1
|
Hu Q, Wang S, Zhang W, Qu J, Liu GH. Unraveling brain aging through the lens of oral microbiota. Neural Regen Res 2025; 20:1930-1943. [PMID: 38993126 PMCID: PMC11691463 DOI: 10.4103/nrr.nrr-d-23-01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
The oral cavity is a complex physiological community encompassing a wide range of microorganisms. Dysbiosis of oral microbiota can lead to various oral infectious diseases, such as periodontitis and tooth decay, and even affect systemic health, including brain aging and neurodegenerative diseases. Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration, indicating potential avenues for intervention strategies. In this review, we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases, and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration. We also highlight advances in therapeutic development grounded in the realm of oral microbes, with the goal of advancing brain health and promoting healthy aging.
Collapse
Affiliation(s)
- Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
2
|
Jacob G, Milan BA, Antonieto LR, Levi Y, Ribeiro MC, Nassar R, de Sousa-Neto MD, Mazzi-Chaves JF, Messora MR, Furlaneto FAC, Nascimento GC, Del-Bel E. Experimental Periodontitis Worsens Dopaminergic Neuronal Degeneration. J Clin Periodontol 2025; 52:159-170. [PMID: 39223037 DOI: 10.1111/jcpe.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
AIM To investigate the hypothesis supporting the link between periodontitis and dopaminergic neuron degeneration. MATERIALS AND METHODS Adult male Wistar rats were used to induce dopaminergic neuronal injury with 6-hydroxydopamine (6-OHDA) neurotoxin and experimental periodontitis via ligature placement. Motor function assessments were conducted before and after periodontitis induction in controls and 6-OHDA-injury-induced rats. Tissue samples from the striatum, jaw and blood were collected for molecular analyses, encompassing immunohistochemistry of tyrosine hydroxylase, microglia and astrocyte, as well as micro-computed tomography, to assess alveolar bone loss and for the analysis of striatal oxidative stress and plasma inflammatory markers. RESULTS The results indicated motor impairment in 6-OHDA-injury-induced rats exacerbated by periodontitis, worsening dopaminergic striatal degeneration. Periodontitis alone or in combination with 6-OHDA-induced lesion was able to increase striatal microglia, while astrocytes were increased by the combination only. Periodontitis increased striatal reactive oxygen species levels and plasma tumour necrosis factor-alpha levels in rats with 6-OHDA-induced lesions and decreased the anti-inflammatory interleukin-10. CONCLUSIONS This study provides original insights into the association between periodontitis and a neurodegenerative condition. The increased inflammatory pathway associated with both 6-OHDA-induced dopaminergic neuron lesion and periodontal inflammatory processes corroborates that the periodontitis-induced systemic inflammation may aggravate neuroinflammation in Parkinson's-like disease, potentially hastening disease progression.
Collapse
Affiliation(s)
- Gabrielle Jacob
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruna A Milan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Livia Rodrigues Antonieto
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Yara Levi
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Marcela Costa Ribeiro
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Raquel Nassar
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Manoel Damião de Sousa-Neto
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jardel Francisco Mazzi-Chaves
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Flavia Aparecida Chaves Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Glauce C Nascimento
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Duan ZM, Wu LF. Role of oral-gut-brain axis in psychiatric and neurological disorders. Shijie Huaren Xiaohua Zazhi 2024; 32:878-886. [DOI: 10.11569/wcjd.v32.i12.878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The oral cavity and gut are two important microbial habitats in the human body, harboring the most ecologically rich and taxonomically diverse microbial communities in humans, which play a key role in microbiome related diseases. In recent years, the emerging concept of the oral-gut-brain axis has attracted widespread attention in the fields of neuroscience, digestive science, and microbiology. It is not only an anatomical description, but also a comprehensive concept that covers multiple physiological functions and pathological mechanisms. Simply put, the oral-gut-brain axis refers to the complex network that connects the mouth, gut, and brain tightly together through neural connections and hormonal and immune pathways. With the deepening of research on the oral-gut-brain axis theory, more and more evidence shows that it plays an important role in depression, Parkinson's disease, and other neurodegenerative diseases. This article reviews the recent progress in research of the oral-gut-brain axis in psychiatric and neurological diseases.
Collapse
Affiliation(s)
- Zhi-Min Duan
- Department of Gastroenterology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ling-Fei Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
4
|
Liu Z, Huang X, Xie B, Huang Y, He B, Luo L, Liu H, Chen F. Association of 41 Inflammatory Cytokines With Common Oral Diseases. Int Dent J 2024:S0020-6539(24)01609-5. [PMID: 39694712 DOI: 10.1016/j.identj.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND While observational studies have demonstrated a potential link between inflammatory cytokines and oral diseases, the question of causality is warranting further investigation. This study aimed to comprehensively assess the potential causal role of 41 inflammatory cytokines in common oral diseases. METHODS A two-sample Mendelian randomization (MR) study was conducted using the summary statistics from the largest publicly available genome-wide association study (GWAS) for 41 inflammatory cytokines and common oral diseases (indicated by the index of decayed and filled tooth surfaces divided by number of tooth surfaces (DFSS), index of decayed, missing and filled tooth surfaces (DMFS), number of natural teeth, and periodontitis). Inverse variance weighted regression (IVW) was used as the primary method to estimate odds ratios (OR) and 95% confidence interval (CI) for assessing the causal effect. Sensitivity analyses with other four analytical approaches were performed to test the validity of our findings. RESULTS Increased levels of hepatocyte growth factor (HGF) and stem cell growth factor beta (SCGF-β) were significantly associated with the risk of DFSS, with the ORs of 1.058 (95% CI: 1.004-1.115, P = .033) and 1.035 (95% CI:1.002-1.069, P = .038), respectively. Interleukin-1 receptor antagonist (IL-1RA) exhibited a negative association with DMFS (OR = 0.934, 95% CI: 0.886-0.985, P = .012). Furthermore, interleukin-9 (IL-9) was associated with in increased risk of periodontitis (OR = 1.148, 95% CI:1.031-1.277, P = .011). Additionally, no significant association was found between inflammatory cytokines and the number of natural teeth. Sensitivity analyses yielded generally consistent results. CONCLUSIONS This MR study provides evidence supporting potential causal associations of four inflammatory cytokines (HGF, SCGF-β, IL-1RA, IL-9) with the risk of common oral diseases, which may contribute to the development of more targeted prevention strategies for these diseases.
Collapse
Affiliation(s)
- Zilin Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaoyu Huang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, China
| | - Bingqin Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yu Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Lan Luo
- Fujian Key Laboratory of Oral Diseases, Department of Periodontology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Huanhuan Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Fa Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China; Clinical Research Unit, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.
| |
Collapse
|
5
|
Wu Z, Chen J, Kong F, Zhang Y, Yi J, Li Y, Hu M, Wang D. Polypeptide of Inonotus hispidus extracts alleviates periodontitis through suppressing inflammatory bone loss. Int J Biol Macromol 2024; 287:138350. [PMID: 39645101 DOI: 10.1016/j.ijbiomac.2024.138350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
This study aimed to characterize and evaluate the effects of a novel polypeptide isolated from Inonotus hispidus (IH) against periodontitis. The polypeptides extracted and purified from the fruiting body of IH had a uniform molar mass, including 23 types of peptides. IH polypeptide (IHP) exerted antimicrobial activity against Porphyromonas gingivalis (P. gingivalis) by damaging the cell walls and membranes of microorganisms, disturbing energy metabolism, and regulating the expression of virulence factors. IHP significantly inhibited inflammation in lipopolysaccharides (LPS)-stimulated Raw264.7 cells evidenced by the regulation of inflammatory cytokine levels. In rats with ligature-induced periodontitis, IHP treatment ameliorated alveolar bone destruction and preserved the balance between oral flora and gut microbes. The interaction between oral and intestinal flora possibly affected the relevant metabolites. Proteomics combined with confirmation experiment revealed that the β-catenin/ nuclear factor-kappa B (NF-κB) signaling may be involved in IHP-mediated anti-periodontitis in rats, which helps reduce the secretion of pro-inflammatory factors and inhibit inflammatory osteoclastic response in the periodontal tissue. Additionally, IHP improved clinical parameters, including the plaque index (PLI), pocket depth (PD), bleeding on probing (BOP), and average probing depth in individuals with periodontitis. These findings augment the understanding of the potential role of IHP in treating periodontitis.
