1
|
Klein Y, David E, Pinto N, Khoury Y, Barenholz Y, Chaushu S. Breaking a dogma: orthodontic tooth movement alters systemic immunity. Prog Orthod 2024; 25:38. [PMID: 39370477 PMCID: PMC11456555 DOI: 10.1186/s40510-024-00537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND The prevailing paradigm posits orthodontic tooth movement (OTM) as primarily a localized inflammatory process. In this study, we endeavor to elucidate the potential ramifications of mechanical force on systemic immunity, employing a time-dependent approach. MATERIALS AND METHODS A previously described mouse orthodontic model was used. Ni-Ti. springs were set to move the upper 1st-molar in C57BL/6 mice and the amount of OTM was. measured by µCT. Mice were allocated randomly into four experimental groups, each. corresponding to clinical phases of OTM, relative to force application. Terminal blood. samples were collected and a comprehensive blood count test for 7 cell types as well as. proteome profiling of 111 pivotal cytokines and chemokines were conducted. Two controls. groups were included: one comprised non-treated mice and the other mice with inactivated springs. RESULTS Serum immuno-profiling unveiled alterations in cellular immunity, manifesting as. changes in percentages of leukocytes, monocytes, macrophages, neutrophils, and. lymphocytes, alongside key signaling factors in comparison to both control groups. The systemic cellular and molecular alterations triggered by OTM mirrored the dynamics previously described in the local immune response. CONCLUSIONS Although the exact interplay between local and systemic immune responses to orthodontic forces require further elucidation, our findings demonstrate a tangible link between the two. Future investigations should aim to correlate these results with human subjects, and strive to delve deeper into the specific mechanisms by which mechanical force modulates the systemic immune response.
Collapse
Affiliation(s)
- Yehuda Klein
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Eilon David
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Noy Pinto
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Yasmin Khoury
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Yechezkel Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Stella Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
2
|
Peng B, Wang L, Han G, Cheng Y. Mesenchymal stem cell-derived exosomes: a potential cell-free therapy for orthodontic tooth stability management. Stem Cell Res Ther 2024; 15:342. [PMID: 39354604 PMCID: PMC11446149 DOI: 10.1186/s13287-024-03962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024] Open
Abstract
Orthodontic relapse (OR) occurs at a rate of over 70%. Retention is the current attempt at prevention, but it requires a considerable amount of time and cannot fully block OR. It's imperative to find a safe and effective method for managing post-orthodontic tooth stability. Periodontal bone remodeling is one crucial biological foundation of OR. Mesenchymal stem cell-derived exosomes (MSC-Exo) show promise in relapse management by regulating periodontal bone remodeling. MSC-Exo can prevent relapse by regulating periodontal ligament function, osteoclast activity, osteoblast differentiation, macrophage polarization, and periodontal microcirculation. In recent years, exosome-loaded hydrogels, which achieve controlled exosome release, have demonstrated efficacy in promoting bone regeneration and remodeling, offering promising prospects for OR management. This review aims to highlight the use of MSC-Exo-based therapy for preventing OR, offering new insights for future research focused on improving tooth stability and enhancing orthodontic anchorage.
Collapse
Affiliation(s)
- Boyuan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Lianhao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Guangli Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Orthodontics Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Yong Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, No.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Oral Radiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
3
|
Li X, Men X, Ji L, Chen X, He S, Zhang P, Chen S. NLRP3-mediated periodontal ligament cell pyroptosis promotes root resorption. J Clin Periodontol 2024; 51:474-486. [PMID: 38164052 DOI: 10.1111/jcpe.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
AIM To investigate the mechanisms by which periodontal ligament cells (PDLCs) convert biomechanical stimulation into inflammatory microenvironment inducing root resorption (RR). MATERIALS AND METHODS RNA sequencing was employed to explore mechanisms in force-inflammatory signal transduction. Then resorption volume, odontoclastic activity, PDLC pyroptotic ratio and NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis pathway activation were analysed under force and pyroptosis inhibition. Further osteoclast formation, macrophage number and transwell polarization demonstrated the effects of PDLC pyroptosis on osteoclastogenesis and M1 polarization. RESULTS RNA sequencing revealed that NLRP3-mediated PDLC pyroptosis induced by Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NFκB)/NLRP3 pathway may be involved in mechano-inflammatory signal transduction. PDLC pyroptosis under force and the expression of NLRP3-mediated pyroptosis pathway in force-enhanced PDLCs were significantly increased, both in vivo and in vitro. MCC950 administration was sufficient to reduce PDLC pyroptosis and alleviate RR, odontoclast formation and M1 polarization in vivo. Further in vitro exploration showed that MCC950 treatment reduced PDLC force-promoted pyroptosis and blocked NLRP3-mediated pyroptosis pathway. Moreover, by treating THP-1 with force-pretreated PDLCs or supernatants, NLRP3-mediated PDLC pyroptotic released products induced osteoclast formation and M1 polarization. CONCLUSIONS NLRP3-mediated PDLC pyroptosis promotes RR. PDLCs transmit excessive force into inflammation signals through TLR4/NFκB/NLRP3 pathway, inducing PDLC pyroptosis, which directly promotes odontoclast formation and subsequent RR or promotes M1 polarization to indirectly trigger odontoclastogenesis and RR.
Collapse
Affiliation(s)
- Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinrui Men
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ling Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Tang J, Yu W, Lin L, Yang R, Li G, Jin M, Gu Y, Jiang B, Lu E. Role of αENaC in root resorption of adjacent teeth due to entirely impacted mandibular third molars. BMC Oral Health 2024; 24:360. [PMID: 38515079 PMCID: PMC10956368 DOI: 10.1186/s12903-024-04040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/17/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Entirely impacted mandibular third molar (EIM3M) concerns the pathological external root resorption (ERR) of the adjacent mandibular second molar (M2M) and formation of granulation tissue between two molars. The study aimed to clarify the effect of αENaC, a mechano-sensitive molecule, to explore the mechanical mechanism in this scenario. METHODS The force EIM3M exerted on M2M was proved by finite element analysis. αENaC expressions were tested by real-time polymerase chain reaction (PCR), immunoblotting and immunofluorescence. Inflammatory and epithelial-mesenchymal transition (EMT)-related molecules expressions were also detected by real-time PCR. The correlation was analyzed by Spearman's correlation analysis, and receiver-operator characteristic (ROC) curve was further exhibited. RESULTS The force was concentrated in the ERR area. αENaC was upregulated, positively correlated with ERR degree and localized to the fibroblasts in ERR granulation tissues. Moreover, αENaC was respectively and positively associated with elevated TNF-α and N-cadherin in ERR granulation tissues. More importantly, ROC analysis verified αENaC as a novel indication of the incidence of this disease. CONCLUSIONS Our finding revealed the force from EIM3M causing ERR of M2M, and elucidated the expression and localization of αENaC and its positive correlation with inflammation, EMT and disease severity, suggesting a novel indication in this disease.
Collapse
Affiliation(s)
- Jiaqi Tang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Weijun Yu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Lu Lin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Ruhan Yang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Guanglong Li
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Min Jin
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yuting Gu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Bin Jiang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
5
|
Wu X, Zhang F, Mao X, Xu F, Ding X, Sun X, Wang J. The mechanism of adipose mesenchymal stem cells to stabilize the immune microenvironment of pelvic floor injury by regulating pyroptosis and promoting tissue repair. Mater Today Bio 2024; 24:100910. [PMID: 38204481 PMCID: PMC10776425 DOI: 10.1016/j.mtbio.2023.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/19/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
Pelvic organ prolapse (POP) has a high incidence rate among Chinese women. Repeated mechanical stimulation is an important factor causing POP, but the injury mechanism has not yet been elucidated. The purpose of this study is to explore the related mechanisms of pelvic floor supporting tissue damage caused by mechanical force and the application of stem cell therapy. First, we obtained vaginal wall and sacral ligament tissue samples from clinical patients for examination. Pelvic floor support tissues of POP patients displayed high expression of inflammation and immune disorders. Then, we constructed a rat model of childbirth injury. In vivo and in vitro experiments investigated the key mechanism of pelvic floor support tissue injury caused by mechanical force. We discovered that after mechanical force, a large number of reactive oxygen species (ROS) and macrophages rapidly accumulated in pelvic floor tissues. ROS stimulated macrophages to produce NLRP3 inflammatory complex, induced the release of interleukin (IL-1β) and pyroptosis and exacerbated the inflammatory state of damaged tissues, persisting chronic inflammation of fibroblasts in supporting tissues, thus causing the pelvic floor's extracellular matrix (ECM) collagen metabolic disorder. Resultingly impeding the repair process, thereby causing the onset and progression of the disease. Through their paracrine ability, we discovered that adipose mesenchymal stem cells (ADSCs) could inhibit this series of pathological processes and promote tissue repair, asserting a good therapeutic effect. Simultaneously, to overcome the low cell survival rate and poor therapeutic effect of directly injecting cells, we developed a ROS-responsive PVA@COLI hydrogel with ADSCs. The ROS-scavenging properties of the gel could reshape the site of inflammation injury, enhance cell survival, and play a role in subsequent treatment. The findings of this study could serve as a basis for early, targeted intervention therapy for POP and representing a promising approach.
Collapse
Affiliation(s)
- Xiaotong Wu
- Department of Obstetrics and Gynecology, Peking University People's Hospital, 100044, Beijing, China
- Beijing Key Laboratory of Female Pelvic Floor Disorders, 100044, Beijing, China
| | - Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, 100044, Beijing, China
| | - Xiaolin Mao
- College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Fujian Xu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaokang Ding
- College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiuli Sun
- Department of Obstetrics and Gynecology, Peking University People's Hospital, 100044, Beijing, China
- Beijing Key Laboratory of Female Pelvic Floor Disorders, 100044, Beijing, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, 100044, Beijing, China
- Beijing Key Laboratory of Female Pelvic Floor Disorders, 100044, Beijing, China
| |
Collapse
|
6
|
Deng J, Zhuang ZM, Xu X, Han B, Song GY, Xu TM. Mechanical force increases tooth movement and promotes remodeling of alveolar bone defects augmented with bovine bone mineral. Prog Orthod 2024; 25:2. [PMID: 38185724 PMCID: PMC10772054 DOI: 10.1186/s40510-023-00501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/09/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Orthodontic tooth movement (OTM) in a region containing alveolar bone defects with insufficient height and width is hard to achieve. Bovine bone mineral (Bio-Oss) is available to restore the alveolar defect; however, whether the region augmented with a bovine bone mineral graft (BG) is feasible for OTM, and the mechanisms by which macrophages remodel the BG material, is uncertain under the mechanical force induced by OTM. MATERIAL AND METHODS Rats were divided into three groups: OTM (O), OTM + BG material (O + B), and Control (C). First molars were extracted to create bone defects in the O and O + B groups with bovine bone mineral grafting in the latter. Second molars received OTM towards the bone defects in both groups. After 28 days, maxillae were analyzed using microfocus-computed tomography (μCT) and scanning-electron-microscopy (SEM); and macrophages (M1/M2) were stained using immunofluorescence. THP-1 cell-induced macrophages were cultured under mechanical force (F), BG material (B), or both (F + B). Phagocytosis-related signaling molecules (cAMP/PKA/RAC1) were analyzed, and conditioned media was analyzed for MMP-9 and cytokines (IL-1β, IL-4). RESULTS Our study demonstrated that alveolar defects grafted with BG materials are feasible for OTM, with significantly increased OTM distance, bone volume, and trabecular thickness in this region. SEM observation revealed that the grafts served as a scaffold for cells to migrate and remodel the BG materials in the defect during OTM. Moreover, the population of M2 macrophages increased markedly both in vivo and in cell culture, with enhanced phagocytosis via the cAMP/PKA/RAC1 pathway in response to mechanical force in combination with BG particles. By contrast, M1 macrophage populations were decreased under the same circumstances. In addition, M2 macrophage polarization was also indicated by elevated IL-4 levels, reduced IL-1β levels, and less active MMP-9 in cell culture. CONCLUSION This study explored the mechanisms of mechanical force-induced alveolar bone remodeling with bovine bone mineral grafts during OTM. The results might provide molecular insights into the related clinical problems of whether we can move teeth into the grafted materials; and how these materials become biologically remodeled and degraded under mechanical force.
