1
|
Winter J, Jepsen S. Role of innate host defense proteins in oral cancerogenesis. Periodontol 2000 2024; 96:203-220. [PMID: 38265172 PMCID: PMC11579821 DOI: 10.1111/prd.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
It is nowadays well accepted that chronic inflammation plays a pivotal role in tumor initiation and progression. Under this aspect, the oral cavity is predestined to examine this connection because periodontitis is a highly prevalent chronic inflammatory disease and oral squamous cell carcinomas are the most common oral malignant lesions. In this review, we describe how particular molecules of the human innate host defense system may participate as molecular links between these two important chronic noncommunicable diseases (NCDs). Specific focus is directed toward antimicrobial polypeptides, such as the cathelicidin LL-37 and human defensins, as well as S100 proteins and alarmins. We report in which way these peptides and proteins are able to initiate and support oral tumorigenesis, showing direct mechanisms by binding to growth-stimulating cell surface receptors and/or indirect effects, for example, inducing tumor-promoting genes. Finally, bacterial challenges with impact on oral cancerogenesis are briefly addressed.
Collapse
Affiliation(s)
- Jochen Winter
- Faculty of Medicine, Department of Periodontology, Operative and Preventive Dentistry, University HospitalUniversity of BonnBonnGermany
| | - Søren Jepsen
- Faculty of Medicine, Department of Periodontology, Operative and Preventive Dentistry, University HospitalUniversity of BonnBonnGermany
| |
Collapse
|
2
|
Zhang X, Niu M, Li T, Wu Y, Gao J, Yi M, Wu K. S100A8/A9 as a risk factor for breast cancer negatively regulated by DACH1. Biomark Res 2023; 11:106. [PMID: 38093319 PMCID: PMC10720252 DOI: 10.1186/s40364-023-00548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND S100A8 and S100A9 are members of Ca2+-binding EF-hand superfamily, mainly expressed by macrophages and neutrophils. Limited by the poor stability of homodimers, they commonly exist as heterodimers. Beyond acting as antibacterial cytokines, S100A8/A9 is also associated with metabolic and autoimmune diseases such as obesity, diabetes, and rheumatoid arthritis. While the involvement of S100A8/A9 in breast cancer development has been documented, its prognostic significance and the precise regulatory mechanisms remain unclear. METHODS S100A8/A9 protein in breast cancer samples was evaluated by immunohistochemistry staining with tumor tissue microarrays. The serum S100A8 concentration in patients was measured by enzyme-linked immunosorbent assay (ELISA). The S100A8 secreted by breast cancer cells was detected by ELISA as well. Pooled analyses were conducted to explore the relationships between S100A8/A9 mRNA level and clinicopathological features of breast cancer patients. Besides, the effects of S100A8/A9 and DACH1 on patient outcomes were analyzed by tissue assays. Finally, xenograft tumor assays were adopted to validate the effects of DACH1 on tumor growth and S100A8/A9 expression. RESULTS The level of S100A8/A9 was higher in breast cancer, relative to normal tissue. Increased S100A8/A9 was related to poor differentiation grade, loss of hormone receptors, and Her2 positive. Moreover, elevated S100A8/A9 predicted a worse prognosis for breast cancer patients. Meanwhile, serum S100A8 concentration was upregulated in Grade 3, basal-like, and Her2-overexpressed subtypes. Additionally, the results of public databases showed S100A8/A9 mRNA level was negatively correlated to DACH1. Stable overexpressing DACH1 in breast cancer cells significantly decreased the generation of S100A8. The survival analysis demonstrated that patients with high S100A8/A9 and low DACH1 achieved the shortest overall survival. The xenograft models indicated that DACH1 expression significantly retarded tumor growth and downregulated S100A8/A9 protein abundance. CONCLUSION S100A8/A9 is remarkedly increased in basal-like and Her2-overexpressed subtypes, predicting poor prognosis of breast cancer patients. Tumor suppressor DACH1 inhibits S100A8/A9 expression. The combination of S100A8/A9 and DACH1 predicted the overall survival of breast cancer patients more preciously.
Collapse
Affiliation(s)
- Xiaojun Zhang
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi HospitalThird Hospital of Shanxi Medical University, Taiyuan, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinnan Gao
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi HospitalThird Hospital of Shanxi Medical University, Taiyuan, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Kongming Wu
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi HospitalThird Hospital of Shanxi Medical University, Taiyuan, China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Singh P, Ali SA, Kumar S, Mohanty AK. CRISPR-Cas9 based knockout of S100A8 in mammary epithelial cells enhances cell proliferation and triggers oncogenic transformation via the PI3K-Akt pathway: Insights from a deep proteomic analysis. J Proteomics 2023; 288:104981. [PMID: 37544501 DOI: 10.1016/j.jprot.2023.104981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
S100A8 is a calcium-binding protein with multiple functions, including being a chemoattractant for phagocytes and playing a key role in the inflammatory response. Its expression has been shown to influence epithelial-mesenchymal transition (EMT) and metastasis in colorectal cancer. However, the role of S100A8 in cell proliferation and differentiation remains unknown. In this study, we used the CRISPR-Cas9 system to knock out S100A8 in healthy mammary epithelial cells and investigated the resulting changes in proteome profiling and signaling pathways. Our results showed that S100A8 knockout led to an increase in cell proliferation and migration, reduced cell-cell adhesion, and increased apoptosis compared to wildtype cells. Proteomics data indicated that S100A8 significantly affects cell cycle progression, cell proliferation, and cell survival through the PI3K-Akt pathway. Furthermore, our findings suggest that S100A8 function is associated with Pten expression, a negative regulator of the PI3K-Akt pathway. These results indicate that S100A8 dysregulation in healthy cells can lead to altered cellular physiology and higher proliferation, similar to cancerous growth. Therefore, maintaining S100A8 expression is critical for preserving healthy cell physiology. This study provides novel insights into the role of S100A8 in cell proliferation and differentiation and its potential relevance to cancer biology. SIGNIFICANCE: The study suggests that maintaining S100A8 expression is critical for preserving healthy cell physiology, and dysregulation of S100A8 in healthy cells can lead to altered cellular physiology and higher proliferation, similar to cancerous growth. Therefore, targeting the PI3K-Akt pathway or regulating Pten expression, a negative regulator of the PI3K-Akt pathway, may be potential strategies for cancer treatment by controlling S100A8 dysregulation. Additionally, S100A8 and S100A9 have been shown to promote metastasis of breast carcinoma by forming a metastatic milieu. However, the differential expression of S100A8 in tumors and its dual effects of antitumor and protumor make the relationship between S100A8 and tumors complicated. Currently, most research focuses on the function of S100A8 as a secretory protein in the microenvironment of tumors, and its function inside healthy cells without forming dimers remains unclear. Furthermore, the study provides insight into the role of S100A8 in cell proliferation and differentiation, which may have implications for other diseases beyond cancer. The functional role of S100A8 in normal mammary epithelial cells remains completely uncertain. Therefore, the objective of this study is to investigate the function of S100A8 on proliferation in mammary epithelial cells after its deletion and to elucidate the underlying proteins involved in downstream signaling. Our findings indicate that the deletion of S100A8 leads to excessive proliferation in normal mammary epithelial cells, reduces apoptosis, and affects cell-cell adhesion molecules required for cellular communication, resulting in a cancer-like phenotype.
Collapse
Affiliation(s)
- Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India; Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Sudarshan Kumar
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashok Kumar Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India; Indian Veterinary Research Institute, Mukteshwar, 263138 Nainital, Uttarakhand, India.
| |
Collapse
|
4
|
Surbek M, Sukseree S, Eckhart L. Iron Metabolism of the Skin: Recycling versus Release. Metabolites 2023; 13:1005. [PMID: 37755285 PMCID: PMC10534741 DOI: 10.3390/metabo13091005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
The skin protects the body against exogenous stressors. Its function is partially achieved by the permanent regeneration of the epidermis, which requires high metabolic activity and the shedding of superficial cells, leading to the loss of metabolites. Iron is involved in a plethora of important epidermal processes, including cellular respiration and detoxification of xenobiotics. Likewise, microorganisms on the surface of the skin depend on iron, which is supplied by the turnover of epithelial cells. Here, we review the metabolism of iron in the skin with a particular focus on the fate of iron in epidermal keratinocytes. The iron metabolism of the epidermis is controlled by genes that are differentially expressed in the inner and outer layers of the epidermis, establishing a system that supports the recycling of iron and counteracts the release of iron from the skin surface. Heme oxygenase-1 (HMOX1), ferroportin (SLC40A1) and hephaestin-like 1 (HEPHL1) are constitutively expressed in terminally differentiated keratinocytes and allow the recycling of iron from heme prior to the cornification of keratinocytes. We discuss the evidence for changes in the epidermal iron metabolism in diseases and explore promising topics of future studies of iron-dependent processes in the skin.