Collapse
Affiliation(s)
- Zhina Wu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Jianai Chen
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China 2 National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | | | - Yutong Li
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
6
|
de Castro GB, Pereira RRS, Diniz e Magalhães CO, Costa KB, Vieira ER, Cassilhas RC, Sampaio KH, Machado ART, Carvalho JDCL, Murata RM, Pereira LJ, Dias‐Peixoto MF, Andrade EF, Pardi V. Experimental Periodontitis Increases Anxious Behavior and Worsens Cognitive Aspects and Systemic Oxidative Stress in Wistar Rats. Clin Exp Dent Res 2024; 10:e70017. [PMID: 39497351 PMCID: PMC11534646 DOI: 10.1002/cre2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVES Periodontitis (PD) has the potential to induce systemic changes that affect both physical and behavioral aspects. These alterations may be associated with changes in both the inflammatory profile and the oxidative stress status of individuals with PD. Therefore, we aimed to evaluate the effects of PD on oxidative stress, as well as on behavioral parameters and cognitive impairment, in a preclinical model. MATERIAL AND METHODS Twenty-four male Wistar rats were randomly assigned to PD and sham groups. PD was induced by the ligature protocol for 14 days. Behavioral tests were initiated on the 9th day of the experiment to evaluate anxious behavior and cognition (learning and memory). After euthanasia, oxidative stress was evaluated in the gums, blood, hippocampus, and amygdala. Alveolar bone loss, bone microstructure, and elemental compositions of the mandibular bone were also assessed. RESULTS PD increased alveolar bone loss, reduced the calcium and phosphorus content in the mandibular bone, and increased anxiety-like behavior and cognitive decline (p < 0.05). Furthermore, PD significantly affected the redox balance, as evidenced by increased total antioxidant capacity (TAC) in the gingiva and hippocampus (p < 0.05). It also led to increased lipid peroxidation in the gingiva and erythrocytes (p < 0.05), decreased antioxidant defenses in erythrocytes (superoxide dismutase) and the hippocampus (catalase), and increased antioxidant activity (catalase) in the amygdala (p < 0.05). CONCLUSION PD resulted in cognitive alterations, including impairments in spatial learning and memory, as well as increased anxious behavior, likely due to redox imbalance in rats.
Collapse
Affiliation(s)
- Giselle B. de Castro
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Ramona R. S. Pereira
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Caíque O. Diniz e Magalhães
- Biological and Health Sciences DepartmentUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Karine B. Costa
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Etel R. Vieira
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Ricardo C. Cassilhas
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Kinulpe H. Sampaio
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Alan R. T. Machado
- Department of Exact SciencesUniversidade do Estado de Minas GeraisJoão MonlevadeMinas GeraisBrazil
| | | | - Ramiro M. Murata
- Department of Foundational Sciences, School of Dental MedicineEast Carolina University (ECU)GreenvilleNorth CarolinaUSA
| | - Luciano J. Pereira
- Department of Health SciencesUniversidade Federal de Lavras (UFLA)LavrasBrazil
| | - Marco F. Dias‐Peixoto
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Eric F. Andrade
- Department of Health SciencesUniversidade Federal de Lavras (UFLA)LavrasBrazil
| | - Vanessa Pardi
- Department of Foundational Sciences, School of Dental MedicineEast Carolina University (ECU)GreenvilleNorth CarolinaUSA
| |
Collapse
|
7
|
Ye W, Tao Y, Wang W, Yu Y, Li X. Periodontitis associated with brain function impairment in middle-aged and elderly individuals with normal cognition. J Periodontol 2024. [PMID: 39565645 DOI: 10.1002/jper.24-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND The present study aimed to investigate changes in intranetwork functional connectivity (FC) and internetwork FC in middle-aged and elderly individuals with normal cognition (NC) and varying degrees of periodontitis to determine the effects of periodontitis on brain function. METHODS Periodontal findings and resting-state functional magnetic resonance imaging data were acquired from 51 subjects with NC. Independent component analysis and correlation analysis were used for the statistical analysis of the data. RESULTS Differences in intranetwork FC were observed among groups in the anterior default-mode network (aDMN), dorsal attention network and dorsal sensorimotor network (dSMN). Compared with the nonperiodontitis (NP) group or the mild-periodontitis group, the analysis of internetwork FC showed increased FC between the auditory network and the ventral attention network (VAN), between the aDMN and the salience network (SN), and between the SN and the VAN and decreased FC between the posterior default-mode network and the right frontoparietal network in the moderate-to-severe periodontitis group. Additionally, internetwork FC between the dSMN and the VAN was also increased in the moderate-to-severe periodontitis group compared to the NP group. The altered intra- and internetwork FC were significantly correlated with the periodontal clinical index. CONCLUSION Our results confirmed that periodontitis was associated with both intra- and internetwork FC changes even in NC. The present study indicates that periodontitis might be a potential risk factor for brain damage and provides a theoretical clue and a new treatment target for the early prevention of Alzheimer disease. PLAIN LANGUAGE SUMMARY Recent research has proposed that periodontitis is a potential risk factor for Alzheimer disease (AD). However, the relationship between periodontitis and the brain function of middle-aged and elderly individuals with normal cognition (NC) remains unclear. Analyzing the effect of periodontitis on brain function in the NC stage can provide clues to AD development and help achieve early prevention of dementia. The present study aimed to investigate changes in brain functional connectivity (FC) in NC with different severity of periodontitis to determine the effects of periodontitis on brain function. Both changed intranetwork FC and internetwork FC were found in the moderate-to-severe periodontitis group, and periodontitis was associated with brain network function impairment in NC. The present study indicates that periodontitis might be a potential risk factor for brain damage even in NC stage, and provides a theoretical clue and a new treatment target for the early prevention of AD.
Collapse
Affiliation(s)
- Wei Ye
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yufei Tao
- Department of Periodontics, Hefei Stomatological Clinic College, Anhui Medical University & Stomatological Hospital, Hefei, China
| | - Wenrui Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoshu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Kis-György R, Körtési T, Anicka A, Nagy-Grócz G. The Connection Between the Oral Microbiota and the Kynurenine Pathway: Insights into Oral and Certain Systemic Disorders. Curr Issues Mol Biol 2024; 46:12641-12657. [PMID: 39590344 PMCID: PMC11593024 DOI: 10.3390/cimb46110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The oral microbiome, comprising bacteria, fungi, viruses, and protozoa, is essential for maintaining both oral and systemic health. This complex ecosystem includes over 700 bacterial species, such as Streptococcus mutans, which contributes to dental caries through acid production that demineralizes tooth enamel. Fungi like Candida and pathogens such as Porphyromonas gingivalis are also significant, as they can lead to periodontal diseases through inflammation and destruction of tooth-supporting structures. Dysbiosis, or microbial imbalance, is a key factor in the development of these oral diseases. Understanding the composition and functions of the oral microbiome is vital for creating targeted therapies for these conditions. Additionally, the kynurenine pathway, which processes the amino acid tryptophan, plays a crucial role in immune regulation, neuroprotection, and inflammation. Oral bacteria can metabolize tryptophan, influencing the production of kynurenine, kynurenic acid, and quinolinic acid, thereby affecting the kynurenine system. The balance of microbial species in the oral cavity can impact tryptophan levels and its metabolites. This narrative review aims to explore the relationship between the oral microbiome, oral diseases, and the kynurenine system in relation to certain systemic diseases.
Collapse
Affiliation(s)
- Rita Kis-György
- Section of Health Behaviour and Health Promotion, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary;
- Doctoral School of Interdisciplinary Medicine, University of Szeged, Szőkefalvi–Nagy Béla u. 4/B, H-6720 Szeged, Hungary
| | - Tamás Körtési
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, Danube Neuroscience Research Laboratory, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Alexandra Anicka
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői Út 78/A, H-1182 Budapest, Hungary;
| | - Gábor Nagy-Grócz
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
9
|
Rei N, Grunho M, Mendes JJ, Fonseca J. Microbiota Orchestra in Parkinson's Disease: The Nasal and Oral Maestros. Biomedicines 2024; 12:2417. [PMID: 39594984 PMCID: PMC11591639 DOI: 10.3390/biomedicines12112417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons, leading to a range of motor and non-motor symptoms. BACKGROUND/OBJECTIVES Over the past decade, studies have identified a potential link between the microbiome and PD pathophysiology. The literature suggests that specific bacterial communities from the gut, oral, and nasal microbiota may be involved in neuroinflammatory processes, which are hallmarks of PD. This review aims to comprehensively analyze the current research on the composition, diversity, and dysbiosis characteristics of the nasal and oral microbiota in PD. METHODS Through a comprehensive search across scientific databases, we identify twenty original studies investigating the nasal and oral microbiota in PD. RESULTS Most of these studies demonstrate the substantial roles of bacterial communities in neuroinflammatory pathways associated with PD progression. They also underscore the influences of microbiota-derived factors on key aspects of PD pathology, including alpha-synuclein aggregation and immune dysregulation. CONCLUSIONS Finally, we discuss the potential diagnostic and therapeutic implications of modulating the nasal and oral microbiota in PD management. This analysis seeks to identify potential avenues for future research in order to clarify the complex relationships between these microorganisms and PD.
Collapse
Affiliation(s)
- Nádia Rei
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Campus Universitário, Quinta da Granja, 2829-511 Monte de Caparica, Portugal; (M.G.); (J.J.M.); (J.F.)
| | - Miguel Grunho
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Campus Universitário, Quinta da Granja, 2829-511 Monte de Caparica, Portugal; (M.G.); (J.J.M.); (J.F.)
- Department of Neurology, Hospital Garcia de Orta EPE (HGO), 2805-267 Almada, Portugal
| | - José João Mendes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Campus Universitário, Quinta da Granja, 2829-511 Monte de Caparica, Portugal; (M.G.); (J.J.M.); (J.F.)
| | - Jorge Fonseca
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Campus Universitário, Quinta da Granja, 2829-511 Monte de Caparica, Portugal; (M.G.); (J.J.M.); (J.F.)
