1
|
Zhou W, Liang J, Huang X, Weir MD, Masri R, Oates TW, Xu HHK, Cheng L. Novel antibacterial titanium implant healing abutment with dimethylaminohexadecyl methacrylate to combat implant-related infections. Dent Mater 2024; 40:244-253. [PMID: 37981511 DOI: 10.1016/j.dental.2023.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVE Implant-related infections from the adhesion and proliferation of dental plaque are a major challenge for dental implants. The objectives of this study were to: (1) develop novel antibacterial titanium (Ti) healing abutment; (2) investigate the inhibition of implant infection-related pathogenic bacteria and saliva-derived biofilm, and evaluate the biocompatibility of the new material for the first time. METHODS Dimethylaminohexadecyl methacrylate (DMAHDM) and hydroxyapatite (HAP) were polymerized via polydopamine (PDA) on Ti. Staphylococcus aureus (S. aureus), Streptococcus sanguinis (S. sanguinis) and human saliva-derived biofilms were tested. After 4 weeks of DMAHDM release, the antibacterial efficacy of the DMAHDM remaining on Ti surface and the DMADHM in medium was tested. Biocompatibility was determined using human gingival fibroblasts (HGFs) and periodontal ligament stem cells (PDLSCs). RESULTS The DMAHDM-loaded coating filled into the nano-voids in Ti surfaces. The modified Ti showed potent antibacterial activity, reducing the CFU of S. aureus, S. sanguinis and saliva-derived biofilms by 8, 7 and 4 log, respectively (P < 0.05). After 4 weeks of release, the modified Ti was still able to reduce S. aureus and S. sanguinis biofilm CFU by 1-3 log (P < 0.05). This provided strong antibacterial function for more than 4 weeks, which were the high-risk period for implant infections. The new material showed excellent biocompatibility when compared to control (P > 0.05). CONCLUSION Novel DMAHDM-loaded Ti healing abutment had strong antibacterial effects, reducing biofilm CFUs by orders of magnitude, and lasting for over four weeks to cover the high-risk period for implant infections. The novel antibacterial Ti is promising to combat implant-related infections in dental, craniofacial and orthopedic applications.
Collapse
Affiliation(s)
- Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jingou Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Xiaoyu Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Radi Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Zhang X, Zhang J, Zhang T, Yao S, Wang Z, Zhou C, Wu J. Novel low-shrinkage dental resin containing microcapsules with antibacterial and self-healing properties. J Mech Behav Biomed Mater 2023; 148:106212. [PMID: 37913623 DOI: 10.1016/j.jmbbm.2023.106212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Dental resin restorations commonly fail because of fractures and secondary caries. The aim of this research was to synthesize a novel low-shrinkage dental resin with antibacterial and self-healing properties. The low-shrinkage dental resin was obtained by incorporating a 20 wt% anti-shrinkage mixture of an expanding monomer 3,9-diethyl-3,9-dimethylol -1,5,7,11-tetraoxaspiro[5,5] undecane and an epoxy resin monomer diallyl bisphenol A diglycidyl ether (1:1, referred as "UE") and different mass fractions of self-healing antibacterial microcapsules (0%, 2.5%, 5%, 7.5%, and 10%) were incorporated into the matrix to prepare multifunctional dental resin. Polymerization shrinkage, mechanical properties, antibacterial activity, self-healing ability, and cytotoxicity of this dental resin were evaluated. The polymerization volumetric shrinkage of resin containing 20 wt% UE and 7.5 wt% microcapsules was reduced by 30.12% (4.13% ± 0.42%) compared with control. Furthermore, it exhibited high antibacterial activity and a good self-healing efficiency of 71% without adversely affecting the mechanical property and cell viability. This novel multifunctional dental resin with low polymerization shrinkage and excellent antibacterial activity and self-healing capability has potential application as a dental resin material to decrease the incidence of fractures and secondary caries.
