1
|
Chichorro JG, Gambeta E, Baggio DF, Zamponi GW. Voltage-gated Calcium Channels as Potential Therapeutic Targets in Migraine. THE JOURNAL OF PAIN 2024; 25:104514. [PMID: 38522594 DOI: 10.1016/j.jpain.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Migraine is a complex and highly incapacitating neurological disorder that affects around 15% of the general population with greater incidence in women, often at the most productive age of life. Migraine physiopathology is still not fully understood, but it involves multiple mediators and events in the trigeminovascular system and the central nervous system. The identification of calcitonin gene-related peptide as a key mediator in migraine physiopathology has led to the development of effective and highly selective antimigraine therapies. However, this treatment is neither accessible nor effective for all migraine sufferers. Thus, a better understanding of migraine mechanisms and the identification of potential targets are still clearly warranted. Voltage-gated calcium channels (VGCCs) are widely distributed in the trigeminovascular system, and there is accumulating evidence of their contribution to the mechanisms associated with headache pain. Several drugs used in migraine abortive or prophylactic treatment target VGCCs, which probably contributes to their analgesic effect. This review aims to summarize the current evidence of VGGC contribution to migraine physiopathology and to discuss how current pharmacological options for migraine treatment interfere with VGGC function. PERSPECTIVE: Calcitonin gene-related peptide (CGRP) represents a major migraine mediator, but few studies have investigated the relationship between CGRP and VGCCs. CGRP release is calcium channel-dependent and VGGCs are key players in familial migraine. Further studies are needed to determine whether VGCCs are suitable molecular targets for treating migraine.
Collapse
Affiliation(s)
- Juliana G Chichorro
- Biological Sciences Sector, Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil.
| | - Eder Gambeta
- Cumming School of Medicine, Department of Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Darciane F Baggio
- Biological Sciences Sector, Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Gerald W Zamponi
- Cumming School of Medicine, Department of Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Chen W, Qu Y, Liu Y, Zhang G, Sharhan HM, Zhang X, Zhang K, Cao B. Effects of fasudil on glial cell activation induced by tooth movement. Prog Orthod 2024; 25:33. [PMID: 39034361 PMCID: PMC11265063 DOI: 10.1186/s40510-024-00518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/14/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Orthodontic pain affects the physical and mental health of patients. The spinal trigeminal subnucleus caudalis (SPVC) contributes to the transmission of pain information and serves as a relay station for integrating orofacial damage information. Recently, glial cells have been found to be crucial for both acute and maintenance phases of pain. It has also been demonstrated that rho kinase (ROCK) inhibitors can manage different pain models by inhibiting glial cell activation. Here, we hypothesized that orthodontic pain is related to glial cells in the SPVC, and Fasudil, a representative rho/rock kinase inhibitor, can relieve orthodontic pain by regulating the function of glial cells and the related inflammatory factors. In this study, we constructed a rat model of tooth movement pain and used immunofluorescence staining to evaluate the activation of microglia and astrocytes. Quantitative real-time PCR was used to detect the release of related cytokines and the expression of pain-related genes in the SPVC. Simultaneously, we investigated the effect of Fasudil on the aforementioned indicators. RESULTS In the SPVC, the expression of c-Fos peaked on day 1 along with the expression of OX42 (related to microglial activation), CD16 (a pro-inflammatory factor), and CD206 (an anti-inflammatory factor) on day 3 after tooth movement, followed by a gradual decrease. GFAP-staining showed that the number of activated astrocytes was the highest on day 5 and that cell morphology became complex. After Fasudil treatment, the expression of these proteins showed a downward trend. The mRNA levels of pro-inflammatory factors (IL-1β and TNF-α) peaked on day 3, and the mRNA expression of the anti-inflammatory factor TGF-β was the lowest 3 days after tooth movement. Fasudil inhibited the mRNA expression of pain-related genes encoding CSF-1, t-PA, CTSS, and BDNF. CONCLUSION This study shows that tooth movement can cause the activation of glial cells in SPVC, and ROCK inhibitor Fasudil can inhibit the activation of glial cells and reduce the expression of the related inflammatory factors. This study presents for the first time the potential application of Fasudil in othodontic pain.