- Department of Gastroenterology, Hospital Garcia de Orta EPE (HGO), 2805-267 Almada, Portugal
| |
Collapse
|
10
|
Adewoyin M, Hamarsha A, Akinsola R, Teoh SL, Azmai MNA, Abu Bakar N, Nasruddin NS. Intraperitoneal Injection of the Porphyromonas gingivalis Outer Membrane Vesicle (OMV) Stimulated Expressions of Neuroinflammatory Markers and Histopathological Changes in the Brains of Adult Zebrafish. Int J Mol Sci 2024; 25:11025. [PMID: 39456807 PMCID: PMC11506875 DOI: 10.3390/ijms252011025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Porphyromonas gingivalis is the major pathogenic bacteria found in the subgingival plaque of patients with periodontitis, which leads to neuroinflammation. The bacteria destroy periodontal tissue through virulence factors, which are retained in the bacteria's outer membrane vesicles (OMV). This study aimed to determine the real-time effect of an intraperitoneal injection of P. gingivalis OMV on the production and expression of inflammatory markers and histopathological changes in adult zebrafishes' central nervous systems (CNS). Following the LD50 (21 µg of OMV), the zebrafish were injected intraperitoneally with 18 µg of OMVs, and the control group were injected with normal saline at seven different time points. Brains of experimental zebrafish were dissected at desired time points for colorimetric assays, ELISA, and histology. This study discovered that nitric oxide and PGE2 were significantly increased at 45 min, while IL-1β and IL-6 were expressed at subsequent 12 h and 24 h time points, respectively. Histopathological changes such as blood coagulation, astrocytosis, edema, spongiosis, and necrosis were observed between the 6hour and 24 h time points. The two apoptotic enzymes, caspases 3 and 9, were not expressed at any point. In summary, the OMV-induced neuroinflammatory responses and histopathological changes in adult zebrafish were time-point dependent. This study will enrich our understanding of the mechanism of P. gingivalis OMVs in neuroinflammation in a zebrafish model, most especially the timing of the expression of inflammatory mediators in relation to observable changes in brain tissues.
Collapse
Affiliation(s)
- Malik Adewoyin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (M.A.); (A.H.)
| | - Ahmed Hamarsha
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (M.A.); (A.H.)
| | - Rasaq Akinsola
- Department of Medicine, Division of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohammad Noor Amal Azmai
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Noraini Abu Bakar
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (M.A.); (A.H.)
| |
Collapse
|
11
|
Wang B, Zhang C, Shi C, Zhai T, Zhu J, Wei D, Shen J, Liu Z, Jia K, Zhao L. Mechanisms of oral microflora in Parkinson's disease. Behav Brain Res 2024; 474:115200. [PMID: 39134178 DOI: 10.1016/j.bbr.2024.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with complex pathogenesis and no effective treatment. Recent studies have shown that dysbiosis of the oral microflora is closely related to the development of PD. The abnormally distributed oral microflora of PD patients cause degenerative damage and necrosis of dopamine neurons by releasing their own components and metabolites, intervening in the oral-gut-brain axis, crossing the biofilm, inducing iron dysregulation, activating inter-microflora interactions, and through the mediation of saliva,ultimately influencing the development of the disease. This article reviews the structure of oral microflora in patients with PD, the mechanism of development of PD caused by oral microflora, and the potential value of targeting oral microflora in developing a new strategy for PD prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Bingbing Wang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Can Zhang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Caizhen Shi
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Tianyu Zhai
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Jinghui Zhu
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Dongmin Wei
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Juan Shen
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Zehao Liu
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Kunpeng Jia
- Yan'an University Affiliated Hospital, Yan'an, Shaanxi, China.
| | - Lin Zhao
- Medical School of Yan'an University, Yan'an, Shaanxi, China.
| |
Collapse
|
12
|
Mackey-Alfonso SE, Butler MJ, Taylor AM, Williams-Medina AR, Muscat SM, Fu H, Barrientos RM. Short-term high fat diet impairs memory, exacerbates the neuroimmune response, and evokes synaptic degradation via a complement-dependent mechanism in a mouse model of Alzheimer's disease. Brain Behav Immun 2024; 121:56-69. [PMID: 39043341 DOI: 10.1016/j.bbi.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disease characterized by profound memory impairments, synaptic loss, neuroinflammation, and hallmark pathological markers. High-fat diet (HFD) consumption increases the risk of developing AD even after controlling for metabolic syndrome, pointing to a role of the diet itself in increasing risk. In AD, the complement system, an arm of the immune system which normally tags redundant or damaged synapses for pruning, becomes pathologically overactivated leading to tagging of healthy synapses. While the unhealthy diet to AD link is strong, the underlying mechanisms are not well understood in part due to confounding variables associated with long-term HFD which can independently influence the brain. Therefore, we experimented with a short-term diet regimen to isolate the diet's impact on brain function without causing obesity. This project investigated the effect of short-term HFD on 1) memory, 2) neuroinflammation including complement, 3) AD pathology markers, 4) synaptic markers, and 5) in vitro microglial synaptic phagocytosis in the 3xTg-AD mouse model. Following the consumption of either standard chow or HFD, 3xTg-AD and non-Tg mice were tested for memory impairments. In a separate cohort of mice, levels of hippocampal inflammatory markers, complement proteins, AD pathology markers, and synaptic markers were measured. For the last set of experiments, BV2 microglial phagocytosis of synapses was evaluated. Synaptoneurosomes isolated from the hippocampus of 3xTg-AD mice fed chow or HFD were incubated with equal numbers of BV2 microglia. The number of BV2 microglia that phagocytosed synaptoneurosomes was tracked over time with a live-cell imaging assay. Finally, we incubated BV2 microglia with a complement receptor inhibitor (NIF) and repeated the assay. Behavioral analysis showed 3xTg-AD mice had significantly impaired long-term contextual and cued fear memory compared to non-Tg mice that was further impaired by HFD. HFD significantly increased inflammatory markers and complement expression while decreasing synaptic marker expression only in 3xTg-AD mice, without altering AD pathology markers. Synaptoneurosomes from HFD-fed 3xTg-AD mice were phagocytosed at a significantly higher rate than those from chow-fed mice, suggesting the synapses were altered by HFD. The complement receptor inhibitor blocked this effect in a dose-dependent manner, demonstrating the HFD-mediated increase in phagocytosis was complement dependent. This study indicates HFD consumption increases neuroinflammation and over-activates the complement cascade in 3xTg-AD mice, resulting in poorer memory. The in vitro data point to complement as a potential mechanistic culprit and therapeutic target underlying HFD's influence in increasing cognitive vulnerability to AD.
Collapse
Affiliation(s)
- Sabrina E Mackey-Alfonso
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Michael J Butler
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
| | - Ashton M Taylor
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | | | - Stephanie M Muscat
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Hao Y, Yuan Z, Zhu Y, Li S, Gou J, Dong S, Niu L. Association between tooth loss and depression mediated by lifestyle and Inflammation- a cross-sectional investigation. BMC Public Health 2024; 24:2627. [PMID: 39334197 PMCID: PMC11438309 DOI: 10.1186/s12889-024-20065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Depression and tooth loss are associated with the occurrence of systemic disease or the progression of multi-factorial disease, and both are considered important public health issues by World Health Organization (WHO). Previous research just suggested that tooth loss can generate psychological stress, low self-esteem, anxiety and other emotional disturbances. However, the precise correlation and underlying mechanisms between depression and tooth loss remains poorly understood. Consequently, we aim to explore the association between depression and tooth loss through a cross-sectional study, as well as investigate potential pathways of influence. METHODS We analyzed data from the National Health and Nutrition Examination Survey (NHANES). Logistic regression models were employed to examine the relationship between depression and tooth loss, as well as the associations among healthy lifestyle, systemic immune-inflammation index (SII), depression and tooth loss. Through the mediating effect analysis by bootstrapping analysis, we evaluated the mediating effects of healthy lifestyle and SII between depression and tooth loss. RESULTS Depressed patients were more likely to be toothless, and at the same time showed a tendency to have more missing teeth, with odds ratio (OR) = 1.305 (1.098, 1.551), p = 0.003 for 1-7 missing teeth, OR = 1.557 (1.166, 2.079), p = 0.003 for 8-14 missing teeth, and OR = 1.960 (1.476, 2.603), p<0.001 for 15-28 missing teeth. Lower healthy lifestyle scores and higher SII were both associated with more tooth loss. Healthy lifestyle and SII played a partial mediating role in this relationship, with a mediating effect ratio of 41.691% and 3.289%, respectively. CONCLUSIONS Depression was positively associated with more severe tooth loss, which was partly mediated by lifestyle and SII. Therefore, attention should also be paid to the effects of depression as a mental disorder on physical health, such as depression and tooth loss. Adopting a healthier lifestyle and controlling systemic inflammation may be potential ways to reduce the impact of depression and tooth loss.
Collapse
Affiliation(s)
- Yaqi Hao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, China
| | - Zhimin Yuan
- Department of Clinical Laboratory, Shaanxi Provincial Cancer Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yingze Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Shaoru Li
- Experimental Teaching Center, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jingning Gou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, China
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, China.
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, China.