Collapse
Affiliation(s)
| | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (M.S.); (S.S.)
| |
Collapse
|
5
|
Hu Y, Han Y, He M, Zhang Y, Zou X. S100 proteins in head and neck squamous cell carcinoma (Review). Oncol Lett 2023; 26:362. [PMID: 37545618 PMCID: PMC10398633 DOI: 10.3892/ol.2023.13948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
The most common tumor affecting the head and neck is head and neck squamous cell carcinoma (HNSCC). The characteristics of HNSCC include a rapid onset, a lack of early diagnosis, drug resistance, relapse and systemic adverse effects, leading to inadequate prevention, diagnosis and treatment. Notably, previous research suggests that there is an association between S100 proteins and HNSCC. S100A8, S100A9 and S100A14 interfere with tumor cell proliferation by blocking the cell cycle. The present review discusses this association. S100A4 enhances cancer stem cell properties, and interacts with actin and tropomyosin to promote tumor cell migration. S100A1, S100A8, S100A9, S100A10, S100A14 and S100P are involved in the initiation and progression of HNSCC via Hippo, nuclear factor κB, phosphatidylinositol kinase/protein kinase B/mammalian target of rapamycin and other signaling pathways. In addition, certain long non-coding RNAs and microRNAs are involved in regulating the expression of S100 proteins in HNSCC. Reducing the expression of certain members of the S100 protein family may enhance the chemosensitivity of HNSCC. Collectively, it is suggested that S100 proteins may function as markers and targets for the prevention, diagnosis and treatment of HNSCC.
Collapse
Affiliation(s)
- Yihong Hu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
- School of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Yucheng Han
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
- School of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Minhui He
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
- School of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Yanqun Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xianqiong Zou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
- School of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| |
Collapse
|
6
|
Argyris PP, Saavedra F, Malz C, Stone IA, Wei Y, Boyle WS, Johnstone KF, Khammanivong A, Herzberg MC. Intracellular calprotectin (S100A8/A9) facilitates DNA damage responses and promotes apoptosis in head and neck squamous cell carcinoma. Oral Oncol 2023; 137:106304. [PMID: 36608459 PMCID: PMC9877195 DOI: 10.1016/j.oraloncology.2022.106304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
OBJECTIVES In head and neck squamous cell carcinoma (HNSCC), poor prognosis and low survival rates are associated with downregulated calprotectin. Calprotectin (S100A8/A9) inhibits cancer cell migration and invasion and facilitates G2/M cell cycle arrest. We investigated whether S100A8/A9 regulates DNA damage responses (DDR) and apoptosis in HNSCC after chemoradiation. MATERIALS AND METHODS Human HNSCC cases in TCGA were analyzed for relationships between S100A8/A9 and expression of apoptosis-related genes. Next, S100A8/A9-expressing and non-expressing carcinoma lines (two different lineages) were exposed to genotoxic agents and assessed for 53BP1 and γH2AX expression and percent of viable/dead cells. Finally, S100A8/A9-wild-type and S100A8/A9null C57BL/6j mice were treated with 4-NQO to induce oral dysplastic and carcinomatous lesions, which were compared for levels of 53BP1. RESULTS In S100A8/A9-high HNSCC tumors, apoptosis-related caspase family member genes were upregulated, whereas genes limiting apoptosis were significantly downregulated based on TCGA analyses. After X-irradiation or camptothecin treatment, S100A8/A9-expressing carcinoma cells (i.e., TR146 and KB-S100A8/A9) showed significantly higher 53BP1 and γH2AX expression, DNA fragmentation, proportions of dead cells, and greater sensitivity to cisplatin than wild-type KB or TR146-S100A8/A9-KD cells. Interestingly, KB-S100A8/A9Δ113-114 cells showed similar 53BP1 and γH2AX levels to S100A8/A9-negative KB and KB-EGFP cells. After 4-NQO treatment, 53BP1 expression in oral lesions was significantly greater in calprotectin+/+ than S100A8/A9null mice. CONCLUSIONS In HNSCC cells, intracellular calprotectin is strongly suggested to potentiate DDR and promote apoptosis in response to genotoxic agents. Hence, patients with S100A8/A9-high HNSCC may encounter more favorable outcomes because more tumor cells enter apoptosis with increased sensitivity to chemoradiation therapy.
Collapse
Affiliation(s)
- Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA; Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| | - Flávia Saavedra
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Chris Malz
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Ian A Stone
- Department of Immunology, Microbiology and Virology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Yuping Wei
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - William S Boyle
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Karen F Johnstone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Ali Khammanivong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Mohr T, Zwick A, Hans MC, Bley IA, Braun FL, Khalmurzaev O, Matveev VB, Loertzer P, Pryalukhin A, Hartmann A, Geppert CI, Loertzer H, Wunderlich H, Naumann CM, Kalthoff H, Junker K, Smola S, Lohse S. The prominent role of the S100A8/S100A9-CD147 axis in the progression of penile cancer. Front Oncol 2022; 12:891511. [PMID: 36303837 PMCID: PMC9592847 DOI: 10.3389/fonc.2022.891511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, no established biomarkers are recommended for the routine diagnosis of penile carcinoma (PeCa). The rising incidence of this human papillomavirus (HPV)–related cancer entity highlights the need for promising candidates. The Calprotectin subunits S100A8 and S100A9 mark myeloid-derived suppressor cells in other HPV-related entities while their receptor CD147 was discussed to identify patients with PeCa at a higher risk for poor prognoses and treatment failure. We thus examined their expression using immunohistochemistry staining of PeCa specimens from 74 patients on tissue microarrays of the tumor center, the invasion front, and lymph node metastases. Notably, whereas the tumor center was significantly more intensively stained than the invasion front, lymph node metastases were thoroughly positive for both S100 subunits. An HPV-positive status combined with an S100A8+S100A9+ profile was related with an elevated risk for metastases. We observed several PeCa specimens with S100A8+S100A9+-infiltrating immune cells overlapping with CD15 marking neutrophils. The S100A8+S100A9+CD15+ profile was associated with dedifferentiated and metastasizing PeCa, predominantly of HPV-associated subtype. These data suggest a contribution of neutrophil-derived suppressor cells to the progression of HPV-driven penile carcinogenesis. CD147 was elevated, expressed in PeCa specimens, prominently at the tumor center and in HPV-positive PeCa cell lines. CD147+HPV+ PeCa specimens were with the higher-frequency metastasizing cancers. Moreover, an elevated expression of CD147 of HPV-positive PeCa cell lines correlated negatively with the susceptibility to IgA-based neutrophil-mediated tumor cell killing. Finally, stratifying patients regarding their HPV/S100A8/S100A9/CD15/CD147 profile may help identify patients with progressing cancer and tailor immunotherapeutic treatment strategies.