Collapse
Affiliation(s)
- Wenyuanfeng Chen
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Yuan Qu
- International Campus, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Yining Liu
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Guorui Zhang
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Hasan M Sharhan
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Xinzhu Zhang
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Kunwu Zhang
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Baocheng Cao
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China.
| |
Collapse
|
3
|
Tang Q, Fang Z, Liao H, Zhang Y, Li C, Zhou C, Liu F, Shen J. Reduced circ_lrrc49 in trigeminal ganglion contributes to neuropathic pain in mice by downregulating Ist1 and impairing autophagy. J Neurochem 2024; 168:1265-1280. [PMID: 38348636 DOI: 10.1111/jnc.16075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/01/2024] [Accepted: 01/24/2024] [Indexed: 07/21/2024]
Abstract
Orofacial neuropathic pain is a common symptom induced by orofacial nerve injury caused by a range of trauma or dental and maxillofacial procedures but lacks effective treatment. Circular RNAs (circRNAs) participate in the regulatory processes of neuropathic pain. Nevertheless, the biological roles of circRNAs in orofacial neuropathic pain remain unexplored. In this study, circRNA sequencing and Real-time quantitative polymerase chain reaction (RT-qPCR) were carried out. Notably, a novel circRNA named circ_lrrc49 was identified to be downregulated following chronic constriction injury of the infraorbital nerve (CCI-ION) in mice on day 14. Subsequent RNA Antisense Purification (RAP)-mass spectrometry and RNA immunoprecipitation found a direct interaction between circ_lrrc49 and increased sodium tolerance 1 homolog (Ist1). Western blot (WB) identified decreased expression of Ist1 on day 14 post-CCI-ION. Considering the known relationship between Ist1 and autophagy, LC3-II and p62 were detected to be upregulated, and an accumulation of autophagosomes were observed at the same time point. Besides, the knockdown of circ_lrrc49 by small interfering RNA (siRNA) reduced Ist1 expression, increased LC3-II, p62 levels and autophagosomes amount, and evoked orofacial mechanical hypersensitivity, which could be counteracted by the Ist1 overexpression. Similarly, the knockdown of Ist1 by siRNA also increased LC3-II and p62 levels and evoked orofacial mechanical hypersensitivity without influence on circ_lrrc49. Moreover, autophagy activation by rapamycin alleviated orofacial mechanical hypersensitivity evoked by CCI-ION or circ_lrrc49 knockdown. In conclusion, our data revealed the existence of a circ_lrrc49/Ist1/autophagy signaling axis contributing to the progression of orofacial neuropathic pain. These discoveries reveal the intricate molecular processes that drive orofacial neuropathic pain and identify circ_lrrc49 as a promising target for potential therapeutic interventions.
Collapse
Affiliation(s)
- Qingfeng Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhonghan Fang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honglin Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanyan Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Wang J, Liu X, Gou J, Deng J, Li M, Zhu Y, Wu Z. Role of neuropeptides in orofacial pain: A literature review. J Oral Rehabil 2024; 51:898-908. [PMID: 38213060 DOI: 10.1111/joor.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/19/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Neuropeptides play a critical role in regulating pain and inflammation. Despite accumulating evidence has further uncovered the novel functions and mechanisms of different neuropeptides in orofacial pain sensation and transmission, there is deficient systematic description of neuropeptides' pain modulation in the orofacial region, especially in the trigeminal system. OBJECTIVES The present review aims to summarise several key neuropeptides and gain a better understanding of their major regulatory roles in orofacial inflammation and pain. METHODS We review and summarise current studies related to calcitonin gene-related peptide (CGRP), substance P (SP), opioid peptide (OP), galanin (GAL) and other neuropeptides' functions and mechanisms as well as promising targets for orofacial pain control. RESULTS A number of neuropeptides are clearly expressed in the trigeminal sensory system and have critical functions in the transduction and pathogenesis of orofacial pain. The functions, possible cellular and molecular mechanisms have been introduced and discussed. Neuropeptides and their agonists or antagonists which are widely studied to be potential treatment options of orofacial pain has been evaluated. CONCLUSIONS Various neuropeptides play important but distinct (pro-nociceptive or analgesic) roles in orofacial pain with different mechanisms. In summary, CGRP, SP, NPY, NKA, HK-1, VIP mainly play proinflammatory and pro-nociceptive effects while OP, GAL, OXT, OrxA mainly have inhibitory effects on orofacial pain.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Xiangtao Liu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Junzhuo Gou
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jing Deng
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Mujia Li
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yafen Zhu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhifang Wu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Katagiri A, Kishimoto S, Okamoto Y, Yamada M, Niwa H, Bereiter DA, Kato T. Effect of chronic intermittent hypoxia on ocular and intraoral mechanical allodynia mediated via the calcitonin gene-related peptide in a rat. Sleep 2024; 47:zsad332. [PMID: 38166171 PMCID: PMC10925949 DOI: 10.1093/sleep/zsad332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/15/2023] [Indexed: 01/04/2024] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea, a significant hypoxic condition, may exacerbate several orofacial pain conditions. The study aims to define the involvement of calcitonin gene-related peptide (CGRP) in peripheral and central sensitization and in evoking orofacial mechanical allodynia under chronic intermittent hypoxia (CIH). METHODS Male rats were exposed to CIH. Orofacial mechanical allodynia was assessed using the eyeblink test and the two-bottle preference drinking test. The CGRP-immunoreactive neurons in the trigeminal ganglion (TG), CGRP-positive primary afferents projecting to laminae I-II of the trigeminal spinal subnucleus caudalis (Vc), and neural responses in the second-order neurons of the Vc were determined by immunohistochemistry. CGRP receptor antagonist was administrated in the TG. RESULTS CIH-induced ocular and intraoral mechanical allodynia. CGRP-immunoreactive neurons and activated satellite glial cells (SGCs) were significantly increased in the TG and the number of cFos-immunoreactive cells in laminae I-II of the Vc were significantly higher in CIH rats compared to normoxic rats. Local administration of the CGRP receptor antagonist in the TG of CIH rats attenuated orofacial mechanical allodynia; the number of CGRP-immunoreactive neurons and activated SGCs in the TG, and the density of CGRP-positive primary afferent terminals and the number of cFos-immunoreactive cells in laminae I-II of the Vc were significantly lower compared to vehicle-administrated CIH rats. CONCLUSIONS An increase in CGRP in the TG induced by CIH, as well as orofacial mechanical allodynia and central sensitization of second-order neurons in the Vc, supported the notion that CGRP plays a critical role in CIH-induced orofacial mechanical allodynia.