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
14
|
Luesma MJ, López-Marco L, Monzón M, Santander S. Enteric Nervous System and Its Relationship with Neurological Diseases. J Clin Med 2024; 13:5579. [PMID: 39337066 PMCID: PMC11433641 DOI: 10.3390/jcm13185579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The enteric nervous system (ENS) is a fundamental component of the gastrointestinal system, composed of a vast network of neurons and glial cells. It operates autonomously but is interconnected with the central nervous system (CNS) through the vagus nerve. This communication, known as the gut-brain axis, influences the bidirectional communication between the brain and the gut. Background/Objectives: This study aimed to review neurological pathologies related to the ENS. Methods: To this end, a comprehensive literature search was conducted in the "PubMed" database. Articles available in "free format" were selected, applying the filters "Humans" and limiting the search to publications from the last ten years. Results: The ENS has been linked to various neurological diseases, from autism spectrum disorder to Parkinson's disease including neurological infection with the varicella zoster virus (VZV), even sharing pathologies with the CNS. This finding suggests that the ENS could serve as an early diagnostic marker or therapeutic target for neurological diseases. Gastrointestinal symptoms often precede CNS symptoms, and the ENS's accessibility aids in diagnosis and treatment. Parkinson's patients may show intestinal lesions up to twenty years before CNS symptoms, underscoring the potential for early diagnosis. However, challenges include developing standardized diagnostic protocols and the uneven distribution of dopaminergic neurons in the ENS. Continued research is needed to explore the ENS's potential in improving disease prognosis. Conclusions: The ENS is a promising area for early diagnosis and therapeutic development. Nevertheless, it is essential to continue research in this area, especially to gain a deeper understanding of its organization, function, and regenerative capacity.
Collapse
Affiliation(s)
- María José Luesma
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Liberto López-Marco
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Marta Monzón
- Department of Human Anatomy and Histology, University of Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Santander
- Department of Pharmacology, Physiology, Legal and Forensic Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
15
|
Zhang Y, Lin S, Chen X, Lan H, Li W, Lin L. Association of periodontitis with all-cause and cause-specific mortality among individuals with depression: a population-based study. Sci Rep 2024; 14:21917. [PMID: 39300119 DOI: 10.1038/s41598-024-72297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
To detect the association between periodontitis and all-cause as well as cause-specific mortality rates among adults diagnosed with depression. Participants diagnosed with depression were selected from NHANES across three periods (1988-1994; 1999-2004; 2009-2014). Cox proportional hazards and Weibull accelerated failure time (AFT) models were utilized to calculate hazard ratios (HRs), time ratios (TRs), and their 95% confidence intervals (CIs) to evaluate the association between moderate-to-severe periodontitis and all-cause as well as cause-specific mortality among participants with depression. white blood counts and C-reactive protein were used to assess the mediating role of systemic inflammation. Among the 1,189 participants with a median follow-up of 9.25 years, 133 deaths were recorded. After adjusting for multiple variables, moderate-to-severe periodontitis was obvious associated with an increased risk of cancer-related mortality in individuals with depression (Cox: HR 3.22, 95% CI 1.51-6.83, P = 0.002; AFT: TR 0.70, 95% CI 0.52-0.94, P = 0.017). Neither WBC nor CRP significantly mediate the association between periodontitis and cancer-related mortality. The risk of cancer-related mortality rose with the severity of periodontitis (P for trend = 0.021). However, no association was observed between moderate-to-severe periodontitis and other kinds of mortality. Moderate-to-severe periodontitis is linked to an elevated risk of cancer-related mortality among adults diagnosed with depression, with the mortality risk increasing alongside the severity of periodontitis. No significant mediating effect of systemic inflammation was found in this association. These findings highlight the importance of addressing periodontal health in individuals with depression. By uncovering the association between periodontitis and mortality in this population, our study underscores the potential benefits of preventive dental care and periodontal treatment in reducing the risk of cancer-related mortality in individuals with depression.
Collapse
Affiliation(s)
- Yonghuan Zhang
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Shanfeng Lin
- Department of Oroamxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xuzhuo Chen
- Shanghai Key Laboratory of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, National Clinical Research Center for Oral Diseases, National Center for Stomatology, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongbing Lan
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong kong, China
| | - Weiqi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Li Lin
- Department of Periodontology, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
16
|
Chen X, Dai Y, Li Y, Xin J, Zou J, Wang R, Zhang H, Liu Z. Identification of cross-talk pathways and PANoptosis-related genes in periodontitis and Alzheimer's disease by bioinformatics analysis and machine learning. Front Aging Neurosci 2024; 16:1430290. [PMID: 39258145 PMCID: PMC11384588 DOI: 10.3389/fnagi.2024.1430290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Background and objectives Periodontitis (PD), a chronic inflammatory disease, is a serious threat to oral health and is one of the risk factors for Alzheimer's disease (AD). A growing body of evidence suggests that the two diseases are closely related. However, current studies have not provided a comprehensive understanding of the common genes and common mechanisms between PD and AD. This study aimed to screen the crosstalk genes of PD and AD and the potential relationship between cross-talk and PANoptosis-related genes. The relationship between core genes and immune cells will be analyzed to provide new targets for clinical treatment. Materials and methods The PD and AD datasets were downloaded from the GEO database and differential expression analysis was performed to obtain DEGs. Overlapping DEGs had cross-talk genes linking PD and OP, and PANoptosis-related genes were obtained from a literature review. Pearson coefficients were used to compute cross-talk and PANoptosis-related gene correlations in the PD and AD datasets. Cross-talk genes were obtained from the intersection of PD and AD-related genes, protein-protein interaction(PPI) networks were constructed and cross-talk genes were identified using the STRING database. The intersection of cross-talk and PANoptosis-related genes was defined as cross-talk-PANoptosis genes. Core genes were screened using ROC analysis and XGBoost. PPI subnetwork, gene-biological process, and gene-pathway networks were constructed based on the core genes. In addition, immune infiltration on the PD and AD datasets was analyzed using the CIBERSORT algorithm. Results 366 cross-talk genes were overlapping between PD DEGs and AD DEGs. The intersection of cross-talk genes with 109 PANoptosis-related genes was defined as cross-talk-PANoptosis genes. ROC and XGBoost showed that MLKL, DCN, IL1B, and IL18 were more accurate than the other cross-talk-PANoptosis genes in predicting the disease, as well as better in overall characterization. GO and KEGG analyses showed that the four core genes were involved in immunity and inflammation in the organism. Immune infiltration analysis showed that B cells naive, Plasma cells, and T cells gamma delta were significantly differentially expressed in patients with PD and AD compared with the normal group. Finally, 10 drugs associated with core genes were retrieved from the DGIDB database. Conclusion This study reveals the joint mechanism between PD and AD associated with PANoptosis. Analyzing the four core genes and immune cells may provide new therapeutic directions for the pathogenesis of PD combined with AD.
Collapse
Affiliation(s)
- Xiantao Chen
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yifei Dai
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yushen Li
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Jiajun Xin
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Jiatong Zou
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Rui Wang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hao Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Zhihui Liu
- Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
17
|
Batista-Cárdenas D, Araya-Castillo A, Arias-Campos MP, Solís-Rivera AP, Jiménez-Matarrita J, Piedra-Hernández L, Madriz-Montero L, Ramírez K. Association of the severity and progression rate of periodontitis with systemic medication intake. FRONTIERS IN ORAL HEALTH 2024; 5:1447019. [PMID: 39157205 PMCID: PMC11328918 DOI: 10.3389/froh.2024.1447019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Background/purpose Information on the systemic medication profiles of patients with periodontitis is limited. Therefore, this retrospective cross-sectional study aimed to analyze the relationship between the severity and rate of progression of periodontitis and systemic medication intake using a database of patients who attended the Clinic of Periodontics of the Faculty of Dentistry of the University of Costa Rica. Methods Electronic health records of patients diagnosed with periodontitis based on the Classification of Periodontal and Peri-Implant Diseases and Conditions (2017) were evaluated. Individuals were further categorized based on the severity (stage) and rate of progression (grade). Data extracted from the patient records included age, sex, and self-reported medication intake. Results In total, 930 records were included. Most of the studied population was middle-aged (36-64 years old); 43.01% were male, and 56.99% were female. Four hundred and fifty-seven patients (49.14%) reported taking at least one systemic medication for a chronic condition. Regarding the periodontal treatment phase, 62.37% underwent steps 1-3, and 37.63% underwent step 4. The most common systemic medications taken were for cardiovascular diseases (42.28%), followed by medications for diabetes (14.46%) and neurologic disorders (14.46%). Most patients (59.35%) were diagnosed with Stage III periodontitis. Grade B (48.28%) was the most prevalent. Calcium channel blockers demonstrated a disease severity-dependent association with the periodontal stage (p = 0.021). In addition, systemic medications for diabetes mellitus were associated with periodontal disease severity and rate of progression (all Ps < 0.05). Conclusions This study provides indirect evidence of the association between systemic diseases and periodontitis. The positive association between medications used to treat diabetes and the severity and rate of progression of periodontitis may be due to the underlying disease rather than the medications per se.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karol Ramírez
- Faculty of Dentistry, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
18
|
Kuźniar J, Kozubek P, Czaja M, Leszek J. Correlation between Alzheimer's Disease and Gastrointestinal Tract Disorders. Nutrients 2024; 16:2366. [PMID: 39064809 PMCID: PMC11279885 DOI: 10.3390/nu16142366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease is the most common cause of dementia globally. The pathogenesis is multifactorial and includes deposition of amyloid-β in the central nervous system, presence of intraneuronal neurofibrillary tangles and a decreased amount of synapses. It remains uncertain what causes the progression of the disease. Nowadays, it is suggested that the brain is connected to the gastrointestinal tract, especially the enteric nervous system and gut microbiome. Studies have found a positive association between AD and gastrointestinal diseases such as periodontitis, Helicobacter pylori infection, inflammatory bowel disease and microbiome disorders. H. pylori and its metabolites can enter the CNS via the oropharyngeal olfactory pathway and may predispose to the onset and progression of AD. Periodontitis may cause systemic inflammation of low severity with high levels of pro-inflammatory cytokines and neutrophils. Moreover, lipopolysaccharide from oral bacteria accompanies beta-amyloid in plaques that form in the brain. Increased intestinal permeability in IBS leads to neuronal inflammation from transference. Chronic inflammation may lead to beta-amyloid plaque formation in the intestinal tract that spreads to the brain via the vagus nerve. The microbiome plays an important role in many bodily functions, such as nutrient absorption and vitamin production, but it is also an important factor in the development of many diseases, including Alzheimer's disease. Both the quantity and diversity of the microbiome change significantly in patients with AD and even in people in the preclinical stage of the disease, when symptoms are not yet present. The microbiome influences the functioning of the central nervous system through, among other things, the microbiota-gut-brain axis. Given the involvement of the microbiome in the pathogenesis of AD, antibiotic therapy, probiotics and prebiotics, and faecal transplantation are being considered as possible therapeutic options.
