1
|
Shrestha B, Maria Rajan S, Aati S, Yusiharni E, Kujan O, Saunders M, Fawzy A. The Synergistic Effect of High Intensity Focused Ultrasound on In-vitro Remineralization of Tooth Enamel by Calcium Phosphate Ion Clusters. Int J Nanomedicine 2024; 19:5365-5380. [PMID: 38859951 PMCID: PMC11164203 DOI: 10.2147/ijn.s464998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Background Remineralization of dental enamel is an important intervention strategy for the treatment of demineralized lesions. Existing approaches have limitations such as failure to adequately reproduce both the ideal structural and mechanical properties of the native tooth. The ability of ultrasound to control and accelerate the crystallization processes has been widely reported. Therefore, a new approach was explored for in-vitro enamel remineralization involving the synergistic effect of high-intensity focused ultrasound (HIFU) coupled with calcium phosphate ion clusters (CPICs). Methods The demineralized enamel was treated with CPICs, with or without subsequent HIFU exposure for different periods (2.5, 5, and 10 min). The specimens were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy. The surface hardness and crystallographic properties of the treated specimens were evaluated using Vickers microhardness testing and X-ray diffraction (XRD), respectively. Results SEM revealed distinct, organized, and well-defined prismatic structures, showing clear evidence of remineralization in the combined CPIC/HIFU treatment groups. AFM further revealed a decrease in the surface roughness values with increasing HIFU exposure time up to 5 min, reflecting the obliteration of interprismatic spaces created during demineralization. The characteristic Raman band at 960 cm-1 associated with the inorganic phase of enamel dominated well in the HIFU-treated specimens. Importantly, microhardness testing further demonstrated that new mineral growth also recovered the mechanical properties of the enamel in the HIFU-exposed groups. Critical to our aspirations for developing this into a clinical process, these results were achieved in only 5 min. Conclusion HIFU exposure can synergise and significantly accelerate in-vitro enamel remineralization process via calcium phosphate ion clusters. Therefore, this synergistic approach has the potential for use in future clinical interventions.
Collapse
Affiliation(s)
- Barsha Shrestha
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Sheetal Maria Rajan
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Sultan Aati
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Emielda Yusiharni
- UWA XRD Facility, Material & Environmental Analysis Platform, The University of Western Australia, Perth, WA, Australia
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Martin Saunders
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Amr Fawzy
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
2
|
Liu H, Jiang H, Liu X, Wang X. Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature. EXPLORATION (BEIJING, CHINA) 2023; 3:20230033. [PMID: 38264681 PMCID: PMC10742219 DOI: 10.1002/exp.20230033] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 01/25/2024]
Abstract
The process and mechanism of biomineralization and relevant physicochemical properties of mineral crystals are remarkably sophisticated multidisciplinary fields that include biology, chemistry, physics, and materials science. The components of the organic matter, structural construction of minerals, and related mechanical interaction, etc., could help to reveal the unique nature of the special mineralization process. Herein, the paper provides an overview of the biomineralization process from the perspective of molecular vibrational spectroscopy, including the physicochemical properties of biomineralized tissues, from physiological to applied mineralization. These physicochemical characteristics closely to the hierarchical mineralization process include biological crystal defects, chemical bonding, atomic doping, structural changes, and content changes in organic matter, along with the interface between biocrystals and organic matter as well as the specific mechanical effects for hardness and toughness. Based on those observations, the special physiological properties of mineralization for enamel and bone, as well as the possible mechanism of pathological mineralization and calcification such as atherosclerosis, tumor micro mineralization, and urolithiasis are also reviewed and discussed. Indeed, the clearly defined physicochemical properties of mineral crystals could pave the way for studies on the mechanisms and applications.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Hui Jiang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xuemei Wang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
3
|
Desoutter A, Felbacq D, Gergely C, Varga B, Bonnet L, Etienne P, Vialla R, Cuisinier F, Salehi H, Rousseau E, Rufflé B. Properties of dentin, enamel and their junction, studied with Brillouin scattering and compared to Raman microscopy. Arch Oral Biol 2023; 152:105733. [PMID: 37247560 DOI: 10.1016/j.archoralbio.2023.105733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVE Dentin, enamel and the transition zone, called the dentin-enamel junction (DEJ), have an organization and properties that play a critical role in tooth resilience and in stopping the propagation of cracks. Understanding their chemical and micro-biomechanical properties is then of foremost importance. The aim of this study is to apply Brillouin microscopy on a complex biological structure, that is, the DEJ, and to compare these results with those obtained with Raman microscopy. DESIGN Both techniques allow noncontact measurements at the microscopic scale. Brillouin microscopy is based on the interaction between acoustic phonons and laser photons and gives a relation between the frequency shift of the scattered light and the stiffness of the sample. Raman spectra contain peaks related to specific chemical bonds. RESULTS Comparison of the Brillouin and Raman cartographies reveals correlations between mechanical and chemical properties. Indeed, the shapes of the phosphate content and stiffness curves are similar. The two spectroscopies give compatible values for the mean distance between two tubules, i.e., 4-6 µm. Moreover, for the first time, the daily cross striations of enamel could be studied, indicating a relationship between the variation in the phosphate concentration and the variation in the rigidity within the enamel prisms. CONCLUSIONS We demonstrate here the possibility of using Brillouin scattering microscopy to both study complex biological materials such as the enamel-dentin junction and visualize secondary structures. Correlations between the chemical composition and mechanical properties could help in better understanding the tissue histology.
Collapse
Affiliation(s)
- Alban Desoutter
- LBN, Univ. Montpellier, 545 avenue Professeur Jean-Louis Viala, 34193 Montpellier Cedex 5, France.
| | - Didier Felbacq
- L2C, Univ. Montpellier, CNRS, place Eugène Bataillon, 34090 Montpellier, France
| | - Csilla Gergely
- L2C, Univ. Montpellier, CNRS, place Eugène Bataillon, 34090 Montpellier, France
| | - Béla Varga
- L2C, Univ. Montpellier, CNRS, place Eugène Bataillon, 34090 Montpellier, France
| | - Laurent Bonnet
- L2C, Univ. Montpellier, CNRS, place Eugène Bataillon, 34090 Montpellier, France
| | - Pascal Etienne
- L2C, Univ. Montpellier, CNRS, place Eugène Bataillon, 34090 Montpellier, France
| | - Remy Vialla
- L2C, Univ. Montpellier, CNRS, place Eugène Bataillon, 34090 Montpellier, France
| | - Frédéric Cuisinier
- LBN, Univ. Montpellier, 545 avenue Professeur Jean-Louis Viala, 34193 Montpellier Cedex 5, France
| | - Hamideh Salehi
- LBN, Univ. Montpellier, 545 avenue Professeur Jean-Louis Viala, 34193 Montpellier Cedex 5, France
| | - Emmanuel Rousseau
- L2C, Univ. Montpellier, CNRS, place Eugène Bataillon, 34090 Montpellier, France
| | - Benoit Rufflé
- L2C, Univ. Montpellier, CNRS, place Eugène Bataillon, 34090 Montpellier, France
| |
Collapse
|
4
|
Structure and Electric Characterizations of the Derived Nanocrystalline Hydroxyapatite from Strombidae Strombus Seashells. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Tice MJ, Bailey S, Sroga GE, Gallagher EJ, Vashishth D. Non‐Obese
MKR
Mouse Model of Type 2 Diabetes Reveals Skeletal Alterations in Mineralization and Material Properties. JBMR Plus 2021; 6:e10583. [PMID: 35229063 PMCID: PMC8861985 DOI: 10.1002/jbm4.10583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/15/2021] [Accepted: 11/14/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is a common comorbidity of type 2 diabetes (T2D). Therefore, increased risk of fragility fractures in T2D is often confounded by the effects of obesity. This study was conducted to elucidate the mechanistic basis by which T2D alone leads to skeletal fragility. We hypothesized that obesity independent T2D would deteriorate bone's material quality by accumulating defects in the mineral matrix and undesired modifications in its organic matrix associated with increased oxidative stress and hyperglycemia. To test this hypothesis, we used 15‐week‐old male non‐obese mice with engineered muscle creatine kinase promoter/human dominant negative insulin growth factor 1 (IGF‐I) receptor (MKR) and FVB/N wild‐type (WT) controls (n = 12/group). MKR mice exhibit reduced insulin production and loss of glycemic control leading to diabetic hyperglycemia, verified by fasting blood glucose measurements (>250 mg/dL), without an increase in body weight. MKR mice showed a significant decrease in femoral radial geometry (cortical area, moment of inertia, cortical thickness, endosteal diameter, and periosteal diameter). Bone mineral density (BMD), as assessed by micro–computed tomography (μCT), remained unchanged; however, the quality of bone mineral was altered. In contrast to controls, MKR mice had significantly increased hydroxyapatite crystal thickness, measured by small‐angle X‐ray scattering, and elongated c‐axis length of the crystals evaluated by confocal Raman spectroscopy. There was an increase in changes in the organic matrix of MKR mice, associated with enhanced glycoxidation (carboxymethyl‐lysine [CML] and pentosidine) and overall glycation (fluorescent advanced glycation end products), both of which were associated with various measures of bone fragility. Moreover, increased CML formation positively correlated with elongated mineral crystal length, supporting the role of this negatively charged side chain to attract calcium ions, promote growth of hydroxyapatite, and build a physical link between mineral and collagen. Collectively, our results show, for the first time, changes in bone matrix in a non‐obese T2D model in which skeletal fragility is attributable to alterations in the mineral quality and undesired organic matrix modifications. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Matthew J.L. Tice