Collapse
Affiliation(s)
- Tobias Mohr
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Anabel Zwick
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | | | | | - Felix Leon Braun
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Oybek Khalmurzaev
- Department of Urology and Paediatric Urology, Saarland University Medical Center, Homburg, Germany
- Department of Urology, Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vsevolod Borisovich Matveev
- Department of Urology, Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Philine Loertzer
- Department of Urology and Paediatric Urology, Westpfalz Klinikum, Kaiserslautern, Germany
| | - Alexey Pryalukhin
- Institute of Pathology, Saarland University Medical Center, Homburg, Germany
- Institute of Pathology, University Medical Center Bonn, Bonn, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Hagen Loertzer
- Department of Urology and Paediatric Urology, Westpfalz Klinikum, Kaiserslautern, Germany
| | - Heiko Wunderlich
- Department of Urology and Paediatric Urology, St. Georg Klinikum, Eisenach, Germany
| | - Carsten Maik Naumann
- Department of Urology and Paediatric Urology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Holger Kalthoff
- Division of Molecular Oncology, Institute of Experimental Cancer Research, University Hospital Schleswig Holstein, Kiel, Germany
| | - Kerstin Junker
- Department of Urology and Paediatric Urology, Saarland University Medical Center, Homburg, Germany
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Stefan Lohse
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
- *Correspondence: Stefan Lohse,
| |
Collapse
|
8
|
Oral Cavity Calprotectin and Lactoferrin Levels in Relation to Radiotherapy. Curr Issues Mol Biol 2022; 44:4439-4446. [PMID: 36286019 PMCID: PMC9600558 DOI: 10.3390/cimb44100304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Lactoferrin, an iron-binding glycoprotein, and calprotectin, a calcium binding protein, are sensitive markers of inflammation and their fecal levels increase during radiotherapy of prostate cancer patients. With this background, we analyzed mouthrinse calprotectin and lactoferrin levels of head- and neck-cancer patients before, during and after radiotherapy. Methods: Twenty cancer patients (mean age 55.85 ± 15.01, 80% male), who had been planned to undergo radiotherapy to the head and neck area, were included in this study. Mouthrinse samples were collected before radiotherapy, at the 3rd and 6th weeks of radiotherapy and 4 weeks after the radiotherapy. Mouthrinse samples were analyzed for calprotectin and lactoferrin using commercial ELISA kits. Results: Calprotectin levels increased significantly during radiotherapy (p = 0.022). Both markers, lactoferrin (p = 0.011) and calprotectin (p = 0.006), decreased significantly after the treatment. Conclusions: Present study results may suggest that the elevations in calprotectin and lactoferrin levels during radiotherapy reflect the increased and emerging inflammatory environment in the oral cavity, thus may increase the risk of periodontal disease initiation or progression.
Collapse
|
9
|
Modeling HPV-Associated Disease and Cancer Using the Cottontail Rabbit Papillomavirus. Viruses 2022; 14:v14091964. [PMID: 36146770 PMCID: PMC9503101 DOI: 10.3390/v14091964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023] Open
Abstract
Approximately 5% of all human cancers are attributable to human papillomavirus (HPV) infections. HPV-associated diseases and cancers remain a substantial public health and economic burden worldwide despite the availability of prophylactic HPV vaccines. Current diagnosis and treatments for HPV-associated diseases and cancers are predominantly based on cell/tissue morphological examination and/or testing for the presence of high-risk HPV types. There is a lack of robust targets/markers to improve the accuracy of diagnosis and treatments. Several naturally occurring animal papillomavirus models have been established as surrogates to study HPV pathogenesis. Among them, the Cottontail rabbit papillomavirus (CRPV) model has become known as the gold standard. This model has played a pivotal role in the successful development of vaccines now available to prevent HPV infections. Over the past eighty years, the CRPV model has been widely applied to study HPV carcinogenesis. Taking advantage of a large panel of functional mutant CRPV genomes with distinct, reproducible, and predictable phenotypes, we have gained a deeper understanding of viral–host interaction during tumor progression. In recent years, the application of genome-wide RNA-seq analysis to the CRPV model has allowed us to learn and validate changes that parallel those reported in HPV-associated cancers. In addition, we have established a selection of gene-modified rabbit lines to facilitate mechanistic studies and the development of novel therapeutic strategies. In the current review, we summarize some significant findings that have advanced our understanding of HPV pathogenesis and highlight the implication of the development of novel gene-modified rabbits to future mechanistic studies.
Collapse
|
10
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Tanigawa K, Tsukamoto S, Koma YI, Kitamura Y, Urakami S, Shimizu M, Fujikawa M, Kodama T, Nishio M, Shigeoka M, Kakeji Y, Yokozaki H. S100A8/A9 Induced by Interaction with Macrophages in Esophageal Squamous Cell Carcinoma Promotes the Migration and Invasion of Cancer Cells via Akt and p38 MAPK Pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:536-552. [PMID: 34954212 DOI: 10.1016/j.ajpath.2021.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023]
Abstract
Tumor-associated macrophages are associated with more malignant phenotypes of esophageal squamous cell carcinoma (ESCC) cells. Previously, an indirect co-culture assay of ESCC cells and macrophages was used to identify several factors associated with ESCC progression. Herein, a direct co-culture assay of ESCC cells and macrophages was established, which more closely simulated the actual cancer microenvironment. Direct co-cultured ESCC cells had significantly increased migration and invasion abilities, and phosphorylation levels of Akt and p38 mitogen-activated protein kinase (MAPK) compared with monocultured ESCC cells. According to a cDNA microarray analysis between monocultured and co-cultured ESCC cells, both the expression and release of S100 calcium binding protein A8 and A9 (S100A8 and S100A9), which commonly exist and function as a heterodimer (herein, S100A8/A9), were significantly enhanced in co-cultured ESCC cells. The addition of recombinant human S100A8/A9 protein induced migration and invasion of ESCC cells via Akt and p38 MAPK signaling. Both S100A8 and S100A9 silencing suppressed migration, invasion, and phosphorylation of Akt and p38 MAPK in co-cultured ESCC cells. Moreover, ESCC patients with high S100A8/A9 expression exhibited significantly shorter disease-free survival (P = 0.005) and cause-specific survival (P = 0.038). These results suggest that S100A8/A9 expression and release in ESCC cells are enhanced by direct co-culture with macrophages and that S100A8/A9 promotes ESCC progression via Akt and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Kohei Tanigawa
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Yu Kitamura
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Urakami
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaki Shimizu
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masataka Fujikawa
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
12
|
Fontana S, Mauceri R, Novara ME, Alessandro R, Campisi G. Protein Cargo of Salivary Small Extracellular Vesicles as Potential Functional Signature of Oral Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:ijms222011160. [PMID: 34681822 PMCID: PMC8539015 DOI: 10.3390/ijms222011160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
The early diagnosis of oral squamous cell carcinoma (OSCC) is still an investigative challenge. Saliva has been proposed as an ideal diagnostic medium for biomarker detection by mean of liquid biopsy technique. The aim of this pilot study was to apply proteomic and bioinformatic strategies to determine the potential use of saliva small extracellular vesicles (S/SEVs) as a potential tumor biomarker source. Among the twenty-three enrolled patients, 5 were free from diseases (OSCC_FREE), 6 were with OSCC without lymph node metastasis (OSCC_NLNM), and 12 were with OSCC and lymph node metastasis (OSCC_LNM). The S/SEVs from patients of each group were pooled and properly characterized before performing their quantitative proteome comparison based on the SWATH_MS (Sequential Window Acquisition of all Theoretical Mass Spectra) method. The analysis resulted in quantitative information for 365 proteins differentially characterizing the S/SEVs of analyzed clinical conditions. Bioinformatic analysis of the proteomic data highlighted that each S/SEV group was associated with a specific cluster of enriched functional network terms. Our results highlighted that protein cargo of salivary small extracellular vesicles defines a functional signature, thus having potential value as novel predict biomarkers for OSCC.
Collapse
Affiliation(s)
- Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.E.N.); (R.A.)
- Correspondence: ; Tel.: +39-09123865731
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (G.C.)
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98124 Messina, Italy
- Department of Dental Surgery, Faculty of Dental Surgery, University of Malta, 2090 Msida, Malta
| | - Maria Eugenia Novara
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.E.N.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.E.N.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (G.C.)
| |
Collapse
|
13
|
Xing B, Dai B, Wang Q, Li G, Ma J. The effects of albumin-bound paclitaxel combined with cisplatin injections on patients with advanced laryngeal cancer and serum survivin. Am J Transl Res 2021; 13:9802-9807. [PMID: 34540113 PMCID: PMC8430087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To explore the effects of the TP (Taxol plus Platinol) regimen and the PF (Platinol plus fluorouracil) regimen on patients with advanced laryngeal cancer and on the patients' VEGF-C (vascular endothelial growth factor C) and survivin genes. METHODS 42 patients with locally advanced laryngeal cancer treated in our hospital from June 2018 to October 2020 were recruited as the study cohort. The patients were assigned into a control group (21 cases) or an observation group (21 cases). The control group was administered the PF regimen, and the observation group was administered the TP regimen. Both groups were treated for four consecutive courses. The clinical efficacy of the two groups of patients was observed, and the two groups' treatment effects, their serum VEGF-C, and survivin levels, and their adverse reactions were compared. RESULTS A superior clinical efficacy was observed in the observation group (85.7%) than in the control group (57.1%) (P<0.05). Before the treatment, the two groups' serum VEGF-C and survivin levels showed no significant differences (P>0.05). After the treatment, apparently lower serum VEGF-C and survivin levels in the observation group were measured, and both groups witnessed a decline in their levels (P<0.05). We measured higher overall survival times and tumor-free survival times in the patients in the observation group compared to the control group (P<0.05). There was no significant difference in the incidences of adverse reactions between the two groups of patients (P>0.05). CONCLUSION The TP regimen in the treatment of laryngeal cancer can reduce the VEGF-C and survivin levels in patients and has a better therapeutic effect, so it is worthy of clinical promotion.