Collapse
Affiliation(s)
- Julia Kuźniar
- Student Scientific Group of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland; (P.K.); (M.C.)
| | - Patrycja Kozubek
- Student Scientific Group of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland; (P.K.); (M.C.)
| | - Magdalena Czaja
- Student Scientific Group of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland; (P.K.); (M.C.)
| | - Jerzy Leszek
- Department of Psychiatry, Faculty of Medicine, Wroclaw Medical University, 50-369 Wroclaw, Poland;
| |
Collapse
|
19
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol Biol Rep 2024; 51:814. [PMID: 39008163 DOI: 10.1007/s11033-024-09737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
20
|
Zhao J, Zhao P. Association between serum neurofilament light chain and periodontitis. Clin Oral Investig 2024; 28:369. [PMID: 38864919 PMCID: PMC11168977 DOI: 10.1007/s00784-024-05769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES The association between serum neurofilament light chain (sNfL) and periodontitis remains unclear, and there is a need to examine the contribution of serum albumin (SA) in this association. The objective of the study is to investigate the correlation between sNfLand periodontitis, while examining the potential mediator role of SA in this association. METHODS The study, which included 1218 participants from the 2013-2014 National Health and Nutrition Examination Survey (NHANES), aimed to evaluate the association between sNfL and periodontitis through weighted multivariable logistic regression analysis, restricted cubic spline (RCS) models, and stratified models. In addition, mediation analysis was used to investigate the role of SA in mediating this association. RESULTS The multivariable logistic regression models revealed that sNfL was significantly linked to periodontitis (model 1: odds ratio [OR], 3.08, 95% confidence interval [CI], 1.48 to 6.39, model 2: OR, 3.69; 95% CI, 1.73 to 7.90, model 3: OR, 3.58, 95% CI, 1.52 to 8.43). The RCS models suggested a linear relationship between sNfL and periodontitis. The stratified analysis revealed no significant moderating effects (p-value > 0.05). The mediation analysis demonstrated that SA mediated the correlation between sNfL and periodontitis, with a mediation proportion of 10.62%. CONCLUSIONS The results point to sNfL being a factor in the heightened risk of periodontitis. Additionally, SA may mediate the changes in periodontitis that are associated with sNfL. CLINICAL RELEVANCE sNfL may contribute to the development of periodontitis by mediating changes in SA in humans.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Xindu Road 606#, Yancheng, Jiangsu Province, PR China.
| | - Panwen Zhao
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Xindu Road 606#, Yancheng, Jiangsu Province, PR China
| |
Collapse
|
21
|
Arcas VC, Tig IA, Moga DFC, Vlad AL, Roman-Filip C, Fratila AM. A Systematic Literature Review on Inflammatory Markers in the Saliva of Patients with Multiple Sclerosis: A Cause or a Consequence of Periodontal Diseases. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:859. [PMID: 38929476 PMCID: PMC11205661 DOI: 10.3390/medicina60060859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Multiple sclerosis (MS) is a chronic neurodegenerative disease often linked with systemic conditions such as periodontal diseases (PDs). This systematic review aims to explore the association between inflammatory markers in saliva and PDs in MS patients, assessing the use of saliva as a non-invasive tool to monitor disease progression. Materials and Methods: 82 publications were examined after a thorough search of scholarly databases to determine whether inflammatory markers were present in MS patients and whether they were associated with periodontal disease (PD). Quality and bias were assessed using the Newcastle-Ottawa Scale, resulting in eight articles that were thoroughly analyzed. Results: The results point to a strong correlation between MS and periodontal disorders, which may point to the same pathophysiological mechanism. It does, however, underscore the necessity of additional study to determine a definitive causal association. Conclusions: The findings indicate a strong association between MS and PDs, likely mediated by systemic inflammatory responses detectable in saliva. The review highlights the importance of oral health in managing MS and supports the utility of saliva as a practical, non-invasive medium for monitoring systemic inflammation. Further research is necessary to confirm the causal relationships and to consider integrating salivary diagnostics into routine clinical management for MS patients.
Collapse
Affiliation(s)
- Vasile Calin Arcas
- Doctoral School of Biomedical Sciences, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania;
| | - Ioan Andrei Tig
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Doru Florian Cornel Moga
- Department of Dental Medicine and Nursing, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (C.R.-F.); (A.M.F.)
- Military Clinical Emergency Hospital of Sibiu, 550024 Sibiu, Romania
| | - Alexandra Lavinia Vlad
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
| | - Corina Roman-Filip
- Department of Dental Medicine and Nursing, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (C.R.-F.); (A.M.F.)
- Neurology Department, Emergency County Clinical Hospital Sibiu, 550245 Sibiu, Romania
| | - Anca Maria Fratila
- Department of Dental Medicine and Nursing, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (C.R.-F.); (A.M.F.)
- Military Clinical Emergency Hospital of Sibiu, 550024 Sibiu, Romania
| |
Collapse
|
22
|
Xie C, Zhang Q, Ye X, Wu W, Cheng X, Ye X, Ruan J, Pan X. Periodontitis-induced neuroinflammation impacts dendritic spine immaturity and cognitive impairment. Oral Dis 2024; 30:2558-2569. [PMID: 37455416 DOI: 10.1111/odi.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/03/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE This study investigated the spinal changes in ligature-induced periodontitis and the role of periodontitis in cognitive impairment. METHODS Twenty mice were randomized into the control and chronic periodontitis (CP) groups, with the latter receiving ligature-induced periodontitis. Cognitive performance was assessed by fear conditioning test. Periodontal inflammation and alveolar bone resorption were evaluated by micro-computed tomography and histopathology. The hippocampal microglial activation was evaluated by immunohistochemistry (IHC). The expressions of hippocampal cytokines (TNF-α, iNOS, IL-1β, IL-4, IL-10, and TREM2) were measured by reverse transcription-polymerase chain reaction. The morphology and density of the dendritic spines were determined by Golgi-Cox staining. RESULTS The CP mice reported significant inflammatory cell infiltration and alveolar bone resorption, with marked increases in cytokine levels (TNF-α, iNOS, IL-1β, and TREM2) in the brain. Moreover, the CP mice showed significantly reduced freezing to the conditioned stimulus in the cued and contextual tests, indicating impaired memory. Further analyses revealed, in the hippocampus of the CP mice, enhanced microglial activation, decreased dendritic spine density, and increased proportion of thin dendritic spines. CONCLUSIONS Periodontitis-induced neuroinflammation may impair the cognitive function by activating hippocampal microglia and inducing dendritic spine immaturity.
Collapse
Affiliation(s)
- Changfu Xie
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Qiuyang Zhang
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fuzhou Second Hospital, Fuzhou, China
| | - Xinyi Ye
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Weiliang Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaojuan Cheng
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaoan Ye
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jianyong Ruan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
23
|
Plachokova AS, Gjaltema J, Hagens ERC, Hashemi Z, Knüppe TBA, Kootstra TJM, Visser A, Bloem BR. Periodontitis: A Plausible Modifiable Risk Factor for Neurodegenerative Diseases? A Comprehensive Review. Int J Mol Sci 2024; 25:4504. [PMID: 38674088 PMCID: PMC11050498 DOI: 10.3390/ijms25084504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this comprehensive review is to summarize recent literature on associations between periodontitis and neurodegenerative diseases, explore the bidirectionality and provide insights into the plausible pathogenesis. For this purpose, systematic reviews and meta-analyses from PubMed, Medline and EMBASE were considered. Out of 33 retrieved papers, 6 articles complying with the inclusion criteria were selected and discussed. Additional relevant papers for bidirectionality and pathogenesis were included. Results show an association between periodontitis and Alzheimer's disease, with odds ratios of 3 to 5. A bidirectional relationship is suspected. For Parkinson's disease (PD), current evidence for an association appears to be weak, although poor oral health and PD seem to be correlated. A huge knowledge gap was identified. The plausible mechanistic link for the association between periodontitis and neurodegenerative diseases is the interplay between periodontal inflammation and neuroinflammation. Three pathways are hypothesized in the literature, i.e., humoral, neuronal and cellular, with a clear role of periodontal pathogens, such as Porphyromonas gingivalis. Age, gender, race, smoking, alcohol intake, nutrition, physical activity, socioeconomic status, stress, medical comorbidities and genetics were identified as common risk factors for periodontitis and neurodegenerative diseases. Future research with main emphasis on the collaboration between neurologists and dentists is encouraged.