Collapse
Affiliation(s)
- Jie Deng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 30 Zhongyang Road, Nanjing, 210008, People's Republic of China
| | - Zi-Meng Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiao Xu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| | - Guang-Ying Song
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| | - Tian-Min Xu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
7
|
Xiang X, Xin X, Hou Y, Deng Y, Liu X, Yu W. Diosgenin alters LPS-induced macrophage polarization by activating PPARγ/NF-κB signaling pathway. Int Immunopharmacol 2024; 126:111270. [PMID: 38029551 DOI: 10.1016/j.intimp.2023.111270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Diosgenin (DG) is a steroidal saponin derived from plants, and it exhibits anti-inflammatory properties. In this study, we employed an in vitro model of P.g.-LPS-stimulated mouse macrophage cell line RAW264.7 to investigate the anti-inflammatory effects and mechanism of DG under the condition of altered polarization of macrophages. The RAW264.7 cells were subjected to pre-treatment with DG with or without P.g.-LPS. In cultured macrophages, DG inhibited P.g.-LPS-induced pro-inflammatory M1 macrophages, and increased anti-inflammatory M2 macrophages. Notably, DG reduced the expression of phosphorylation levels of NF-κB p65 and IκB while increasing the expression of PPARγ. Further studies revealed that PPARγ inhibitor GW9662 or PPARγ siRNA reversed the inhibitory effect of DG on M1 phenotype. Collectively, the anti-inflammatory mechanism of DG is related to altering macrophage polarization by activating PPARγ and inhibiting NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xingchen Xiang
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xirui Xin
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yubo Hou
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Deng
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinchan Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Weixian Yu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China; Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Lin S, Marvidou AM, Novak R, Moreinos D, Abbott PV, Rotstein I. Pathogenesis of non-infection related inflammatory root resorption in permanent teeth: A narrative review. Int Endod J 2023; 56:1432-1445. [PMID: 37712904 DOI: 10.1111/iej.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The mechanism of action of root resorption in a permanent tooth can be classified as infection-related (e.g., microbial infection) or non-infection-related (e.g., sterile damage). Infection induced root resorption occurs due to bacterial invasion. Non-infection-related root resorption stimulates the immune system through a different mechanism. OBJECTIVES The aim of this narrative review is to describe the pathophysiologic process of non-infection-related inflammatory processes involved in root resorption of permanent teeth. METHODS A literature search on root resorption was conducted using Scopus (PubMed and Medline) and Google Scholar databases to highlight the pathophysiology of bone and root resorption in non-infection-related situations. The search included key words covering the relevant category. It included in vitro and in vivo studies, systematic reviews, case series, reviews, and textbooks in English. Conference proceedings, lectures and letters to the editor were excluded. RESULTS Three types of root resorption are related to the non-infection mechanism of action, which includes surface resorption due to either trauma or excessive orthodontic forces, external replacement resorption and external cervical resorption. The triggers are usually damage associated molecular patterns and hypoxia conditions. During this phase macrophages and clastic cells act to eliminate the damaged tissue and bone, eventually enabling root resorption and bone repair as part of wound healing. DISCUSSION The resorption of the root occurs during the inflammatory phase of wound healing. In this phase, damaged tissues are recognized by macrophages and neutrophiles that secrete interlaukines such as TNF-α, IL-1, IL-6, IL-8. Together with the hypoxia condition that accelarates the secretion of growth factors, the repair of the damaged perioduntiom, including damaged bone, is initiated. If the precementum and cementoblast are injured, root resorption can occur. CONCLUSIONS Wound healing exhibits different patterns of action that involves immune stimulation in a bio-physiological activity, that occurs in the proper sequence, with overlapping phases. Two pathologic conditions, DAMPs and hypoxia, can activate the immune cells including clastic cells, eliminating damaged tissue and bone. Under certain conditions, root resorption occurs as a side effect.
Collapse
Affiliation(s)
- Shaul Lin
- The Israeli National Center for Trauma & Emergency Medicine Research, Gertner Institute, Tel Hashomer, Israel
- Department of Endodontics, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Athina M Marvidou
- Department of Endodontology, National and Kapodistrian University of Athens, Athens, Greece
| | - Rostislav Novak
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Orthopedic Department, Orthopedic Oncology Unit, Rambam Health Care Campus, Haifa, Israel
| | - Daniel Moreinos
- Endodontic Department, Galilee Medical Center, Nahariya, Israel
| | - Paul Vincent Abbott
- UWA Dental School, The University of Western Australia, Western Australia, Nedlands, Australia
| | - Ilan Rotstein
- University of Southern California, California, Los Angeles, USA
| |
Collapse
|
9
|
Yang Y, Pullisaar H, Stunes AK, Nogueira LP, Syversen U, Reseland JE. Irisin reduces orthodontic tooth movement in rats by promoting the osteogenic potential in the periodontal ligament. Eur J Orthod 2023; 45:842-853. [PMID: 37209709 PMCID: PMC10687601 DOI: 10.1093/ejo/cjad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
OBJECTIVES Positive effects of irisin on osteogenic differentiation of periodontal ligament (PDL) cells have been identified previously, this study aims to examine its effect on orthodontic tooth movement (OTM) in vivo. MATERIALS AND METHODS The maxillary right first molars of male Wistar rats (n = 21) were moved mesially for 14 days, with submucosal injection of two dosages of irisin (0.1 or 1 μg) or phosphate-buffered saline (control) every third day. OTM was recorded by feeler gauge and micro-computed tomography (μCT). Alveolar bone and root volume were analysed using μCT, and plasma irisin levels by ELISA. Histological characteristics of PDL tissues were examined, and the expression of collagen type I, periostin, osteocalcin (OCN), von Willebrand factor (vWF) and fibronectin type III domain-containing protein 5 (FNDC5) in PDL was evaluated by immunofluorescence staining. RESULTS Repeated 1 μg irisin injections suppressed OTM on days 6, 9, and 12. No significant differences were observed in OTM in the 0.1 μg irisin group, or in bone morphometric parameters, root volume or plasma irisin, compared to control. Resorption lacunae and hyalinization were found at the PDL-bone interface on the compression side in the control, whereas they were scarce after irisin administration. The expression of collagen type I, periostin, OCN, vWF, and FNDC5 in PDL was enhanced by irisin administration. LIMITATIONS The feeler gauge method may overestimate OTM. CONCLUSIONS Submucosal irisin injection reduced OTM by enhancing osteogenic potential of PDL, and this effect was more significant on the compression side.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Helen Pullisaar
- Department of Orthodontics, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Astrid Kamilla Stunes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Center for Oral Health Services and Research, Mid-Norway (TkMidt), Trondheim, Norway
| | | | - Unni Syversen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Nakai Y, Praneetpong N, Ono W, Ono N. Mechanisms of Osteoclastogenesis in Orthodontic Tooth Movement and Orthodontically Induced Tooth Root Resorption. J Bone Metab 2023; 30:297-310. [PMID: 38073263 PMCID: PMC10721376 DOI: 10.11005/jbm.2023.30.4.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 12/17/2023] Open
Abstract
Orthodontic tooth movement (OTM) is achieved by the simultaneous activation of bone resorption by osteoclasts and bone formation by osteoblasts. When orthodontic forces are applied, osteoclast-mediated bone resorption occurs in the alveolar bone on the compression side, creating space for tooth movement. Therefore, controlling osteoclastogenesis is the fundamental tenet of orthodontic treatment. Orthodontic forces are sensed by osteoblast lineage cells such as periodontal ligament (PDL) cells and osteocytes. Of several cytokines produced by these cells, the most important cytokine promoting osteoclastogenesis is the receptor activator of nuclear factor-κB ligand (RANKL), which is mainly supplied by osteoblasts. Additionally, osteocytes embedded within the bone matrix, T lymphocytes in inflammatory conditions, and PDL cells produce RANKL. Besides RANKL, inflammatory cytokines, such as interleukin-1, tumor necrosis factor-α, and prostaglandin E2 promote osteoclastogenesis under OTM. On the downside, excessive osteoclastogenesis activation triggers orthodontically-induced external root resorption (ERR) through pro-osteoclastic inflammatory cytokines. Therefore, understanding the mechanisms of osteoclastogenesis during OTM is essential in reducing the adverse effects of orthodontic treatment. Here, we review the current concepts of the mechanisms underlying osteoclastogenesis in OTM and orthodontically induced ERR.
Collapse
Affiliation(s)
- Yuta Nakai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Natnicha Praneetpong
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| |
Collapse
|
11
|
Ricchiuto S, Palumbo R, Lami F, Gavioli F, Caselli L, Montanari M, Zappavigna V, Anesi A, Zanocco-Marani T, Grande A. The Capacity of Magnesium to Induce Osteoclast Differentiation Is Greatly Enhanced by the Presence of Zoledronate. BIOLOGY 2023; 12:1297. [PMID: 37887007 PMCID: PMC10604702 DOI: 10.3390/biology12101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Bisphosphonates (BPs) are successfully used to cure a number of diseases characterized by a metabolic reduction in bone density, such as Osteoporosis, or a neoplastic destruction of bone tissue, such as multiple myeloma and bone metastases. These drugs exert their therapeutic effect by causing a systemic osteoclast depletion that, in turn, is responsible for reduced bone resorption. Unfortunately, in addition to their beneficial activity, BPs can also determine a frightening side effect known as osteonecrosis of the jaw (ONJ). It is generally believed that the inability of osteoclasts to dispose of inflamed/necrotic bone represents the main physiopathological aspect of ONJ. In principle, a therapeutic strategy able to elicit a local re-activation of osteoclast production could counteract ONJ and promote the healing of its lesions. Using an experimental model of Vitamin D3-dependent osteoclastogenesis, we have previously demonstrated that Magnesium is a powerful inducer of osteoclast differentiation. Here we show that, surprisingly, this effect is greatly enhanced by the presence of Zoledronate, chosen for our study because it is the most effective and dangerous of the BPs. This finding allows us to hypothesize that Magnesium might play an important role in the topical therapy of ONJ.
Collapse
Affiliation(s)
- Silvia Ricchiuto
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.R.)
| | - Rossella Palumbo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.R.)
| | - Francesca Lami
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.R.)
| | - Francesca Gavioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.R.)
| | - Lorenzo Caselli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.R.)
| | - Monica Montanari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Vincenzo Zappavigna
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alexandre Anesi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Tommaso Zanocco-Marani
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Alexis Grande
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.R.)
| |
Collapse
|
12
|
Rajeshwari HRS, Kishen A. Periodontal Fibroblasts-Macrophage Crosstalk in External Inflammatory Root Resorption. J Endod 2023; 49:1145-1153.e3. [PMID: 37268291 DOI: 10.1016/j.joen.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
INTRODUCTION This study aimed to understand the influence of periodontal fibroblasts (PDLFs) on clastic differentiation of macrophages (Mφ) in different resorptive environments. METHODS PDLF-Mφ direct coculture (juxtacrine) was seeded on dentin, cementum, and polystyrene with/without lipopolysaccharide, macrophage colony-stimulating factor, and receptor activator of nuclear factor kappa beta ligand for 7 and 14 days and stained for tartrate-resistant acid phosphatase (TRAP) activity. PDLF-Mφ cocultured on polystyrene were immunostained for CD80, CD206, NFATc1, STAT6, and periostin, and cell culture supernatants were assessed for cytokines on days 2 and 7. Mφ grown in conditioned media of PDLFs (paracrine) and Mφ monoculture were used as controls. Data was analyzed using Student t test and one-way analysis of variance with the Tukey multiple comparisons test (P < .05). RESULTS PDLF-Mφ coculture showed a higher number of TRAP-positive multinucleated cells than Mφ monoculture on dentin and polystyrene. No TRAP-positive multinucleated cells were observed in paracrine and cementum. The expression of CD80 and CD206 in PDLF-Mφ was similar at day 2, whereas CD206 was greater than CD80 at day 7. The expression of STAT6 was greater than NFATc1 at both days 2 and 7 (P < .05). Periostin expression in the presence of the lipopolysaccharide, macrophage colony-stimulating factor, and receptor activator of nuclear factor kappa beta ligand combination was down-regulated in PDLF monoculture, whereas it was up-regulated in PDLF-Mφ coculture. The cytokine profile of PDLF-Mφ on day 2 was predominated by interleukin (IL)-1β, tumor necrosis factor alpha, and MMP9 and MMP2 on day 7. IL-6 and IL-8 showed steady expression at both days 2 and 7. CONCLUSIONS The study highlights the juxtacrine effect of PDLFs on the clastic differentiation of Mφ with a difference in clastic activity between dentin and cementum. The study also emphasizes the temporal effect of tumor necrosis factor alpha, MMP2, MMP9, and IL-1β on intercellular crosstalk in resorptive environments.
