conditions and periodontal staging were also registered. Comparison of measured values between groups was performed. Intragroup correlation of patients’ values was counted. The prevalence of TMJ complaints was significantly higher in the RA group (8/23) versus controls (1/17). The patients with RA had worse periodontal condition because more patients with RA had gingivitis with a significantly higher bleeding on probing (BOP) (RA: 22.4 ± 25.0%; controls: 6.36 ± 11.6%; p = 0.018). Gingival index (GI) was also significantly higher in the patients than in controls (RA: 0.68 ± 0.58; controls: 0.19 ± 0.38; p = 0.010). The citrullinated protein (relative) content of saliva did not differ significantly (p = 0.147) between patients with RA (1102.2 ± 530.8) and healthy controls (1873.1 ± 1594.9). In RA, the salivary anti-CCP levels positively correlated with PD staging (R = 0.464, p = 0.039)
. Control subjects more commonly had healthy gingiva than RA patients. Moreover, in the control group more individuals had intact and reduced height periodontium than periodontitis compared to the RA group. There was no significant difference in the levels of salivary citrulline between patients with RA and controls, despite the significant differences in their periodontal status. Thus, salivary citrulline levels are not associated with RA disease severity.
Collapse
Affiliation(s)
- Ildikó Tar
- Department of Oral Medicine, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Éva Csősz
- Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edit Végh
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei str 98, Debrecen, 4032, Hungary
| | - Karin Lundberg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Nastya Kharlamova
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Boglárka Soós
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei str 98, Debrecen, 4032, Hungary
| | - Zoltán Szekanecz
- Division of Rheumatology, Department of Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei str 98, Debrecen, 4032, Hungary.
| | - Ildikó Márton
- Department of Restorative Dentistry and Endodontics, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
43
|
de Carvalho RDP, Côrrea Viana Casarin R, Lima POD, Cogo-Müller K. STATINSWITH POTENTIAL TO CONTROL PERIODONTITIS: FROM BIOLOGICAL MECHANISMS TO CLINICAL STUDIES. J Oral Biosci 2021; 63:232-244. [PMID: 34146687 DOI: 10.1016/j.job.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Statins are widely used for the treatment of hyperlipidemia. However, these drugs have pleiotropic effects that can be promising for the prevention and treatment of oral diseases, such as periodontitis. HIGHLIGHT This review aimed to identify preclinical, observational, and clinical studies that evaluate the effects and biological mechanisms of statins on oral cells and tissues and those using these drugs to treat periodontitis. A LITERATURE SURVEY HAS BEEN CONDUCTED IN PUBMED USING COMBINATIONS OF THE UNITERMS: "statins," "dentistry," "periodontal disease," and "periodontal treatment." In vitro findings showed positive statin results in cell lines related to alveolar bone metabolism by altering the signaling pathway Osteoprotegerin/Receptor Activator of Nuclear Factor Kappa B/Receptor Activator of Nuclear Factor Kappa B Ligand (OPG/RANK/RANKL), stimulating the production of alkaline phosphatase and osteocalcin, and reducing the production of matrix metalloproteinases (MMPs). Animal studies have shown a reduction in alveolar bone loss and osteoclastic activity, in addition to a reduction in inflammatory markers, such as IL-1, IL-6, and TNF-α, when statins were used prophylactically. Clinical trials showed a positive impact on clinical parameters, leading to a higher reduction in probing depth and gain in clinical attachment when a local statin was adjunctively associated with mechanical therapy. CONCLUSION Statins were shown to be promising for regenerating and stimulating bone activity, with great potential for treating chronic periodontitis. However, further studies are required to confirm its effectiveness.