Collapse
Affiliation(s)
- Adelina S. Plachokova
- Department of Dentistry, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (J.G.); (E.R.C.H.); (Z.H.); (T.B.A.K.); (T.J.M.K.)
| | - Jolijn Gjaltema
- Department of Dentistry, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (J.G.); (E.R.C.H.); (Z.H.); (T.B.A.K.); (T.J.M.K.)
| | - Eliza R. C. Hagens
- Department of Dentistry, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (J.G.); (E.R.C.H.); (Z.H.); (T.B.A.K.); (T.J.M.K.)
| | - Zahra Hashemi
- Department of Dentistry, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (J.G.); (E.R.C.H.); (Z.H.); (T.B.A.K.); (T.J.M.K.)
| | - Tim B. A. Knüppe
- Department of Dentistry, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (J.G.); (E.R.C.H.); (Z.H.); (T.B.A.K.); (T.J.M.K.)
| | - Thomas J. M. Kootstra
- Department of Dentistry, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (J.G.); (E.R.C.H.); (Z.H.); (T.B.A.K.); (T.J.M.K.)
| | - Anita Visser
- Department of Dentistry, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (J.G.); (E.R.C.H.); (Z.H.); (T.B.A.K.); (T.J.M.K.)
- Department of Gerodontology, Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Bastiaan R. Bloem
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Centre of Expertise for Parkinson and Movement Disorders, 6525 GA Nijmegen, The Netherlands;
| |
Collapse
|
24
|
Lee NE, Yoo DM, Han KM, Kang HS, Kim JH, Kim JH, Bang WJ, Choi HG, Kim NY, Park HY, Kwon MJ. Investigating the Connection between Chronic Periodontitis and Parkinson's Disease: Findings from a Korean National Cohort Study. Biomedicines 2024; 12:792. [PMID: 38672147 PMCID: PMC11048377 DOI: 10.3390/biomedicines12040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Recent research suggests a potential relevance between chronic periodontitis (CP) and Parkinson's disease (PD), raising concerns about comorbid PD among elderly CP patients. However, the epidemiologic basis for this association remains unclear. Employing a nested case-control design, this study explored the association between CP and subsequent PD occurrences in Korean adults, leveraging a validated national population-based dataset covering the period from 2002 to 2019. It included 8794 PD patients and 35,176 matched control individuals, established through propensity score matching for age, sex, residential area, and income. Baseline characteristics were compared using standardized differences, and logistic regression was employed to assess the impact of CP histories on PD likelihood while controlling for covariates. We performed a thorough examination of CP events within both 1-year and 2-year intervals preceding the index date, incorporating subgroup analyses. Our analysis revealed no statistically significant association between CP history and PD development overall. However, subgroup analysis revealed a slightly increased likelihood of PD development among CP individuals with a high disease burden (Charlson Comorbidity Index score ≥ 2). In conclusion, although our study did not find a significant overall association between CP history and PD development, the elevated likelihood of PD in subgroups with high disease burden may suggest that comorbidities influence PD probability among certain CP patients. Considering comorbid conditions in PD screening for some individuals with CP may be also important.
Collapse
Affiliation(s)
- Na-Eun Lee
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (N.-E.L.); (D.M.Y.); (K.M.H.)
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Dae Myoung Yoo
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (N.-E.L.); (D.M.Y.); (K.M.H.)
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Kyeong Min Han
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (N.-E.L.); (D.M.Y.); (K.M.H.)
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Ho Suk Kang
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Ji Hee Kim
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Joo-Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Woo Jin Bang
- Department of Urology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Hyo Geun Choi
- Suseo Seoul E.N.T. Clinic, 10, Bamgogae-ro 1-gil, Gangnam-gu, Seoul 06349, Republic of Korea;
| | - Nan Young Kim
- Hallym Institute of Translational Genomics and Bioinformatics, Hallym University Medical Center, Anyang 14068, Republic of Korea;
| | - Ha Young Park
- Department of Pathology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea;
| | - Mi Jung Kwon
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang 14068, Republic of Korea
- Division of Neuropathology, Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| |
Collapse
|
25
|
Boussamet L, Montassier E, Mathé C, Garcia A, Morille J, Shah S, Dugast E, Wiertlewski S, Gourdel M, Bang C, Stürner KH, Masson D, Nicot AB, Vince N, Laplaud DA, Feinstein DL, Berthelot L. Investigating the metabolite signature of an altered oral microbiota as a discriminant factor for multiple sclerosis: a pilot study. Sci Rep 2024; 14:7786. [PMID: 38565581 PMCID: PMC10987558 DOI: 10.1038/s41598-024-57949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
In multiple sclerosis (MS), alterations of the gut microbiota lead to inflammation. However, the role of other microbiomes in the body in MS has not been fully elucidated. In a pilot case-controlled study, we carried out simultaneous characterization of faecal and oral microbiota and conducted an in-depth analysis of bacterial alterations associated with MS. Using 16S rRNA sequencing and metabolic inference tools, we compared the oral/faecal microbiota and bacterial metabolism pathways in French MS patients (n = 14) and healthy volunteers (HV, n = 21). A classification model based on metabolite flux balance was established and validated in an independent German cohort (MS n = 12, HV n = 38). Our analysis revealed decreases in diversity indices and oral/faecal compartmentalization, the depletion of commensal bacteria (Aggregatibacter and Streptococcus in saliva and Coprobacter and Roseburia in faeces) and enrichment of inflammation-associated bacteria in MS patients (Leptotrichia and Fusobacterium in saliva and Enterobacteriaceae and Actinomyces in faeces). Several microbial pathways were also altered (the polyamine pathway and remodelling of bacterial surface antigens and energetic metabolism) while flux balance analysis revealed associated alterations in metabolite production in MS (nitrogen and nucleoside). Based on this analysis, we identified a specific oral metabolite signature in MS patients, that could discriminate MS patients from HV and rheumatoid arthritis patients. This signature allowed us to create and validate a discrimination model on an independent cohort, which reached a specificity of 92%. Overall, the oral and faecal microbiomes were altered in MS patients. This pilot study highlights the need to study the oral microbiota and oral health implications in patients with autoimmune diseases on a larger scale and suggests that knowledge of the salivary microbiome could help guide the identification of new pathogenic mechanisms associated with the microbiota in MS patients.
Collapse
Affiliation(s)
- Léo Boussamet
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Emmanuel Montassier
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
- Emergency Department, Nantes Hospital, Nantes, France
| | - Camille Mathé
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Alexandra Garcia
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Jérémy Morille
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Sita Shah
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Emilie Dugast
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Sandrine Wiertlewski
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
- Neurology Department, Nantes Hospital, Nantes, France
| | | | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Klarissa H Stürner
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Damien Masson
- Clinical Biochemistry Department, Nantes Hospital, Nantes, France
| | - Arnaud B Nicot
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Nicolas Vince
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - David-Axel Laplaud
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
- Neurology Department, Nantes Hospital, Nantes, France
| | - Douglas L Feinstein
- Jesse Brown VA Medical Center, 835 South Wolcott Ave, MC513, E720, Chicago, IL, 60612, USA.
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.
| | - Laureline Berthelot
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France.
| |
Collapse
|
26
|
Wang M, Wang Z, Zhao D, Yu Y, Wei F. Periodontitis causally affects the brain cortical structure: A Mendelian randomization study. J Periodontal Res 2024; 59:381-386. [PMID: 38059384 DOI: 10.1111/jre.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE To estimate whether genetically proxied periodontitis causally impacts the brain cortical structure using Mendelian randomization (MR). BACKGROUND Periodontitis is one of the most prevalent inflammatory conditions globally, and emerging evidence has indicated its influences on distal organs, including the brain, whose disorders are always accompanied by magnetic resonance imaging (MRI)-identified brain cortical changes. However, to date, no available evidence has revealed the association between periodontitis and brain cortical structures. METHODS The instrumental variables (IVs) were adopted from previous genome-wide association study (GWAS) studies and meta-analyses of GWAS studies of periodontitis from 1844 to 5266 cases and 8255 to 12 515 controls. IVs were linked to GWAS summary data of 51 665 patients from the ENIGMA Consortium, assessing the impacts of genetically proxied periodontitis on the surficial area (SA) or the cortical thickness (TH) of the global and 34 MRI-identified functional regions of the brain. Inverse-variance weighted was used as the primary estimate; the MR pleiotropy residual sum and outlier (MR-PRESSO), the MR-Egger intercept test, and leave-one-out analyses were used to examine the potential horizontal pleiotropy. RESULTS Genetically proxied periodontitis affects the SA of the medial orbitofrontal cortex, the lateral orbitofrontal cortex, the inferior temporal cortex, the entorhinal cortex, and the temporal pole, as well as the TH of the entorhinal. No pleiotropy was detected. CONCLUSIONS Periodontitis causally influences the brain cortical structures, implying the existence of a periodontal tissue-brain axis.