- Department of Biomedical Engineering Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute New York NY USA
| | - Stacyann Bailey
- Department of Biomedical Engineering Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute New York NY USA
| | - Grażyna E. Sroga
- Department of Biomedical Engineering Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute New York NY USA
| | - Emily J. Gallagher
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine Icahn School of Medicine at Mount Sinai New York NY USA
| | - Deepak Vashishth
- Department of Biomedical Engineering Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute New York NY USA
| |
Collapse
|
6
|
A Chitosan-Agarose Polysaccharide-Based Hydrogel for Biomimetic Remineralization of Dental Enamel. Biomolecules 2021; 11:biom11081137. [PMID: 34439803 PMCID: PMC8392529 DOI: 10.3390/biom11081137] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022] Open
Abstract
Developing multifunctional systems for the biomimetic remineralization of human enamel is a challenging task, since hydroxyapatite (HAP) rod structures of tooth enamel are difficult to replicate artificially. The paper presents the first report on the simultaneous use of chitosan (CS) and agarose (A) in a biopolymer-based hydrogel for the biomimetic remineralization of an acid-etched native enamel surface during 4–10-day immersion in artificial saliva with or without (control group) fluoride. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometry, Fourier transform infrared and Raman spectroscopies, X-ray diffraction, and microhardness tests were applied to investigate the properties of the acid-etched and remineralized dental enamel layers under A and CS-A hydrogels. The results show that all biomimetic epitaxial reconstructed layers consist mostly of a similar hierarchical HAP structure to the native enamel from nano- to microscale. An analogous Ca/P ratio (1.64) to natural tooth enamel and microhardness recovery of 77.4% of the enamel-like layer are obtained by a 7-day remineralization process in artificial saliva under CS-A hydrogels. The CS component reduced carbonation and moderated the formation of HAP nanorods in addition to providing an extracellular matrix to support growing enamel-like structures. Such activity lacked in samples exposed to A-hydrogel only. These data suggest the potential of the CS-A hydrogel in guiding the formation of hard tissues as dental enamel.
Collapse
|
7
|
Novel Approach to Tooth Chemistry. Quantification of the Dental-Enamel Junction. Int J Mol Sci 2021; 22:ijms22116003. [PMID: 34199407 PMCID: PMC8199634 DOI: 10.3390/ijms22116003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
The dentin-enamel junction (DEJ) is known for its special role in teeth. Several techniques were applied for the investigation of the DEJ in human sound molar teeth. The electron (EPMA) and proton (PIXE) microprobes gave consistent indications about the variability of elemental concentrations on this boundary. The locally increased and oscillating concentrations of Mg and Na were observed in the junction, in the layer adhering to the enamel and covering roughly half of the DEJ width. The chemical results were compared with the optical profiles of the junction. Our chemical and optical results were next compared with the micromechanical results (hardness, elastic modulus, friction coefficient) available in the world literature. A strong correlation of both result sets was proven, which testifies to the self-affinity of the junction structures for different locations and even for different kinds of teeth and techniques applied for studies. Energetic changes in tooth strictly connected with crystallographic transformations were calculated, and the minimum energetic status was discovered for DEJ zone. Modeling of both walls of the DEJ from optical data was demonstrated. Comparing the DEJ in human teeth with the same structure found in dinosaur, shark, and alligator teeth evidences the universality of dentin enamel junction in animal world. The paper makes a contribution to better understanding the joining of the different hard tissues.
Collapse
|
8
|
Ulian G, Moro D, Valdrè G. Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective. Biomolecules 2021; 11:728. [PMID: 34068073 PMCID: PMC8152500 DOI: 10.3390/biom11050728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023] Open
Abstract
Hard tissues (e.g., bone, enamel, dentin) in vertebrates perform various and different functions, from sustaining the body to haematopoiesis. Such complex and hierarchal tissue is actually a material composite whose static and dynamic properties are controlled by the subtle physical and chemical interplay between its components, collagen (main organic part) and hydroxylapatite-like mineral. The knowledge needed to fully understand the properties of bony and dental tissues and to develop specific applicative biomaterials (e.g., fillers, prosthetics, scaffolds, implants, etc.) resides mostly at the atomic scale. Among the different methods to obtains such detailed information, atomistic computer simulations (in silico) have proven to be both corroborative and predictive tools in this subject. The authors have intensively worked on quantum mechanical simulations of bioapatite and the present work reports a detailed review addressed to the crystal-chemical, physical, spectroscopic, mechanical, and surface properties of the mineral phase of bone and dental tissues. The reviewed studies were conducted at different length and time scales, trying to understand the features of hydroxylapatite and biological apatite models alone and/or in interaction with simplified collagen-like models. The reported review shows the capability of the computational approach in dealing with complex biological physicochemical systems, providing accurate results that increase the overall knowledge of hard tissue science.
Collapse
Affiliation(s)
- Gianfranco Ulian
- Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna Alma Mater Studiorum, P. Porta San Donato 1, 40126 Bologna, Italy;
| | | | - Giovanni Valdrè
- Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna Alma Mater Studiorum, P. Porta San Donato 1, 40126 Bologna, Italy;
| |
Collapse
|
9
|
Osmani A, Par M, Škrabić M, Vodanović M, Gamulin O. Principal Component Regression for Forensic Age Determination Using the Raman Spectra of Teeth. APPLIED SPECTROSCOPY 2020; 74:1473-1485. [PMID: 32031015 DOI: 10.1177/0003702820905903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Raman spectra of mineralized tooth tissues were used to build a principal component regression (PCR) age determination model for forensic application. A sample of 71 teeth was obtained from donors aging from 11 to 76 years. No particular selection criteria were applied; teeth affected with various pathological processes were deliberately included to simulate a realistic forensic scenario. In order to comply with the nondestructive specimen handling, Raman spectra were collected from tooth surfaces without any previous preparation. Different tooth tissues were evaluated by collecting the spectra from three distinct sites: tooth crown, tooth neck, and root apex. Whole recorded spectra (3500-200 cm-1) were used for principal component analysis and building of the age determination model using PCR. The predictive capabilities of the obtained age determination models varied according to the spectra collection site. Optimal age determination was attained by using Raman spectra collected from cementum at root apex (R2 values of 0.84 and 0.71 for male and female donors, respectively). For optimal performance of that model, male and female donors had to be analyzed separately, as merging both genders into a single model considerably diminished its predictive capability (R2 = 0.29).
Collapse
Affiliation(s)
- Aziz Osmani
- Community Health Center "Kutina", Kutina, Croatia
| | - Matej Par
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, 37631University of Zagreb, Zagreb, Croatia
| | - Marko Škrabić
- Department of Physics and Biophysics, School of Medicine, 37631University of Zagreb, Zagreb, Croatia
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Zagreb, Croatia
| | - Marin Vodanović
- Department of Dental Anthropology, School of Dental Medicine, 37631University of Zagreb, Zagreb, Croatia
| | - Ozren Gamulin
- Department of Physics and Biophysics, School of Medicine, 37631University of Zagreb, Zagreb, Croatia
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Zagreb, Croatia
| |
Collapse
|
10
|
Świetlicka I, Kuc D, Świetlicki M, Arczewska M, Muszyński S, Tomaszewska E, Prószyński A, Gołacki K, Błaszczak J, Cieślak K, Kamiński D, Mielnik-Błaszczak M. Near-Surface Studies of the Changes to the Structure and Mechanical Properties of Human Enamel under the Action of Fluoride Varnish Containing CPP-ACP Compound. Biomolecules 2020; 10:biom10050765. [PMID: 32422985 PMCID: PMC7277937 DOI: 10.3390/biom10050765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/03/2022] Open
Abstract
Changes to the features of the enamel surface submitted to induced demineralisation and subsequent remineralisation were studied. The in vitro examination was conducted on polished slices of human molar teeth, divided in four groups: the untreated control (n = 20), challenged by a demineralisation with orthophosphoric acid (H3PO4) (n = 20), and challenged by a demineralisation following remineralisation with fluoride (F) varnish containing casein phosphopeptides (CPP) and amorphous calcium phosphate (ACP) compounds (n = 20). The specimens’ enamel surfaces were subjected to analysis of structure, molecular arrangement, mechanical features, chemical composition, and crystalline organization of apatite crystals. Specimens treated with acid showed a significant decrease in crystallinity, calcium, and phosphorus levels as well as mechanical parameters, with an increase in enamel surface roughness and degree of carbonates when compared to the control group. Treatment with fluoride CPP–ACP varnish provided great improvements in enamel arrangement, as the destroyed hydroxyapatite structure was largely rebuilt and the resulting enamel surface was characterised by greater regularity, higher molecular and structural organisation, and a smoother surface compared to the demineralised one. In conclusion, this in vitro study showed that fluoride CPP–ACP varnish, by improving enamel hardness and initiating the deposition of a new crystal layer, can be an effective remineralising agent for the treatment of damaged enamel.