Collapse
Affiliation(s)
- Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Saki Kishimoto
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshie Okamoto
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masaharu Yamada
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, MN, USA
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
6
|
Wang S, Ko CC, Chung MK. Nociceptor mechanisms underlying pain and bone remodeling via orthodontic forces: toward no pain, big gain. FRONTIERS IN PAIN RESEARCH 2024; 5:1365194. [PMID: 38455874 PMCID: PMC10917994 DOI: 10.3389/fpain.2024.1365194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Orthodontic forces are strongly associated with pain, the primary complaint among patients wearing orthodontic braces. Compared to other side effects of orthodontic treatment, orthodontic pain is often overlooked, with limited clinical management. Orthodontic forces lead to inflammatory responses in the periodontium, which triggers bone remodeling and eventually induces tooth movement. Mechanical forces and subsequent inflammation in the periodontium activate and sensitize periodontal nociceptors and produce orthodontic pain. Nociceptive afferents expressing transient receptor potential vanilloid subtype 1 (TRPV1) play central roles in transducing nociceptive signals, leading to transcriptional changes in the trigeminal ganglia. Nociceptive molecules, such as TRPV1, transient receptor potential ankyrin subtype 1, acid-sensing ion channel 3, and the P2X3 receptor, are believed to mediate orthodontic pain. Neuropeptides such as calcitonin gene-related peptides and substance P can also regulate orthodontic pain. While periodontal nociceptors transmit nociceptive signals to the brain, they are also known to modulate alveolar bone remodeling in periodontitis. Therefore, periodontal nociceptors and nociceptive molecules may contribute to the modulation of orthodontic tooth movement, which currently remains undetermined. Future studies are needed to better understand the fundamental mechanisms underlying neuroskeletal interactions in orthodontics to improve orthodontic treatment by developing novel methods to reduce pain and accelerate orthodontic tooth movement-thereby achieving "big gains with no pain" in clinical orthodontics.
Collapse
Affiliation(s)
- Sheng Wang
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Ching-Chang Ko
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
7
|
Torkzadeh-Mahani S, Abbasnejad M, Raoof M, Aarab G, Esmaeili-Mahani S, Lobbezoo F. Age-dependent down-regulation of orexin receptors in trigeminal nucleus caudalis correlated with attenuation of orexinergic analgesia in rats. Exp Gerontol 2023; 183:112321. [PMID: 37898178 DOI: 10.1016/j.exger.2023.112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Aging is related to a variety of physiological organ changes, including central and peripheral nervous systems. It has been reported that the orexin signaling has a potential analgesic effect in different models of pain, especially inflammatory pulpal pain. However, the age-induced alteration in dental pain perception and orexin analgesia has not yet been fully elucidated. Here, we tested that how aging may change the effect of orexin-A on nociceptive behaviors in a rat dental pulp pain model. The expression levels of orexin receptors and the nociceptive neuropeptides substance P (SP) and calcitonin-related gene peptide (CGRP) were also assessed in the trigeminal nucleus caudalis (TNC) of young and aged rats. Dental pulp pain was induced by intradental application of capsaicin (100 μg). The immunofluorescence technique was used to evaluate the expression levels. The results show less efficiency of orexin-A to ameliorate pain perception in aged rats as compared to young rats. In addition, a significant decrease in the number of orexin 1 and 2 receptors was observed in the TNC of aged as compared to young rats. Dental pain-induced SP and CGRP overexpression was also significantly inhibited by orexin-A injection into the TNC of young animals. In contrast, orexin-A could not produce such effects in the aged animals. In conclusion, the older age-related reduction of the antinociceptive effect of orexin may be due to the downregulation of its receptors and inability of orexin signaling to inhibit the expression of nociceptive neuropeptides such as SP and CGRP in aged rats.