Collapse
Affiliation(s)
| | - Anil Kishen
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada; Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; School of Graduate Studies, University of Toronto, Toronto, Ontario, Canada; Department of Dentistry, Mount Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Li T, Wang H, Jiang Y, Chen S, Huang D, Wu Z, Yin X, Zhou C, Li Y, Zou S. LITTIP/Lgr6/HnRNPK complex regulates cementogenesis via Wnt signaling. Int J Oral Sci 2023; 15:33. [PMID: 37558690 PMCID: PMC10412570 DOI: 10.1038/s41368-023-00237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Orthodontically induced tooth root resorption (OIRR) is a serious complication during orthodontic treatment. Stimulating cementum repair is the fundamental approach for the treatment of OIRR. Parathyroid hormone (PTH) might be a potential therapeutic agent for OIRR, but its effects still lack direct evidence, and the underlying mechanisms remain unclear. This study aims to explore the potential involvement of long noncoding RNAs (lncRNAs) in mediating the anabolic effects of intermittent PTH and contributing to cementum repair, as identifying lncRNA-disease associations can provide valuable insights for disease diagnosis and treatment. Here, we showed that intermittent PTH regulates cell proliferation and mineralization in immortalized murine cementoblast OCCM-30 via the regulation of the Wnt pathway. In vivo, daily administration of PTH is sufficient to accelerate root regeneration by locally inhibiting Wnt/β-catenin signaling. Through RNA microarray analysis, lncRNA LITTIP (LGR6 intergenic transcript under intermittent PTH) is identified as a key regulator of cementogenesis under intermittent PTH. Chromatin isolation by RNA purification (ChIRP) and RNA immunoprecipitation (RIP) assays revealed that LITTIP binds to mRNA of leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) and heterogeneous nuclear ribonucleoprotein K (HnRNPK) protein. Further co-transfection experiments confirmed that LITTIP plays a structural role in the formation of the LITTIP/Lgr6/HnRNPK complex. Moreover, LITTIP is able to promote the expression of LGR6 via the RNA-binding protein HnRNPK. Collectively, our results indicate that the intermittent PTH administration accelerates root regeneration via inhibiting Wnt pathway. The lncRNA LITTIP is identified to negatively regulate cementogenesis, which activates Wnt/β-catenin signaling via high expression of LGR6 promoted by HnRNPK.
Collapse
Affiliation(s)
- Tiancheng Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, China
| | - Han Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yukun Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuo Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danyuan Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zuping Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuyu Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Alghamdi B, Jeon HH, Ni J, Qiu D, Liu A, Hong JJ, Ali M, Wang A, Troka M, Graves DT. Osteoimmunology in Periodontitis and Orthodontic Tooth Movement. Curr Osteoporos Rep 2023; 21:128-146. [PMID: 36862360 PMCID: PMC10696608 DOI: 10.1007/s11914-023-00774-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW To review the role of the immune cells and their interaction with cells found in gingiva, periodontal ligament, and bone that leads to net bone loss in periodontitis or bone remodeling in orthodontic tooth movement. RECENT FINDINGS Periodontal disease is one of the most common oral diseases causing inflammation in the soft and hard tissues of the periodontium and is initiated by bacteria that induce a host response. Although the innate and adaptive immune response function cooperatively to prevent bacterial dissemination, they also play a major role in gingival inflammation and destruction of the connective tissue, periodontal ligament, and alveolar bone characteristic of periodontitis. The inflammatory response is triggered by bacteria or their products that bind to pattern recognition receptors that induce transcription factor activity to stimulate cytokine and chemokine expression. Epithelial, fibroblast/stromal, and resident leukocytes play a key role in initiating the host response and contribute to periodontal disease. Single-cell RNA-seq (scRNA-seq) experiments have added new insight into the roles of various cell types in the response to bacterial challenge. This response is modified by systemic conditions such as diabetes and smoking. In contrast to periodontitis, orthodontic tooth movement (OTM) is a sterile inflammatory response induced by mechanical force. Orthodontic force application stimulates acute inflammatory responses in the periodontal ligament and alveolar bone stimulated by cytokines and chemokines that produce bone resorption on the compression side. On the tension side, orthodontic forces induce the production of osteogenic factors, stimulating new bone formation. A number of different cell types, cytokines, and signaling/pathways are involved in this complex process. Inflammatory and mechanical force-induced bone remodeling involves bone resorption and bone formation. The interaction of leukocytes with host stromal cells and osteoblastic cells plays a key role in both initiating the inflammatory events as well as inducing a cellular cascade that results in remodeling in orthodontic tooth movement or in tissue destruction in periodontitis.
Collapse
Affiliation(s)
- Bushra Alghamdi
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
- Department of Restorative Dental Sciences, College of Dentistry, Taibah University, Medina, 42353, Kingdom of Saudi Arabia
| | - Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dongxu Qiu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssia Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Julie J Hong
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Mamoon Ali
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Albert Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Michael Troka
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA.
| |
Collapse
|
15
|
Wang Y, Groeger S, Yong J, Ruf S. Orthodontic Compression Enhances Macrophage M2 Polarization via Histone H3 Hyperacetylation. Int J Mol Sci 2023; 24:ijms24043117. [PMID: 36834533 PMCID: PMC9958841 DOI: 10.3390/ijms24043117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Orthodontic tooth movement is a complex periodontal remodeling process triggered by compression that involves sterile inflammation and immune responses. Macrophages are mechanically sensitive immune cells, but their role in orthodontic tooth movement is unclear. Here, we hypothesize that orthodontic force can activate macrophages, and their activation may be associated with orthodontic root resorption. After force-loading and/or adiponectin application, the migration function of macrophages was tested via scratch assay, and Nos2, Il1b, Arg1, Il10, ApoE, and Saa3 expression levels were detected using qRT-PCR. Furthermore, H3 histone acetylation was measured using an acetylation detection kit. The specific inhibitor of H3 histone, I-BET762, was deployed to observe its effect on macrophages. In addition, cementoblasts were treated with macrophage-conditioned medium or compression force, and OPG production and cellular migration were measured. We further detected Piezo1 expression in cementoblasts via qRT-PCR and Western-blot, and its effect on the force-induced impairment of cementoblastic functions was also analyzed. Compressive force significantly inhibited macrophage migration. Nos2 was up-regulated 6 h after force-loading. Il1b, Arg1, Il10, Saa3, and ApoE increased after 24 h. Meanwhile, higher H3 histone acetylation was detected in the macrophages subjected to compression, and I-BET762 dampened the expression of M2 polarization markers (Arg1 and Il10). Lastly, even though the activated macrophage-conditioned medium showed no effect on cementoblasts, compressive force directly impaired cementoblastic function by enhancing mechanoreceptor Piezo1. Compressive force activates macrophages; specifically, it causes M2 polarization via H3 histone acetylation in the late stage. Compression-induced orthodontic root resorption is macrophage-independent, but it involves the activation of mechanoreceptor Piezo1.
Collapse
Affiliation(s)
- Yao Wang
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sabine Groeger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Correspondence:
| | - Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
16
|
Li D, Li X, Zhang J, Tang Z, Tian A. The immunomodulatory effect of IL-4 accelerates bone substitute material-mediated osteogenesis in aged rats via NLRP3 inflammasome inhibition. Front Immunol 2023; 14:1121549. [PMID: 37153554 PMCID: PMC10157059 DOI: 10.3389/fimmu.2023.1121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Background Bone defect repair by implanting bone substitute materials has been a common clinical treatment. With the understanding of substance-immune system interactions and increasing evidence indicating that the post-implantation immune response determines the fate of bone substitute materials, active modulation of host macrophage polarization is considered a promising strategy. However, whether the same regulatory effects exist when an individual immune system is altered with aging is unclear. Methods In this study, we mechanistically investigated the effect of immunosenescence on the active regulation of macrophage polarization by establishing a cranial bone defect model in young and aged rats implanted with Bio-Oss®. Forty-eight young and 48 aged specific pathogen-free (SPF) male SD rats were randomly divided into two groups. In the experimental group, 20 μL of IL-4 (0.5 μg/mL) was injected locally on the third to seventh postoperative days, while an equal volume of PBS was injected in the control group. Specimens were collected at 1, 2, 6, and 12 weeks postoperatively, and bone regeneration at the defect site was evaluated by micro-CT, histomorphometry, immunohistochemistry, double-labeling immunofluorescence, and RT-qPCR. Results The application of exogenous IL-4 reduced activation of NLRP3 inflammasomes by promoting the polarization of M1 macrophages to M2 macrophages, thus promoting bone regeneration at the site of bone defects in aged rats. However, this effect was gradually weakened after the IL-4 intervention was discontinued. Conclusion Our data confirmed that a strategy to regulate macrophage polarization is also feasible under conditions of immunosenescence, i.e., the local inflammatory microenvironment can be regulated by reducing M1-type macrophages. However, further experiments are needed to determine an exogenous IL-4 intervention that can maintain a more sustained effect.
Collapse
Affiliation(s)
- Duchenhui Li
- Department of Prosthodontics and Implantology, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, China
- Department of Physiology and Pathology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiao Li
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, Guizhou, China
| | - Jie Zhang
- Department of Prosthodontics and Implantology, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhenglong Tang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, China
- Department of Physiology and Pathology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- *Correspondence: Ai Tian, ; Zhenglong Tang,
| | - Ai Tian
- Department of Prosthodontics and Implantology, School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
- *Correspondence: Ai Tian, ; Zhenglong Tang,
| |
Collapse
|
17
|
Nakamura S, Tanimoto K, Bhawal UK. Ribosomal Stress Couples with the Hypoxia Response in Dec1-Dependent Orthodontic Tooth Movement. Int J Mol Sci 2022; 24:ijms24010618. [PMID: 36614058 PMCID: PMC9820322 DOI: 10.3390/ijms24010618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
This study characterized the effects of a deficiency of the hypoxia-responsive gene, differentiated embryonic chondrocyte gene 1 (Dec1), in attenuating the biological function of orthodontic tooth movement (OTM) and examined the roles of ribosomal proteins in the hypoxic environment during OTM. HIF-1α transgenic mice and control mice were used for hypoxic regulation of periodontal ligament (PDL) fibroblasts. Dec1 knockout (Dec1KO) and wild-type (WT) littermate C57BL/6 mice were used as in vivo models of OTM. The unstimulated contralateral side served as a control. In vitro, human PDL fibroblasts were exposed to compression forces for 2, 4, 6, 24, and 48 h. HIF-1α transgenic mice had high expression levels of Dec1, HSP105, and ribosomal proteins compared to control mice. The WT OTM mice displayed increased Dec1 expression in the PDL fibroblasts. Micro-CT analysis showed slower OTM in Dec1KO mice compared to WT mice. Increased immunostaining of ribosomal proteins was observed in WT OTM mice compared to Dec1KO OTM mice. Under hypoxia, Dec1 knockdown caused a significant suppression of ribosomal protein expression in PDL fibroblasts. These results reveal that the hypoxic environment in OTM could have implications for the functions of Dec1 and ribosomal proteins to rejuvenate periodontal tissue homeostasis.
Collapse
Affiliation(s)
- Shigeru Nakamura
- Department of Public and Preventive Dentistry, Nihon University Graduate School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Keiji Tanimoto
- Department of Translational Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ujjal K. Bhawal
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Chennai 600077, India
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
- Correspondence: ; Tel.: +81-47-360-9328
| |
Collapse
|
18
|
Pinheiro MBM, Rozini SV, Quirino-Teixeira AC, Barbosa-Lima G, Lopes JF, Sacramento CQ, Bozza FA, Bozza PT, Hottz ED. Dengue induces iNOS expression and nitric oxide synthesis in platelets through IL-1R. Front Immunol 2022; 13:1029213. [PMID: 36569864 PMCID: PMC9767985 DOI: 10.3389/fimmu.2022.1029213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Dengue is an arthropod-born disease caused by dengue virus (DENV), that may manifest as a mild illness or severe form, characterized by hemorrhagic fever and shock. Nitric oxide (NO) is a vasodilator signaling molecule and an inhibitor of platelet aggregation known to be increased in platelets from dengue patients. However, the mechanisms underlying NO synthesis by platelets during dengue are not yet elucidated. IL-1β is a pro-inflammatory cytokine able to induce iNOS expression in leukocytes and present in dengue patients at high levels. Nevertheless, the role of IL-1β in platelet activation, especially regarding iNOS expression, are not clear. Methods We prospectively followed a cohort of 28 dengue-infected patients to study NO synthesis in platelets and its relationship with disease outcomes. We used in vitro infection and stimulation models to gain insights on the mechanisms. Results and Discussion We confirmed that platelets from dengue patients express iNOS and produce higher levels of NO during the acute phase compared to healthy volunteers, returning to normal levels after recovery. Platelet NO production during acute dengue infection was associated with the presence of warning signs, hypoalbuminemia and hemorrhagic manifestations, suggesting a role in dengue pathophysiology. By investigating the mechanisms, we evidenced increased iNOS expression in platelets stimulated with dengue patients´ plasma, indicating induction by circulating inflammatory mediators. We then investigated possible factors able to induce platelet iNOS expression and observed higher levels of IL-1β in plasma from patients with dengue, which were correlated with NO production by platelets. Since platelets can synthesize and respond to IL-1β, we investigated whether IL-1β induces iNOS expression and NO synthesis in platelets. We observed that recombinant human IL-1β enhanced iNOS expression and dose-dependently increased NO synthesis by platelets. Finally, platelet infection with DENV in vitro induced iNOS expression and NO production, besides the secretion of both IL-1α and IL-1β. Importantly, treatment with IL-1 receptor antagonist or a combination of anti-IL-1α and anti-IL-1β antibodies prevented DENV-induced iNOS expression and NO synthesis. Our data show that DENV induces iNOS expression and NO production in platelets through mechanisms depending on IL-1 receptor signaling.