Collapse
Affiliation(s)
- Xiaoran Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Jiajia Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Ting Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Shuo Yao
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Zonghua Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Chuanjian Zhou
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Junling Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China.
| |
Collapse
|
3
|
Yao S, Qin L, Ma L, Zhang X, Jiang H, Zhang J, Zhou C, Wu J. Novel antimicrobial and self-healing dental resin to combat secondary caries and restoration fracture. Dent Mater 2023; 39:1040-1050. [PMID: 37777432 DOI: 10.1016/j.dental.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
OBJECTIVE Dental resin composites have been the most popular materials for repairing tooth decay in recent years. However, secondary caries and bulk fracture are the major hurdles that affect the lifetime of dental resin composites. This current study synthesized a novel antimicrobial and self-healing dental resin containing nanoparticle-modified self-healing microcapsules to combat secondary caries and restoration fracture. METHODS Multifunctional dental resins containing 0-20% nanoparticle-modified self-healing microcapsules were prepared. The water contact angle, antimicrobial properties, mechanical properties, cell toxicity, and self-healing capability of the dental resins were tested. RESULTS A novel multifunctional dental resin was synthesized. When the microcapsule mass fraction was 10%, the resin presented a strong bacteriostasis rate (80.3%) and excellent self-healing efficiency (66.1%), while the hydrophilicity, mechanical properties, and cell toxicity were not affected. SIGNIFICANCE The novel antimicrobial self-healing dental resin is a promising candidate for use in clinical practice, which provides a simple and highly efficient strategy to combat secondary caries and restoration fracture. This novel dental resin also gives the inspiration to prolong the service life of dental restorations.
Collapse
Affiliation(s)
- Shuo Yao
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Ludan Qin
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Li Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xiaoran Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - He Jiang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jiajia Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Chuanjian Zhou
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Junling Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China.
| |
Collapse
|
4
|
Li Y, Li B, Guo X, Wang H, Cheng L. Applications of quaternary ammonium compounds in the prevention and treatment of oral diseases: State-of-the-art and future directions. J Dent 2023; 137:104678. [PMID: 37634613 DOI: 10.1016/j.jdent.2023.104678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVES The aim of this review is to comprehensively summarize the state-of-the-art developments of quaternary ammonium compounds (QACs) in the prevention and treatment of oral diseases. By discussing the structural diversity and the potential killing mechanism, we try to offer some insights for the future research of QACs. DATA, SOURCES & STUDY SELECTION A literature search was conducted in electronic databases (Web of Science, PubMed, Medline, and Scopus). Publications that involved the applications of QACs, especially those related to the prevention and treatment of oral diseases, are included. RESULTS We have reviewed the relevant research on QACs over the past two decades. The research results indicate that the current applications are mainly focused on dental material modification and direct pharmacological interventions. Concurrently, challenges such as potential risks to normal tissues and impediments in drug resistance and microbial persistence present certain application constraints. The latest studies have encompassed the exploration of smart materials and nanoparticle formulations. CONCLUSIONS The killing mechanism may possess a threshold related to charge density. However, the exact process remains enigmatic. The structural diversity and the exploration of intelligent materials and nanoparticle formulations provide directions in development of novel QACs. CLINICAL SIGNIFICANCE The intricate oral anatomy, combined with the multifaceted oral microbiome, necessitates specialized materials for the targeted prevention and treatment of oral pathologies. QACs represent a cohort of compounds distinguished by potent anti-infective and anti-tumor attributes. Innovations in intelligent materials and nanoparticle formulations amplify their potential in significantly advancing the prevention and therapeutic interventions for oral diseases.
Collapse
Affiliation(s)
- Yiling Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Guo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haohao Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Hollanders ACC, Kuper NK, Bronkhorst EM, Laske M, Huysmans MCDNJM. Effectiveness of adhesive containing MDPB: A practice-based clinical trial. Dent Mater 2023; 39:756. [PMID: 37394389 DOI: 10.1016/j.dental.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVES This prospective practice-based trial assessed the longevity of composite restorations made with an adhesive containing an antibacterial monomer compared to a conventional adhesive. METHODS 9 general practices in the Netherlands were provided with two composite resin adhesives, each for a period of 9 months. Adhesive P contained the quaternary ammonium salt MDPB, and Adhesive S was a control. Patient's age and caries risk, as well as tooth type/number, reason for restoration placement, used restorative material and adhesive, and restored surfaces were recorded. All interventions carried out on these teeth in the 6 years after restoration were extracted from the electronic patient records, along with their date, type, reason, and surfaces. Two dependent variables were defined: general failure, and failure due to secondary caries. All data handling and multiple Cox regression analysis were carried out in R 4.0.5. RESULTS 11 dentists from 7 practices made 10,151 restorations over a period of two years in 5102 patients. 4591 restorations were made with adhesive P, whereas 5560 were made with adhesive S. The observation period was up to 6.29 years, median observation time was 3.74 years. Cox regression showed no significant difference between the two adhesive materials when corrected for age, tooth type and caries risk, for general failure nor failure due to caries. SIGNIFICANCE No difference in restoration survival could be shown between composite restorations made using an adhesive containing MDPB and control. Restorations made with the adhesive containing MDPB also did not fail more or less frequently due to secondary caries. This trial is registered on clinicaltrials.gov with identifier NCT05118100.