Collapse
Affiliation(s)
- Izabela Świetlicka
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Correspondence: (I.Ś.); (M.A.)
| | - Damian Kuc
- Chair and Department of Paediatric Dentistry, Medical University of Lublin, 20-059 Lublin, Poland; (D.K.); (M.M.-B.)
| | - Michał Świetlicki
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland; (M.Ś.); (A.P.)
| | - Marta Arczewska
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Correspondence: (I.Ś.); (M.A.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Adam Prószyński
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland; (M.Ś.); (A.P.)
| | - Krzysztof Gołacki
- Department of Mechanical Engineering and Automatics, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland;
| | | | - Krystian Cieślak
- Institute of Renewable Energy Engineering, Faculty of Environmental Engineering, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Daniel Kamiński
- Department of Crystallography, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| | - Maria Mielnik-Błaszczak
- Chair and Department of Paediatric Dentistry, Medical University of Lublin, 20-059 Lublin, Poland; (D.K.); (M.M.-B.)
| |
Collapse
|
11
|
He W, Livingston JC, Sobiesk ER, Zhou J, Zhu X, Duan Y, Yang S. A Pilot Study on High Wavenumber Raman Analysis of Human Dental Tissues. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2020; 51:630-634. [PMID: 33041470 PMCID: PMC7546550 DOI: 10.1002/jrs.5812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/04/2019] [Indexed: 05/19/2023]
Abstract
Water plays a critical role in dental tissues including enamel and dentin. The characterization of water structure analysis was primarily conducted by nuclear magnetic resonance. Raman spectroscopy is a powerful analytic technology with capability for structure analysis in materials. However, acquiring high wavenumber Raman signals from dental tissues was challenging due to either the fluorescence interference under laser illumination or reduced sensitivity of CCD detectors. In this study, we demonstrate a pilot research on high wavenumber Raman analysis in dental tissues using a customized Raman spectrometer based on an InGaAs detector. A signal located at 3570 cm-1 is found dominating the O-H region Raman spectra of enamel but is barely detectable from dentin. The profiles of the high wavenumber region Raman spectra changes with the locations in enamel, as well as the polarization of the excitation laser beam. The results suggest that the size or crystallinity differences of hydroxyapatite crystals are the main cause of the spectral variation from dentin to enamel, and could be partially responsible for the variation among different locations in enamel.
Collapse
Affiliation(s)
- Wencai He
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS, USA
| | - Jordan C Livingston
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Evan R Sobiesk
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jiange Zhou
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS, USA
| | - Xianchun Zhu
- Department of Civil and Environmental Engineering, Jackson State University, Jackson, MS, USA
| | - Yuanyuan Duan
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Shan Yang
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS, USA
| |
Collapse
|
12
|
Calzolari A, Pavan B, Curtarolo S, Buongiorno Nardelli M, Fornari M. Vibrational spectral fingerprinting for chemical recognition of biominerals. Chemphyschem 2020; 21:770-778. [PMID: 32107826 DOI: 10.1002/cphc.202000016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Indexed: 11/11/2022]
Abstract
Pathologies associated with calcified tissue, such as osteoporosis, demand in vivo and/or in situ spectroscopic analysis to assess the role of chemical substitutions in the inorganic component. High energy X-ray or NMR spectroscopies are impractical or damaging in biomedical conditions. Low energy spectroscopies, such as IR and Raman techniques, are often the best alternative. In apatite biominerals, the vibrational signatures of the phosphate group are generally used as fingerprint of the materials although they provide only limited information. Here, we have used first principles calculations to unravel the complexity of the complete vibrational spectra of apatites. We determined the spectroscopic features of all the phonon modes of fluoroapatite, hydroxy-apatite, and carbonated fluoroapatite beyond the analysis of the phosphate groups, focusing on the effect of local corrections induced by the crystalline environment and the specific mineral composition. This provides a clear and unique reference to discriminate structural and chemical variations in biominerals, opening the way to a widespread application of non-invasive spectroscopies for in vivo diagnostics, and biomedical analysis.
Collapse
Affiliation(s)
- Arrigo Calzolari
- CNR-NANO, Istituto Nanoscienze, Centro S3, via Campi 213A, I-41125 Modena, IT and Department of Physics, University of North Texas, Denton, TX 76203, USA
| | - Barbara Pavan
- Department of Chemistry and Science of Advanced Materials Program, Central Michigan University, Mt., Pleasant, MI, 48859, USA
| | - Stefano Curtarolo
- Materials Science, Electrical Engineering, Physics and Chemistry, Duke University, Durham NC, 27708 and Center for Autonomous Materials Design, Duke University, Durham, NC, 27708, USA
| | - Marco Buongiorno Nardelli
- Department of Physics, University of North Texas, Denton, TX 76203, USA and Center for Autonomous Materials Design, Duke University, Durham, NC, 27708, USA
| | - Marco Fornari
- Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, MI 48859 USA and Center for Autonomous Materials Design, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
13
|
Świetlicka I, Arczewska M, Muszyński S, Tomaszewska E, Świetlicki M, Kuc D, Mielnik-Błaszczak M, Gołacki K, Cieślak K. Surface analysis of etched enamel modified during the prenatal period. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117271. [PMID: 31226619 DOI: 10.1016/j.saa.2019.117271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Structural changes in the enamel surface subjected to induced demineralization and assessment of the influence of prenatal administration of β-hydroxy β-methylbutyrate (HMB) on enamel resistance were investigated. The examination was conducted on five sets of teeth from one-day-old spiny mice (Acomys cahirinus), one from the control and four from the experimental groups. Surface structure, molecular arrangement and crystalline organization of offspring's enamel both before and after etching were studied. Obtained results revealed that the physical and molecular arrangements of enamel were altered after the prenatal supplementation, and significantly affected its final structure and resistance against acid action. The enamel of incisors from the offspring which mothers were supplemented with HMB in a high dose (0.2 g/kgbw) and in the late period of gestation (26th-39th day) showed the highest endurance against acid treatment demonstrating only vestigial changes in their surface structure after acid action. Comparing to the remaining experimental groups, it was characterized by a reduced roughness and fractal dimension, significantly lower degree of demineralization and simultaneous lack of notable differences in the Raman spectra before and after acid etching. The results suggest that an increased enamel resiliency was the effect of a relatively high degree of mineralization and higher organization of the surface.
Collapse
Affiliation(s)
- Izabela Świetlicka
- Department of Biophysics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Marta Arczewska
- Department of Biophysics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland.
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Michał Świetlicki
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
| | - Damian Kuc
- Department of Paedodontics, Medical University of Lublin, Lublin, Poland
| | | | - Krzysztof Gołacki
- Department of Mechanical Engineering and Automatics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Krystian Cieślak
- Institute of Renewable Energy Engineering, Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
| |
Collapse
|
14
|
Zhou Y, Lin J, Shao J, Zuo Q, Wang S, Wolff A, Nguyen DT, Rintoul L, Du Z, Gu Y, Peng YY, Ramshaw JAM, Long X, Xiao Y. Aberrant activation of Wnt signaling pathway altered osteocyte mineralization. Bone 2019; 127:324-333. [PMID: 31260814 DOI: 10.1016/j.bone.2019.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
Mineralization of bone is a dynamic process, involving a complex interplay between cells, secreted macromolecules, signaling pathways, and enzymatic reactions; the dysregulation of bone mineralization may lead to serious skeletal disorders, including hypophosphatemic rickets, osteoporosis, and rheumatoid arthritis. Very few studies have reported the role of osteocytes - the most abundant bone cells in the skeletal system and the major orchestrators of bone remodeling in bone mineralization, which is owed to their nature of being deeply embedded in the mineralized bone matrix. The Wnt/β-catenin signaling pathway is actively involved in various life processes including osteogenesis; however, the role of Wnt/β-catenin signaling in the terminal mineralization of bone, especially in the regulation of osteocytes, is largely unknown. This research demonstrates that during the terminal mineralization process, the Wnt/β-catenin pathway is downregulated, and when Wnt/β-catenin signaling is activated in osteocytes, dendrite development is suppressed and the expression of dentin matrix protein 1 (DMP1) is inhibited. Aberrant activation of Wnt/β-catenin signaling in osteocytes leads to the spontaneous deposition of extra-large mineralized nodules on the surface of collagen fibrils. The altered mineral crystal structure and decreased bonding force between minerals and the organic matrix indicate the inferior integration of minerals and collagen. In conclusion, Wnt/β-catenin signaling plays a critical role in the terminal differentiation of osteocytes and as such, targeting Wnt/β-catenin signaling in osteocytes may serve as a potential therapeutic approach for the management of bone-related diseases.