Collapse
Affiliation(s)
- Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Giselle Barbosa-Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Juliana F. Lopes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carolina Q. Sacramento
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil,National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, Brazil
| | - Fernando A. Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil,D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil,Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil,*Correspondence: Eugenio D. Hottz,
| |
Collapse
|
19
|
Gao Y, Min Q, Li X, Liu L, Lv Y, Xu W, Liu X, Wang H. Immune System Acts on Orthodontic Tooth Movement: Cellular and Molecular Mechanisms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9668610. [PMID: 36330460 PMCID: PMC9626206 DOI: 10.1155/2022/9668610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022]
Abstract
Orthodontic tooth movement (OTM) is a tissue remodeling process based on orthodontic force loading. Compressed periodontal tissues have a complicated aseptic inflammatory cascade, which are considered the initial factor of alveolar bone remodeling. Since skeletal and immune systems shared a wide variety of molecules, osteoimmunology has been generally accepted as an interdisciplinary field to investigate their interactions. Unsurprisingly, OTM is considered a good mirror of osteoimmunology since it involves immune reaction and bone remolding. In fact, besides bone remodeling, OTM involves cementum resorption, soft tissue remodeling, orthodontic pain, and relapse, all correlated with immune cells and/or immunologically active substance. The aim of this paper is to review the interaction of immune system with orthodontic tooth movement, which helps gain insights into mechanisms of OTM and search novel method to short treatment period and control complications.
Collapse
Affiliation(s)
- Yajun Gao
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Qingqing Min
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Xingjia Li
- Department of Prosthodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Linxiang Liu
- Department of Implantology, Wuxi Stomatology Hospital, Wuxi, China
| | - Yangyang Lv
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Wenjie Xu
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | | | - Hua Wang
- Wuhu Stomatology Hospital, Wuhu, China
| |
Collapse
|
20
|
Yong J, Gröger S, von Bremen J, Meyle J, Ruf S. PD-L1, a Potential Immunomodulator Linking Immunology and Orthodontically Induced Inflammatory Root Resorption (OIIRR): Friend or Foe? Int J Mol Sci 2022; 23:ijms231911405. [PMID: 36232704 PMCID: PMC9570182 DOI: 10.3390/ijms231911405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Orthodontically induced inflammatory root resorption (OIIRR) is considered an undesired and inevitable complication induced by orthodontic forces. This inflammatory mechanism is regulated by immune cells that precede orthodontic tooth movement (OTM) and can influence the severity of OIIRR. The process of OIIRR is based on an immune response. On some occasions, the immune system attacks the dentition by inflammatory processes during orthodontic treatment. Studies on the involvement of the PD-1/PD-L1 immune checkpoint have demonstrated its role in evading immune responses, aiming to identify possible novel therapeutic approaches for periodontitis. In the field of orthodontics, the important question arises of whether PD-L1 has a role in the development of OIIRR to amplify the amount of resorption. We hypothesize that blocking of the PD-L1 immune checkpoint could be a suitable procedure to reduce the process of OIIRR during orthodontic tooth movement. This review attempts to shed light on the regulation of immune mechanisms and inflammatory responses that could influence the pathogenesis of OIIRR and to acquire knowledge about the role of PD-L1 in the immunomodulation involved in OIIRR. Possible clinical outcomes will be discussed in relation to PD-L1 expression and immunologic changes throughout the resorption process.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Correspondence: or ; Tel.: +49-641-99-46131
| | - Sabine Gröger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Julia von Bremen
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
21
|
Macrophages with Different Polarization Phenotypes Influence Cementoblast Mineralization through Exosomes. Stem Cells Int 2022; 2022:4185972. [PMID: 36159746 PMCID: PMC9507802 DOI: 10.1155/2022/4185972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/30/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Root resorption is a common dental challenge that can lead to tooth loosening or even tooth loss. Among the cells involved in root resorption, cementoblasts are responsible for laying down the cementum, while macrophages with different phenotypes have also been shown to have bidirectional effects on root resorption. However, the relationship between macrophages and cementoblasts remains largely unknown. In this study, we examined the effect of macrophages with different polarization phenotypes on the mineralization of cementoblasts. Using the transwell coculture system and a conditioned medium-based coculture system, we found that compared with M0 (unpolarized macrophages), M1-polarized macrophages attenuated cementoblast mineralization, while M2-polarized macrophages enhanced cementoblast mineralization. Furthermore, by extracting M0/M1/M2 macrophage exosomes and examining their effects on the mineralization of cementoblasts, we found that the effects of macrophages on cementoblast mineralization were, at least partially, exerted by exosomes. Moreover, in vivo studies also indicated that an increased M1/M2 ratio could suppress cementoblast mineralization and bring about root resorption. During mechanical force-induced orthodontic tooth movement (OTM), root resorption was evident on the compression side of periodontal tissue, and a higher M1/M2 ratio and weaker cementoblast mineralization were observed on the compression side than on the tension side. We also used localized lipopolysaccharide (LPS) injection to increase the M1/M2 ratio around the roots of maxillary molars, where root resorption and decreased cementoblast mineralization were also observed. Furthermore, when we injected the exosomes from M0 and M1- and M2-polarized macrophages into mice, it was observed that the cementoblast mineralization was attenuated in the group injected with M1-polarized macrophage exosomes, while it was augmented in the group injected with M2-polarized macrophage exosomes.
Collapse
|
22
|
Shrestha KR, Lee DH, Chung W, Lee SW, Lee BY, Yoo SY. Biomimetic virus-based soft niche for ischemic diseases. Biomaterials 2022; 288:121747. [PMID: 36041939 DOI: 10.1016/j.biomaterials.2022.121747] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
Abstract
The essential therapeutic cues provided by a nanofibrous arginine-glycine-aspartic acid-engineered M13 phage were exploited as extracellular matrix (ECM)-mimicking niches, contributing to de novo soft tissue niche engineering. The interplay of biomimetic phage cues with surrounding organ tissues was identified, and cells were implanted between tissues to achieve an appropriate soft tissue niche that enables the proper functioning of the implanted stem cells at the injured site. With the polyacrylamide (PA) hydrogel mimicking the soft tissue organ stiffness ranges, it was found that biochemical and topological cues in conjunction with the ∼1-2 kPa elastic and mechanical cues of engineered phage nanofibers in soft tissues efficiently enhance the desired response of implanted stem cells. This phage cue with angiogenic and antioxidant functions overcomes the pathological environment to support implanted cells and surrounding soft tissues at the ischemic site, thereby successfully decreasing myogenic degeneration, minimizing fibrosis, and enhancing blood vessel regeneration with M2 macrophage polarization by improving the survival of the implanted endothelial progenitor cells (EPC) in an ischemic mouse model. These biomimetic phage nanofiber cues are considerably supportive of cell therapy, as they establish promising therapeutic extracellular de novo soft tissue niches for curing ischemic diseases.
Collapse
Affiliation(s)
- Kshitiz Raj Shrestha
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Do Hoon Lee
- Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Wuk Lee
- Bioengineering, University of California, Berkeley, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
| | - Byung Yang Lee
- Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
23
|
Behm C, Zhao Z, Andrukhov O. Immunomodulatory Activities of Periodontal Ligament Stem Cells in Orthodontic Forces-Induced Inflammatory Processes: Current Views and Future Perspectives. FRONTIERS IN ORAL HEALTH 2022; 3:877348. [PMID: 35601817 PMCID: PMC9114308 DOI: 10.3389/froh.2022.877348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/13/2022] [Indexed: 12/25/2022] Open
Abstract
Orthodontic tooth movement (OTM) is induced by applying active mechanical forces, causing a local non-infectious inflammatory response in the periodontal ligament (PDL). As a prerequisite for OTM, the inflammation status is associated with increased levels of various cytokines and involves the interaction between immune cells and periodontal ligament stem cells (hPDLSCs). It is well established that hPDLSCs respond to orthodontic forces in several ways, such as by secreting multiple inflammatory factors. Another essential feature of hPDLSCs is their immunomodulatory activities, which are executed through cytokine (e.g., TNF-α and IL-1β)-induced production of various soluble immunomediators (e.g., indoleamine-2,3-dioxygenase-1, tumor necrosis factor-inducible gene 6 protein, prostaglandin E2) and direct cell-to-cell contact (e.g., programmed cell death ligand 1, programmed cell death ligand 2). It is well known that these immunomodulatory abilities are essential for local periodontal tissue homeostasis and regeneration. So far, only a handful of studies provides first hints that hPDLSCs change immunological processes during OTM via their immunomodulatory activities. These studies demonstrate the pro-inflammatory aspect of immunomodulation by hPDLSCs. However, no studies exist which investigate cytokine and cell-to-cell contact mediated immunomodulatory activities of hPDLSCs. In this perspective article, we will discuss the potential role of the immunomodulatory potential of hPDLSCs in establishing and resolving the OTM-associated non-infectious inflammation and hence its potential impact on periodontal tissue homeostasis during OTM.
Collapse
|
24
|
Periodontal ligament cells under mechanical force regulate local immune homeostasis by modulating Th17/Treg cell differentiation. Clin Oral Investig 2022; 26:3747-3764. [PMID: 35029749 DOI: 10.1007/s00784-021-04346-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/11/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Improper orthodontic force often causes root resorption or destructive bone resorption. There is evidence that T helper 17 (Th17) cells and regulatory T (Treg) cells may be actively involved in bone remodeling during tooth movement. In a combination of in vitro and in vivo studies, we investigated the effect of human periodontal ligament cells (hPDLCs) on Th17/Treg cells under different orthodontic forces and corticotomy. MATERIAL AND METHODS hPDLCs were cultured in vitro and subjected to different mechanical forces. The expression of interleukin (IL)-6 and transforming growth factor (TGF)-β in the supernatant and the mRNA levels of hypoxia inducible factor (HIF)-1α, Notch1, and TGF-β in hPDLCs were investigated. Supernatants were collected and co-cultured with activated CD4+T cells, and the differentiation of Th17/Treg cells was analyzed by flow cytometry. We also established an animal model of tooth movement with or without corticotomy. The tooth movement distance, alveolar bone height, and root resorption were analyzed using micro-computed tomography. Expression of interleukin (IL)-17A, forkhead Box P3 (Foxp3), and IL-6 were analyzed using immunohistochemistry, while osteoclasts were evaluated by tartrate-resistant acid phosphatase (TRAP) staining. The mRNA levels of IL-17A, IL-6, Foxp3, IL-10, HIF-1α, notch1, and C-X-C motif chemokine ligand 12 (CXCL12) in alveolar bone and gingiva were investigated. RESULTS Heavy force repressed cell viability and increased the mortality rate of hPDLCs; it also improved the expression of IL-6, declined the expression of TGF-β, and promoted the mRNA expression level of HIF-1α. The expression of TGF-β and Notch1 mRNA decreased and then increased. The supernatant of hPDLCs under heavy force promotes the polarization of Th17 cells. The heavy force caused root resorption and decreased alveolar bone height and increased the positive area of IL-17A immunohistochemical staining and the expression of IL-17A, IL-6, HIF-1α, and Notch1 mRNA. Corticotomy accelerated tooth movement, increased the proportion of Foxp3-positive cells, and up-regulated the expression of Foxp3, IL-10, and CXCL12 mRNA. CONCLUSIONS During orthodontic tooth movement, the heavy force causes root resorption and inflammatory bone destruction, which could be associated with increased expression of Th17 cells and IL-6. Corticotomy can accelerate tooth movement without causing root resorption and periodontal bone loss, which may be related to the increased expression of Treg cells. CLINICAL RELEVANCE Altogether, this report provides a new perspective on the prevention of inflammatory injury via the regulation of Th17/Treg cells in orthodontics.