Collapse
Affiliation(s)
| | - N K Kuper
- Department of Dentistry, Radboudumc, Nijmegen, Netherlands
| | - E M Bronkhorst
- Department of Dentistry, Radboudumc, Nijmegen, Netherlands
| | - M Laske
- Department of Dentistry, Radboudumc, Nijmegen, Netherlands
| | | |
Collapse
|
6
|
Chrószcz-Porębska M, Kazek-Kęsik A, Chladek G, Barszczewska-Rybarek I. Novel mechanically strong and antibacterial dimethacrylate copolymers based on quaternary ammonium urethane-dimethacrylate analogues. Dent Mater 2023; 39:659-664. [PMID: 37217427 DOI: 10.1016/j.dental.2023.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVES This study assumed that the quaternary ammonium urethane-dimethacrylate derivative (QAUDMA-m, where m was 8, 10, 12, 14, 16, 18, and corresponded to the number of carbon atoms in the N-alkyl substituent) can be used to achieve copolymers with high mechanical performance and antibacterial activity. METHODS Photocured copolymers of bisphenol A glycerolate dimethacrylate (Bis-GMA) 40 wt%, QAUDMA-m 40 wt%, and triethylene glycol dimethacrylate (TEGDMA) 20 wt% (BG:QAm:TEG) were characterized by the degree of conversion (DC), flexural strength (FS), flexural modulus (E), hardness (HB), and antibacterial properties (the number of bacteria colonies adhered to copolymer surfaces and inhibition zone diameter (IZD)) against Staphylococcus aureus and Escherichia coli. Reference copolymers of Bis-GMA, urethane-dimethacrylate monomer (UDMA), and TEGDMA (BG:TEG and BG:UD:TEG) were also characterized. RESULTS The DC of BG:QAm:TEGs ranged from 0.59 to 0.68, HB from 83.84 to 153.91 MPa, FS from 50.81 to 74.47 MPa, and E from 1986.74 to 3716.68 MPa. The number of S. aureus and E. coli bacteria adhered to BG:QAm:TEG surfaces was from 0 (no bacteria observed) to 6.47 and 4.99 log(CFU/mL), respectively. IZD was from 10 and 5 mm (no inhibition zone) to 23 and 21 mm, respectively. Three copolymers: BG:QA8:TEG, BG:QA10:TEG, and BG:QA12:TEG had similar or better mechanical properties than the reference copolymers, but unlike them, they showed high antibacterial activity against both bacteria strains. SIGNIFICANCE The obtained copolymers can offer a good, mechanically efficient, bioactive alternative to BG:TEG and BG:UD:TEG copolymers. The use of such materials can help to make progress in dental health care.
Collapse
Affiliation(s)
- Marta Chrószcz-Porębska
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6 Str., 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland
| | - Grzegorz Chladek
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a Str., 44-100 Gliwice, Poland
| | - Izabela Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland.
| |
Collapse
|
7
|
Yoshihara K, Nagaoka N, Makita Y, Yoshida Y, Van Meerbeek B. Long-Term Antibacterial Efficacy of Cetylpyridinium Chloride-Montmorillonite Containing PMMA Resin Cement. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091495. [PMID: 37177041 PMCID: PMC10180279 DOI: 10.3390/nano13091495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Despite being able to adhesively restore teeth, adhesives and cement do not possess any anticariogenic protection potential, by which caries recurrence may still occur and reduce the clinical lifetime of adhesive restorations. Several antibacterial agents have been incorporated into dental adhesives and cement to render them anticariogenic. Due to an additional therapeutic effect, such materials are classified as 'dental combination products' with more strict market regulations. We incorporated cetylpyridinium chloride (CPC), often used for oral hygiene applications, into montmorillonite (CPC-Mont), the latter to serve as a carrier for controlled CPC release. CPC-Mont incorporated into tissue conditioner has been approved by the Pharmaceuticals and Medical Devices Agency (PmontMDA) in Japan. To produce a clinically effective dental cement with the antibacterial potential to prevent secondary caries, we incorporated CPC-Mont into PMMA resin cement. We measured the flexural strength, shear bond strength onto dentin, CPC release, and the biofilm-inhibition potential of the experimental CPC-Mont-containing PMMA cement. An 8 and 10 wt% CPC-Mont concentration revealed the antibacterial potential without reducing the mechanical properties of the PMMA cement.