Collapse
Affiliation(s)
- Shima Torkzadeh-Mahani
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Raoof
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Ghizlane Aarab
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Frank Lobbezoo
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Torkzadeh-Mahani S, Abbasnejad M, Raoof M, Aarab G, Esmaeili-Mahani S, Lobbezoo F. Aging exaggerates pulpal pain sensation by increasing the expression levels of nociceptive neuropeptides and inflammatory cytokines. Cytokine 2023; 169:156251. [PMID: 37406473 DOI: 10.1016/j.cyto.2023.156251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Dental pain is a main clinical problem in the elderly population and its assessment and treatment make special challenges for health care services. However, the age-induced alteration in dental pain perception and the underlying molecular mechanism(s) has not yet been fully clarified. METHODS Here, the effect of aging on nociceptive behaviors following inflammatory dental pulp pain was evaluated. Since prostaglandins, nociceptive neuropeptides, and inflammatory cytokines have critical roles in the development of aging as well as pain signaling, the expression levels of COX-2, CGRP, IL-1β, IL-6, TNF-α and its converting enzyme TACE were assessed in the trigeminal ganglion of young and aged rats with dental pain. Dental pulp pain was induced by intradental application of capsaicin (100 μg). The immunofluorescence (COX-2 and CGRP) and western blot techniques were used. RESULTS The data showed that aged animals have different pattern of pain. So that, the mean of nociceptive scores was significantly greater in aged rats at 10 and 15 min after capsaicin injection. In aged rats, dental pain was persisting over 7 h, while it was disappeared at 300 min in young rats. Molecular data showed that dental pain significantly increased the expression of COX-2, CGRP, IL-1β, IL-6, TNF-α and TACE in the trigeminal ganglion of the young and aged rats. In addition, the amount of those parameters, except TACE, in capsaicin-treated aged animals were significantly (p < 0.05) greater than those in capsaicin-treated young rats. CONCLUSION It seems that the induction of pro-inflammatory cytokines in an acute inflammatory pulpal pain model may contribute, at least in part to the increased nociceptive behaviors and pain perception in aged rats.
Collapse
Affiliation(s)
- Shima Torkzadeh-Mahani
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Raoof
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Ghizlane Aarab
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Frank Lobbezoo
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Vila-Pueyo M, Gliga O, Gallardo VJ, Pozo-Rosich P. The Role of Glial Cells in Different Phases of Migraine: Lessons from Preclinical Studies. Int J Mol Sci 2023; 24:12553. [PMID: 37628733 PMCID: PMC10454125 DOI: 10.3390/ijms241612553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Migraine is a complex and debilitating neurological disease that affects 15% of the population worldwide. It is defined by the presence of recurrent severe attacks of disabling headache accompanied by other debilitating neurological symptoms. Important advancements have linked the trigeminovascular system and the neuropeptide calcitonin gene-related peptide to migraine pathophysiology, but the mechanisms underlying its pathogenesis and chronification remain unknown. Glial cells are essential for the correct development and functioning of the nervous system and, due to its implication in neurological diseases, have been hypothesised to have a role in migraine. Here we provide a narrative review of the role of glia in different phases of migraine through the analysis of preclinical studies. Current evidence shows that astrocytes and microglia are involved in the initiation and propagation of cortical spreading depolarization, the neurophysiological correlate of migraine aura. Furthermore, satellite glial cells within the trigeminal ganglia are implicated in the initiation and maintenance of orofacial pain, suggesting a role in the headache phase of migraine. Moreover, microglia in the trigeminocervical complex are involved in central sensitization, suggesting a role in chronic migraine. Taken altogether, glial cells have emerged as key players in migraine pathogenesis and chronification and future therapeutic strategies could be focused on targeting them to reduce the burden of migraine.