Collapse
Affiliation(s)
- Biao Xing
- Department of Otolaryngology, Cangzhou Central Hospital Cangzhou, China
| | - Baoqiang Dai
- Department of Otolaryngology, Cangzhou Central Hospital Cangzhou, China
| | - Qiang Wang
- Department of Otolaryngology, Cangzhou Central Hospital Cangzhou, China
| | - Guoli Li
- Department of Otolaryngology, Cangzhou Central Hospital Cangzhou, China
| | - Jinhua Ma
- Department of Otolaryngology, Cangzhou Central Hospital Cangzhou, China
| |
Collapse
|
14
|
Xing B, Dai B, Wang Q, Li G, Ma J. The efficacy of cisplatin and low-temperature plasma radiofrequency ablation in advanced laryngeal cancer patients and on the serum survivin levels. Am J Transl Res 2021; 13:7394-7399. [PMID: 34306511 PMCID: PMC8290673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the effect of cisplatin injections combined with low-temperature plasma radiofrequency ablation on the clinical efficacy and serum survivin levels in advanced laryngeal cancer patients. METHODS A total of 42 patients with locally advanced laryngeal cancer treated in our hospital from January 2018 to June 2020 were recruited as the study cohort and placed in a control group (21 cases) or a treatment group (21 cases) according to the medication administered to each patient. The patients in the control group were treated with CO2 laser resections under laryngoscopy combined with cisplatin injections, and the patients in the observation group were treated with low-temperature plasma radiofrequency ablation combined with cisplatin injections. The clinical efficacies in the two groups were observed and the WHOQOL-BREF scores, tumor marker levels, and serum survivin levels were compared. RESULTS After the treatment, the ORR and CBR in the control group were 33.3% and 61.9%, respectively, levels that were significantly lower than the 66.7% and 90.5% in the observation group (P<0.05). The observation group's physiological, psychological, and social relations dimension scores were significantly higher than the corresponding scores in the control group (P<0.05). The tumor markers in the observation group were significantly lower in the serum CA72-4, CA19-9, and SCC-Ag levels than they were in the control group (P<0.05). The observation group exhibited lower serum survivin levels than the control group (P<0.05). Conclusion Cisplatin injections combined with low-temperature plasma radiofrequency ablation has a significant effect on the treatment of locally advanced laryngeal cancer. It can improve patients' quality of life, reduce the tumor marker levels in the body, and inhibit the serum survivin levels.
Collapse
Affiliation(s)
- Biao Xing
- Department of Otolaryngology, Cangzhou Central Hospital Cangzhou, China
| | - Baoqiang Dai
- Department of Otolaryngology, Cangzhou Central Hospital Cangzhou, China
| | - Qiang Wang
- Department of Otolaryngology, Cangzhou Central Hospital Cangzhou, China
| | - Guoli Li
- Department of Otolaryngology, Cangzhou Central Hospital Cangzhou, China
| | - Jinhua Ma
- Department of Otolaryngology, Cangzhou Central Hospital Cangzhou, China
| |
Collapse
|
15
|
Qi L, Bao W, Li W, Ding X, Yan A. IL-17 signaling pathway plays a key role in laryngeal squamous cell carcinoma with ethnic specificity. Am J Cancer Res 2021; 11:2684-2695. [PMID: 34249422 PMCID: PMC8263688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/25/2021] [Indexed: 06/13/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common aggressive head and neck squamous cell carcinoma (HNSCC) and racial disparities have been reported to exist in it. However, its molecular mechanism and associated ethnic specificity are still unclear. Here, we leveraged mRNA expression data from 2 gene expression omnibus datasets (GSE142083 & GSE117005) of Chinese samples and the cancer genome atlas (TCGA) datasets of Caucasian samples to demonstrate the expression signature of LSCC. The GSE142083 dataset was used as the discovery set since it had 53 pairs of LSCC tissues and matched adjacent normal tissues, and the GSE117005 dataset was treated as the validation set with 5 pairs of tissues. Differential gene expression analysis and enrichment pathway analysis were performed. Besides, we employed weighted gene co-expression network analysis to identify hub genes in validated pathways. The TCGA datasets were used to evaluate ethnic specificity. Immunohistochemistry (IHC) was employed to further validate the hub gene. Overall, the IL-17 signaling pathway was significantly enriched for upregulated genes in two Chinese datasets while not in TCGA datasets; and IL17RC, MAPK3, S100A8, MMP3, CXCL8, and TNFA1P3 were hub genes regulating such pathway. Therein, IL17RC might be the most important one and the IHC results displayed that the IL17RC gene upregulated in the LSCC tissue. IL-17 signaling pathway has an ethnicity-specific effect in LSCC where it is upregulated in the Chinese while not in the Caucasians and IL17RC might play a key role. Targeting genes located in the IL-17 signaling pathway may be beneficial for Chinese LSCC patients.
Collapse
Affiliation(s)
- Li Qi
- Department of Otorhinolaryngology, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| | - Wenzhao Bao
- Department of Anesthesiology, Affiliated Hospital of Inner Mongolia University for The NationalitiesInner Mongolia, China
| | - Wei Li
- Department of Otorhinolaryngology, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| | - Xiaoxu Ding
- Department of Otorhinolaryngology, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| | - Aihui Yan
- Department of Otorhinolaryngology, The First Hospital of China Medical UniversityShenyang 110001, Liaoning Province, China
| |
Collapse
|
16
|
Tang XZ, Zhou XG, Zhang XG, Li GS, Chen G, Dang YW, Huang ZG, Li MX, Liang Y, Yao YX, Chen XY, Rong MH, Huang SN. The clinical significance of interleukin 24 and its potential molecular mechanism in laryngeal squamous cell carcinoma. Cancer Biomark 2021; 29:111-124. [PMID: 32623386 DOI: 10.3233/cbm-201441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin 24 (IL24) has been documented to be highly expressed in several cancers, but its role in laryngeal squamous cell carcinoma (LSCC) remains unclarified. In this study, to reveal the function and its clinical significance of IL24 in LSCC, multiple detecting methods were used comprehensively. IL24 protein expression was remarkably higher in LSCC (n= 49) than non-cancerous laryngeal controls (n= 26) as detected by in-house immunohistochemistry. Meanwhile, the IL24 mRNA expression was also evaluated based on high throughput data from Gene Expression Omnibus, The Cancer Genome Atlas, ArrayExpress and Oncomine databases. Consistently with the protein level, IL24 mRNA expression level was also predominantly upregulated in LSCC (n= 172) compared to non-cancerous laryngeal tissues (n= 81) with the standard mean difference (SMD) being 1.25 and the area under the curve (AUC) of the summary receiver operating characteristic (sROC) being 0.89 (95% CI = 0.86-0.92). Furthermore, the related genes of IL24 and the differentially expressed genes (DEGs) of LSCC were intersected and sent for Gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and the protein-protein interaction (PPI) analyses. In the GO annotation, the top terms of biological process (BP), cellular component (CC) and molecular function (MF) were extracellular matrix organization, extracellular matrix, cytokine activity, respectively. The top pathway of KEGG was ECM-receptor interaction. The PPI networks indicated the top hub genes of IL24-related genes in LSCC were SERPINE1, TGFB1, MMP1, MMP3, CSF2, and ITGA5. In conclusion, upregulating expression of IL24 may enhance the occurrence of LSCC, which owns prospect diagnostic ability and therapeutic significance in LSCC.