Collapse
Affiliation(s)
- Kumiko Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, 2217-14 Hayashi-cho, Takamatsu 761-0395, Kagawa, Japan
- Department of Pathology & Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Okayama, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial Science, Okayama University Dental School, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Okayama, Japan
| | - Yoji Makita
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, 2217-14 Hayashi-cho, Takamatsu 761-0395, Kagawa, Japan
| | - Yasuhiro Yoshida
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Hokkaido, Japan
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), Kapucijnenvoer 7, 3000 Leuven, Belgium
| |
Collapse
|
8
|
He J, Lassila L, Garoushi S, Vallittu P. Tailoring the monomers to overcome the shortcomings of current dental resin composites - review. Biomater Investig Dent 2023; 10:2191621. [PMID: 37090482 PMCID: PMC10120559 DOI: 10.1080/26415275.2023.2191621] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Dental resin composites (DRCs) have become the first choice among different restorative materials for direct anterior and posterior restorations in the clinic. Though the properties of DRCs have been improved greatly in recent years, they still have several shortcomings, such as volumetric shrinkage and shrinkage stress, biofilm development, lack of radio-opacity for some specific DRCs, and estrogenicity, which need to be overcome. The resin matrix, composed of different monomers, constitutes the continuous phase and determine the performance of DRCs. Thus, the chemical structure of the monomers plays an important role in modifying the properties of DRCs. Numerous researchers have taken to design and develop novel monomers with specific functions for the purpose of fulfilling the needs in dentistry. In this review, the development of monomers in DRCs were highlighted, especially focusing on strategies aimed at reducing volumetric shrinkage and shrinkage stress, endowing bacteriocidal and antibacterial adhesion activities as well as protein-repelling activity, increasing radio-opacity, and replacing Bis-GMA. The influences of these novel monomers on the properties of DRCs were also discussed.
Collapse
Affiliation(s)
- Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- CONTACT Jingwei He College of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Sufyan Garoushi
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Pekka Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Wellbeing Services County of South-West Finland, Turku, Finland
| |
Collapse
|
9
|
Chrószcz-Porębska MW, Barszczewska-Rybarek IM, Chladek G. Characterization of the Mechanical Properties, Water Sorption, and Solubility of Antibacterial Copolymers of Quaternary Ammonium Urethane-Dimethacrylates and Triethylene Glycol Dimethacrylate. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165530. [PMID: 36013665 PMCID: PMC9414361 DOI: 10.3390/ma15165530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 06/01/2023]
Abstract
The use of dental composites based on dimethacrylates that have quaternary ammonium groups is a promising solution in the field of antibacterial restorative materials. This study aimed to investigate the mechanical properties and behaviors in aqueous environments of a series of six copolymers (QA:TEG) comprising 60 wt.% quaternary ammonium urethane-dimethacrylate (QAUDMA) and 40 wt.% triethylene glycol dimethacrylate (TEGDMA); these copolymers are analogous to a common dental copolymer (BG:TEG), which comprises 60 wt.% bisphenol A glycerolate dimethacrylate (Bis-GMA) and 40 wt.% TEGDMA. Hardness (HB), flexural strength (FS), flexural modulus (E), water sorption (WS), and water solubility (SL) were assessed for this purpose. The pilot study of these copolymers showed that they have high antibacterial activity and good physicochemical properties. This paper revealed that QA:TEGs cannot replace BG:TEG due to their insufficient mechanical properties and poor behavior in water. However, the results can help to explain how QAUDMA-based materials work, and how their composition should be manipulated to produce the best performance. It was found that the longer the N-alkyl chain, the lower the HB, WS, and SL. The FS and E increased with the lengthening of the N-alkyl chain from eight to ten carbon atoms. Its further extension, to eighteen carbon atoms, caused a decrease in those parameters.