Collapse
Affiliation(s)
| | | | | | - Karina Cogo-Müller
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
44
|
Luan X, Zhou X, Fallah P, Pandya M, Lyu H, Foyle D, Burch D, Diekwisch TGH. MicroRNAs: Harbingers and shapers of periodontal inflammation. Semin Cell Dev Biol 2021; 124:85-98. [PMID: 34120836 DOI: 10.1016/j.semcdb.2021.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Periodontal disease is an inflammatory reaction of the periodontal tissues to oral pathogens. In the present review we discuss the intricate effects of a regulatory network of gene expression modulators, microRNAs (miRNAs), as they affect periodontal morphology, function and gene expression during periodontal disease. These miRNAs are small RNAs involved in RNA silencing and post-transcriptional regulation and affect all stages of periodontal disease, from the earliest signs of gingivitis to the regulation of periodontal homeostasis and immunity and to the involvement in periodontal tissue destruction. MiRNAs coordinate periodontal disease progression not only directly but also through long non-coding RNAs (lncRNAs), which have been demonstrated to act as endogenous sponges or decoys that regulate the expression and function of miRNAs, and which in turn suppress the targeting of mRNAs involved in the inflammatory response, cell proliferation, migration and differentiation. While the integrity of miRNA function is essential for periodontal health and immunity, miRNA sequence variations (genetic polymorphisms) contribute toward an enhanced risk for periodontal disease progression and severity. Several polymorphisms in miRNA genes have been linked to an increased risk of periodontitis, and among those, miR-146a, miR-196, and miR-499 polymorphisms have been identified as risk factors for periodontal disease. The role of miRNAs in periodontal disease progression is not limited to the host tissues but also extends to the viruses that reside in periodontal lesions, such as herpesviruses (human herpesvirus, HHV). In advanced periodontal lesions, HHV infections result in the release of cytokines from periodontal tissues and impair antibacterial immune mechanisms that promote bacterial overgrowth. In turn, controlling the exacerbation of periodontal disease by minimizing the effect of periodontal HHV in periodontal lesions may provide novel avenues for therapeutic intervention. In summary, this review highlights multiple levels of miRNA-mediated control of periodontal disease progression, (i) through their role in periodontal inflammation and the dysregulation of homeostasis, (ii) as a regulatory target of lncRNAs, (iii) by contributing toward periodontal disease susceptibility through miRNA polymorphism, and (iv) as periodontal microflora modulators via viral miRNAs.
Collapse
Affiliation(s)
- Xianghong Luan
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Xiaofeng Zhou
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA
| | - Pooria Fallah
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Mirali Pandya
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Huling Lyu
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Deborah Foyle
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Dan Burch
- Department of Pedodontics, TAMU College of Dentistry, 75246 Dallas, TX, USA
| | - Thomas G H Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA.
| |
Collapse
|
45
|
Pacheco CMF, Maltos KLM, Shehabeldin MS, Thomas LL, Zhuang Z, Yoshizawa S, Verdelis K, Gaffen SL, Garlet GP, Little SR, Sfeir C. Local Sustained Delivery of Anti-IL-17A Antibodies Limits Inflammatory Bone Loss in Murine Experimental Periodontitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2386-2392. [PMID: 33952619 PMCID: PMC10415091 DOI: 10.4049/jimmunol.2001432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022]
Abstract
Periodontal disease (PD) is a chronic destructive inflammatory disease of the tooth-supporting structures that leads to tooth loss at its advanced stages. Although the disease is initiated by a complex organization of oral microorganisms in the form of a plaque biofilm, it is the uncontrolled immune response to periodontal pathogens that fuels periodontal tissue destruction. IL-17A has been identified as a key cytokine in the pathogenesis of PD. Despite its well documented role in host defense against invading pathogens at oral barrier sites, IL-17A-mediated signaling can also lead to a detrimental inflammatory response, causing periodontal bone destruction. In this study, we developed a local sustained delivery system that restrains IL-17A hyperactivity in periodontal tissues by incorporating neutralizing anti-IL-17A Abs in poly(lactic-coglycolic) acid microparticles (MP). This formulation allowed for controlled release of anti-IL-17A in the periodontium of mice with ligature-induced PD. Local delivery of anti-IL-17A MP after murine PD induction inhibited alveolar bone loss and osteoclastic activity. The anti-IL-17A MP formulation also decreased expression of IL-6, an IL-17A target gene known to induce bone resorption in periodontal tissues. This study demonstrates proof of concept that local and sustained release of IL-17A Abs constitutes a promising therapeutic strategy for PD and may be applicable to other osteolytic bone diseases mediated by IL-17A-driven inflammation.