Collapse
Affiliation(s)
- Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 51050, China; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Jinying Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Implantology, Affiliated Stomatological Hospital of Xiamen Medical College, Fujian 361000, China; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Jin Shao
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Qiliang Zuo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Implantology, Affiliated Stomatological Hospital of Xiamen Medical College, Fujian 361000, China; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Shengfang Wang
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Annalena Wolff
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Dung Trung Nguyen
- Department of Engineering and Computer Science, Seattle Pacific University, Seattle, WA 98119, USA.
| | - Llew Rintoul
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Zhibin Du
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Yuantong Gu
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Yong Y Peng
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia.
| | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Yin Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 51050, China; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| |
Collapse
|
15
|
Kazin PE, Zykin MA, Jesche A, Seidler ML, Tafeenko VA, Eliseev AA, Trusov LA, Jansen M. Manifestation of strong magnetic and giant Raman anisotropy in single crystals of Cu for H substituted strontium hydroxyapatite. CrystEngComm 2019. [DOI: 10.1039/c9ce00923j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The linear [O–Cu–O]− reveals a strong easy axis magnetic anisotropy with a high energy of 4 × 102 cm−1 probed by magnetization measurements and polarized Raman spectroscopy of a single crystal.
Collapse
Affiliation(s)
- Pavel E. Kazin
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russia
| | - Mikhail A. Zykin
- Department of Materials Science
- Lomonosov Moscow State University
- 119991 Moscow
- Russia
| | - Anton Jesche
- EP VI, Center for Electronic Correlations and Magnetism
- Institute of Physics
- University of Augsburg
- D-86159 Augsburg
- Germany
| | - Maximilian L. Seidler
- EP VI, Center for Electronic Correlations and Magnetism
- Institute of Physics
- University of Augsburg
- D-86159 Augsburg
- Germany
| | - Victor A. Tafeenko
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russia
| | - Andrey A. Eliseev
- Department of Materials Science
- Lomonosov Moscow State University
- 119991 Moscow
- Russia
| | - Lev A. Trusov
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russia
| | - Martin Jansen
- Max Planck Institute for Solid State Research
- 70569 Stuttgart
- Germany
| |
Collapse
|
16
|
Zhang J, Boyes V, Festy F, Lynch RJ, Watson TF, Banerjee A. In-vitro subsurface remineralisation of artificial enamel white spot lesions pre-treated with chitosan. Dent Mater 2018; 34:1154-1167. [DOI: 10.1016/j.dental.2018.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/06/2018] [Accepted: 04/30/2018] [Indexed: 11/28/2022]
|
17
|
Ulian G, Valdrè G. Effect of mechanical stress on the Raman and infrared bands of hydroxylapatite: A quantum mechanical first principle investigation. J Mech Behav Biomed Mater 2017; 77:683-692. [PMID: 29102893 DOI: 10.1016/j.jmbbm.2017.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 11/17/2022]
Abstract
The calcium apatite minerals are among the most studied in the biomaterial field because of their similarity with the mineral phase of bone tissues, which is mainly the hexagonal polymorph of hydroxylapatite. Given the growing interest both in the microscopic processes governing the behaviour of these natural biomaterials and in recent experimental methods to investigate the Raman response of hydroxylapatite upon mechanical loading, we report in the present work a detailed quantum mechanical analysis by DFT/B3LYP-D* approach on the Raman and infrared responses of hydroxylapatite upon deformation of its unit cell. From the vibrational results, the piezo-spectroscopic components Δν = Πijσij were calculated. For the first time to the authors' knowledge quantum mechanics (QM) was applied to resolve the piezo-spectroscopic response of hydroxylapatite. The QM results on the uniaxial stress responses of this phase on the piezo-spectroscopic components Π11 and Π33 of the symmetric P-O stretching mode were 2.54 ± 0.09cm-1/GPa and 2.56 ± 0.06cm-1/GPa, respectively (Raman simulation) and 2.48 ± 0.15cm-1/GPa and Π33 = 2.74 ± 0.08cm-1/GPa, respectively, of the asymmetric P-O stretching (infrared spectroscopy simulation). These results are in excellent agreement with previous experimental data reported in literature. The quantum mechanical analysis of the other vibrational bands (not present in literature) shed more light on this new and very important application of both Raman and IR spectroscopies and extend the knowledge of the behaviour of hydroxylapatite, suggesting and addressing further experimental research and analytic strategy.
Collapse
Affiliation(s)
- Gianfranco Ulian
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna "Alma Mater Studiorum" Piazza di Porta San Donato 1, 40126 Bologna, Italy; Centro di Ricerche Interdisciplinari di Biomineralogia, Cristallografia e Biomateriali, Università di Bologna "Alma Mater Studiorum" Piazza di Porta San Donato 1, 40126 Bologna, Italy
| | - Giovanni Valdrè
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna "Alma Mater Studiorum" Piazza di Porta San Donato 1, 40126 Bologna, Italy; Centro di Ricerche Interdisciplinari di Biomineralogia, Cristallografia e Biomateriali, Università di Bologna "Alma Mater Studiorum" Piazza di Porta San Donato 1, 40126 Bologna, Italy.
| |
Collapse
|
18
|
Pattern of Hydroxyapatite Crystal Growth on Bleached Enamel Following the Application of Two Antioxidants: An Atomic Force Microscope Study. J Clin Pediatr Dent 2017; 41:38-47. [PMID: 28052216 DOI: 10.17796/1053-4628-41.1.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES This study observed the topographical pattern of hydroxyapatite deposition and growth (D&G) on bleached enamel following application of two antioxidants (sodium ascorbate and catalase) using atomic force microscope. STUDY DESIGN Twenty enamel specimens (4×3×2mm), prepared from extracted impacted third molars, were mounted in self-cure acrylic and randomly grouped as: Group I-untreated; Group II- 35%H2O2; Group III- 35%H2O2 + artificial saliva; Group IV- 35%H2O2 + catalase+ artificial saliva; Group V- 35%H2O2 + sodium ascorbate+ artificial saliva. Groups I and II were observed immediately after treatment. Groups III-V were observed after 72 hrs. Roughness average was also calculated and analyzed with non-parametric Kruskall-Wallis ANOVA and Mann-Whitney tests. RESULTS H2O2 dissolved matrix, exposed hydroxyapatite crystals (HACs), causing dissolution on the sides of and within HACs and opening up of nano-spaces. Artificial saliva showed growth of dissoluted crystals. Antioxidants+saliva showed potentiated remineralization by D&G on dissoluted HACs of bleached enamel. Catalase potentiated blockshaped, while sodium ascorbate the needle-shaped crystals with stair-pattern of crystallization. Evidence of oxygen bubbles was a new finding with catalase. Maximum roughness average was in group V followed by group II > group IV > group III > group I. CONCLUSION Post-bleaching application of catalase and sodium ascorbate potentiated remineralization by saliva, but in different patterns. None of the tested antioxidant could return the original topography of enamel.
Collapse
|
19
|
Dalmônico GML, Franczak PF, Levandowski Jr. N, Camargo NHA, Dallabrida AL, da Costa BD, Gil OG, Cambra-Moo O, Rodríguez MA, Canillas M. An in vivo study on bone formation behavior of microporous granular calcium phosphate. Biomater Sci 2017; 5:1315-1325. [DOI: 10.1039/c7bm00162b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study was developed based on in vivo investigation of microporous granular biomaterials based on calcium phosphates.
Collapse
Affiliation(s)
- G. M. L. Dalmônico
- Postgraduation Program in Materials Science and Engineering
- Santa Catarina State University (UDESC)
- Joinville
- Brazil
| | - P. F. Franczak
- Postgraduation Program in Materials Science and Engineering
- Santa Catarina State University (UDESC)
- Joinville
- Brazil
| | - N. Levandowski Jr.