Collapse
Affiliation(s)
- Xiao-Zhun Tang
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China.,Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Xian-Guo Zhou
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi, China.,Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Xiao-Guohui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Guo-Sheng Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Ming-Xuan Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yao Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yu-Xuan Yao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xiao-Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, Guangxi, China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Guangxi, China
| |
Collapse
|
17
|
Xu J, Li F, Gao Y, Guo R, Ding L, Fu M, Yi Y, Chen H, Xiao ZXJ, Niu M. E47 upregulates ΔNp63α to promote growth of squamous cell carcinoma. Cell Death Dis 2021; 12:381. [PMID: 33833226 PMCID: PMC8032790 DOI: 10.1038/s41419-021-03662-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
Targeted therapy has greatly improved both survival and prognosis of cancer patients. However, while therapeutic treatment of adenocarcinoma has been advanced greatly, progress in treatment of squamous cell carcinoma (SCC) has been slow and ineffective. Therefore, it is of great importance to decipher mechanisms and identify new drug targets involved in squamous cell carcinoma development. In this study, we demonstrate that E47 plays the distinctive and opposite roles on cell proliferation in adenocarcinoma and squamous cell carcinoma. While E47 suppresses cell proliferation in adenocarcinoma cells, it functions as a oncoprotein to promote cell proliferation and tumor growth of squamous cell carcinoma. Mechanistically, we show that E47 can directly bind to the promoter and transactivate ΔNp63 gene expression in squamous cell carcinoma cells, resulting in upregulation of cyclins D1/E1 and downregulation of p21, and thereby promoting cell proliferation and tumor growth. We further show that expression of E2A (E12/E47) is positively correlated with p63 and that high expression of E2A is associated with poor outcomes in clinical samples of squamous cell carcinoma. These results highlight that the E47-ΔNp63α axis may be potential therapeutic targets for treatment of squamous cell carcinoma.
Collapse
Affiliation(s)
- Jing Xu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fengtian Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ya Gao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rongtian Guo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Liangping Ding
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengyuan Fu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hu Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengmeng Niu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Zhou H, He Y, Li L, Wu C, Hu G. Identification novel prognostic signatures for Head and Neck Squamous Cell Carcinoma based on ceRNA network construction and immune infiltration analysis. Int J Med Sci 2021; 18:1297-1311. [PMID: 33526991 PMCID: PMC7847625 DOI: 10.7150/ijms.53531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a common malignancy with high mortality and morbidity worldwide, but the underlying biological mechanisms of molecules and tumor infiltrating-immune cells (TIICs) are still unknown. Methods and Results: We obtained mRNAs, lncRNAs, and miRNAs expression profiles of 546 HNSCC from The Cancer Genome Atlas (TCGA) database to develop a ceRNA network. CIBERSORT was employed to estimate the fraction of 22 types of TIICs in HNSCC. Univariate and multivariate Cox regression and lasso regression analyses were used to develop prognostic signatures. Then, two novel risk signatures were constructed respectively based on six ceRNAs (ANLN, KIT, PRKAA2, NFIA, PTX3 and has-miR-148a-3p) and three immune cells (naïve B cells, regulatory T cells and Neutrophils). Kaplan-Meier (K-M) analysis and Cox regression analysis further proved that these two signatures were significant prognostic factors independent of multiple clinicopathological characteristics. Two nomograms were built based on ceRNAs-riskScore and TIICs-riskScore that could be used to predict the prognosis of HNSCC. Co-expression analysis showed significant correlations between miR-148a-3p and naive B cells, naive B cells and plasmas cells. Conclusion: Through construction of the ceRNA network and estimation of TIICs, we established two risk signatures and their nomograms with excellent utility, which indicated the potential molecular and cellular mechanisms, and predicted the prognosis of HNSCC.
Collapse
Affiliation(s)
- Haiting Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Lingling Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Cheng Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P.R. China
| |
Collapse
|
19
|
Mints M, Landin D, Näsman A, Mirzaie L, Ursu RG, Zupancic M, Marklund L, Dalianis T, Munck-Wikland E, Ramqvist T. Tumour inflammation signature and expression of S100A12 and HLA class I improve survival in HPV-negative hypopharyngeal cancer. Sci Rep 2021; 11:1782. [PMID: 33469045 PMCID: PMC7815817 DOI: 10.1038/s41598-020-80226-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
Hypopharyngeal squamous cell carcinoma (HPSCC) has a very poor prognosis. Local surgery may increase survival, but is often avoided due to significant post-op co-morbidities. Since prognostic markers are lacking, the aim was to find predictive biomarkers that identify patients whose response to oncological treatment is poor and who may benefit from primary surgery to increase survival. Pretreatment biopsies from 23 HPSCC patients, 3 human papillomavirus (HPV) positive and 20 HPV-negative, were analyzed for expression of 750 mRNAs using the Nanostring nCounter IO360 panel in relation to 3-year survival. Validation was performed through immunohistochemistry (IHC) for HLA class I and S100A12 in 74 HPV-negative HPSCC samples. Clustering identified a subset of HPV-negative HPSCC with favorable prognosis and a gene expression signature overexpressing calgranulins and immune genes, distinct from that of HPV-positive HPSCC. Enrichment analysis showed immune signaling, including the tumor inflammation signature, to be enriched in surviving patients. IHC validation confirmed high S100A12 and HLA class I expression to correlate with survival in HPV-negative HPSCC. This shows that immune activity is strongly related to survival in HPV-negative HPSCC. Enrichment of the tumor inflammation signature indicates a potential benefit of immunotherapy. Low expression of both HLA class I and S100A12 could be used to select patients for local surgery.
Collapse
Affiliation(s)
- Michael Mints
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - David Landin
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Otorhinolaryngology, Head and Neck Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Näsman
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64, Solna, Sweden.,Departement of Clinical Pathology and Cytology, Cancer Center Karolinska, R8:02, Karolinska University Hospital, Stockholm, Sweden
| | - Leila Mirzaie
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64, Solna, Sweden
| | - Ramona Gabriela Ursu
- Microbiology Department, University of Medicine sand Pharmacy, Grigore T Popa, Iasi, Romania
| | - Mark Zupancic
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64, Solna, Sweden
| | - Linda Marklund
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Otorhinolaryngology, Head and Neck Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64, Solna, Sweden
| | - Eva Munck-Wikland
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Otorhinolaryngology, Head and Neck Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Torbjörn Ramqvist
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden. .,Department of Oncology-Pathology, Karolinska Institutet, Bioclinicum J6:20, Karolinska University Hospital, 171 64, Solna, Sweden.
| |
Collapse
|
20
|
Christensen ND, Chen KM, Hu J, Stairs DB, Sun YW, Aliaga C, Balogh KK, Atkins H, Shearer D, Li J, Brendle SA, Gowda K, Amin S, Walter V, Viscidi R, El-Bayoumy K. The environmental pollutant and tobacco smoke constituent dibenzo[def,p]chrysene is a co-factor for malignant progression of mouse oral papillomavirus infections. Chem Biol Interact 2021; 333:109321. [PMID: 33186600 PMCID: PMC9340668 DOI: 10.1016/j.cbi.2020.109321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022]
Abstract
HPV infections in the oral cavity that progress to cancer are on the increase in the USA. Model systems to study co-factors for progression of these infections are lacking as HPVs are species-restricted and cannot grow in preclinical animal models. We have recently developed a mouse papillomavirus (MmuPV1) oral mucosal infection model that provides opportunities to test, for the first time, the hypothesis that tobacco carcinogens are co-factors that can impact the progression of oral papillomas to squamous cell carcinoma (SCC). Four cohorts of mice per sex were included: (1) infected with MmuPV1 and treated orally with DMSO-saline; (2) infected with MmuPV1 and treated orally with the tobacco carcinogen, dibenzo[def,p]chrysene (DBP); (3) uninfected and treated orally with DMSO-saline, and (4) uninfected and treated orally with DBP. Oral swabs were collected monthly for subsequent assessment of viral load. Oral tissues were collected for in situ viral DNA/RNA detection, viral protein staining, and pathological assessment for hyperplasia, papillomas and SCC at study termination. We observed increased rates of SCC in oral tissue infected with MmuPV1 and treated with DBP when compared to mice treated with DBP or virus individually, each of which showed minimal disease. Virally-infected epithelium showed strong levels of viral DNA/RNA and viral protein E4/L1 staining. In contrast, areas of SCC showed reduced viral DNA staining indicative of lower viral copy per nucleus but strong RNA signals. Several host markers (p120 ctn, p53, S100A9) were also examined in the mouse oral tissues; of particular significance, p120 ctn discriminated normal un-infected epithelium from SCC or papilloma epithelium. In summary, we have confirmed that our infection model is an excellent platform to assess the impact of co-factors including tobacco carcinogens for oral PV cancerous progression. Our findings can assist in the design of novel prevention/treatment strategies for HPV positive vs. HPV negative disease.