Collapse
|
25
|
Sun X, Gao J, Meng X, Lu X, Zhang L, Chen R. Polarized Macrophages in Periodontitis: Characteristics, Function, and Molecular Signaling. Front Immunol 2021; 12:763334. [PMID: 34950140 PMCID: PMC8688840 DOI: 10.3389/fimmu.2021.763334] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022] Open
Abstract
Periodontitis (PD) is a common chronic infectious disease. The local inflammatory response in the host may cause the destruction of supporting periodontal tissue. Macrophages play a variety of roles in PD, including regulatory and phagocytosis. Moreover, under the induction of different factors, macrophages polarize and form different functional phenotypes. Among them, M1-type macrophages with proinflammatory functions and M2-type macrophages with anti-inflammatory functions are the most representative, and both of them can regulate the tendency of the immune system to exert proinflammatory or anti-inflammatory functions. M1 and M2 macrophages are involved in the destructive and reparative stages of PD. Due to the complex microenvironment of PD, the dynamic development of PD, and various local mediators, increasing attention has been given to the study of macrophage polarization in PD. This review summarizes the role of macrophage polarization in the development of PD and its research progress.
Collapse
Affiliation(s)
- Xiaoyu Sun
- *Correspondence: Lei Zhang, ; Xiaoyu Sun,
| | | | | | | | - Lei Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Periodontology, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| | | |
Collapse
|
26
|
Fang XY, Zhan YX, Zhou XM, Wu LN, Lin J, Yi YT, Jiang CM, Wang J, Liu J. CXCL12/CXCR4 Mediates Orthodontic Root Resorption via Regulating the M1/M2 Ratio. J Dent Res 2021; 101:569-579. [PMID: 34847760 DOI: 10.1177/00220345211050324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mechanical force-induced external root resorption is a major clinical side effect of orthodontic treatment. Recent work has revealed that M1 macrophages play a vital role in promoting orthodontic root resorption (ORR), but the mechanism of how mechanical force stimulation increases the M1/M2 macrophage ratio in periodontal tissue is poorly understood. In the current study, we showed that C-X-C motif chemokine 12 (CXCL12)+ periodontal ligament cells (PDLCs) and C-X-C chemokine receptor type 4 (CXCR4)+ monocytes in the periodontal ligament (PDL) were significantly increased after force application with ongoing root resorption, and these effects were partially rescued after force removal in mice. The expression of CXCL12 in PDLCs was increased by force stimulation in a time- and intensity-dependent manner in vitro. Blockage of the CXCL12/CXCR4 axis using CXCR4 antagonist AMD3100 was sufficient to alleviate ORR and reverse the force-enhanced M1/M2 macrophage ratio. Further mechanism exploration showed that Ly6Chi inflammatory monocytes homed in a CXCL12/CXCR4 axis-dependent manner. The number and proportion of CD11b+ Ly6Chi inflammatory monocytes in cervical lymph nodes were significantly increased by force loading, accompanied by decreased CD11b+ Ly6Chi monocytes in the blood. These changes were blunted by intraperitoneal injection of AMD3100. In addition, blockage of the CXCL12/CXCR4 axis effectively reversed M2 suppression and promoted M1 polarization. Collectively, results indicate that force-induced CXCL12/CXCR4 axis mediates ORR by increasing the M1/M2 ratio in periodontal tissues through attracting Ly6Chi inflammatory monocytes and modulating macrophage polarization. The results also imply that AMD3100 is potentially inhibitory to root resorption.
Collapse
Affiliation(s)
- X Y Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y X Zhan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - X M Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - L N Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y T Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - C M Jiang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - J Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Liu
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Sameshima GT, Iglesias-Linares A. Orthodontic root resorption. J World Fed Orthod 2021; 10:135-143. [PMID: 34785166 DOI: 10.1016/j.ejwf.2021.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
External apical root resorption (EARR) is one of the most frequently reported iatrogenic side effects of orthodontic movement. Nevertheless, no robust and unequivocal scientific evidence is yet available in the literature regarding the clinical and biological factors that trigger EARR. The purpose of the present position paper is to provide clinicians, residents, and investigators a summary of our current understanding about root resorption caused by orthodontic tooth movement, based on up-to-date available scientific evidence. Morphological, structural, biomechanical, and biological differences account for predisposing the apical third to EARR compared to other root surfaces during orthodontic treatment. In addition, a relevant number of patient and treatment-related factors increase risk of EARR. The main patient-related factors are reviewed and discussed: genetic factors, tooth anatomy, demographic factors, malocclusion factors, previous endodontic treatment, medical history, short root anomaly. Similarly, the influence of treatment-related factors are analyzed with regard to the effect of: biomechanical factors, type of orthodontic appliance, adjunctive therapies to accelerate tooth movement, early treatment, maxillary expansion, teeth extractions, the duration of treatment and the amount of apical displacement. Clinical management of EARR from pre-treatment records to the monitoring strategy as well as recommendations for the post orthodontic-treatment period are presented as a guide for the clinician. Despite years of studies, we still do not fully understand EARR, but the future is promising. True three-dimensional imaging with higher resolution and low radiation, and predictive tools towards an earlier detection without radiographs, will mark future developments in the field of EARR in orthodontics.
Collapse
Affiliation(s)
- Glenn T Sameshima
- Advanced Orthodontics, Herman Ostrow School of Dentistry of University of Southern California (USC), Los Angeles, California, USA.
| | | |
Collapse
|
28
|
Zhang Z, Zhou X, Liu J, Zheng Y, Wu Y, Yang W, Yi Y, Liu J, Wang J. d-mannose attenuates lipopolysaccharide-induced osteolysis via CPT1A-Mediated lipid metabolic regulation in macrophages. Biochem Biophys Res Commun 2021; 583:135-141. [PMID: 34735875 DOI: 10.1016/j.bbrc.2021.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023]
Abstract
Inflammatory osteolysis is usually linked to the activation of proinflammatory macrophage and the consequent excessive osteoclast formation. Emerging evidence indicates that agents or drugs targeting lipid metabolism in macrophages might be potential in the prevention and treatment of osteolysis. d-mannose, as a natural-existed metabolic regulator, exerts strong effects on attenuating osteopenia and inflammation. However, whether d-mannose is therapeutically effective on osteolysis and whether a metabolic mechanism counts for the effect remain to be addressed. Here, by using an in vivo lipopolysaccharide (LPS)-induced inflammatory osteolysis mouse model as well as an in vitro LPS-induced inflammatory macrophage culture system, we show that d-mannose attenuates inflammatory osteolysis and inhibits excessive osteoclastogenesis by reversing the LPS-induced activation of proinflammatory macrophage. Mechanically, d-mannose recovers LPS-suppressed Cpt1a transcription and promotes lipid metabolism of macrophage. Treatment with etomoxir, an inhibitor of CPT1A, abolishes the effects of d-mannose on LPS-treated macrophage in vitro and eliminates its protection against osteolysis in vivo. Collectively, our results imply that d-mannose attenuates LPS-induced osteolysis by manipulating CPT1A-mediated lipid metabolism in macrophages. Our results disclose the unrecognized utilization of d-mannose as an effective intervention against inflammatory osteolysis and provide evidence to manage inflammatory scenarios by therapeutically targeting lipid metabolism in macrophage.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xueman Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaqi Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yingcheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yange Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenke Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yating Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Liu
- Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
29
|
Mechanisms of sphingosine-1-phosphate (S1P) signaling on excessive stress-induced root resorption during orthodontic molar intrusion. Clin Oral Investig 2021; 26:1003-1016. [PMID: 34363103 DOI: 10.1007/s00784-021-04084-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The aim of this study was to investigate cementocyte mechanotransduction during excessive orthodontic intrusive force-induced root resorption and the role of S1P signaling in this process. MATERIALS AND METHODS Fifty-four 12-week-old male Wistar rats were randomly divided into 3 groups: control group (Control), intrusive stress application group (Stress), and intrusive stress together with S1PR2-specific antagonist injection group (Stress + JTE). A rat molar intrusion model was established on animals in the Stress and the Stress + JTE groups. The animals in the Stress + JTE group received daily intraperitoneal (i.p.) injection of S1PR2 antagonist JTE-013, while the Control and Stress groups received only the vehicle. Histomorphometric, immunohistochemical, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses were performed after euthanizing of the rats. RESULTS Root resorption was promoted in the Stress group with increased volumes of resorption pits and amounts of molar intrusion compared with the Control group. The expression levels of cementogenic- and cementoclastic-related factors were affected under excessive intrusive force. Immunohistochemical staining and qRT-PCR analysis showed promoted S1P signaling activities during molar intrusion. Western blot analysis indicated decreased nuclear translocation of β-catenin under excessive intrusive force. Through the administration of JTE-013, S1P signaling activity was suppressed and excessive intrusive force-induced root resorption was reversed. The regulation of S1P signaling could also influence the nuclear translocation of β-catenin and the expressions of cementogenic- and cementoclastic-related factors. CONCLUSIONS Root resorption was promoted under excessive orthodontic intrusive force due to the disruption of cementum homeostasis. S1P signaling pathway might play an important role in cementocyte mechanotransduction in this process. CLINICAL RELEVANCE The S1P signaling might be a promising therapeutic target for novel therapeutic approaches to prevent external root resorption caused by excessive orthodontic intrusive force.
Collapse
|
30
|
Yan T, Xie Y, He H, Fan W, Huang F. Role of nitric oxide in orthodontic tooth movement (Review). Int J Mol Med 2021; 48:168. [PMID: 34278439 PMCID: PMC8285047 DOI: 10.3892/ijmm.2021.5001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) is an ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic-related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.
Collapse
Affiliation(s)
- Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yongjian Xie
- Department of Orthodontic Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
31
|
Kitaura H, Ogawa S, Ohori F, Noguchi T, Marahleh A, Nara Y, Pramusita A, Kinjo R, Ma J, Kanou K, Mizoguchi I. Effects of Incretin-Related Diabetes Drugs on Bone Formation and Bone Resorption. Int J Mol Sci 2021; 22:ijms22126578. [PMID: 34205264 PMCID: PMC8234693 DOI: 10.3390/ijms22126578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with type 2 diabetes have an increased risk of fracture compared to the general population. Glucose absorption is accelerated by incretin hormones, which induce insulin secretion from the pancreas. The level of the incretin hormone, glucagon-like peptide-1 (GLP-1), shows an immediate postprandial increase, and the circulating level of intact GLP-1 is reduced rapidly by dipeptidyl peptidase-4 (DPP-4)-mediated inactivation. Therefore, GLP-1 receptor agonists and DPP-4 inhibitors are effective in the treatment of type 2 diabetes. However, these incretin-related diabetic agents have been reported to affect bone metabolism, including bone formation and resorption. These agents enhance the expression of bone markers, and have been applied to improve bone quality and bone density. In addition, they have been reported to suppress chronic inflammation and reduce the levels of inflammatory cytokine expression. Previously, we reported that these incretin-related agents inhibited both the expression of inflammatory cytokines and inflammation-induced bone resorption. This review presents an overview of current knowledge regarding the effects of incretin-related diabetes drugs on osteoblast differentiation and bone formation as well as osteoclast differentiation and bone resorption. The mechanisms by which incretin-related diabetes drugs regulate bone formation and bone resorption are also discussed.
Collapse
|
32
|
Chen Y, Huang Y, Deng X. External cervical resorption-a review of pathogenesis and potential predisposing factors. Int J Oral Sci 2021; 13:19. [PMID: 34112752 PMCID: PMC8192751 DOI: 10.1038/s41368-021-00121-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
External cervical resorption (ECR) refers to a pathological state in which resorption tissues penetrate into the dentin at the cervical aspect of the root. Despite being latent in its initial phase, ECR could cause severe damage to mineralized dental tissue and even involve the pulp if not given timely diagnosis and treatment. Nevertheless, the etiology of ECR is still poorly understood, which adds to the difficulty in early diagnosis. ECR has received growing attention in recent years due to the increasing number of clinical cases. Several potential predisposing factors have been recognized in cross-sectional studies as well as case reports. In the meantime, studies on histopathology and pathogenesis have shed light on possible mechanisms of ECR. This review aims to summarize the latest findings in the pathogenesis and potential predisposing factors of ECR, so as to provide pragmatic reference for clinical practice.