Collapse
Affiliation(s)
- Mengqiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Ziyao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Delu Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yajie Yu
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health, The Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
27
|
Wu E, Cheng M, Zhang X, Wu T, Sheng S, Sheng M, Wei L, Zhang L, Shao W. Exploration of potential shared gene signatures between periodontitis and multiple sclerosis. BMC Oral Health 2024; 24:75. [PMID: 38218802 PMCID: PMC10788039 DOI: 10.1186/s12903-023-03846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/31/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Although periodontitis has previously been reported to be linked with multiple sclerosis (MS), but the molecular mechanisms and pathological interactions between the two remain unclear. This study aims to explore potential crosstalk genes and pathways between periodontitis and MS. METHODS Periodontitis and MS data were obtained from the Gene Expression Omnibus (GEO) database. Shared genes were identified by differential expression analysis and weighted gene co-expression network analysis (WGCNA). Then, enrichment analysis for the shared genes was carried out by multiple methods. The least absolute shrinkage and selection operator (LASSO) regression was used to obtain potential shared diagnostic genes. Furthermore, the expression profile of 28 immune cells in periodontitis and MS was examined using single-sample GSEA (ssGSEA). Finally, real-time quantitative fluorescent PCR (qRT-PCR) and immune histochemical staining were employed to validate Hub gene expressions in periodontitis and MS samples. RESULTS FAM46C, SLC7A7, LY96, CFI, DDIT4L, CD14, C5AR1, and IGJ genes were the shared genes between periodontitis, and MS. GO analysis revealed that the shared genes exhibited the greatest enrichment in response to molecules of bacterial origin. LASSO analysis indicated that CFI, DDIT4L, and FAM46C were the most effective shared diagnostic biomarkers for periodontitis and MS, which were further validated by qPCR and immunohistochemical staining. ssGSEA analysis revealed that T and B cells significantly influence the development of MS and periodontitis. CONCLUSIONS FAM46C, SLC7A7, LY96, CFI, DDIT4L, CD14, C5AR1, and IGJ were the most important crosstalk genes between periodontitis, and MS. Further studies found that CFI, DDIT4L, and FAM46C were potential biomarkers in periodontitis and MS.
Collapse
Affiliation(s)
- Erli Wu
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Ming Cheng
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Xinjing Zhang
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Tiangang Wu
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Shuyan Sheng
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, Hefei, 230032, China
| | - Mengfei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ling Wei
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Lei Zhang
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Periodontology, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei, 230032, China.
| | - Wei Shao
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
28
|
Weaver DF. Thirty Risk Factors for Alzheimer's Disease Unified by a Common Neuroimmune-Neuroinflammation Mechanism. Brain Sci 2023; 14:41. [PMID: 38248256 PMCID: PMC10813027 DOI: 10.3390/brainsci14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
One of the major obstacles confronting the formulation of a mechanistic understanding for Alzheimer's disease (AD) is its immense complexity-a complexity that traverses the full structural and phenomenological spectrum, including molecular, macromolecular, cellular, neurological and behavioural processes. This complexity is reflected by the equally complex diversity of risk factors associated with AD. However, more than merely mirroring disease complexity, risk factors also provide fundamental insights into the aetiology and pathogenesis of AD as a neurodegenerative disorder since they are central to disease initiation and subsequent propagation. Based on a systematic literature assessment, this review identified 30 risk factors for AD and then extended the analysis to further identify neuroinflammation as a unifying mechanism present in all 30 risk factors. Although other mechanisms (e.g., vasculopathy, proteopathy) were present in multiple risk factors, dysfunction of the neuroimmune-neuroinflammation axis was uniquely central to all 30 identified risk factors. Though the nature of the neuroinflammatory involvement varied, the activation of microglia and the release of pro-inflammatory cytokines were a common pathway shared by all risk factors. This observation provides further evidence for the importance of immunopathic mechanisms in the aetiopathogenesis of AD.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Departments of Medicine, Chemistry, Pharmaceutical Sciences, University of Toronto, Toronto, ON M5T 0S8, Canada
| |
Collapse
|
29
|
Lee HJ, Lee Y, Hong SH, Park JW. Decoding the Link between Periodontitis and Neuroinflammation: The Journey of Bacterial Extracellular Vesicles. Curr Genomics 2023; 24:132-135. [PMID: 38178987 PMCID: PMC10761334 DOI: 10.2174/0113892029258657231010065320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/26/2023] [Accepted: 09/08/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea, South
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea, South
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea, South
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea, South
| |
Collapse
|
30
|
Bai XB, Xu S, Zhou LJ, Meng XQ, Li YL, Chen YL, Jiang YH, Lin WZ, Chen BY, Du LJ, Tian GC, Liu Y, Duan SZ, Zhu YQ. Oral pathogens exacerbate Parkinson's disease by promoting Th1 cell infiltration in mice. MICROBIOME 2023; 11:254. [PMID: 37978405 PMCID: PMC10655362 DOI: 10.1186/s40168-023-01685-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a common chronic neurological disorder with a high risk of disability and no cure. Periodontitis is an infectious bacterial disease occurring in periodontal supporting tissues. Studies have shown that periodontitis is closely related to PD. However, direct evidence of the effect of periodontitis on PD is lacking. Here, we demonstrated that ligature-induced periodontitis with application of subgingival plaque (LIP-SP) exacerbated motor dysfunction, microglial activation, and dopaminergic neuron loss in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. RESULTS The 16S rRNA gene sequencing revealed that LIP-SP induced oral and gut dysbiosis. Particularly, Veillonella parvula (V. parvula) and Streptococcus mutans (S. mutans) from oral ligatures were increased in the fecal samples of MPTP + LIP-SP treated mice. We further demonstrated that V. parvula and S. mutans played crucial roles in LIP-SP mediated exacerbation of motor dysfunction and neurodegeneration in PD mice. V. parvula and S. mutans caused microglial activation in the brain, as well as T helper 1 (Th1) cells infiltration in the brain, cervical lymph nodes, ileum and colon in PD mice. Moreover, we observed a protective effect of IFNγ neutralization on dopaminergic neurons in V. parvula- and S. mutans-treated PD mice. CONCLUSIONS Our study demonstrates that oral pathogens V. parvula and S. mutans necessitate the existence of periodontitis to exacerbate motor dysfunction and neurodegeneration in MPTP-induced PD mice. The underlying mechanisms include alterations of oral and gut microbiota, along with immune activation in both brain and peripheral regions. Video Abstract.
Collapse
Affiliation(s)
- Xue-Bing Bai
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shuo Xu
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lu-Jun Zhou
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiao-Qian Meng
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yu-Lin Li
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yan-Lin Chen
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yi-Han Jiang
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wen-Zhen Lin
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Bo-Yan Chen
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lin-Juan Du
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Guo-Cai Tian
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yan Liu
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Sheng-Zhong Duan
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Ya-Qin Zhu
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
31
|
Pastorello Y, Carare RO, Banescu C, Potempa L, Di Napoli M, Slevin M. Monomeric C-reactive protein: A novel biomarker predicting neurodegenerative disease and vascular dysfunction. Brain Pathol 2023; 33:e13164. [PMID: 37158450 PMCID: PMC10580018 DOI: 10.1111/bpa.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Circulating C-reactive protein (pCRP) concentrations rise dramatically during both acute (e.g., following stroke) or chronic infection and disease (e.g., autoimmune conditions such as lupus), providing complement fixation through C1q protein binding. It is now known, that on exposure to the membranes of activated immune cells (and microvesicles and platelets), or damaged/dysfunctional tissue, it undergoes lysophosphocholine (LPC)-phospholipase-C-dependent dissociation to the monomeric form (mCRP), concomitantly becoming biologically active. We review histological, immunohistochemical, and morphological/topological studies of post-mortem brain tissue from individuals with neuroinflammatory disease, showing that mCRP becomes stably distributed within the parenchyma, and resident in the arterial intima and lumen, being "released" from damaged, hemorrhagic vessels into the extracellular matrix. The possible de novo synthesis via neurons, endothelial cells, and glia is also considered. In vitro, in vivo, and human tissue co-localization analyses have linked mCRP to neurovascular dysfunction, vascular activation resulting in increased permeability, and leakage, compromise of blood brain barrier function, buildup of toxic proteins including tau and beta amyloid (Aβ), association with and capacity to "manufacture" Aβ-mCRP-hybrid plaques, and, greater susceptibility to neurodegeneration and dementia. Recently, several studies linked chronic CRP/mCRP systemic expression in autoimmune disease with increased risk of dementia and the mechanisms through which this occurs are investigated here. The neurovascular unit mediates correct intramural periarterial drainage, evidence is provided here that suggests a critical impact of mCRP on neurovascular elements that could suggest its participation in the earliest stages of dysfunction and conclude that further investigation is warranted. We discuss future therapeutic options aimed at inhibiting the pCRP-LPC mediated dissociation associated with brain pathology, for example, compound 1,6-bis-PC, injected intravenously, prevented mCRP deposition and associated damage, after temporary left anterior descending artery ligation and myocardial infarction in a rat model.