Collapse
Affiliation(s)
- Marta Vila-Pueyo
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Otilia Gliga
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Víctor José Gallardo
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
- Headache Unit, Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| |
Collapse
|
10
|
Nabhan AB. Pathophysiology, Clinical Implications and Management of Orofacial Neuropathic Pain- with special attention to Trigeminal neuralgia: A Narrative Review. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2023; 16:835-846. [DOI: 10.13005/bpj/2666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Background: It is a widely held belief that if the trigeminal nerve is damaged, the victim would experience agonising and unrelenting external pain. A lesion to the trigeminal nerve may have a wide-reaching effect, such as on one side of the face in particular, or it might have a more localised effect, such as on some or all of your gums. The risk of damage increases the likelihood that it will be difficult to speak and swallow. This nerve provides sensation to a part of your face that may be constantly aching or tingling for some people. However, the trigeminal nerve injury-related persistent orofacial pain might be brought on by a wide variety of unknown triggers. Aim: In this study investigate the clinical manifestations of chronic orofacial pain brought on by a damage to the trigeminal nerve, as well as the diagnostic and therapeutic approaches available to treat this condition. Methodology Through the use of search phrases such as "Trigeminal nerve injury," "Trigeminal ganglion," "Trigeminal spinal subnucleus caudalis," "Craniofacial pain," "Oral prognosis," and "treatment," the computerised databases for the last twenty years have been investigated. There are now two hundred objects in total that have been accumulated. There have been around fifty of them that are pertinent to the discussion that is going on in this work. Majority of the patients fair enough with the pharmacology treatment/drugs like the carbamazepine & oxcarbazepine which forms the first line treatment options followed by lamotrigine & baclofen encompassing the second line of drugs along with adjuvant drug support of topiramate, levetiracetam, gabapentin, pregabalin. As the field of science has explored &advanced for the latest treatment options include microvascular decompression, gamma knife radiosurgery, percutaneous rhizotomies variable based on the evidences & guidelines 54 Conclusion: New diagnostic criteria and treatment alternatives have become available for people who suffer from trigeminal neuropathy and orofacial neuropathic pain as a result of recent developments in fundamental animal research that have led to their development. Despite the results, more research needs to investigate a greater variety of distinct non-neuronal cell feature approaches.
Collapse
Affiliation(s)
- Abdullah Bin Nabhan
- Oral Medicine and Orofacial Pain, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al Kharj, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Lopes RV, Baggio DF, Ferraz CR, Bertozzi MM, Saraiva-Santos T, Verri Junior WA, Chichorro JG. Maresin-2 inhibits inflammatory and neuropathic trigeminal pain and reduces neuronal activation in the trigeminal ganglion. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100093. [PMID: 37397816 PMCID: PMC10313899 DOI: 10.1016/j.crneur.2023.100093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Pain is a common symptom associated with disorders involving the orofacial structures. Most acute orofacial painful conditions are easily recognized, but the pharmacological treatment may be limited by the adverse events of current available drugs and/or patients' characteristics. In addition, chronic orofacial pain conditions represent clinical challenges both, in terms of diagnostic and treatment. There is growing evidence that specialized pro-resolution lipid mediators (SPMs) present potent analgesic effects, in addition to their well characterized role in the resolution of inflammation. Maresins (MaR-1 and MaR-2) were the last described members of this family, and MaR-2 analgesic action has not yet been reported. Herein the effect of MaR-2 in different orofacial pain models was investigated. MaR-2 (1 or 10 ng) was always delivered via medullary subarachnoid injection, which corresponds to the intrathecal treatment. A single injection of MaR-2 caused a significant reduction of phases I and II of the orofacial formalin test in rats. Repeated injections of MaR-2 prevented the development of facial heat and mechanical hyperalgesia in a model of post-operative pain in rats. In a model of trigeminal neuropathic pain (CCI-ION), repeated MaR-2 injections reversed facial heat and mechanical hyperalgesia in rats and mice. CCI-ION increased c-Fos positive neurons and CGRP+ activated (nuclear pNFkB) neurons in the trigeminal ganglion (TG), which were restored to sham levels by MaR-2 repeated treatment. In conclusion, MaR-2 showed potent and long-lasting analgesic effects in inflammatory and neuropathic pain of orofacial origin and the inhibition of CGRP-positive neurons in the TG may account for MaR-2 action.
Collapse
Affiliation(s)
- Raphael Vieira Lopes
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Camila Rodrigues Ferraz
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Mariana Marques Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Waldiceu Aparecido Verri Junior
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| |
Collapse
|
12
|
Sharav Y, Haviv Y, Benoliel R. Orofacial Migraine or Neurovascular Orofacial Pain from Pathogenesis to Treatment. Int J Mol Sci 2023; 24:2456. [PMID: 36768779 PMCID: PMC9917018 DOI: 10.3390/ijms24032456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
The purpose of the present study is to examine possible differences between orofacial migraine (OFM) and neurovascular orofacial pain (NVOP). Facial presentations of primary headache are comparable to primary headache disorders; but occurring in the V2 or V3 dermatomes of the trigeminal nerve. These were classified and recently published in the International Classification of Orofacial Pain, 1st edition (ICOP). A category in this classification is "orofacial pains resembling presentations of primary headaches," which encompasses OFM and NVOP. The differences between NVOP and OFM are subtle, and their response to therapy may be similar. While classified under two separate entities, they contain many features in common, suggesting a possible overlap between the two. Consequently, their separation into two entities warrants further investigations. We describe OFM and NVOP, and their pathophysiology is discussed. The similarities and segregating clinical signs and symptoms are analyzed, and the possibility of unifying the two entities is debated.