Collapse
Affiliation(s)
- Yiming Chen
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
33
|
Chaushu S, Klein Y, Mandelboim O, Barenholz Y, Fleissig O. Immune Changes Induced by Orthodontic Forces: A Critical Review. J Dent Res 2021; 101:11-20. [PMID: 34105404 DOI: 10.1177/00220345211016285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Orthodontic tooth movement (OTM) is generated by a mechanical force that induces an aseptic inflammatory response in the periodontal tissues and a subsequent coordinated process of bone resorption and apposition. In this review, we critically summarize the current knowledge on the immune processes involved in OTM inflammation and provide a novel insight into the relationship between classical inflammation and clinical OTM phases. We found that most studies focused on the acute inflammatory process, which ignites the initial alveolar bone resorption. However, the exact mechanisms and the immune reactions involved in the following OTM phases remain obscure. Recent studies highlight the existence of a typical innate response of resident and extravasated immune cells, including granulocytes and natural killer (NK), dendritic, and γδT cells. Based on few available studies, we shed light on an active, albeit incomplete, process of resolution in the lag phase, supported by continuously elevated ratios of M1/M2 macrophage and receptor activator of nuclear factor κB ligand/osteoprotegerin ratio. This partial resolution enables tissue formation and creates the appropriate environment for a transition between the innate and adaptive arms of the immune system, essential for the tissue's return to homeostasis. Nevertheless, as the mechanical trigger persists, the resolution turns into a low-grade chronic inflammation, which underlies the next, acceleration/linear OTM phase. In this stage, the acute inflammation dampens, and a simultaneous process of bone resorption and formation occurs, driven by B and T cells of the adaptive immune arm. Excessive orthodontic forces or tooth movement in periodontally affected inflamed tissues may hamper resolution, leading to "maladaptive homeostasis" and tissue loss due to uncoupled bone resorption and formation. The review ends with a brief description of the translational studies on OTM immunomodulation. Future studies are necessary for further uncovering cellular and molecular immune targets and developing novel strategies for controlling OTM by local and sustained tuning of the inflammatory process.
Collapse
Affiliation(s)
- S Chaushu
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Y Klein
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel.,Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - O Mandelboim
- Lautenberg Center for Cancer Immunology, Faculty of Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Y Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - O Fleissig
- Department of Orthodontics, Faculty of Dental Medicine, The Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
34
|
Jiang N, He D, Ma Y, Su J, Wu X, Cui S, Li Z, Zhou Y, Yu H, Liu Y. Force-Induced Autophagy in Periodontal Ligament Stem Cells Modulates M1 Macrophage Polarization via AKT Signaling. Front Cell Dev Biol 2021; 9:666631. [PMID: 34124048 PMCID: PMC8187804 DOI: 10.3389/fcell.2021.666631] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Autophagy, a lysosomal degradation pathway, serves as a protective cellular mechanism in maintaining cell and tissue homeostasis under mechanical stimulation. As the mechanosensitive cells, periodontal ligament stem cells (PDLSCs) play an important role in the force-induced inflammatory bone remodeling and tooth movement process. However, whether and how autophagy in PDLSCs influences the inflammatory bone remodeling process under mechanical force stimuli is still unknown. In this study, we found that mechanical force stimuli increased the expression of the autophagy protein LC3, the number of M1 macrophages and osteoclasts, as well as the ratio of M1/M2 macrophages in the compression side of the periodontal ligament in vivo. These biological changes induced by mechanical force were repressed by the application of an autophagy inhibitor 3-methyladenine. Moreover, autophagy was activated in the force-loaded PDLSCs, and force-stimulated PDLSC autophagy further induced M1 macrophage polarization in vitro. The macrophage polarization could be partially blocked by the administration of autophagy inhibitor 3-methyladenine or enhanced by the administration of autophagy activator rapamycin in PDLSCs. Mechanistically, force-induced PDLSC autophagy promoted M1 macrophage polarization via the inhibition of the AKT signaling pathway. These data suggest a novel mechanism that force-stimulated PDLSC autophagy steers macrophages into the M1 phenotype via the AKT signaling pathway, which contributes to the inflammatory bone remodeling and tooth movement process.
Collapse
Affiliation(s)
- Nan Jiang
- Central Laboratory, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yushi Ma
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Junxiang Su
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Shanxi, China
| | - Xiaowen Wu
- Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Shanxi, China
| | - Shengjie Cui
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yanheng Zhou
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Huajie Yu
- The Fourth Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
35
|
de Sousa FRN, de Sousa Ferreira VC, da Silva Martins C, Dantas HV, de Sousa FB, Girão-Carmona VCC, Goes P, de Castro Brito GA, de Carvalho Leitão RF. The effect of high concentration of zoledronic acid on tooth induced movement and its repercussion on root, periodontal ligament and alveolar bone tissues in rats. Sci Rep 2021; 11:7672. [PMID: 33828221 PMCID: PMC8027035 DOI: 10.1038/s41598-021-87375-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
Zoledronic acid (ZA) is often prescribed for osteoporosis or resorptive metabolic bone disease. This study aims to evaluate the effect of ZA on orthodontic tooth movement (OTM) and root and bone resorption and its repercussion on root, periodontal ligament and alveolar bone tissues. The experimental group consisted of 72 Wistar rats divided in four subgroups: Naive, Saline and Zoledronic Acid groups at the concentration of 0.2 mg/kg [ZA (0.2)] or 1.0 mg/kg [ZA (1.0)]. The animals were subjected to i.v (dorsal penile vein) administrations of ZA or saline solution, on days 0, 7, 14 and 42. Under anesthesia, NiTi springs were installed in the first left maxillary molar with 50gf allowing the OTM, except for the negative control group (N) for mesial movement of the left first maxillary teeth. The animals were sacrificed and maxillae were removed for macroscopic and histopathological analyzes, scanning electron microscopy, computerized microtomography and confocal microscopy. Treatment with ZA decreased the OTM and the number of osteoclasts and loss of alveolar bone when compared to the naive and saline groups. Reduction of radicular resorption, increased necrotic areas and reduced vascularization in the periodontal ligament were observed in the ZA groups. ZA interferes with OTM and presents anti-resorptive effects on bone and dental tissues associated with a decreased vascularization, without osteonecrosis.
Collapse
Affiliation(s)
- Fátima Regina Nunes de Sousa
- Post-Graduation Program in Morfofuncional Sciences (PCMF), Departamento de Morfologia, Faculdade de Medicina, Medical School, Universidade Federal do Ceará (UFC), Rua Delmiro de Farias, s/n, Rodolfo Teófilo, Fortaleza, CE, 60441-750, Brazil
- Department of Morphology, Medical School, Federal University of Piauí (UFPI), Rua Cícero Duarte, 905, Picos, PI, 64607-670, Brazil
| | - Vanessa Costa de Sousa Ferreira
- Post-Graduation Program in Morfofuncional Sciences (PCMF), Departamento de Morfologia, Faculdade de Medicina, Medical School, Universidade Federal do Ceará (UFC), Rua Delmiro de Farias, s/n, Rodolfo Teófilo, Fortaleza, CE, 60441-750, Brazil
| | - Conceição da Silva Martins
- Post-Graduation Program in Morfofuncional Sciences (PCMF), Departamento de Morfologia, Faculdade de Medicina, Medical School, Universidade Federal do Ceará (UFC), Rua Delmiro de Farias, s/n, Rodolfo Teófilo, Fortaleza, CE, 60441-750, Brazil
| | - Hugo Victor Dantas
- Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraíba (UFPB), Campus I, Cidade Universitária, João Pessoa, PB, 58059-900, Brazil
| | - Frederico Barbosa de Sousa
- Graduate Program in Dentistry, Health Sciences Center, Federal University of Paraíba (UFPB), Campus I, Cidade Universitária, João Pessoa, PB, 58059-900, Brazil
| | - Virgínia Cláudia Carneiro Girão-Carmona
- Post-Graduation Program in Morfofuncional Sciences (PCMF), Departamento de Morfologia, Faculdade de Medicina, Medical School, Universidade Federal do Ceará (UFC), Rua Delmiro de Farias, s/n, Rodolfo Teófilo, Fortaleza, CE, 60441-750, Brazil
| | - Paula Goes
- Post-Graduation Program in Morfofuncional Sciences (PCMF), Departamento de Morfologia, Faculdade de Medicina, Medical School, Universidade Federal do Ceará (UFC), Rua Delmiro de Farias, s/n, Rodolfo Teófilo, Fortaleza, CE, 60441-750, Brazil
- Department of Pathology and Legal Medicine, Medical School, Federal University of Ceará (UFC), Rua Monsenhor Furtado, s/n, Fortaleza, CE, 60441-750, Brazil
| | - Gerly Anne de Castro Brito
- Post-Graduation Program in Morfofuncional Sciences (PCMF), Departamento de Morfologia, Faculdade de Medicina, Medical School, Universidade Federal do Ceará (UFC), Rua Delmiro de Farias, s/n, Rodolfo Teófilo, Fortaleza, CE, 60441-750, Brazil
| | - Renata Ferreira de Carvalho Leitão
- Post-Graduation Program in Morfofuncional Sciences (PCMF), Departamento de Morfologia, Faculdade de Medicina, Medical School, Universidade Federal do Ceará (UFC), Rua Delmiro de Farias, s/n, Rodolfo Teófilo, Fortaleza, CE, 60441-750, Brazil.
| |
Collapse
|
36
|
Li T, Wang H, Lv C, Huang L, Zhang C, Zhou C, Zou S, Duan P. Intermittent parathyroid hormone promotes cementogenesis via ephrinB2-EPHB4 forward signaling. J Cell Physiol 2021; 236:2070-2086. [PMID: 32740946 DOI: 10.1002/jcp.29994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022]
Abstract
Intermittent parathyroid hormone (PTH) promotes periodontal repair, but the underlying mechanisms remained unclear. Recent studies found that ephrinB2-EPHB4 forward signaling mediated the anabolic effect of PTH in bone homeostasis. Considering the similarities between cementum and bone, we aimed to examine the therapeutic effect of PTH on resorbed roots and explore the role of forward signaling in this process. In vivo experiments showed that intermittent PTH significantly accelerated the regeneration of root resorption and promoted expression of EPHB4 and ephrinB2. When the signaling was blocked, the resorption repair was also delayed. In vitro studies showed that intermittent PTH promoted the expression of EPHB4 and ephrinB2 in OCCM-30 cells. The effects of PTH on the mineralization capacity of OCCM-30 cells was mediated through the ephrinB2-EPHB4 forward signaling. These results support the premise that the anabolic effects of intermittent PTH on the regeneration of root resorption is via the ephrinB2-EPHB4 forward signaling pathway.
Collapse
Affiliation(s)
- Tiancheng Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Han Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunxiao Lv
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peipei Duan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Wang YN, Liu S, Jia T, Feng Y, Zhang W, Xu X, Zhang D. T Cell Protein Tyrosine Phosphatase in Osteoimmunology. Front Immunol 2021; 12:620333. [PMID: 33692794 PMCID: PMC7938726 DOI: 10.3389/fimmu.2021.620333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoimmunology highlights the two-way communication between bone and immune cells. T cell protein tyrosine phosphatase (TCPTP), also known as protein-tyrosine phosphatase non-receptor 2 (PTPN2), is an intracellular protein tyrosine phosphatase (PTP) essential in regulating immune responses and bone metabolism via dephosphorylating target proteins. Tcptp knockout in systemic or specific immune cells can seriously damage the immune function, resulting in bone metabolism disorders. This review provided fresh insights into the potential role of TCPTP in osteoimmunology. Overall, the regulation of osteoimmunology by TCPTP is extremely complicated. TCPTP negatively regulates macrophages activation and inflammatory factors secretion to inhibit bone resorption. TCPTP regulates T lymphocytes differentiation and T lymphocytes-related cytokines signaling to maintain bone homeostasis. TCPTP is also expected to regulate bone metabolism by targeting B lymphocytes under certain time and conditions. This review offers a comprehensive update on the roles of TCPTP in osteoimmunology, which can be a promising target for the prevention and treatment of inflammatory bone loss.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shiyue Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tingting Jia
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yao Feng
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Wenjing Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
38
|
Wu M, Liu J. Inhibitory effect of exogenous IL‐4 on orthodontic relapse in rats. Oral Dis 2021; 28:469-479. [DOI: 10.1111/odi.13763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/26/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Minting Wu
- Department of Prosthodontics School of Stomatology Jinan University Guangzhou510632China
- Center of Stomatology, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University) Foshan 528000 China
| | - Jing Liu
- Department of Prosthodontics School of Stomatology Jinan University Guangzhou510632China
| |
Collapse
|
39
|
Li T, Wang H, Liu R, Wang X, Huang L, Wu Z, Yin X, Zou S, Duan P. The role of EphB4/ephrinB2 signaling in root repair after orthodontically-induced root resorption. Am J Orthod Dentofacial Orthop 2021; 159:e217-e232. [PMID: 33487501 DOI: 10.1016/j.ajodo.2020.07.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022]
Abstract
INTRODUCTION This study aimed to investigate the effect of EphB4/ephrinB2 signaling on orthodontically-induced root resorption repair and the possible molecular mechanism behind it. METHODS Seventy-two 6-week-old male Wistar rats were randomly divided into 3 groups: blank control group, physiological regeneration group (PHY), and EphB4 inhibitor local injection group (INH). A root repair model was built on experimental rats of the PHY and INH groups. The animals in the INH groups received a daily periodontal local injection of EphB4 inhibitor NVP-BHG712, whereas the blank control group and PHY groups received only the vehicle. RESULTS Histologic staining and microcomputed tomography analysis showed that root regeneration was inhibited in the INH group compared with the PHY group with a greater number of osteoclasts. Immunohistochemical staining showed active EphB4/ephrinB2 signaling activities during root regeneration. The cementogenesis-related factors cementum attachment protein, alkaline phosphatase, osteopontin, and runt-related transcription factor 2, and osteoclastic-related factors RANKL and osteoprotegerin were affected by regulated EphB4/ephrinB2 signaling. CONCLUSIONS These findings demonstrated that the EphB4/ephrinB2 signaling might be a promising therapeutic target for novel therapeutic approaches to reduce orthodontically-induced root resorption through enhancement of cementogenesis.