Collapse
Affiliation(s)
- Neil D Christensen
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, PA, USA; Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Kun-Ming Chen
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, PA, USA; Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Douglas B Stairs
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Yuan-Wan Sun
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Cesar Aliaga
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Karla K Balogh
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Hannah Atkins
- Department of Comparative Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Debra Shearer
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Jingwei Li
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Sarah A Brendle
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Vonn Walter
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, PA, USA; Department of Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Raphael Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karam El-Bayoumy
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, PA, USA.
| |
Collapse
|
21
|
Li S, Zhang J, Qian S, Wu X, Sun L, Ling T, Jin Y, Li W, Sun L, Lai M, Xu F. S100A8 promotes epithelial-mesenchymal transition and metastasis under TGF-β/USF2 axis in colorectal cancer. Cancer Commun (Lond) 2021; 41:154-170. [PMID: 33389821 PMCID: PMC7896751 DOI: 10.1002/cac2.12130] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/25/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background The transforming growth factor‐β (TGF‐β) pathway plays a pivotal role in inducing epithelial‐mesenchymal transition (EMT), which is a key step in cancer invasion and metastasis. However, the regulatory mechanism of TGF‐β in inducing EMT in colorectal cancer (CRC) has not been fully elucidated. In previous studies, it was found that S100A8 may regulate EMT. This study aimed to clarify the role of S100A8 in TGF‐β‐induced EMT and explore the underlying mechanism in CRC. Methods S100A8 and upstream transcription factor 2 (USF2) expression was detected by immunohistochemistry in 412 CRC tissues. Kaplan‐Meier survival analysis was performed. In vitro, Western blot, and migration and invasion assays were performed to investigate the effects of S100A8 and USF2 on TGF‐β‐induced EMT. Mouse metastasis models were used to determine in vivo metastasis ability. Luciferase reporter and chromatin immunoprecipitation assay were used to explore the role of USF2 on S100A8 transcription. Results During TGF‐β‐induced EMT in CRC cells, S100A8 and the transcription factor USF2 were upregulated. S100A8 promoted cell migration and invasion and EMT. USF2 transcriptionally regulated S100A8 expression by directly binding to its promoter region. Furthermore, TGF‐β enhanced the USF2/S100A8 signaling axis of CRC cells whereas extracellular S100A8 inhibited the USF2/S100A8 axis of CRC cells. S100A8 expression in tumor cells was associated with poor overall survival in CRC. USF2 expression was positively related to S100A8 expression in tumor cells but negatively related to S100A8‐positive stromal cells. Conclusions TGF‐β was found to promote EMT and metastasis through the USF2/S100A8 axis in CRC while extracellular S100A8 suppressed the USF2/S100A8 axis. USF2 was identified as an important switch on the intracellular and extracellular S100A8 feedback loop.
Collapse
Affiliation(s)
- Si Li
- Department of Pathology and Pathophysiology, and Department of General Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jun Zhang
- Department of Pathology and Pathophysiology, and Department of General Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Senmi Qian
- Department of Pathology and Pathophysiology, and Department of General Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xuesong Wu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Liang Sun
- Department of Pathology and Pathophysiology, and Department of General Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Tianyi Ling
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yao Jin
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Wenxiao Li
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Lichao Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Maode Lai
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| | - Fangying Xu
- Department of Pathology and Pathophysiology, and Department of General Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
22
|
Lee JS, Lee NR, Kashif A, Yang SJ, Nam AR, Song IC, Gong SJ, Hong MH, Kim G, Seok PR, Lee MS, Sung KH, Kim IS. S100A8 and S100A9 Promote Apoptosis of Chronic Eosinophilic Leukemia Cells. Front Immunol 2020; 11:1258. [PMID: 32903598 PMCID: PMC7438788 DOI: 10.3389/fimmu.2020.01258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
S100A8 and S100A9 function as essential factors in inflammation and also exert antitumor or tumorigenic activity depending on the type of cancer. Chronic eosinophilic leukemia (CEL) is a rare hematological malignancy having elevated levels of eosinophils and characterized by the presence of the FIP1L1-PDGFRA fusion gene. In this study, we examined the pro-apoptotic mechanisms of S100A8 and S100A9 in FIP1L1-PDGFRα+ eosinophilic cells and hypereosinophilic patient cells. S100A8 and S100A9 induce apoptosis of the FIP1L1-PDGFRα+ EoL-1 cells via TLR4. The surface TLR4 expression increased after exposure to S100A8 and S100A9 although total TLR4 expression decreased. S100A8 and S100A9 suppressed the FIP1L1-PDGFRα-mediated signaling pathway by downregulating FIP1L1-PDGFRα mRNA and protein expression and triggered cell apoptosis by regulating caspase 9/3 pathway and Bcl family proteins. S100A8 and S100A9 also induced apoptosis of imatinib-resistant EoL-1 cells (EoL-1-IR). S100A8 and S100A9 blocked tumor progression of xenografted EoL-1 and EoL-1-IR cells in NOD-SCID mice and evoked apoptosis of eosinophils derived from hypereosinophilic syndrome as well as chronic eosinophilic leukemia. These findings may contribute to a progressive understanding of S100A8 and S100A9 in the pathogenic and therapeutic mechanism of hematological malignancy.
Collapse
Affiliation(s)
- Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, South Korea
| | - Na Rae Lee
- Department of Biomedical Laboratory Science, Eulji University School of Medicine, Daejeon, South Korea
| | - Ayesha Kashif
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Seung-Ju Yang
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, South Korea
| | - A Reum Nam
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, South Korea.,Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Soo-Jung Gong
- Department of Internal Medicine, Eulji Medical Center, Eulji University School of Medicine, Daejeon, South Korea
| | - Min Hwa Hong
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Geunyeong Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Pu Reum Seok
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Kee-Hyung Sung
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - In Sik Kim
- Department of Biomedical Laboratory Science, Eulji University School of Medicine, Daejeon, South Korea.,Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| |
Collapse
|
23
|
Wang W, Chang J, Jia B, Liu J. The Blood Biomarkers of Thyroid Cancer. Cancer Manag Res 2020; 12:5431-5438. [PMID: 32753960 PMCID: PMC7351621 DOI: 10.2147/cmar.s261170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/20/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction With the gradual increase in the incidence of thyroid cancer, people’s attention to thyroid cancer has also gradually increased. Although the prognosis of thyroid cancer is rather mild compared to other cancers, it will still bring a heavy psychological burden on people who have been diagnosed. At present, the diagnosis of thyroid cancer mainly depends on ultrasound and percutaneous fine needle aspiration (pFNA). Due to the unsatisfactory accuracy of the diagnosis methods we use now, there are still some thyroid nodules that cannot be clearly diagnosed before surgery. Methods In this article, we have searched for relevant research on blood markers of thyroid cancer in the past five years and categoried them into four groups. Discussion Though we have not found a biomarker which can diagnose thyroid cancer both sensitively and specifically, we do found many substances that are related to it, and have the potential to recognize it and help the diagnosis. And perhaps combined models can do it better.