Collapse
Affiliation(s)
- Marta W. Chrószcz-Porębska
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland
| | - Izabela M. Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland
| | - Grzegorz Chladek
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland
| |
Collapse
|
10
|
Yao S, Qin L, Wang Z, Zhu L, Zhou C, Wu J. Novel nanoparticle-modified multifunctional microcapsules with self-healing and antibacterial activities for dental applications. Dent Mater 2022; 38:1301-1315. [PMID: 35718598 DOI: 10.1016/j.dental.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Although microcapsules (MCs) have been used for dental resins to achieve self-healing capabilities, the fragile organic shell and single healing event functions during the service period limit their use. Herein, a novel nanoparticle-modified MC with a nano-antibacterial inorganic filler (NIF) containing a quaternary ammonium salt was synthesized to address these issues. METHODS MCs with 0 %-30 % NIFs were prepared via an in situ polymerization method and characterized their morphology, chemical composition, thermal stability, roughness, mechanical properties, and antibacterial effect. Subsequently, M-10 MCs were mixed into the resin matrix at a mass fraction of 7.5 %. The self-healing capability and cytotoxicity were evaluated. RESULTS The introduction of nanomaterials enhances the shell of the MCs and endows them with an antibacterial effect. With the addition of NIFs, the roughness, modulus, and hardness values of MCs all increased (p < 0.05). The presence of M-10 MCs reduced the CFU by 2-3 orders of magnitude compared to the control group. The dental resin containing 7.5 % M-10 MCs obtained almost 69 % self-healing efficiency, without significantly compromising cell viability (p < 0.05). SIGNIFICANCE Self-healing MCs with NIFs were prepared for the first time with strong antibacterial properties, a substantial self-healing capability, and low toxicity. This multifunctional MC is a promising candidate for use in dental resins to extend the service life and resolve the problem of bulk fracture and secondary caries.
Collapse
Affiliation(s)
- Shuo Yao
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Ludan Qin
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Zonghua Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Lin Zhu
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Chuanjian Zhou
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Junling Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China.
| |
Collapse
|
11
|
Zhang D, Li S, Zhao H, Li K, Zhang Y, Yu Y, Yang X, Cai Q. Improving antibacterial performance of dental resin adhesive via co-incorporating fluoride and quaternary ammonium. J Dent 2022; 122:104156. [DOI: 10.1016/j.jdent.2022.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/02/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022] Open
|
12
|
Chrószcz MW, Barszczewska-Rybarek IM, Kazek-Kęsik A. Novel Antibacterial Copolymers Based on Quaternary Ammonium Urethane-Dimethacrylate Analogues and Triethylene Glycol Dimethacrylate. Int J Mol Sci 2022; 23:ijms23094954. [PMID: 35563344 PMCID: PMC9103508 DOI: 10.3390/ijms23094954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The growing scale of secondary caries and occurrence of antibiotic-resistant bacterial strains require the development of antibacterial dental composites. It can be achieved by the chemical introduction of quaternary ammonium dimethacrylates into dental composites. In this study, physicochemical and antibacterial properties of six novel copolymers consisting of 60 wt. % quaternary ammonium urethane-dimethacrylate analogues (QAUDMA) and 40 wt. % triethylene glycol dimethacrylate (TEGDMA) were investigated. Uncured compositions had suitable refractive index (RI), density (dm), and glass transition temperature (Tgm). Copolymers had low polymerization shrinkage (S), high degree of conversion (DC) and high glass transition temperature (Tgp). They also showed high antibacterial effectiveness against S. aureus and E. coli bacterial strains. It was manifested by the reduction in cell proliferation, decrease in the number of bacteria adhered on their surfaces, and presence of growth inhibition zones. It can be concluded that the copolymerization of bioactive QAUDMAs with TEGDMA provided copolymers with high antibacterial activity and rewarding physicochemical properties.