Collapse
Affiliation(s)
- Tiancheng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Han Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruojing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Wang
- Oral Diagnosis and Treatment Center, Aviation General Hospital, China Medical University, Beijing, China
| | - Li Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zuping Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peipei Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
40
|
Karabel MA, Doğru M, Doğru A, Karadede Mİ, Tuncer MC. Evaluation of the effects of diode laser application on experimental orthodontic tooth movements in rats. Histopathological analysis. Acta Cir Bras 2021; 35:e351204. [PMID: 33503217 PMCID: PMC7819686 DOI: 10.1590/acb351204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022] Open
Abstract
Purpose: To evaluate the effect of diode laser use on experimental orthodontic tooth movements. Methods: Thirty Rattus norvegicus albinus Wistar were divided into three equal groups (n = 10), two experimentals and one control. Applying 20 g orthodontic force were attached to the maxillary incisors of the rats in all groups. Low dose laser was applied to the surrounding tissues of the maxillary incisors of the rats in the experimental groups. Two exposure times for laser irradiation were used for seven days: t = 12 min (energy dose = 72 J) and t = 9 min (energy dose = 54 J) by a 0.1 W DEKA brand diode laser with wavelength of 980 nm. Results: Osteoclastic activation increased in the 72 J group when compared to control group and decreased in comparison to the 54 J group. Osteoblastic activation was decreased in the 72 J group when compared to the control group and increased in comparison to the 54 J group. Conclusions: Applying 54 J laser energy has been found effective to accelerate the orthodontic tooth movement.
Collapse
|
41
|
Ye Y, Fang L, Li J, Wu H, Tan X, Luo H, Li X, Huang L. Chemerin/ChemR23 regulates cementoblast function and tooth resorption in mice via inflammatory factors. J Periodontol 2020; 92:1470-1482. [PMID: 33289084 DOI: 10.1002/jper.20-0675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/14/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Periodontitis and orthodontic treatment can lead to inflammatory root resorption (IRR) through an unclear mechanism. Chemerin, a novel chemoattractant protein, is closely associated with inflammation, affects osteoblast and osteoclast differentiation, and may play a role in IRR. We aimed to explore possible roles of the chemerin/ChemR23 interaction in cementoblast function and IRR and reveal a new IRR therapeutic target. METHODS Cementoblast function-related gene and protein expression in the immortalized murine cementoblast cell line OCCM-30 after treatment with chemerin and siChemR23 was examined by qRT-PCR and Western blotting.The roles of the MAPK and PI3K-Akt signaling pathways were studied using specific inhibitors. Cementoblast cytokine production under different treatment conditions was measured by ELISA and qRT-PCR. Additionally, we modeled IRR in wild-type and chemerin-overexpressing mice and injected transgenic mice with anti-ChemR23 antibody to block ChemR23. We then calculated the root resorption volume and examined periodontal tissue cathepsin K, Runx2, TNF-α, and IL-6 expression. RESULT Chemerin suppressed cementoblast differentiation and mineralization and exerted a proinflammatory effect on cementoblasts. These effects were partially reversed by siChemR23 and reversed to different extents by p38, Erk1/2 and PI3K-Akt pathway inhibition, suggesting p38, Erk1/2 and PI3K-Akt pathways as signaling pathways downstream of chemerin/ChemR23. In vivo, chemerin overexpression worsened IRR. Moreover, chemerin expression was positively correlated with TNF-α, IL-6, and cathepsin K expression and negatively correlated with Runx2 expression. ChemR23 downregulation reversed these effects. CONCLUSION Chemerin/ChemR23 induced TNF-α and IL-6 expression dependent on Erk1/2, p38 MAPK and PI3K-Akt signaling pathway activation, thereby regulating cementoblast function and affecting IRR. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yusi Ye
- College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
| | - Lingli Fang
- College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
| | - Jun Li
- Institute of Life Sciences, Chongqing Medical University
| | - Hongyan Wu
- College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
| | - Xi Tan
- College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
| | - Hong Luo
- College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University
| | - Lan Huang
- College of Stomatology, Chongqing Medical University.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
| |
Collapse
|
42
|
GWAS of Post-Orthodontic Aggressive External Apical Root Resorption Identified Multiple Putative Loci at X-Y Chromosomes. J Pers Med 2020; 10:jpm10040169. [PMID: 33066413 PMCID: PMC7712155 DOI: 10.3390/jpm10040169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Personalized dental medicine requires from precise and customized genomic diagnostic. To conduct an association analysis over multiple putative loci and genes located at chromosomes 2, 4, 8, 12, 18, X, and Y, potentially implicated in an extreme type of external apical root resorption secondary to orthodontic forces (aEARR). A genome-wide association study of aEARR was conducted with 480 patients [ratio~1:3 case/control]. Genomic DNA was extracted and analyzed using the high-throughput Axiom platform with the GeneTitan® MC Instrument. Up to 14,377 single nucleotide polymorphisms (SNPs) were selected at candidate regions and clinical/diagnostic data were recorded. A descriptive analysis of the data along with a backward conditional binary logistic regression was used to calculate odds ratios, with 95% confidence intervals [p < 0.05]. To select the best SNP candidates, a logistic regression model was fitted assuming a log-additive genetic model using R software [p < 0.0001]. In this sample the top lead genetic variants associated with aEARR were two novel putative genes located in the X chromosome, specifically, STAG 2 gene, rs151184635 and RP1-30E17.2 gene, rs55839915. These variants were found to be associated with an increased risk of aEARR, particularly restricted to men [OR: 6.09; 95%CI: 2.6–14.23 and OR: 6.86; 95%CI: 2.65–17.81, respectively]. Marginal associations were found at previously studied variants such as SSP1: rs11730582 [OR: 0.54; 95%CI: 0.34–0.86; p = 0.008], P2RX7: rs1718119 [OR: 0.6; 95%CI: 0.36–1.01; p = 0.047], and TNFRSF11A: rs8086340 [OR: 0.6; 95%CI: 0.38–0.95; p = 0.024]), found solely in females. Multiple putative genetic variants located at chromosomes X and Y are potentially implicated in an extreme phenotype of aEARR. A gender-linked association was noted.
Collapse
|
43
|
Li J, Yu T, Yan H, Qiao Y, Wang L, Zhang T, Li Q, Zhou Y, Liu D. T cells participate in bone remodeling during the rapid palatal expansion. FASEB J 2020; 34:15327-15337. [PMID: 32951236 DOI: 10.1096/fj.202001078r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Jing Li
- Department of Orthodontics Peking University School and Hospital of Stomatology Beijing China
- National Clinical Research Center for Oral DiseasesNational Engineering Laboratory for Digital and Material Technology of Stomatology Beijing China
- Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Ting‐Ting Yu
- Department of Orthodontics Peking University School and Hospital of Stomatology Beijing China
- National Clinical Research Center for Oral DiseasesNational Engineering Laboratory for Digital and Material Technology of Stomatology Beijing China
- Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Hui‐Chun Yan
- Department of Orthodontics Peking University School and Hospital of Stomatology Beijing China
- National Clinical Research Center for Oral DiseasesNational Engineering Laboratory for Digital and Material Technology of Stomatology Beijing China
- Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Yi‐Qiang Qiao
- Department of Stomatology The First Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Lin‐Chuan Wang
- Eastman Institute for Oral HealthUniversity of Rochester Rochester NY USA
| | - Ting Zhang
- Department of Orthodontics Peking University School and Hospital of Stomatology Beijing China
- National Clinical Research Center for Oral DiseasesNational Engineering Laboratory for Digital and Material Technology of Stomatology Beijing China
- Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Qian Li
- Department of Orthodontics Peking University School and Hospital of Stomatology Beijing China
- National Clinical Research Center for Oral DiseasesNational Engineering Laboratory for Digital and Material Technology of Stomatology Beijing China
- Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Yan‐Heng Zhou
- Department of Orthodontics Peking University School and Hospital of Stomatology Beijing China
- National Clinical Research Center for Oral DiseasesNational Engineering Laboratory for Digital and Material Technology of Stomatology Beijing China
- Beijing Key Laboratory of Digital Stomatology Beijing China
| | - Da‐Wei Liu
- Department of Orthodontics Peking University School and Hospital of Stomatology Beijing China
- National Clinical Research Center for Oral DiseasesNational Engineering Laboratory for Digital and Material Technology of Stomatology Beijing China
- Beijing Key Laboratory of Digital Stomatology Beijing China
| |
Collapse
|
44
|
Effect of a DPP-4 Inhibitor on Orthodontic Tooth Movement and Associated Root Resorption. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7189084. [PMID: 32923485 PMCID: PMC7453249 DOI: 10.1155/2020/7189084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Objectives Dipeptidyl peptidase-4 (DPP-4) inhibitors are used as a treatment for type 2 diabetes mellitus and have also recently been applied to enhance bone quality and density, and increase the expression of bone markers. This study aimed to investigate the effect of a DPP-4 inhibitor on orthodontic tooth movement (OTM) and related root resorption in a mouse model. Materials and Methods Mice were randomly divided into three groups: those undergoing OTM with the addition of a DPP-4 inhibitor (30 μg), those undergoing OTM and receiving phosphate-buffered saline (PBS), and those without force loading (control group). OTM was achieved by means of a nickel-titanium closed coil spring that moved the first molar in a mesial direction for 12 days. The distance of OTM was measured using silicone impression. Maxillae were removed for histological analysis or real-time PCR analysis. Results The distance of OTM and the number of osteoclasts were significantly decreased after administration of the DPP-4 inhibitor, which also significantly suppressed the number of odontoclasts and root resorption after OTM. Furthermore, the mRNA expression of tumour necrosis factor-α (TNF-α) and the receptor activator of nuclear factor kappa-B ligand (RANKL) were decreased in DPP-4 inhibitor-treated mice compared with those receiving PBS and control animals. Conclusion The DPP-4 inhibitor inhibited tooth movement and associated root resorption by blocking the formation of osteoclasts and odontoclasts, respectively. It also appeared to inhibit osteoclastogenesis and odontoclastogenesis by suppressing the expression of TNF-α and/or RANKL.
Collapse
|
45
|
Amaro ERS, Ortiz FR, Dorneles LS, Santos MDS, Barrioni BR, Miranda RM, Garlet GP, Teixeira MM, Szawka RE, Silva TA, Macari S. Estrogen protects dental roots from orthodontic-induced inflammatory resorption. Arch Oral Biol 2020; 117:104820. [PMID: 32592932 DOI: 10.1016/j.archoralbio.2020.104820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/06/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Root resorption is a side effect of orthodontic tooth movement (OTM). Despite the recognized role of estrogen on bone, there is little information about their effects on orthodontic-induced inflammatory root resorption (OIIRR). We aimed to investigate if estrogen deficiency affects OIIRR in two mice strains. METHODS Female Balb/C (Balb) and C57BL6/J (C57) mice were ovariectomized (OVX) and replaced with estradiol (E2). Tooth samples subjected or not to OTM were collected and analyzed by microCT, histomorphometry and qPCR. RESULTS OVX resulted in decreased root volume (RV/TV) and root mineral density (RMD) in Balb mice without OTM. In contrast, OVX did not modify physiological root structure of C57 mice. OTM and OIIRR were increased after OVX in both mice strains after 30 days. E2 replacement reversed this phenotype in Balb, but not in C57 mice. Due to the significant increase of OIIRR in OVX Balb mice, the expression of key molecules was investigated in periodontium. Accordingly, these mice showed increased expression of receptor activator of nuclear factor kappa-B ligand (RANKL), tumor necrosis factor alpha, matrix metalloproteinases-2 and -13 and decreased osteoprotegerin (OPG) and interleukin-10 expression after OTM. E2 replacement reversed the changes of these markers. CONCLUSION The lack of estrogen in Balb mice without OTM triggered loss of root structure which was positively correlated to RANKL/OPG ratio. Regardless of mouse strain, the absence of estrogen following OTM induced OIIRR. Mechanisms involve the imbalance of RANKL/OPG system, inflammatory and osteoclastic makers.