Collapse
Affiliation(s)
- Weiran Wang
- First Hospital of Shanxi Medical University, General Surgery Department, Taiyuan, Shanxi, People's Republic of China
| | - Jingtao Chang
- First Hospital of Shanxi Medical University, General Surgery Department, Taiyuan, Shanxi, People's Republic of China
| | - Baosong Jia
- First Hospital of Shanxi Medical University, General Surgery Department, Taiyuan, Shanxi, People's Republic of China
| | - Jing Liu
- First Hospital of Shanxi Medical University, General Surgery Department, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
24
|
Fujita S, Sumi M, Tatsukawa E, Nagano K, Katase N. Expressions of extracellular matrix-remodeling factors in lymph nodes from oral cancer patients. Oral Dis 2020; 26:1424-1431. [PMID: 32419185 DOI: 10.1111/odi.13419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/02/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Most malignant tumors require remodeling extracellular matrices (ECMs) for invasive growth and metastasis. Cancer cells and stromal cells remodel ECM. We investigated the relationship between regional lymph node (LN) metastasis and expression of ECM-remodeling factors in oral squamous cell carcinoma (OSCC). METHODS Using primary OSCC and cervical LNs obtained surgically, we performed immunohistochemical evaluation of the ECM-remodeling factors, lysyl oxidase (LOX), MT1-MMP, S100A8, and TIMP-1 in primary tumor and marginal sinus histiocytosis (MSH) in LNs, and determined the statistical significance of the positive rates between metastatic and metastasis-free groups. RESULTS Marginal sinus histiocytosis was more frequently formed in the metastatic group compared to the metastasis-free group. Lymphatic metastasis correlated with the immunopositivity rates of tumor cells expressing LOX, MT1-MMP, and TIMP-1, and of stromal cells expressing TIMP-1. The case rates of MSH containing macrophages positive for LOX and MT1-MMP in the metastasis group were significantly higher than in the metastasis-free group. ECM-remodeling-associated macrophages accumulate in marginal sinus in conjunction with lymphatic metastasis. CONCLUSION Expression of LOX, MT1-MMP, and TIMP-1 in the parenchyma, and stromal expression of TIMP-1 in primary tumor may predict lymphatic metastasis. LOX and MT1-MMP have a possibility to participate in formation of pre-metastatic niche in LNs.
Collapse
Affiliation(s)
- Shuichi Fujita
- Department of Oral Pathology, Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Misa Sumi
- Department of Radiology and Cancer Biology, Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Eri Tatsukawa
- Department of Oral Pathology, Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kenichi Nagano
- Department of Oral Pathology, Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Naoki Katase
- Department of Oral Pathology, Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
25
|
Zhu G, Kong J, Fu X, Liu F, Huang H, Hong L, Wang K. Identification of differentially expressed proteins associated with recurrence in ovarian endometriotic cysts. Syst Biol Reprod Med 2019; 66:59-69. [PMID: 31714804 DOI: 10.1080/19396368.2019.1688425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The objective of this study was to identify proteins that are differentially expressed in the cystic wall tissues of ovarian endometriotic cysts, simple ovarian cysts, and in normal ovarian tissues. Specimens of ovarian endometriotic cyst wall tissue, simple ovarian cyst wall tissue, and normal ovarian tissue (six specimens per group) were collected from patients who received gynecologic surgery, respectively. Differentially expressed proteins related to the ovarian endometriotic cysts were screened by use of isobaric tags for relative and absolute quantitation (iTRAQ) combined with functional annotation and bioinformatics analyses. All differentially expressed proteins related to cysts were validated using immunohistochemistry methods in recurrent and non-recurrent ovarian endometriotic cyst. A total of 359 proteins were identified as up-regulated in ovarian endometriotic cyst groups when compared with both the normal ovary and simple ovarian cyst groups. The levels of 27 proteins were >two-fold higher in the ovarian endometriotic cyst group than that in the other two groups. Of note, the five most significantly upregulated proteins were Charcot-Leyden Crystal Galectin (CLC), Defensin, alpha 1 (DEFA1), S100 calcium-binding protein A9 (S100A9), S100 calcium-binding protein A8 (S100A8), and Ferritin Light Chain (FTL). Immunohistochemistry results showed that the changes of S100A9 and S100A8 were consistent with the results shown by iTRAQ. However, no similarity of CLC, DEFA1, and FTL proteins was found between iTRAQ and immunohistochemistry. The ratio of patients with abnormally high S100A9 and S100A8 expression in the recurrent ovarian endometriotic cyst group was significantly higher than that in the non-recurrent group (P < 0.05). Our data identify differentially expressed proteins S100A9 and S100A8, and suggest they may serve as novel molecular markers to predict postoperative recurrence of an ovarian endometriotic cysts.Abbreviations: iTRAQ: isobaric tags for relative and absolute quantitation; HPRD: Human Protein Reference Database; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; EM: Endometriosis; COX-2: cyclooxyenase-2; NF-kB: nuclear factor kappa-B; PR-B: progesterone receptor type B.
Collapse
Affiliation(s)
- Genhai Zhu
- Department of Gynecology, Hainan General Hospital, Haikou, China
| | - Jiao Kong
- Department of Gynecology, Hainan General Hospital, Haikou, China
| | - Xinhui Fu
- Department of Toxicology, Hainan Drug Research Institute, Haikou, China
| | - Fujin Liu
- Department of Pathology, Hainan General Hospital, Haikou, China
| | - Haiyan Huang
- Medical Research Center, Hainan General Hospital, Haikou, China
| | - Lan Hong
- Department of Gynecology, Hainan General Hospital, Haikou, China
| | - Kang Wang
- Department of Gynecology, Hainan General Hospital, Haikou, China
| |
Collapse
|
26
|
Argyris PP, Slama Z, Malz C, Koutlas IG, Pakzad B, Patel K, Kademani D, Khammanivong A, Herzberg MC. Intracellular calprotectin (S100A8/A9) controls epithelial differentiation and caspase-mediated cleavage of EGFR in head and neck squamous cell carcinoma. Oral Oncol 2019; 95:1-10. [PMID: 31345374 PMCID: PMC6662626 DOI: 10.1016/j.oraloncology.2019.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Calprotectin (S100A8/A9) appears to function as a tumor suppressor in head and neck squamous cell carcinoma (HNSCC) and expression in the carcinoma cells and patient survival rates are directly related. We seek to characterize the suppressive role of calprotectin in HNSCC. AIMS (1) Investigate changes in S100A8/A9 expression as oral carcinogenesis progresses and (2) determine whether intracellular calprotectin can regulate epidermal growth factor receptor (EGFR), a negative prognostic factor, in HNSCC. MATERIALS AND METHODS Using immunohistochemistry (IHC), S100A8/A9 was analyzed in HNSCC specimens (N = 46), including well-differentiated (WD, N = 19), moderately-differentiated (MD, N = 14), poorly-differentiated (PD, N = 5) and non-keratinizing/basaloid (NK/BAS, N = 8), and premalignant epithelial dysplasias (PED, N = 16). Similarly, EGFR was analyzed in HNSCCs (N = 21). To determine whether calprotectin and EGFR expression are mechanistically linked, TR146 HNSCC cells that are S100A8/A9-expressing or silenced (shRNA) were compared for EGFR levels and caspase-3/7 activity using western blotting and immunofluorescence microscopy. RESULTS In normal oral mucosal epithelium, S100A8/A9 stained strongly in the cytoplasm and nucleus of suprabasal cells; basal cells were consistently S100A8/A9 negative. In PED and HNSCC, S100A8/A9 expression was lower than in adjacent normal epithelial tissues (NAT) and declined progressively in WD, MD, PD and NK/BAS HNSCCs. S100A8/A9 and EGFR levels appeared inversely related, which was simulated in vitro when S100A8/A9 was silenced in TR146 cells. Silencing S100A8/A9 significantly reduced caspase-3/7 activity, whereas EGFR levels increased. CONCLUSIONS In HNSCC, S100A8/A9 is directly associated with cellular differentiation and appears to promote caspase-3/7-mediated cleavage of EGFR, which could explain why patients with S100A8/A9-high tumors survive longer.