Collapse
Affiliation(s)
- Marta W. Chrószcz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland;
- Correspondence: ; Tel.: +48-32-237-1793
| | - Izabela M. Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland;
| | - Alicja Kazek-Kęsik
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6 Str., 44-100 Gliwice, Poland;
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland
| |
Collapse
|
13
|
Balhaddad AA, Garcia IM, Mokeem L, Alsahafi R, Collares FM, Sampaio de Melo MA. Metal Oxide Nanoparticles and Nanotubes: Ultrasmall Nanostructures to Engineer Antibacterial and Improved Dental Adhesives and Composites. Bioengineering (Basel) 2021; 8:146. [PMID: 34677219 PMCID: PMC8533246 DOI: 10.3390/bioengineering8100146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Advances in nanotechnology have unlocked exclusive and relevant capabilities that are being applied to develop new dental restorative materials. Metal oxide nanoparticles and nanotubes perform functions relevant to a range of dental purposes beyond the traditional role of filler reinforcement-they can release ions from their inorganic compounds damaging oral pathogens, deliver calcium phosphate compounds, provide contrast during imaging, protect dental tissues during a bacterial acid attack, and improve the mineral content of the bonding interface. These capabilities make metal oxide nanoparticles and nanotubes useful for dental adhesives and composites, as these materials are the most used restorative materials in daily dental practice for tooth restorations. Secondary caries and material fractures have been recognized as the most common routes for the failure of composite restorations and bonding interface in the clinical setting. This review covers the significant capabilities of metal oxide nanoparticles and nanotubes incorporated into dental adhesives and composites, focusing on the novel benefits of antibacterial properties and how they relate to their translational applications in restorative dentistry. We pay close attention to how the development of contemporary antibacterial dental materials requires extensive interdisciplinary collaboration to accomplish particular and complex biological tasks to tackle secondary caries. We complement our discussion of dental adhesives and composites containing metal oxide nanoparticles and nanotubes with considerations needed for clinical application. We anticipate that readers will gain a complete picture of the expansive possibilities of using metal oxide nanoparticles and nanotubes to develop new dental materials and inspire further interdisciplinary development in this area.
Collapse
Affiliation(s)
- Abdulrahman A. Balhaddad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
- Program in Dental Biomedical Science, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
| | - Isadora M. Garcia
- Dental Materials Department, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (I.M.G.); (F.M.C.)
| | - Lamia Mokeem
- Program in Dental Biomedical Science, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
| | - Rashed Alsahafi
- Department of Restorative Dental Sciences, College of Dentistry, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| | - Fabrício Mezzomo Collares
- Dental Materials Department, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (I.M.G.); (F.M.C.)
| | - Mary Anne Sampaio de Melo
- Program in Dental Biomedical Science, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
- Operative Dentistry Division, General Dentistry Department University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| |
Collapse
|
14
|
Belmar da Costa M, Delgado AHS, Amorim Afonso T, Proença L, Ramos AS, Mano Azul A. Investigating a Commercial Functional Adhesive with 12-MDPB and Reactive Filler to Strengthen the Adhesive Interface in Eroded Dentin. Polymers (Basel) 2021; 13:polym13203562. [PMID: 34685320 PMCID: PMC8538624 DOI: 10.3390/polym13203562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
To compare the adhesive interface of eroded dentin formed by a functional dental adhesive and a gold standard strategy, by testing microtensile bond strength (μTBS), hardness/elastic modulus. Permanent sound human molars were randomly allocated to four experimental groups, all subject to artificial erosion (0.05 M citric acid; 3× daily, 5 days). Groups included control Clearfil SE Bond 2 (CFSE), and experimental group Clearfil SE Protect (CFP), at two different time points-immediate (24 h) and long term (3 months–3 M). Samples were sectioned into microspecimens for μTBS (n = 8) and into 2-mm thick slabs for nanoindentation assays (n = 3). Groups CFSE_3M and CFP_3M were stored in artificial saliva. Statistical analysis included two-way ANOVA for μTBS data, while hardness/modulus results were analyzed using Kruskal–Wallis H Test (significance level of 5%; SPSS v.27.0). Although no significant differences were found between mean μTBS values, for different adhesives and time points (p > 0.05), a positive trend, with μTBS rising in the CFP_3M group, was observed. Regarding hardness, no significant differences were seen in the hybrid layer, considering the two variables (p > 0.05), while the reduced elastic modulus rose in CFP_3M when compared to 24 h. Thus, CFP shows similar mechanical and adhesive performance to CFSE in eroded dentin, although it may comprise promising long-term results. This is advantageous in eroded substrates due to their increased enzymatic activity and need for remineralization.
Collapse
Affiliation(s)
- Madalena Belmar da Costa
- Unit of Conservative Dentistry, Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, 2829-511 Almada, Portugal; (M.B.d.C.); (T.A.A.); (A.M.A.)
| | - António HS Delgado
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, 2829-511 Almada, Portugal;
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Hampstead, London NW3 2PF, UK
- Correspondence:
| | - Tomás Amorim Afonso
- Unit of Conservative Dentistry, Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, 2829-511 Almada, Portugal; (M.B.d.C.); (T.A.A.); (A.M.A.)
| | - Luís Proença
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, 2829-511 Almada, Portugal;
| | - Ana Sofia Ramos
- Department of Mechanical Engineering, University of Coimbra, CEMMPRE, 3030-788 Coimbra, Portugal;
| | - Ana Mano Azul
- Unit of Conservative Dentistry, Instituto Universitário Egas Moniz (IUEM), Monte de Caparica, 2829-511 Almada, Portugal; (M.B.d.C.); (T.A.A.); (A.M.A.)