Collapse
Affiliation(s)
- Eduarda R S Amaro
- Department of Restorative Destistry, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ruffo Ortiz
- Department of Pediatric Dentistry, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leandro S Dorneles
- Department of Structural Engineering, Faculty of Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana de Souza Santos
- Department of Restorative Destistry, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Rocha Barrioni
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Roberta Magalhães Miranda
- Department of Oral Pathology and Surgery, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo P Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, Bauru, São Paulo, Brazil
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília A Silva
- Department of Oral Pathology and Surgery, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Soraia Macari
- Department of Restorative Destistry, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
46
|
Li T, Zhou Z, Wang H, Lv C, Zhang C, Tao G, Li X, Zou S, Duan P. Effects of estrogen on root repair after orthodontically induced root resorption in ovariectomized rats. Am J Orthod Dentofacial Orthop 2020; 158:247-263.e1. [PMID: 32507529 DOI: 10.1016/j.ajodo.2019.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 10/24/2022]
Abstract
INTRODUCTION This study aimed to investigate the effects of estrogen on root repair after orthodontically induced root resorption. METHODS Seventy-two 6-week-old female Wistar rats were randomly divided into 3 groups: ovariectomy only (OVX), ovariectomy plus estradiol injection (OVX + E2), and sham operation (control). E2 was administrated to all the experimental animals after the establishment of the root repair model. One-way analysis of variance with the Tukey post-hoc test was used to analyze the experimental results. RESULTS Micro-computed tomography and hematoxylin and eosin staining showed that the total volumes of resorption lacunae were significantly smaller in the control and OVX + E2 groups than those in the OVX group. Alkaline phosphatase and tartrate-resistant acid phosphatase stainings suggested that the cementoblastic activities and the amount of new cementum formation were inhibited while the activities of osteoclasts were obvious in the OVX group. The immunohistochemistry stainings revealed that the osteoprotegerin to receptor activator of nuclear factor-кB ligand ratio and the phosphorylated extracellular signal-regulated kinases to extracellular signal-regulated kinases ratio of the control and OVX + E2 groups were significantly greater than those of the OVX group. CONCLUSIONS These findings demonstrated that estrogen administration might be a solution to reduce orthodontically induced root resorption through the activation of extracellular signal-regulated kinase-1/2 pathway and enhancement of cementogenesis.
Collapse
Affiliation(s)
- Tiancheng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeyuan Zhou
- Department of Orthodontics, West China Dental Hospital of Chongqing, Chongqing, China
| | - Han Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunxiao Lv
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guiyu Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Peipei Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School and Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
47
|
Liu L, Guo H, Song A, Huang J, Zhang Y, Jin S, Li S, Zhang L, Yang C, Yang P. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways. BMC Immunol 2020; 21:32. [PMID: 32503416 PMCID: PMC7275413 DOI: 10.1186/s12865-020-00355-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Macrophage M1 polarization plays a pivotal role in inflammatory diseases. Progranulin (PGRN) has potential anti-inflammation action, however, the effect of PGRN on macrophage M1 polarization has been poorly studied. Our study aimed to investigate the effect of PGRN on lipopolysaccharide (LPS)-induced macrophage M1 polarization and clarify the underlying mechanisms. METHODS RAW264.7 cells were polarized to M1 macrophage by LPS with or without recombinant PGRN (rPGRN) and tumor necrosis factor alpha antibody (anti-TNF-α). A cell counting kit-8 assay (CCK-8), flow cytometry, Quantitative Real-Time PCR assay (q-PCR), Western blot assay and enzyme-linked immunosorbent assay (ELISA) were used to determine the effect of different treatments on cell proliferation, expression of surface phenotype marker and expressions and secretion of inflammatory cytokines. The activation of NF-κB/mitogen-activated protein kinase (MAPK) pathways and the nuclear translocation of NF-κB p65 were detected by Western blot and immunofluorescence respectively. THP-1 and primary bone marrow-derived monocytes (BMDMs) were also used to demonstrate effect of PGRN on expressions and secretion of inflammatory cytokines induced by LPS. RESULTS In RAW264.7 cells, rPGRN at concentrations below 80 ng/ml significantly promoted cell proliferation in dose dependent fashion. rPGRN significantly inhibited LPS-induced change of phenotype (CD86/CD206 ratio) and function (tumor necrosis factor (TNF-α) and inducible nitric oxide synthase (iNOS) expressions). LPS-stimulated secretion of TNF-α and activated phosphorylation of IKKα/β, IкBα, p65, JNK and p38 and the nucleus translocation of NF-кB p65 were also significantly downregulated by rPGRN. In addition, recombinant TNF-α (rTNF-α) significantly boosted TNF-α and iNOS expression vs the control group. Moreover, anti-TNF-α significantly inhibited LPS-induced TNF-α and iNOS expression. In THP-1 and BMDM cells, reversing effect of rPGRN on LPS-enhanced expressions of TNF-α and iNOS and secretion of TNF-α was further demonstrated. CONCLUSIONS PGRN down-regulates LPS-induced macrophage M1 polarization in phenotype and function via NF-κB/MAPK signaling pathways.
Collapse
Affiliation(s)
- Lianlian Liu
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Hongmei Guo
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Aimei Song
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Jiahui Huang
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yu Zhang
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Shanshan Jin
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Shutong Li
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Liguo Zhang
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital and Institute of Stomatology, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Pishan Yang
- Department of Periodontology, School of Stomatology, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong, People's Republic of China. .,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China. .,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China.
| |
Collapse
|
48
|
Zhang J, Liu X, Wan C, Liu Y, Wang Y, Meng C, Zhang Y, Jiang C. NLRP3 inflammasome mediates M1 macrophage polarization and IL‐1β production in inflammatory root resorption. J Clin Periodontol 2020; 47:451-460. [PMID: 31976565 DOI: 10.1111/jcpe.13258] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/08/2020] [Accepted: 01/18/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Jie Zhang
- Department of Orthodontics The Affiliated Hospital of Qingdao University Qingdao China
- School of Stomatology Qingdao University Qingdao China
| | - Xinqiang Liu
- Department of Orthodontics The Affiliated Hospital of Qingdao University Qingdao China
- School of Stomatology Qingdao University Qingdao China
| | - Chunyan Wan
- School of Stomatology Qingdao University Qingdao China
- Department of Endodontics The Affiliated Hospital of Qingdao University Qingdao China
| | - Yang Liu
- Department of Orthodontics The Affiliated Hospital of Qingdao University Qingdao China
- School of Stomatology Qingdao University Qingdao China
| | - Yaqi Wang
- Department of Orthodontics The Affiliated Hospital of Qingdao University Qingdao China
- School of Stomatology Qingdao University Qingdao China
| | - Chenda Meng
- School of Stomatology Qingdao University Qingdao China
| | - Yipeng Zhang
- School of Stomatology Qingdao University Qingdao China
| | - Chunmiao Jiang
- Department of Orthodontics The Affiliated Hospital of Qingdao University Qingdao China
- School of Stomatology Qingdao University Qingdao China
| |
Collapse
|
49
|
He D, Liu F, Cui S, Jiang N, Yu H, Zhou Y, Liu Y, Kou X. Mechanical load-induced H 2S production by periodontal ligament stem cells activates M1 macrophages to promote bone remodeling and tooth movement via STAT1. Stem Cell Res Ther 2020; 11:112. [PMID: 32169104 PMCID: PMC7071778 DOI: 10.1186/s13287-020-01607-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/02/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Tooth movement is a unique bone remodeling process induced by mechanical stimulation. Macrophages are important in mediating inflammatory processes during mechanical load-induced tooth movement. However, how macrophages are regulated under mechanical stimulation remains unclear. Mesenchymal stem cells (MSCs) can modulate macrophage polarization during bone remodeling. Hydrogen sulfide (H2S) can be produced by MSCs and have been linked to bone homeostasis. Therefore, this study aimed to investigate whether H2S contributed to periodontal ligament stem cell (PDLSC)-regulated macrophage polarization and bone remodeling under mechanical stimulation. Methods An experimental mechanical load-induced tooth movement animal model was established. Changes in cystathionine-β-synthase (CBS), markers of M1/M2 macrophages, tooth movement distance, and the number of osteoclasts were examined. The conditioned medium of PDLSCs with or without mechanical loading was utilized to treat THP-1 derived macrophages for 24 h to further investigate the effect of PDLSCs on macrophage polarization. Different treatments with H2S donor, CBS inhibitor, or the inhibitor of STAT1 were used to investigate the related mechanism. Markers of M1/M2 polarization and STAT1 pathway expression were evaluated in macrophages. Results Mechanical load promoted tooth movement and increased the number of M1-like macrophages, M1-associated pro-inflammatory cytokines, and the expression of CBS on the compression side of the periodontal ligament. The injection of CBS inhibitor or H2S donor could further repress or increase the number of M1-like macrophages, tartrate-resistant acid phosphatase-positive osteoclasts and the distance of tooth movement. Mechanistically, load-induced PDLSCs enhanced H2S production, which increased the expression of M1-associated cytokines in macrophages. These effects could be blocked by the administration of CBS inhibitor. Moreover, load-induced H2S steered M1 macrophage polarization via the STAT1 signaling pathway. Conclusions These data suggest a novel mechanism indicating that mechanical load-stimulated PDLSCs produce H2S to polarize macrophages toward the M1 phenotype via the STAT1 signaling pathway, which contributes to bone remodeling and tooth movement process. These results provide new insights into the role of PDLSCs in regulating macrophage polarization and mediating bone remodeling under mechanical stimulation, and indicate that appropriate H2S supplementation may accelerate tooth movement. Electronic supplementary material Supplementary information accompanies this paper at 10.1186/s13287-020-01607-9.
Collapse
Affiliation(s)
- Danqing He
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Fuliang Liu
- Department of Orthodontics, ShenZhen Clinic, Sunny Dental Group, #2388 Houhai avenue, Nanshan District, Shenzhen, 518100, China
| | - Shengjie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Nan Jiang
- Central laboratory, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Huajie Yu
- Fourth Division, Peking University School and Hospital of Stomatology, No. 41 Dongsuhuan Road, Chaoyang District, Beijing, 100025, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Yan Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, 74 Zhongshan 2Rd, Guangzhou, 510080, China.
| |
Collapse
|
50
|
An S. Nitric Oxide in Dental Pulp Tissue: From Molecular Understanding to Clinical Application in Regenerative Endodontic Procedures. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:327-347. [PMID: 32131706 DOI: 10.1089/ten.teb.2019.0316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO), which is synthesized by the enzyme NO synthase (NOS), is a versatile endogenous molecule with multiple biological effects on many tissues and organs. In dental pulp tissue, NO has been found to play multifaceted roles in regulating physiological activities, inflammation processes, and tissue repair events, such as cell proliferation, neuronal degeneration, angiogenesis, and odontoblastic differentiation. However, there is a deficiency of detailed discussion on the NO-mediated interactions between inflammation and reparative/regenerative responses in wounded dental pulp tissue, which is a central determinant of ultimate clinical outcomes. Thus, the purpose of this review is to outline the current molecular understanding on the roles of Janus-faced molecule NO in dental pulp physiology, inflammation, and reparative activities. Based on this knowledge, advanced physicochemical techniques designed to manipulate the therapeutic potential of NOS and NO production in endodontic regeneration procedures are further discussed. Impact statement The interaction between inflammation and reparative/regenerative responses is very important for regenerative endodontic procedures, which are biologically based approaches intended to replace damaged tissues. Inside dental pulp tissue, endogenous nitric oxide (NO) is generated mainly by immunocompetent cells and dental pulp cells and mediates not only inflammatory/immune activities but also signaling cascades that regulate tissue repair and reconstruction, indicating its involvement in both tissue destruction and regeneration. Thus, it is feasible that NO acts as one of the indicators and modulators in dental pulp repair or regeneration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|