Collapse
Affiliation(s)
- Prokopios P Argyris
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary Slama
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chris Malz
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ioannis G Koutlas
- Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Betty Pakzad
- Anatomic Clinical Pathology, North Memorial Health Hospital, Minneapolis, MN 55422, USA
| | - Ketan Patel
- Oral and Maxillofacial Surgery Clinic, North Memorial Health Hospital, Minneapolis, MN 55422, USA
| | - Deepak Kademani
- Oral and Maxillofacial Surgery Clinic, North Memorial Health Hospital, Minneapolis, MN 55422, USA
| | - Ali Khammanivong
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
27
|
Hybrid panel of biomarkers can be useful in the diagnosis of pleural and peritoneal effusions. Clin Chim Acta 2019; 497:48-53. [PMID: 31310745 DOI: 10.1016/j.cca.2019.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 06/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND In clinical practice, pleural and peritoneal effusions are usual diagnosis. We evaluated the performance of a hybrid panel of biomarkers in the diagnosis of the main diseases affecting pleura and/or peritoneum. METHODS Samples of pleural/ peritoneal fluid from 120 patients were evaluated for: CEA (carcinoembryonic antigen), VEGF-A (vascular endothelial growth factor A), PD-L1/B7-H1 (programmed death-ligand 1), NGAL (neutrophil gelatinase-associated lipocalin), TREM-1 (triggering receptor expressed in myeloid cells type-1) and IFNγ (gamma-interferon) by Luminex®; CALP (Calprotectin) by ELISA, and ADA (adenosine deaminase) by enzymatic deamination. RESULTS For malignant effusion (ME) diagnosis, CEA and NGAL presented superior performance than VEGF-A, PD-L1 and CALP. A CEA-NGAL association showed good sensitivity (86.6%) and accuracy (79.2%). For non-tuberculous infectious effusion (NTBIE), NGAL presented the best performance with sensitivity (75.0%), specificity (62.0%) and accuracy (65.0%) higher than TREM-1 and CALP; however, when associated, although with good sensitivity, there was important decrease in specificity. For tuberculous pleural effusion (TPE), IFNy-ADA presented excellent sensitivity (100%), specificity (87.6%), NPV (100%) and accuracies (~90%). CONCLUSIONS CEA, NGAL, ADA and IFNy were useful in discriminating ME and TPE. However, for NTBIE diagnosis, the hybrid panel did not demonstrate advantages over the classic parameters.
Collapse
|
28
|
Heizmann CW. S100 proteins: Diagnostic and prognostic biomarkers in laboratory medicine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1197-1206. [DOI: 10.1016/j.bbamcr.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/12/2018] [Indexed: 01/04/2023]
|
29
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
30
|
Chokchaichamnankit D, Watcharatanyatip K, Subhasitanont P, Weeraphan C, Keeratichamroen S, Sritana N, Kantathavorn N, Diskul-Na-Ayudthaya P, Saharat K, Chantaraamporn J, Verathamjamras C, Phoolcharoen N, Wiriyaukaradecha K, Paricharttanakul NM, Udomchaiprasertkul W, Sricharunrat T, Auewarakul C, Svasti J, Srisomsap C. Urinary biomarkers for the diagnosis of cervical cancer by quantitative label-free mass spectrometry analysis. Oncol Lett 2019; 17:5453-5468. [PMID: 31186765 PMCID: PMC6507435 DOI: 10.3892/ol.2019.10227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/27/2019] [Indexed: 12/15/2022] Open
Abstract
Due to the invasive procedure associated with Pap smears for diagnosing cervical cancer and the conservative culture of developing countries, identifying less invasive biomarkers is of great interest. Quantitative label-free mass spectrometry was performed to identify potential biomarkers in the urine samples of patients with cervical cancer. This technique was used to study the differential expression of urinary proteomes between normal individuals and cancer patients. The alterations in the levels of urinary proteomes in normal and cancer patients were analyzed by Progenesis label-free software and the results revealed that 60 proteins were upregulated while 73 proteins were downregulated in patients with cervical cancer. This method could enrich high molecular weight proteins from 100 kDa. The protein-protein interactions were obtained by Search Tool for the Retrieval of Interacting Genes/Proteins analysis and predicted the biological pathways involving various functions including cell-cell adhesion, blood coagulation, metabolic processes, stress response and the regulation of morphogenesis. Two notable upregulated urinary proteins were leucine-rich α-2-glycoprotein (LRG1) and isoform-1 of multimerin-1 (MMRN1), while the 3 notable downregulated proteins were S100 calcium-binding protein A8 (S100A8), serpin B3 (SERPINB3) and cluster of differentiation-44 antigen (CD44). The validation of these 5 proteins was performed by western blot analysis and the biomarker sensitivity of these proteins was analyzed individually and in combination with receiver operator characteristic curve (ROC) analysis. Quantitative mass spectrometry analysis may allow for the identification of urinary proteins of high molecular weight. The proteins MMRN1 and LRG1 were presented, for the first time, to be highly expressed urinary proteins in cervical cancer. ROC analysis revealed that LRG1 and SERPINB3 could be individually used, and these 5 proteins could also be combined, to detect the occurrence of cervical cancer.
Collapse
Affiliation(s)
| | | | | | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand.,Department of Molecular Biotechnology and Bioinformatics Faculty of Science, Prince of Songkla University, Songkla 90110, Thailand
| | | | - Narongrit Sritana
- Molecular and Genomic Research Laboratory, Research and International Relations Division, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nuttavut Kantathavorn
- Gynecologic Oncology Unit, Woman Health Center, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | | | - Kittirat Saharat
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | - Chris Verathamjamras
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Natacha Phoolcharoen
- Gynecologic Oncology Unit, Woman Health Center, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Kriangpol Wiriyaukaradecha
- Molecular and Genomic Research Laboratory, Research and International Relations Division, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | | | - Wandee Udomchaiprasertkul
- Molecular and Genomic Research Laboratory, Research and International Relations Division, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Thaniya Sricharunrat
- Pathology Laboratory Unit, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Chirayu Auewarakul
- Research and International Relations Division, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand.,Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand.,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
31
|
Wu M, Xu L, Wang Y, Zhou N, Zhen F, Zhang Y, Qu X, Fan H, Liu S, Chen Y, Yao R. S100A8/A9 induces microglia activation and promotes the apoptosis of oligodendrocyte precursor cells by activating the NF-κB signaling pathway. Brain Res Bull 2018; 143:234-245. [PMID: 30266587 DOI: 10.1016/j.brainresbull.2018.09.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/23/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022]
Abstract
S100A8/A9, a heterodimer complex composed of calcium-binding proteins S100A8 and S100A9, is significantly increased in the serum of multiple sclerosis (MS) patients. Relevant reports have revealed that MS pathology is commonly associated with the activation of microglial cells and the damage of oligodendrocyte precursor cells (OPCs). Moreover, microglia activation following stimulation increases the expression of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), which further exacerbate the damage to OPCs. In this study, we were the first to confirm that S100A8/A9 treatment induced the activation, proliferation and migration of the murine microglia cell line BV-2; moreover, this treatment caused the cells to switch from an anti-inflammatory activated (M2) phenotype to a pro-inflammatory activated (M1) phenotype. Meanwhile, the level of the phosphorylated nuclear factor-κB (p-NF-κB) P65 protein was remarkably elevated, and the production of pro-inflammatory factors (IL-1β, TNF-α, MMP-9) and chemokines (CCL2, CCL3, CXCL10) was also increased in the S100A8/A9-treated BV-2 microglial cells. Inhibition of NF-κB P65 phosphorylation reversed the effects of S100A8/A9 on the production of pro-inflammatory factors and chemokines. We also explored the effects of S100A8/A9 and S100A8/A9-activated BV-2 microglial cells on the viability of OPCs. The results showed that both the S100A8/A9 complex and the conditioned medium (CM) of the S100A8/A9-activated BV-2 microglial cells resulted in OPC apoptosis, which was more pronounced in the case of the CM treatment. However, OPC apoptosis in the CM group was obviously decreased through the inhibition of NF-κB p65 phosphorylation. This study indicates that S100A8/A9 induces the activation of BV-2 microglial cells and promotes the production of pro-inflammatory factors by activating the NF-κB signaling pathway, which further exacerbates OPC damage.
Collapse
Affiliation(s)
- Meili Wu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Lu Xu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Yu Wang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Ning Zhou
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Fei Zhen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Ying Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Xuebin Qu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China
| | - Hongbin Fan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Sihan Liu
- Department of Rehabilitation, The First People's Hospital of Changzhou, Jiangsu, 213000, PR China
| | - Yan Chen
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China.
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221009, PR China.
| |
Collapse
|
32
|
Affiliation(s)
- J.E. Nör
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - J.S. Gutkind
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|