Collapse
Affiliation(s)
- Cinthia M F Pacheco
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA
| | - Katia L M Maltos
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA
| | - Mostafa S Shehabeldin
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Laura L Thomas
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA
| | - Zhe Zhuang
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA
- School of Medicine, Tsinghua University, Beijing, China
| | - Sayuri Yoshizawa
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Gustavo P Garlet
- Department of Biological Sciences, Baru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Steven R Little
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA; and
| | - Charles Sfeir
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA;
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
46
|
Li W, Wei C, Xu L, Yu B, Chen Y, Lu D, Zhang L, Song X, Dong L, Zhou S, Xu Z, Zhu J, Chen X, Su C. Schistosome infection promotes osteoclast-mediated bone loss. PLoS Pathog 2021; 17:e1009462. [PMID: 33735306 PMCID: PMC8009420 DOI: 10.1371/journal.ppat.1009462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 03/30/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
Infection with schistosome results in immunological changes that might influence the skeletal system by inducing immunological states affecting bone metabolism. We investigated the relationships between chronic schistosome infection and bone metabolism by using a mouse model of chronic schistosomiasis, affecting millions of humans worldwide. Results showed that schistosome infection resulted in aberrant osteoclast-mediated bone loss, which was accompanied with an increased level of receptor activator of nuclear factor-κB (NF-κB) Ligand (RANKL) and decreased level of osteoprotegerin (OPG). The blockade of RANKL by the anti-RANKL antibody could prevent bone loss in the context of schistosome infection. Meanwhile, both B cells and CD4+ T cells, particularly follicular helper T (Tfh) cell subset, were the important cellular sources of RANKL during schistosome infection. These results highlight the risk of bone loss in schistosome-infected patients and the potential benefit of coupling bone therapy with anti-schistosome treatment. Schistosomiasis remains an important public health problem in many countries in tropical and subtropical regions, which affects about 200 million people worldwide, with another 700 million considered at risk of infection. Although the primary cause of pathogenesis of schistosomiasis is the granulomatous inflammatory responses, schistosomiasis patients experience long-term hidden pathologies that remain poorly investigated. Here, we found that schistosome infection resulted in RANKL-associated bone loss. Furthermore, our results indicated that both B cells and CD4+ T cells, particularly Tfh cell subset, in the peripheral lymphoid tissues are likely to be the important contributors to bone loss through releasing soluble RANKL. In addition, Tfh cells played a sufficient but not necessary role in schistosome infection-induced bone loss. Our findings highlight the risk of bone loss in schistosome-infected patients and the potential benefit of coupling bone therapy with anti-schistosome treatment.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, P. R. China
| | - Chuan Wei
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, P. R. China
| | - Lei Xu
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, P. R. China
| | - Beibei Yu
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, P. R. China
| | - Ying Chen
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, P. R. China
| | - Di Lu
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, P. R. China
| | - Lina Zhang
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, P. R. China
| | - Xian Song
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, P. R. China
| | - Liyang Dong
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, P. R. China
| | - Sha Zhou
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, P. R. China
| | - Zhipeng Xu
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, P. R. China
| | - Jifeng Zhu
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, P. R. China
| | - Xiaojun Chen
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, P. R. China
- * E-mail: (XC); (CS)
| | - Chuan Su
- State Key Lab of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, P. R. China
- * E-mail: (XC); (CS)
| |
Collapse
|
47
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
48
|
Role of PDT as an adjunct to SRP on whole salivary RANKL and OPG ratio in type-2 diabetic and normoglycemic individuals with chronic periodontitis. Photodiagnosis Photodyn Ther 2021; 34:102220. [PMID: 33610736 DOI: 10.1016/j.pdpdt.2021.102220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim was to assess the effect of scaling and root planing (SRP) with and without adjunct photodynamic therapy (PDT) on the levels of osteoprotegerin (OPG) receptor activator of NF-kappa B ligand (RANKL) in the unstimulated whole saliva (UWS) of type-2 diabetic and normoglycemic individuals with chronic periodontitis (CP). METHODS Type-2 diabetic and normoglycemic subjects with CP (Groups 1 and 2, respectively) were divided into test- (SRP + PDT) and control (SRP only) groups. Patient demographics were recorded; and periodontal parameters (marginal bone loss [MBL], probing depth [P.D], plaque index [PI], gingival index [GI], and clinical attachment loss [CAL]) were assessed at baseline and at 3-months-follow-up. Rate of flow of unstimulated whole saliva and levels of RANKL and osteoprotegerin were measured at both time intervals. P < 0.05 was considered statistically significant. RESULTS Eighty-four persons with CP (42 with and 42 without type-2 DM) were included. At baseline, clinicoradiographic parameters were comparable in all groups. At 3-months of follow-up, there was no significant difference in the clinicoradiographic parameters in all groups. At 3-months of follow-up, there was no significant reduction in whole salivary RANKL and osteoprotegerin levels among individuals in the test and control groups among CP patients with and without CP. CONCLUSION The whole salivary RANKL/OPG ratio remains high in patients with poorly-controlled type-2 DM after SRP with or without adjunct PDT.