- Postgraduation Program in Materials Science and Engineering
- Santa Catarina State University (UDESC)
- Joinville
- Brazil
| | - N. H. A. Camargo
- Postgraduation Program in Materials Science and Engineering
- Santa Catarina State University (UDESC)
- Joinville
- Brazil
| | - A. L. Dallabrida
- Department of Veterinary Medicine
- Santa Catarina State University
- Lages
- Brazil
| | - B. D. da Costa
- Department of Veterinary Medicine
- Santa Catarina State University
- Lages
- Brazil
| | - O. García Gil
- Laboratorio de Poblaciones del Pasado (LAPP)
- Departamento de Biología
- Facultad de Ciencias
- Universidad Autónoma de Madrid (UAM)
- 28049 Madrid
| | - O. Cambra-Moo
- Laboratorio de Poblaciones del Pasado (LAPP)
- Departamento de Biología
- Facultad de Ciencias
- Universidad Autónoma de Madrid (UAM)
- 28049 Madrid
| | | | - M. Canillas
- Instituto de Cerámica y Vidrio
- CSIC
- Madrid
- Spain
| |
Collapse
|
20
|
Santana M, Estevez JO, Agarwal V, Herrera-Becerra R. Room Temperature Crystallization of Hydroxyapatite in Porous Silicon Structures. NANOSCALE RESEARCH LETTERS 2016; 11:497. [PMID: 27832526 PMCID: PMC5104700 DOI: 10.1186/s11671-016-1658-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Porous silicon (PS) substrates, with different pore sizes and morphology, have been used to crystallize hydroxyapatite (HA) nano-fibers by an easy and economical procedure using a co-precipitation method at room temperature. In situ formation of HA nanoparticles, within the meso- and macroporous silicon structure, resulted in the formation of nanometer-sized hydroxyapatite crystals on/within the porous structure. The X-ray diffraction technique was used to determine the tetragonal structure of the crystals. Analysis/characterization demonstrates that under certain synthesis conditions, growth and crystallization of hydroxyapatite layer on/inside PS can be achieved at room temperature. Such composite structures expand the possibility of designing a new bio-composite material based on the hydroxyapatite and silicon synthesized at room temperature.
Collapse
Affiliation(s)
- M. Santana
- Institute of Physics, UNAM, Circuito de la Investigación Científica Ciudad Universitaria, México, C. P. 04510 México
- Posgrado en Ciencia e Ingeniería de Materiales, Circuito de la Investigación Científica, Ciudad Universitaria, Mexico, 04510 Mexico
| | - J. O. Estevez
- Institute of Physics, UNAM, Circuito de la Investigación Científica Ciudad Universitaria, México, C. P. 04510 México
| | - V. Agarwal
- Center for Engineering and Applied Sciences (CIICAp-UAEM), Av. Universidad 1001. Col. Chamilpa, Cuernavaca, Morelos 62209 México
| | - R. Herrera-Becerra
- Institute of Physics, UNAM, Circuito de la Investigación Científica Ciudad Universitaria, México, C. P. 04510 México
| |
Collapse
|
21
|
Abdallah MN, Eimar H, Bassett DC, Schnabel M, Ciobanu O, Nelea V, McKee MD, Cerruti M, Tamimi F. Diagenesis-inspired reaction of magnesium ions with surface enamel mineral modifies properties of human teeth. Acta Biomater 2016; 37:174-83. [PMID: 27060619 DOI: 10.1016/j.actbio.2016.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 04/06/2016] [Indexed: 11/18/2022]
Abstract
UNLABELLED Mineralized tissues such as teeth and bones consist primarily of highly organized apatitic calcium-phosphate crystallites within a complex organic matrix. The dimensions and organization of these apatite crystallites at the nanoscale level determine in part the physical properties of mineralized tissues. After death, geological processes such as diagenesis and dolomitization can alter the crystallographic properties of mineralized tissues through cycles of dissolution and re-precipitation occurring in highly saline environments. Inspired by these natural exchange phenomena, we investigated the effect of hypersalinity on tooth enamel. We discovered that magnesium ions reacted with human tooth enamel through a process of dissolution and re-precipitation, reducing enamel crystal size at the surface of the tooth. This change in crystallographic structure made the teeth harder and whiter. Salt-water rinses have been used for centuries to ameliorate oral infections; however, our discovery suggests that this ancient practice could have additional unexpected benefits. STATEMENT OF SIGNIFICANCE Here we describe an approach inspired by natural geological processes to modify the properties of a biomineral - human tooth enamel. In this study we showed that treatment of human tooth enamel with solutions saturated with magnesium induced changes in the nanocrystals at the outer surface of the protective enamel layer. As a consequence, the physical properties of the tooth were modified; tooth microhardness increased and the color shade became whiter, thus suggesting that this method could be used as a clinical treatment to improve dental mechanical properties and esthetics. Such an approach is simple and straightforward, and could also be used to develop new strategies to synthesize and modify biominerals for biomedical and industrial applications.
Collapse
Affiliation(s)
| | - Hazem Eimar
- Faculty of Dentistry, McGill University, H3A 0C7 Montreal, QC, Canada
| | - David C Bassett
- Faculty of Dentistry, McGill University, H3A 0C7 Montreal, QC, Canada
| | - Martin Schnabel
- Faculty of Dentistry, McGill University, H3A 0C7 Montreal, QC, Canada
| | - Ovidiu Ciobanu
- Faculty of Dentistry, McGill University, H3A 0C7 Montreal, QC, Canada
| | - Valentin Nelea
- Faculty of Dentistry, McGill University, H3A 0C7 Montreal, QC, Canada
| | - Marc D McKee
- Faculty of Dentistry, McGill University, H3A 0C7 Montreal, QC, Canada; Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, H3A 0C7 Montreal, QC, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, H3A 0E8 Montreal, QC, Canada
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, H3A 0C7 Montreal, QC, Canada.
| |
Collapse
|
22
|
Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO+ and BiO+ with a very short metal–oxygen bond. J SOLID STATE CHEM 2016. [DOI: 10.1016/j.jssc.2016.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Wang Z, Zheng W, Hsu SCY, Huang Z. Optical diagnosis and characterization of dental caries with polarization-resolved hyperspectral stimulated Raman scattering microscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:1284-93. [PMID: 27446654 PMCID: PMC4929640 DOI: 10.1364/boe.7.001284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 05/23/2023]
Abstract
We report the utility of a rapid polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique developed for optical diagnosis and characterization of dental caries in the tooth. Hyperspectral SRS images (512 × 512 pixels) of the tooth covering both the fingerprint (800-1800 cm(-1)) and high-wavenumber (2800-3600 cm(-1)) regions can be acquired within 15 minutes, which is at least 10(3) faster in imaging speed than confocal Raman mapping. Hyperspectral SRS imaging uncovers the biochemical distributions and variations across the carious enamel in the tooth. SRS imaging shows that compared to the sound enamel, the mineral content in the body of lesion decreases by 55%; while increasing up to 110% in the surface zone, indicating the formation of a hyper-mineralized layer due to the remineralization process. Further polarized SRS imaging shows that the depolarization ratios of hydroxyapatite crystals (ν 1-PO4 (3-) of SRS at 959 cm(-1)) of the tooth in the sound enamel, translucent zone, body of lesion and the surface zone are 0.035 ± 0.01, 0.052 ± 0.02, 0.314 ± 0.1, 0.038 ± 0.02, respectively, providing a new diagnostic criterion for discriminating carious lesions from sound enamel in the teeth. This work demonstrates for the first time that the polarization-resolved hyperspectral SRS imaging technique can be used for quantitatively determining tooth mineralization levels and discriminating carious lesions from sound enamel in a rapid fashion, proving its promising potential of early detection and diagnosis of dental caries without labeling.
Collapse
Affiliation(s)
- Zi Wang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117576 Singapore
| | - Wei Zheng
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117576 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, 119260 Singapore
| | - Stephen Chin-Ying Hsu
- Department of Dentistry, Faculty of Dentistry, National University Health System and National University of Singapore, 119083 Singapore
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117576 Singapore
| |
Collapse
|
24
|
Amini S, Masic A, Bertinetti L, Teguh JS, Herrin JS, Zhu X, Su H, Miserez A. Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages. Nat Commun 2016; 5:3187. [PMID: 24476684 DOI: 10.1038/ncomms4187] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 01/02/2014] [Indexed: 11/09/2022] Open
Abstract
Stomatopods are shallow-water crustaceans that employ powerful dactyl appendages to hunt their prey. Deployed at high velocities, these hammer-like clubs or spear-like devices are able to inflict substantial impact forces. Here we demonstrate that dactyl impact surfaces consist of a finely-tuned mineral gradient, with fluorapatite substituting amorphous apatite towards the outer surface. Raman spectroscopy measurements show that calcium sulphate, previously not reported in mechanically active biotools, is co-localized with fluorapatite. Ab initio computations suggest that fluorapatite/calcium sulphate interfaces provide binding stability and promote the disordered-to-ordered transition of fluorapatite. Nanomechanical measurements show that fluorapatite crystalline orientation correlates with an anisotropic stiffness response and indicate significant differences in the fracture tolerance between the two types of appendages. Our findings shed new light on the crystallochemical and microstructural strategies allowing these intriguing biotools to optimize impact forces, providing physicochemical information that could be translated towards the synthesis of impact-resistant functional materials and coatings.