Collapse
Affiliation(s)
- Yair Sharav
- Department of Oral Medicine, Sedation & Maxillofacial Imaging, School of Dental Medicine, Hebrew University-Hadassah, Jerusalem 91010, Israel
| | - Yaron Haviv
- Department of Oral Medicine, Sedation & Maxillofacial Imaging, School of Dental Medicine, Hebrew University-Hadassah, Jerusalem 91010, Israel
| | - Rafael Benoliel
- Unit for Oral Medicine, Department of Oral and Maxillofacial Surgery Division of ENT, Head & Neck and Oral and Maxillofacial Surgery, Tel Aviv Sourasky Medical Center-Ichilov, Tel Aviv 61060, Israel
| |
Collapse
|
13
|
Wanasuntronwong A, Kaewsrisung S, Rotpenpian N, Arayapisit T, Pavasant P, Supronsinchai W. Efficacy and mechanism of the antinociceptive effects of cannabidiol on acute orofacial nociception induced by Complete Freund’s Adjuvant in male Mus musculus mice. Arch Oral Biol 2022; 144:105570. [DOI: 10.1016/j.archoralbio.2022.105570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
|
14
|
Tao T, Liu Y, Zhang J, Lai W, Long H. NGF-Induced Upregulation of CGRP in Orofacial Pain Induced by Tooth Movement Is Dependent on Atp6v0a1 and Vesicle Release. Int J Mol Sci 2022; 23:ijms231911440. [PMID: 36232740 PMCID: PMC9569904 DOI: 10.3390/ijms231911440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The nerve growth factor (NGF) and calcitonin gene-related peptide (CGRP) play a crucial role in the regulation of orofacial pain. It has been demonstrated that CGRP increases orofacial pain induced by NGF. V-type proton ATPase subunit an isoform 1 (Atp6v0a1) is involved in the exocytosis pathway, especially in vesicular transport in neurons. The objective was to examine the role of Atp6v0a1 in NGF-induced upregulation of CGRP in orofacial pain induced by experimental tooth movement. Orofacial pain was elicited by ligating closed-coil springs between incisors and molars in Sprague–Dawley rats. Gene and protein expression levels were determined through real-time polymerase chain reaction, immunostaining, and fluorescence in situ hybridization. Lentivirus vectors carrying Atp6v0a1 shRNA were used to knockdown the expression of Atp6v0a1 in TG and SH-SY5Y neurons. The release of vesicles in SH-SY5Y neurons was observed by using fluorescence dye FM1-43, and the release of CGRP was detected by Enzyme-Linked Immunosorbent Assy. Orofacial pain was evaluated through the rat grimace scale. Our results revealed that intraganglionic administration of NGF and Atp6v0a1 shRNA upregulated and downregulated CGRP in trigeminal ganglia (TG) and trigeminal subnucleus caudalis (Vc), respectively, and the orofacial pain was also exacerbated and alleviated, respectively, following administration of NGF and Atp6v0a1 shRNA. Besides, intraganglionic administration of NGF simultaneously caused the downregulation of Atp6v0a1 in TG. Moreover, the release of vesicles and CGRP in SH-SY5Y neurons was interfered by NGF and Atp6v0a1 shRNA. In conclusion, in the orofacial pain induced by experimental tooth movement, NGF induced the upregulation of CGRP in TG and Vc, and this process is dependent on Atp6v0a1 and vesicle release, suggesting that they are involved in the transmission of nociceptive information in orofacial pain.
Collapse
Affiliation(s)
| | | | | | | | - Hu Long
- Correspondence: (W.L.); (H.L.)
| |
Collapse
|
15
|
P2Y 14 receptor in trigeminal ganglion contributes to neuropathic pain in mice. Eur J Pharmacol 2022; 931:175211. [PMID: 35981606 DOI: 10.1016/j.ejphar.2022.175211] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Trigeminal nerve injury is a common complication of various dental and oral procedures, which could induce trigeminal neuropathic pain but lack effective treatments. P2 purinergic receptors have emerged as novel therapeutic targets for such pain. Recent reports implied that the P2Y14 receptor (P2Y14R) was activated and promoted orofacial inflammatory pain and migraine. However, the role and mechanism of P2Y14R in trigeminal neuropathic pain remain unknown. We induced an orofacial neuropathic pain model by chronic constriction injury of the infraorbital nerve (CCI-ION). Von-Frey tests showed that CCI-ION induced orofacial mechanical hypersensitivity. The increased activating transcription factor 3 (ATF3) expression in the trigeminal ganglion (TG) measured by immunofluorescence confirmed trigeminal nerve injury. Immunofluorescence showed that P2Y14R was expressed in trigeminal ganglion neurons (TGNs) and satellite glial cells (SGCs). RT-qPCR and Western blot identified increased expression of P2Y14R in TG after CCI-ION. CCI-ION also upregulated interleukin-1β (IL-1β), interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2), and tumor necrosis factor-α (TNF-α) in TG. Notably, CCI-ION-induced mechanical hypersensitivity and pro-inflammatory cytokines production were decreased by a P2Y14R antagonist (PPTN). Trigeminal administration of P2Y14R agonist (UDP-glucose) evoked orofacial mechanical hypersensitivity and increased pro-inflammatory cytokines above in TG. Furthermore, CCI-ION induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 in TG, which also were reduced by PPTN. The inhibitors of ERK1/2 (U0126) and p38 (SB203580) decreased these upregulated pro-inflammatory cytokines after CCI-ION. Collectively, this study revealed that P2Y14R in TG contributed to trigeminal neuropathic pain via ERK- and p38-dependent neuroinflammation. Thus, P2Y14R may be a potential drug target against trigeminal neuropathic pain.