Collapse
|
49
|
Ali M, Yang F, Plachokova AS, Jansen JA, Walboomers XF. Application of specialized pro-resolving mediators in periodontitis and peri-implantitis: a review. Eur J Oral Sci 2021; 129:e12759. [PMID: 33565133 PMCID: PMC7986752 DOI: 10.1111/eos.12759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Scaling and root planning is a key element in the mechanical therapy used for the eradication of biofilm, which is the major etiological factor for periodontitis and peri‐implantitis. However, periodontitis is also a host mediated disease, therefore, removal of the biofilm without adjunctive therapy may not achieve the desired clinical outcome due to persistent activation of the innate and adaptive immune cells. Most recently, even the resident cells of the periodontium, including periodontal ligament fibroblasts, have been shown to produce several inflammatory factors in response to bacterial challenge. With increased understanding of the pathophysiology of periodontitis, more research is focusing on opposing excessive inflammation with specialized pro‐resolving mediators (SPMs). This review article covers the major limitations of current standards of care for periodontitis and peri‐implantitis, and it highlights recent advances and prospects of SPMs in the context of tissue reconstruction and regeneration. Here, we focus primarily on the role of SPMs in restoring tissue homeostasis after periodontal infection.
Collapse
Affiliation(s)
- Muhanad Ali
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adelina S Plachokova
- Department of Dentistry, Implantology and Periodontology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
50
|
Qu F, Song Y, Wu Y, Huang Y, Zhong Q, Zhang Y, Fan Z, Xu C. The protective role of Ephrin-B2/EphB4 signaling in osteogenic differentiation under inflammatory environment. Exp Cell Res 2021; 400:112505. [PMID: 33516666 DOI: 10.1016/j.yexcr.2021.112505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/01/2022]
Abstract
Inflammation and alveolar bone destruction constitute the main pathological process of periodontitis. However, the molecular mechanisms of bone destruction under the inflammation environment remain unclear. This study aims to explore the role of Ephrin-B2/EphB4 signaling in osteogenic differentiation under the inflammation environment. Mouse pre-osteoblasts MC3T3-E1 were pretreated with lipopolysaccharide of Porphyromonas gingivalis (Pg-LPS). The Ephrin-B2/EphB4 signaling was activated, and the osteogenic differentiation of cells was examined. The results showed that activation of Ephrin-B2/EphB4 signaling promoted the expression levels of osteogenic differentiation-related genes, and also relieved the inhibitory effect of Pg-LPS on osteogenesis. Noticeably, the effect of Ephrin-B2/EphB4 signaling might be related to the mitogen-activated protein kinase (MAPK) pathway. While applying Ephrin-B2-Fc and EphB4-Fc to periodontitis mice, we observed the reduction of alveolar crest destruction. The current study revealed the possible role of Ephrin-B2/EphB4 signaling in reducing bone destruction in periodontitis and suggested its potential values for further research.
Collapse
Affiliation(s)
- Fang Qu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Yingshuang Song
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Yujie Huang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Qi Zhong
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Yifan Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhen Fan
- Department of Oral Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No. 399 Yanchang Middle Road, Shanghai, 200072, China.
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China; National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|