Collapse
Affiliation(s)
- Shahrouz Amini
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Admir Masic
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Potsdam-Golm, 14424 Potsdam, Germany
| | - Luca Bertinetti
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Potsdam-Golm, 14424 Potsdam, Germany
| | - Jefri Sanusi Teguh
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jason S Herrin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xi Zhu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Haibin Su
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ali Miserez
- 1] School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore [2] School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
25
|
Sroka-Bartnicka A, Kimber JA, Borkowski L, Pawlowska M, Polkowska I, Kalisz G, Belcarz A, Jozwiak K, Ginalska G, Kazarian SG. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging. Anal Bioanal Chem 2015; 407:7775-85. [PMID: 26277184 DOI: 10.1007/s00216-015-8943-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/28/2015] [Indexed: 11/28/2022]
Abstract
The spectroscopic approaches of FTIR imaging and Raman mapping were applied to the characterisation of a new carbon hydroxyapatite/β-glucan composite developed for bone tissue engineering. The composite is an artificial bone material with an apatite-forming ability for the bone repair process. Rabbit bone samples were tested with an implanted bioactive material for a period of several months. Using spectroscopic and chemometric methods, we were able to determine the presence of amides and phosphates and the distribution of lipid-rich domains in the bone tissue, providing an assessment of the composite's bioactivity. Samples were also imaged in transmission using an infrared microscope combined with a focal plane array detector. CaF2 lenses were also used on the infrared microscope to improve spectral quality by reducing scattering artefacts, improving chemometric analysis. The presence of collagen and lipids at the bone/composite interface confirmed biocompatibility and demonstrate the suitability of FTIR microscopic imaging with lenses in studying these samples. It confirmed that the composite is a very good background for collagen growth and increases collagen maturity with the time of the bone growth process. The results indicate the bioactive and biocompatible properties of this composite and demonstrate how Raman and FTIR spectroscopic imaging have been used as an effective tool for tissue characterisation.
Collapse
Affiliation(s)
- Anna Sroka-Bartnicka
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - James A Kimber
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Leszek Borkowski
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Marta Pawlowska
- Department of Animal Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Izabela Polkowska
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Grzegorz Kalisz
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
26
|
Raman spectroscopic characterisation of resin-infiltrated hypomineralised enamel. Anal Bioanal Chem 2015; 407:5661-71. [DOI: 10.1007/s00216-015-8742-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/07/2015] [Accepted: 04/27/2015] [Indexed: 11/29/2022]
|
27
|
Seredin P, Goloshchapov D, Prutskij T, Ippolitov Y. Phase transformations in a human tooth tissue at the initial stage of caries. PLoS One 2015; 10:e0124008. [PMID: 25901743 PMCID: PMC4406755 DOI: 10.1371/journal.pone.0124008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/09/2015] [Indexed: 11/19/2022] Open
Abstract
The aim of the paper is to study phase transformations in solid tissues of the human teeth during the development of fissure caries by Raman and fluorescence microspectroscopy. The study of the areas with fissure caries confirmed the assumption of the formation of a weak interaction between phosphate apatite enamel and organic acids (products of microorganisms). The experimental results obtained with by Raman microspectroscopy showed the formation of dicalcium phosphate dihydrate - CaHPO4-2H2O in the area of mural demineralization of carious fissure. A comparative analysis of structural and spectroscopic data for the intact and carious enamel shows that emergence of a more soluble phase - carbonate-substituted hydroxyapatite - is typical for the initial stage of caries. It is shown that microareas of dental hard tissues in the carious fissure due to an emerging misorientation of apatite crystals have a higher fluorescence yield than the area of the intact enamel. These areas can be easily detected even prior to a deep demineralization (white spot stage) for the case of irreversibly changed organomineral complex and intensive removal of the mineral component.
Collapse
Affiliation(s)
- Pavel Seredin
- Department of Solid State Physics and Nanostructures, Voronezh State University, Voronezh, Russia
- * E-mail:
| | - Dmitry Goloshchapov
- Department of Solid State Physics and Nanostructures, Voronezh State University, Voronezh, Russia
| | - Tatiana Prutskij
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Yury Ippolitov
- Department of Preventive Dentistry, Voronezh State Medical Academy, Voronezh, Russia
| |
Collapse
|
28
|
Adachi T, Pezzotti G, Yamamoto T, Ichioka H, Boffelli M, Zhu W, Kanamura N. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: II, application to decayed human teeth. Anal Bioanal Chem 2015; 407:3343-56. [PMID: 25753014 DOI: 10.1007/s00216-015-8539-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/15/2015] [Accepted: 02/06/2015] [Indexed: 11/30/2022]
Abstract
A systematic investigation, based on highly spectrally resolved Raman spectroscopy, was undertaken to research the efficacy of vibrational assessments in locating chemical and crystallographic fingerprints for the characterization of dental caries and the early detection of non-cavitated carious lesions. Raman results published by other authors have indicated possible approaches for this method. However, they conspicuously lacked physical insight at the molecular scale and, thus, the rigor necessary to prove the efficacy of this spectroscopy method. After solving basic physical challenges in a companion paper, we apply them here in the form of newly developed Raman algorithms for practical dental research. Relevant differences in mineral crystallite (average) orientation and texture distribution were revealed for diseased enamel at different stages compared with healthy mineralized enamel. Clear spectroscopy features could be directly translated in terms of a rigorous and quantitative classification of crystallography and chemical characteristics of diseased enamel structures. The Raman procedure enabled us to trace back otherwise invisible characteristics in early caries, in the translucent zone (i.e., the advancing front of the disease) and in the body of lesion of cavitated caries.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kawaramachi dori, Kyoto, 602-0841, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: I, theoretical foundations. Anal Bioanal Chem 2015; 407:3325-42. [PMID: 25673243 DOI: 10.1007/s00216-015-8472-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/24/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
Abstract
The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.
Collapse
|
30
|
Taube F, Marczewski M, Norén J. Deviations of inorganic and organic carbon content in hypomineralised enamel. J Dent 2015; 43:269-78. [DOI: 10.1016/j.jdent.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/27/2014] [Accepted: 09/05/2014] [Indexed: 11/15/2022] Open
|
31
|
Shaharyar Y, Wein E, Kim JJ, Youngman RE, Muñoz F, Kim HW, Tilocca A, Goel A. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses. J Mater Chem B 2015; 3:9360-9373. [DOI: 10.1039/c5tb01494h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural role of fluoride on chemical dissolution behavior of bioactive phosphate glasses has been studied.
Collapse
Affiliation(s)
- Yaqoot Shaharyar
- Department of Materials Science and Engineering
- Rutgers
- The State University of New Jersey
- Piscataway
- USA
| | - Eric Wein
- Department of Materials Science and Engineering
- Rutgers
- The State University of New Jersey
- Piscataway
- USA
| | - Jung-Ju Kim
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
- Cheonan 330-714
- South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
| | | | | | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
- Cheonan 330-714
- South Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
| | - Antonio Tilocca
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | - Ashutosh Goel
- Department of Materials Science and Engineering
- Rutgers
- The State University of New Jersey
- Piscataway
- USA
| |
Collapse
|
32
|
Characterization of Calcium Phosphates Using Vibrational Spectroscopies. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2014. [DOI: 10.1007/978-3-642-53980-0_8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Saber-Samandari S, Alamara K, Saber-Samandari S, Gross KA. Micro-Raman spectroscopy shows how the coating process affects the characteristics of hydroxylapatite. Acta Biomater 2013; 9:9538-46. [PMID: 23973389 DOI: 10.1016/j.actbio.2013.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
The diversity in the structural and chemical state of apatites allows implant manufacturers to fine-tune implant properties. This requires suitable manufacturing processes and characterization tools to adjust the amorphous phase and hydroxyl content from the source hydroxylapatite. Hydroxylapatite was processed by high-velocity oxy-fuel spraying, plasma spraying and flame spraying, and primarily analyzed by Raman spectroscopy. Investigation of rounded splats, the building blocks of thermal spray coatings, allowed correlation between the visual identity of the splat surface and the Raman spectra. Splats were heat-treated to crystallize any remaining amorphous phase. The ν1 PO4 stretching peak at 950-970 cm(-1) displayed the crystalline order, but the hydroxyl peak at 3572 cm(-1) followed the degree of dehydroxylation. Hydroxyl loss was greatest for flame-sprayed particles, which create the longest residence time for the melted particle. Higher-frequency hydroxyl peaks in flame- and plasma-sprayed splats indicated a lower structural order for the recrystallized hydroxylapatite within the splats. Crystallization at 700 °C has shown potential for revealing hydroxyl ions previously trapped in amorphous calcium phosphate. This work compares Fourier transform infrared and Raman spectroscopy to measure the hydroxyl content in rapidly solidified apatites and shows that Raman spectroscopy is more suitable.