Collapse
Affiliation(s)
- Ylenia Pastorello
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Roxana O. Carare
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Clinical and experimental SciencesUniversity of SouthamptonSouthamptonUK
| | - Claudia Banescu
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
| | - Lawrence Potempa
- Department of Life Sciences, College of Science, Health and PharmacyRoosevelt UniversitySchaumburgIllinoisUSA
| | - Mario Di Napoli
- Department of Neurology and Stroke UnitSan Camillo de Lellis General HospitalRietiItaly
| | - Mark Slevin
- Department of AnatomyGeorge Emil Palade University of Medicine, Pharmacy, Science and TechnologyTârgu MuresRomania
- Manchester Metropolitan UniversityManchesterUK
| |
Collapse
|
32
|
Ha JY, Seok J, Kim SJ, Jung HJ, Ryu KY, Nakamura M, Jang IS, Hong SH, Lee Y, Lee HJ. Periodontitis promotes bacterial extracellular vesicle-induced neuroinflammation in the brain and trigeminal ganglion. PLoS Pathog 2023; 19:e1011743. [PMID: 37871107 PMCID: PMC10621956 DOI: 10.1371/journal.ppat.1011743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/02/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Gram-negative bacteria derived extracellular vesicles (EVs), also known as outer membrane vesicles, have attracted significant attention due to their pathogenic roles in various inflammatory diseases. We recently demonstrated that EVs secreted by the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) can cross the blood-brain barrier (BBB) and that their extracellular RNA cargo can promote the secretion of proinflammatory cytokines, such as IL-6 and TNF-α, in the brain. To gain more insight into the relationship between periodontal disease (PD) and neuroinflammatory diseases, we investigated the effect of Aa EVs in a mouse model of ligature-induced PD. When EVs were administered through intragingival injection or EV-soaked gel, proinflammatory cytokines were strongly induced in the brains of PD mice. The use of TLR (Toll-like receptor)-reporter cell lines and MyD88 knockout mice confirmed that the increased release of cytokines was triggered by Aa EVs via TLR4 and TLR8 signaling pathways and their downstream MyD88 pathway. Furthermore, the injection of EVs through the epidermis and gingiva resulted in the direct retrograde transfer of Aa EVs from axon terminals to the cell bodies of trigeminal ganglion (TG) neurons and the subsequent activation of TG neurons. We also found that the Aa EVs changed the action potential of TG neurons. These findings suggest that EVs derived from periodontopathogens such as Aa might be involved in pathogenic pathways for neuroinflammatory diseases, neuropathic pain, and other systemic inflammatory symptoms as a comorbidity of periodontitis.
Collapse
Affiliation(s)
- Jae Yeong Ha
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| | - Jiwon Seok
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Suk-Jeong Kim
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| | - Hye-Jin Jung
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Ka-Young Ryu
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Michiko Nakamura
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| |
Collapse
|
33
|
Du J, Cheng N, Deng Y, Xiang P, Liang J, Zhang Z, Hei Z, Li X. Astrocyte senescence-like response related to peripheral nerve injury-induced neuropathic pain. Cell Mol Biol Lett 2023; 28:65. [PMID: 37582709 PMCID: PMC10428597 DOI: 10.1186/s11658-023-00474-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Peripheral nerve damage causes neuroinflammation, which plays a critical role in establishing and maintaining neuropathic pain (NeP). The mechanisms contributing to neuroinflammation remain poorly elucidated, and pharmacological strategies for NeP are limited. Thus, in this study, we planned to explore the possible link between astrocyte senescence and NeP disorders following chronic sciatic nerve injury. METHODS An NeP animal model was established by inducing chronic constrictive injury (CCI) to the sciatic nerve in adult rats. A senolytic drug combination of dasatinib and quercetin was gavaged daily from the first postoperative day until the end of the study. Paw mechanical withdrawal threshold (PMWT) and paw thermal withdrawal latency (PTWL) were evaluated to assess behaviors in response to pain in the experimental rats. Senescence-associated β-galactosidase staining, western blot analysis, and immunofluorescence were applied to examine the levels of proinflammatory factors and severity of the senescence-like response in the spinal cord. Lipopolysaccharide (LPS) was administered to induce senescence of spinal astrocytes in primary cultures in vitro, to explore the potential impacts of senescence on the secretion of proinflammatory factors. Furthermore, single-cell RNA sequencing (scRNA-seq) was conducted to identify senescence-related molecular responses in spinal astrocytes under neuropathic pain. RESULTS Following sciatic nerve CCI, rats exhibited reduced PMWT and PTWL, increased levels of spinal proinflammatory factors, and an enhanced degree of senescence in spinal astrocytes. Treatment with dasatinib and quercetin effectively attenuated spinal neuroinflammation and mitigated the hypersensitivities of the rats subjected to sciatic nerve CCI. Mechanistically, the dasatinib-quercetin combination reversed senescence in LPS-stimulated primary cultured astrocytes and decreased the levels of proinflammatory factors. The scRNA-seq data revealed four potential senescence-related genes in the spinal astrocyte population, and the expression of clusterin (CLU) protein was validated via in vitro experiments. CONCLUSION The findings indicate the potential role of astrocyte senescence in neuroinflammation following peripheral nerve injury, and suggest that targeting CLU activation in astrocytes might provide a novel therapeutic strategy to treat NeP.
Collapse
Affiliation(s)
- Jingyi Du
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Nan Cheng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yifan Deng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ping Xiang
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Jianfen Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhenye Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
34
|
Controlling the Impact of Helicobacter pylori-Related Hyperhomocysteinemia on Neurodegeneration. Medicina (B Aires) 2023; 59:medicina59030504. [PMID: 36984505 PMCID: PMC10056452 DOI: 10.3390/medicina59030504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Helicobacter pylori infection consists a high global burden affecting more than 50% of the world’s population. It is implicated, beyond substantiated local gastric pathologies, i.e., peptic ulcers and gastric cancer, in the pathophysiology of several neurodegenerative disorders, mainly by inducing hyperhomocysteinemia-related brain cortical thinning (BCT). BCT has been advocated as a possible biomarker associated with neurodegenerative central nervous system disorders such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and/or glaucoma, termed as “ocular Alzheimer’s disease”. According to the infection hypothesis in relation to neurodegeneration, Helicobacter pylori as non-commensal gut microbiome has been advocated as trigger and/or mediator of neurodegenerative diseases, such as the development of Alzheimer’s disease. Among others, Helicobacter pylori-related inflammatory mediators, defensins, autophagy, vitamin D, dietary factors, role of probiotics, and some pathogenetic considerations including relevant involved genes are discussed within this opinion article. In conclusion, by controlling the impact of Helicobacter pylori-related hyperhomocysteinemia on neurodegenerative disorders might offer benefits, and additional research is warranted to clarify this crucial topic currently representing a major worldwide burden.
Collapse
|
35
|
Lumelsky N. Oral-systemic immune axis: Crosstalk controlling health and disease. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2022.1106456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
36
|
Galea E, Graeber MB. Neuroinflammation: The Abused Concept. ASN Neuro 2023; 15:17590914231197523. [PMID: 37647500 PMCID: PMC10469255 DOI: 10.1177/17590914231197523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Scientific progress requires the relentless correction of errors and refinement of hypotheses. Clarity of terminology is essential for clarity of thought and proper experimental interrogation of nature. Therefore, the application of the same scientific term to different and even conflicting phenomena and concepts is not useful and must be corrected. Such abuse of terminology has happened and is still increasing in the case of "neuroinflammation," a term that until the 1990s meant classical inflammation affecting the central nervous system (CNS) and thereon was progressively used to mostly denote microglia activation. The resulting confusion is very wasteful and detrimental not only for scientists but also for patients, given the numerous failed clinical trials in acute and chronic CNS diseases over the last decade with "anti-inflammatory" drugs. Despite this failure, reassessments of the "neuroinflammation" concept are rare, especially considering the number of articles still using the term. This undesirable situation motivates this article. We review the origins and evolution of the term "neuroinflammation," discuss the unique tissue defense and repair strategies in the CNS, define CNS immunity, and emphasize the notion of gliopathies to help readdress, if not bury, the term "neuroinflammation" as it stands in the way of scientific progress.
Collapse
Affiliation(s)
- Elena Galea
- Departament de Bioquímica, Unitat de Bioquímica, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- ICREA, Barcelona, Spain
| | - Manuel B. Graeber
- Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Camperdown, Australia
| |
Collapse
|
37
|
Zhan Y, Al-Nusaif M, Ding C, Zhao L, Dong C. The potential of the gut microbiome for identifying Alzheimer's disease diagnostic biomarkers and future therapies. Front Neurosci 2023; 17:1130730. [PMID: 37179559 PMCID: PMC10174259 DOI: 10.3389/fnins.2023.1130730] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Being isolated from the peripheral system by the blood-brain barrier, the brain has long been considered a completely impervious tissue. However, recent findings show that the gut microbiome (GM) influences gastrointestinal and brain disorders such as Alzheimer's disease (AD). Despite several hypotheses, such as neuroinflammation, tau hyperphosphorylation, amyloid plaques, neurofibrillary tangles, and oxidative stress, being proposed to explain the origin and progression of AD, the pathogenesis remains incompletely understood. Epigenetic, molecular, and pathological studies suggest that GM influences AD development and have endeavored to find predictive, sensitive, non-invasive, and accurate biomarkers for early disease diagnosis and monitoring of progression. Given the growing interest in the involvement of GM in AD, current research endeavors to identify prospective gut biomarkers for both preclinical and clinical diagnoses, as well as targeted therapy techniques. Here, we discuss the most recent findings on gut changes in AD, microbiome-based biomarkers, prospective clinical diagnostic uses, and targeted therapy approaches. Furthermore, we addressed herbal components, which could provide a new venue for AD diagnostic and therapy research.
Collapse
Affiliation(s)
- Yu Zhan
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Murad Al-Nusaif
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratories for Research on the Pathogenic Mechanism of Neurological Disease, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cong Ding
- The Center for Gerontology and Geriatrics, Dalian Friendship Hospital, Dalian, China
| | - Li Zhao
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Li Zhao,
| | - Chunbo Dong
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Chunbo Dong,
| |
Collapse
|