Collapse
|
16
|
Tang Z, Zhou J, Long H, Gao Y, Wang Q, Li X, Wang Y, Lai W, Jian F. Molecular mechanism in trigeminal nerve and treatment methods related to orthodontic pain. J Oral Rehabil 2021; 49:125-137. [PMID: 34586644 DOI: 10.1111/joor.13263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Orthodontic treatment is the main treatment approach for malocclusion. Orthodontic pain is an inevitable undesirable adverse reaction during orthodontic treatment. It is reported orthodontic pain has become one of the most common reason that patients withdraw from orthodontic treatment. Therefore, understanding the underlying mechanism and finding treatment of orthodontic pain are in urgent need. AIMS This article aims to sort out the mechanisms and treatments of orthodontic pain, hoping to provide some ideas for future orthodontic pain relief. MATERIALS Tooth movement will cause local inflammation. Certain inflammatory factors and cytokines stimulating the trigeminal nerve and further generating pain perception, as well as drugs and molecular targeted therapy blocking nerve conduction pathways, will be reviewed in this article. METHOD We review and summaries current studies related to molecular mechanisms and treatment approaches in orthodontic pain control. RESULTS Orthodontics pain related influencing factors and molecular mechanisms has been introduced. Commonly used clinical methods in orthodontic pain control has been evaluated. DISCUSSION With the clarification of more molecular mechanisms, the direction of orthodontic pain treatment will shift to targeted drugs.
Collapse
Affiliation(s)
- Ziwei Tang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiawei Zhou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanzi Gao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaolong Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Jian
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Gao M, Yan X, Lu Y, Ren L, Zhang S, Zhang X, Kuang Q, Liu L, Zhou J, Wang Y, Lai W, Long H. Retrograde nerve growth factor signaling modulates tooth mechanical hyperalgesia induced by orthodontic tooth movement via acid-sensing ion channel 3. Int J Oral Sci 2021; 13:18. [PMID: 34088898 PMCID: PMC8178420 DOI: 10.1038/s41368-021-00124-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Orthodontic tooth movement elicits alveolar bone remodeling and orofacial pain that is manifested by tooth mechanical hyperalgesia. Nerve growth factor (NGF) is upregulated in periodontium and may modulate tooth mechanical hyperalgesia. The objectives were to examine the role of NGF in tooth mechanical hyperalgesia and to elucidate the underlying mechanisms. Tooth mechanical hyperalgesia was induced by ligating closed coil springs between incisors and molars in Sprague-Dawley rats. Retrograde labeling was performed by periodontal administration of fluor-conjugated NGF and the detection of fluorescence in trigeminal ganglia (TG). Lentivirus vectors carrying NGF shRNA were employed to knockdown the expression of NGF in TG. The administration of agonists, antagonists, and virus vectors into TG and periodontium was conducted. Tooth mechanical hyperalgesia was examined through the threshold of biting withdrawal. Our results revealed that tooth movement elicited tooth mechanical hyperalgesia that could be alleviated by NGF neutralizing antibody and that NGF was upregulated in periodontium (mainly in periodontal fibroblasts) and TG. Retrograde labeling revealed that periodontal NGF was retrogradely transported to TG after day 1. Acid-sensing ion channel 3 (ASIC3) and NGF were co-expressed in trigeminal neurons and the percentage of co-expression was significantly higher following tooth movement. The administration of NGF and NGF neutralizing antibody into TG could upregulate and downregulate the expression of ASIC3 in TG, respectively. NGF aggravated tooth mechanical hyperalgesia that could be alleviated by ASIC3 antagonist (APETx2). Moreover, NGF neutralizing antibody mitigated tooth mechanical hyperalgesia that could be recapitulated by ASIC3 agonist (GMQ). NGF-based gene therapy abolished tooth mechanical hyperalgesia and downregulated ASIC3 expression. Taken together, in response to force stimuli, periodontal fibroblasts upregulated the expressions of NGF that was retrogradely transported to TG, where NGF elicited tooth mechanical hyperalgesia through upregulating ASIC3. NGF-based gene therapy is a viable method in alleviating tooth-movement-induced mechanical hyperalgesia.