Collapse
|
34
|
Galvis L, Dunlop JWC, Duda G, Fratzl P, Masic A. Polarized Raman anisotropic response of collagen in tendon: towards 3D orientation mapping of collagen in tissues. PLoS One 2013; 8:e63518. [PMID: 23691057 PMCID: PMC3655185 DOI: 10.1371/journal.pone.0063518] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
In this study, polarized Raman spectroscopy (PRS) was used to characterize the anisotropic response of the amide I band of collagen as a basis for evaluating three-dimensional collagen fibril orientation in tissues. Firstly, the response was investigated theoretically by applying classical Raman theory to collagen-like peptide crystal structures. The theoretical methodology was then tested experimentally, by measuring amide I intensity anisotropy in rat tail as a function of the orientation of the incident laser polarization. For the theoretical study, several collagen-like triple-helical peptide crystal structures obtained from the Protein Data Bank were rotated "in plane" and "out of plane" to evaluate the role of molecular orientation on the intensity of the amide I band. Collagen-like peptides exhibit a sinusoidal anisotropic response when rotated "in plane" with respect to the polarized incident laser. Maximal intensity was obtained when the polarization of the incident light is perpendicular to the molecule and minimal when parallel. In the case of "out of plane" rotation of the molecular structure a decreased anisotropic response was observed, becoming completely isotropic when the structure was perpendicular to the plane of observation. The theoretical Raman response of collagen was compared to that of alpha helical protein fragments. In contrast to collagen, alpha helices have a maximal signal when incident light is parallel to the molecule and minimal when perpendicular. For out-of-plane molecular orientations alpha-helix structures display a decreased average intensity. Results obtained from experiments on rat tail tendon are in excellent agreement with the theoretical predictions, thus demonstrating the high potential of PRS for experimental evaluation of the three-dimensional orientation of collagen fibers in biological tissues.
Collapse
Affiliation(s)
- Leonardo Galvis
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - John W. C. Dunlop
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Georg Duda
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow-Klinikum, Berlin, Germany
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Admir Masic
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail:
| |
Collapse
|
35
|
Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level. J Mech Behav Biomed Mater 2013; 17:152-65. [DOI: 10.1016/j.jmbbm.2012.08.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 12/25/2022]
|
36
|
Hariri I, Sadr A, Shimada Y, Tagami J, Sumi Y. Effects of structural orientation of enamel and dentine on light attenuation and local refractive index: An optical coherence tomography study. J Dent 2012; 40:387-96. [DOI: 10.1016/j.jdent.2012.01.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 10/14/2022] Open
|
37
|
Determination of Collagen Fibers Arrangement in Bone Tissue by Using Transformations of Raman Spectra Maps. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/261487] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The goal of this work was to evaluate the ability of Raman spectroscopy to identify molecular organization and chemical composition of extracellular matrix such as the collagen fibers arrangement, the level of mineralization, and the carbonate accumulation in mineral phase in spongy bone of the human head of the femur. Changes in composition and structure of the spongy bone tissue were illustrated using maps of polarized Raman spectra. In particular, the purpose of the present study was determination of arrangement of mineralized collagen on surface of trabecula by using transformations of Raman spectra maps. Transformations of Raman spectra maps were needed in order to remove impact of chemical composition on images of Raman spectra map, which display the collagen fibers orientation. These transformations allow to obtain simultaneously the distribution of constituents of bone and arrangement of collagen fibers on tissue surface. A method to indicate the collagen orientations is developed to understand the molecular organization in healthy and unhealthy bone at the microstructural level.
Collapse
|
38
|
Xu C, Wang Y. Chemical composition and structure of peritubular and intertubular human dentine revisited. Arch Oral Biol 2011; 57:383-91. [PMID: 21996490 DOI: 10.1016/j.archoralbio.2011.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/17/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022]
Abstract
OBJECTIVE Currently there is still a debate about whether peritubular dentine (PTD) is non-collageneous or collageneous tissue. The chemical composition and structure of human PTD and intertubular dentine (ITD) was re-visited in this study. DESIGN The dentine tubular region including ITD and PTD prepared from human third molars was in situ detected by means of micro-Raman spectroscopy (μRs) and atomic force microscopy (AFM). RESULTS From the μRs study, it was found that the mineral/matrix ratios (phosphate vs. CH(2)) in PTD were ∼3 times of those in ITD. For the mineral, the differences between PTD and ITD were small, but still detectable. For the organic matrix, the intensity ratios of amide III to CH(2) in ITD were ∼1.5 times of those in PTD, indicating the structural differences. In addition, there was a higher proline/hydroxyproline content in ITD than that in PTD. However, the overall Raman peak contour in the amide regions (I & III) was similar, indicating collagen might still exist in both the ITD and PTD. An in situ AFM observation of the dentinal tubular region during EDTA etching confirmed that dentine collagen ran across from the ITD into the PTD. CONCLUSION A phenomenon similar to that observed in the dentine-enamel junction is proposed to explain the above results. It is demonstrated that the μRs-AFM approach can be used to provide an insight into the structure of small dental tissues at the micron or sub-micron scale.
Collapse
Affiliation(s)
- Changqi Xu
- Department of Oral Biology, University of Missouri-Kansas City, School of Dentistry, Kansas City, MO 64108, USA
| | | |
Collapse
|
39
|
Kozielski M, Buchwald T, Szybowicz M, Błaszczak Z, Piotrowski A, Ciesielczyk B. Determination of composition and structure of spongy bone tissue in human head of femur by Raman spectral mapping. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1653-61. [PMID: 21626309 PMCID: PMC3127018 DOI: 10.1007/s10856-011-4353-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/16/2011] [Indexed: 05/30/2023]
Abstract
Biomechanical properties of bone depend on the composition and organization of collagen fibers. In this study, Raman microspectroscopy was employed to determine the content of mineral and organic constituents and orientation of collagen fibers in spongy bone in the human head of femur at the microstructural level. Changes in composition and structure of trabecula were illustrated using Raman spectral mapping. The polarized Raman spectra permit separate analysis of local variations in orientation and composition. The ratios of ν₂PO₄³⁻/Amide III, ν₄PO₄³⁻/Amide III and ν₁CO₃²⁻/ν₂PO₄³⁻ are used to describe relative amounts of spongy bone components. The ν₁PO₄³⁻/Amide I ratio is quite susceptible to orientation effect and brings information on collagen fibers orientation. The results presented illustrate the versatility of the Raman method in the study of bone tissue. The study permits better understanding of bone physiology and evaluation of the biomechanical properties of bone.
Collapse
Affiliation(s)
- M. Kozielski
- Faculty of Technical Physics, Poznan University of Technology, Nieszawska 13a, 60-965 Poznań, Poland
| | - T. Buchwald
- Faculty of Technical Physics, Poznan University of Technology, Nieszawska 13a, 60-965 Poznań, Poland
| | - M. Szybowicz
- Faculty of Technical Physics, Poznan University of Technology, Nieszawska 13a, 60-965 Poznań, Poland
| | - Z. Błaszczak
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - A. Piotrowski
- Department of Anatomy, Poznan University of Medical Sciences, Święcickiego 6, 60-784 Poznań, Poland
| | - B. Ciesielczyk
- Department of Surgery, Franciszek Raszeja Memorial Hospital, Mickiewicz 2, 60-834 Poznań, Poland
| |
Collapse
|
40
|
Braga SRM, De Faria DLA, De Oliveira E, Sobral MAP. Morphological and mineral analysis of dental enamel after erosive challenge in gastric juice and orange juice. Microsc Res Tech 2011; 74:1083-7. [DOI: 10.1002/jemt.20998] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 01/25/2011] [Indexed: 11/06/2022]
|
41
|
Gamsjaeger S, Masic A, Roschger P, Kazanci M, Dunlop JWC, Klaushofer K, Paschalis EP, Fratzl P. Cortical bone composition and orientation as a function of animal and tissue age in mice by Raman spectroscopy. Bone 2010; 47:392-9. [PMID: 20450992 DOI: 10.1016/j.bone.2010.04.608] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/15/2010] [Accepted: 04/26/2010] [Indexed: 11/24/2022]
Abstract
Important aspects of bone tissue quality include the physicochemical properties of its main constituents, the organic matrix and the mineral crystals. One of the most commonly reported measurements of Raman analysis of bone is the mineral to matrix ratio, obtained from the ratio of the integrated areas of any of the phosphate and amide peaks which depend on both tissue organization and composition. Cube-like samples of normal mouse cortical bone taken from the diaphysis and metaphysis of the femur were investigated within different age groups (2, 4, 8 and 12 weeks) by Raman microspectroscopy. Anatomically identical bone in both longitudinal and transverse directions was analyzed, enabling the discrimination between orientation and composition changes both as a function of animal age, and tissue age within the same animal. The results of the present study indicate that there is a parallel evolution of both orientation and chemical composition as a function of animal age, as well as tissue age within the same specimen. Our tissue age modified ratio of the carbonate to phosphate Raman peaks suggests that the bone mineral crystallite maturity remains relatively constant with animal age. Comparisons of polarized and depolarized experiments in the transversal plane of the diaphysis show a lack of orientation effects as a function of tissue age within the same animal, but exhibit differences as a function of animal age. In the metaphysis, the orientation effect is evident too, albeit less pronounced. This is most likely due to either the age difference between the two tissues within the same specimen in the long bone axis, as metaphyseal bone is generally younger than diaphyseal, or the more random orientation of the tissue collagen itself.