Collapse
Affiliation(s)
- Meiya Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xinyu Yan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanzhu Lu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linghuan Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shizhen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoqi Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianyun Kuang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Hu Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Guo R, Chen Y, Liu L, Wen J, Yang H, Zhu Y, Gao M, Liang H, Lai W, Long H. Nerve Growth Factor Enhances Tooth Mechanical Hyperalgesia Through C-C Chemokine Ligand 19 in Rats. Front Neurol 2021; 12:540660. [PMID: 34149584 PMCID: PMC8211465 DOI: 10.3389/fneur.2021.540660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/29/2021] [Indexed: 02/05/2023] Open
Abstract
The nerve growth factor (NGF) plays an important role in the regulation of neuropathic pain. It has been demonstrated that calcitonin gene-related peptide (CGRP), a well-known contributor to neurogenic inflammation, increases neuroinflammatory pain induced by NGF. The inflammatory mediator that NGF most strongly induces is C-C chemokine ligand 19 (CCL19), which can recruit inflammatory cells by binding to the receptor CCR7 followed by promoting the response of neuroinflammation. However, the regulatory mechanism of NGF and CCL19 in tooth movement orofacial pain and the interaction between both are still unclear. In this study, male Sprague–Dawley rats were used to study the modulation of NGF on orofacial pain through CCL19 and the role of each in tooth movement pain in rats. The expression levels of CCL19 mRNA and protein were determined by real-time PCR and immunofluorescence, respectively. Pain levels were assessed by measuring the rats' bite force, which drops as pain rises. Meanwhile, by verifying the relationship between CGRP and CCL19, it was laterally confirmed that NGF could modulate tooth movement-induced mechanical hyperalgesia through CCL19. The results showed that the expression level of CCL19 rose with the increased NGF, and neurons expressing CGRP can express stronger CCL19. Compared with the baseline level, the bite force for all rats dropped sharply on day 1, reached its lowest level on day 3, and recovered gradually on day 5. All results indicated that NGF played an important role in tooth movement orofacial pain via positively regulating CCL19 expression in the trigeminal ganglia of rats. Additionally, CCL19 increased the sensitivity to experimental tooth movement orofacial pain. NGF can regulate CCL19 expression, although it may regulate other inflammatory pathways as well. This is the first report on the interactions and modulations of tooth movement orofacial pain by NGF through CCL19 in rats.
Collapse
Affiliation(s)
- Rui Guo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiyin Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lu Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafen Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiya Gao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hengyan Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Yan X, Han H, Zhang S, Lu Y, Ren L, Tang Y, Li X, Jian F, Wang Y, Long H, Lai W. N/OFQ modulates orofacial pain induced by tooth movement through CGRP-dependent pathways. BMC Neurosci 2021; 22:25. [PMID: 33836649 PMCID: PMC8034138 DOI: 10.1186/s12868-021-00632-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Nociceptin/orphanin FQ (N/OFQ) has been revealed to play bidirectional roles in orofacial pain modulation. Calcitonin gene-related peptide (CGRP) is a well-known pro-nociceptive molecule that participates in the modulation of orofacial pain. We aimed to determine the effects of N/OFQ on the modulation of orofacial pain and on the release of CGRP. METHODS Orofacial pain model was established by ligating springs between incisors and molars in rats for the simulation of tooth movement. The expression level of N/OFQ was determined and pain level was scored in response to orofacial pain. Both agonist and antagonist of N/OFQ receptor were administered to examine their effects on pain and the expression of CGRP in trigeminal ganglia (TG). Moreover, gene therapy based on the overexpression of N/OFQ was delivered to validate the modulatory role of N/OFQ on pain and CGRP expression. RESULTS Tooth movement elicited orofacial pain and an elevation in N/OFQ expression. N/OFQ exacerbated orofacial pain and upregulated CGRP expression in TG, while UFP-101 alleviated pain and downregulated CGRP expression. N/OFQ-based gene therapy was successful in overexpressing N/OFQ in TG, which resulted in pain exacerbation and elevation of CGRP expression in TG. CONCLUSIONS N/OFQ exacerbated orofacial pain possibly through upregulating CGRP.
Collapse
Affiliation(s)
- Xinyu Yan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Han Han
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Shizhen Zhang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Yanzhu Lu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Linghuan Ren
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Yufei Tang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Xiaolong Li
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Fan Jian
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Yan Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China
| | - Hu Long
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China.
| | - Wenli Lai
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Center for Oral Research, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Road, Chengdu, 610041, China.
| |
Collapse
|