Collapse
Affiliation(s)
- Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 4th Medical Department, Hanusch Hospital, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Falgayrac G, Facq S, Leroy G, Cortet B, Penel G. New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone. APPLIED SPECTROSCOPY 2010; 64:775-780. [PMID: 20615291 DOI: 10.1366/000370210791666255] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Knowledge of the organization of the components of bone is of primary importance in understanding how this tissue responds to stresses and provides a starting point for the design and development of biomaterials. Bone structure has been the subject of numerous studies. The mineralized fiber arrangement in cortical bone is either a twisted or orthogonal plywood structure. Both mineral models coexist in compact bone. Raman polarized spectroscopy offers definite advantages in the study of biological samples, enabling the simultaneous analysis of mineral and organic components and the determination of molecular orientation through the polarization properties of the Raman scattering. In this study, we used the Raman polarization approach to simultaneously investigate the orientation of collagen fibrils and apatite crystals in human cortical bone. Raman bands ratios were monitored as a function of sample orientation. Specific ratios were chosen--such as nu(3) PO(4)/nu(1) PO(4), amide III (1271 cm(-1))/amide III (1243 cm(-1)), and amide I/amide III (1243 cm(-1))--due to their sensitivity to apatite-crystal and collagen-fibril orientation. Based on this original approach, spatial changes were monitored as a function of distance from the Haversian canal. The results revealed simultaneous tilting in intra-lamellar collagen-fibril and mineral crystal orientations. These results are consistent with a twisted plywood organization in the Haversian bone structure at the lamellar level. But at molecular level, the co-alignment of the collagen fibrils and the apatite crystal is observed in the innermost lamellae and becomes gradually less ordered as the distance from the Haversian canal increases. This work highlights the interest of Raman spectroscopy for the multiscale investigation of bone structure.
Collapse
|
43
|
Raghavan M, Sahar ND, Wilson RH, Mycek MA, Pleshko N, Kohn DH, Morris MD. Quantitative polarized Raman spectroscopy in highly turbid bone tissue. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:037001. [PMID: 20615030 PMCID: PMC2881928 DOI: 10.1117/1.3426310] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.
Collapse
Affiliation(s)
- Mekhala Raghavan
- University of Michigan, Department of Biomedical Engineering, 930 North University Avenue, Room 4638, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Corno M, Rimola A, Bolis V, Ugliengo P. Hydroxyapatite as a key biomaterial: quantum-mechanical simulation of its surfaces in interaction with biomolecules. Phys Chem Chem Phys 2010; 12:6309-29. [DOI: 10.1039/c002146f] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Raman Spectroscopy of Bone and Cartilage. EMERGING RAMAN APPLICATIONS AND TECHNIQUES IN BIOMEDICAL AND PHARMACEUTICAL FIELDS 2010. [DOI: 10.1007/978-3-642-02649-2_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
46
|
Goodyear SR, Gibson IR, Skakle JMS, Wells RPK, Aspden RM. A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy. Bone 2009; 44:899-907. [PMID: 19284975 DOI: 10.1016/j.bone.2009.01.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 11/18/2022]
Abstract
Cortical and trabecular bone are both produced and maintained by the same cell types. At the microscopic scale they have a similar lamellar structure but at a macroscopic scale they are very different. Raman microscopy has been used to investigate compositional differences in the two bone types using bone from standard laboratory mice in physiological conditions. Clear differences were observed when complete spectra were compared by principal component analysis (PCA). Analysis of individual bands showed cortical bone to have compositional characteristics of older bone when compared with trabecular material, possibly due to the higher bone turnover traditionally reported in the trabecular compartment.
Collapse
Affiliation(s)
- Simon R Goodyear
- Bone and Musculoskeletal Programme, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, UK.
| | | | | | | | | |
Collapse
|
47
|
Ly E, Piot O, Durlach A, Bernard P, Manfait M. Polarized Raman microspectroscopy can reveal structural changes of peritumoral dermis in basal cell carcinoma. APPLIED SPECTROSCOPY 2008; 62:1088-1094. [PMID: 18926017 DOI: 10.1366/000370208786049187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Polarized Raman microspectroscopy can provide precious information regarding the orientation and ordering of the molecules in a sample without staining or particular preparation. This technique is used for the first time on a human skin section to probe the molecular modifications of the surrounding dermis in superficial basal cell carcinoma. Spectra using polarized and conventional Raman microspectroscopies were recorded on dermis bordering either the tumor or healthy epidermis. Band areas and spectral decomposition on selected vibrations were computed. Significant differences in dermal collagen vibration bands are detected using both polarized and conventional micro-spectroscopies, but the spectral changes between tumor and healthy tissues are enhanced using polarized Raman microspectroscopy. The analysis of these spectral differences highlights structural modifications of the triple helix of collagen. We see polarized Raman microspectroscopy as a potential tool that could be implemented for clinical analyses to guide clinicians and surgeons in the treatment of aggressive skin cancers. The information obtainable could also help better elucidate the molecular mechanisms induced in basal cell carcinoma development.
Collapse
Affiliation(s)
- Elodie Ly
- Unité MéDIAN UMR CNRS 6237 MEDyC, UFR de Pharmacie, IFR 53, Université Reims-Champagne Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France
| | | | | | | | | |
Collapse
|
48
|
Borges AFS, Bittar RA, Pascon FM, Sobrinho LC, Martin AA, Puppin Rontani RM. NaOCl effects on primary and permanent pulp chamber dentin. J Dent 2008; 36:745-53. [DOI: 10.1016/j.jdent.2008.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 11/29/2022] Open
|
49
|
Yokoyama E, Kakino S, Matsuura Y. Raman imaging of carious lesions using a hollow optical fiber probe. APPLIED OPTICS 2008; 47:4227-4230. [PMID: 18690263 DOI: 10.1364/ao.47.004227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Raman spectroscopy using a hollow optical fiber probe with a glass ball lens at the distal end is proposed for detection of early caries lesions. Raman spectroscopy on carious lesions of extracted teeth showed that the probe enables measurement with a high signal-to-noise ratio when combined with a ball lens with a high refractive index. The proposed probe and lens combination detects changes in Raman spectra caused by morphological differences between sound and carious enamel. We also obtained a high-contrast image of an early carious lesion by scanning the tooth surface with the probe.
Collapse
Affiliation(s)
- Eriko Yokoyama
- Graduate School of Engineering, Tohoku University, 05 Aoba, Sendai 9808579, Japan
| | | | | |
Collapse
|
50
|
Hashimoto M, Nakamura K, Kaga M, Yawaka Y. Crystal growth by fluoridated adhesive resins. Dent Mater 2008; 24:457-63. [PMID: 17673282 DOI: 10.1016/j.dental.2007.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 02/02/2007] [Accepted: 04/04/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This investigation was carried out to evaluate the long-term effects of fluoride-releasing adhesive resins on structural changes in standardized fluid-filled gaps simulating microleakage between the materials and the tooth surface in vitro. METHODS Three commercially available fluoride-releasing resin adhesives (One-Up Bond F, OptiBond Solo, and Reactmer Bond) were used in this study. Cured disks of resin adhesive were placed over flat human tooth surfaces (enamel and dentin), separated by a standardized 40microm interfacial gap and stored in distilled water for 24h (control group) or 1000 days (experimental group). After 1000 days of water storage, the resins were detached from the teeth and the opposing surfaces were examined by scanning electron microscopy (SEM). In addition, chemical structural analysis was performed by laser-Raman spectroscopy. RESULTS The SEM microphotographs showed numerous crystal types on the enamel, dentin, and resin surfaces after 1000 days of water storage for OptiBond Solo and Reactmer Bond. However, there was no crystal formation in the control specimens and the aged specimens of One-Up Bond F. Raman analysis showed several peaks (463, 618, and 990cm(-1)) from the crystals of OptiBond Solo that were not identified in the enamel, dentin, or cured resin. SIGNIFICANCE In conclusion, two of the three tested fluoride-release resin adhesives (OptiBond Solo and Reactmer Bond) have the ability to induce crystal growth within gaps between the adhesive and teeth in long-term water storage. These results suggest that the two adhesive resins have self-reparative ability with regard to bond leakage.
Collapse
Affiliation(s)
- Masanori Hashimoto
- Department of Dentistry for Children and Disabled Persons, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Hokkaido, Japan.
| | | | | | | |
Collapse
|