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Monte de Caparica, 2829-511 Almada, Portugal;
| |
Collapse
|
15
|
Zhang L, Ma Z, Wang R, Zhu M. Synthesis and Characterization of Methacrylate-Functionalized Betulin Derivatives as Antibacterial Comonomer for Dental Restorative Resins. ACS Biomater Sci Eng 2021; 7:3132-3140. [PMID: 34114805 DOI: 10.1021/acsbiomaterials.1c00563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Secondary caries is the primary cause of composite restoration failures, resulting from marginal leakage and bacterial accumulation in the oral environment. Antibacterial dental composites, especially antibacterial monomers, have emerged as a promising strategy to inhibit secondary caries, which is pivotal to prolonging the lifespan of dental restorations. In this work, monomethacrylate- and dimethacrylate-functionalized betulin derivatives (M1Bet and M2Bet) were synthesized via an esterification reaction and served as antibacterial comonomers to develop novel dental resin formulations, in which M1Bet and M2Bet were incorporated to partially or completely replace bisphenol A glycerolate dimethacrylate (Bis-GMA). The control resin was a mixture based on Bis-GMA and tri(ethyleneglycol) dimethacrylate (TEGDMA) with a weight ratio of 50:50 (5B5T). The effect of the resin compositions and the chemical structures of M1Bet and M2Bet on the rheology behavior, optical property, polymerization kinetics, mechanical performance, cell viability, and antibacterial activity of dental resins were systematically investigated. Among all materials, the 1M2Bet4B5T resin with 10 wt % substitution of Bis-GMA by M2Bet exhibited comparable viscosity, higher light transmittance, improved degree of conversion, and mechanical properties compared with 5B5T. After incubation for 24 h, this optimal resin also possessed the best antibacterial activity against Streptococcus mutans, which had a significantly lower bacterial concentration (1.53 × 109 CFU/mL) than 5B5T (9.03 × 109 CFU/mL). Introducing betulin-based comonomers into dental resins is a potential strategy to develop antibacterial dental materials without sacrificing physical-mechanical properties.
Collapse
Affiliation(s)
- Lusi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
16
|
Khan AS, Ur Rehman S, AlMaimouni YK, Ahmad S, Khan M, Ashiq M. Bibliometric Analysis of Literature Published on Antibacterial Dental Adhesive from 1996-2020. Polymers (Basel) 2020; 12:E2848. [PMID: 33260410 PMCID: PMC7761276 DOI: 10.3390/polym12122848] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate the current state of research on antibacterial dental adhesives. The interest in this field can be drawn from an increasing number of scholarly works in this area. However, there is still a lack of quantitative measurement of this topic. The main aim of this study was to consolidate the research published on the antibacterial adhesive from 1996 to 2020 in Web of Science indexed journals. The bibliometric method, a quantitative study of investigating publishing trends and patterns, was used for this study. The result has shown that a gradual increase in research was found, whereby a substantial increase was observed from 2013. A total of 248 documents were published in 84 journals with total citations of 5107. The highly cited articles were published mainly in Q1 category journals. Most of the published articles were from the USA, China, and other developed countries; however, some developing countries contributed as well. The authorship pattern showed an interdisciplinary and collaborative approach among researchers. The thematic evaluation of keywords along with a three-factor analysis showed that 'antibacterial adhesives' and 'quaternary ammonium' have been used commonly. This bibliometric analysis can provide direction not only to researchers but also to funding organizations and policymakers.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shafiq Ur Rehman
- Deanship of Library Affairs, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Yara Khalid AlMaimouni
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Shakil Ahmad
- Central Library, Prince Sultan University, Riyadh 11586, Saudi Arabia;
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54000, Pakistan;
| | - Murtaza Ashiq
- Islamabad Model College for Boys, H-9, Islamabad 44000, Pakistan;
| |
Collapse
|
17
|
Application of Antimicrobial Polymers in the Development of Dental Resin Composite. Molecules 2020; 25:molecules25204738. [PMID: 33076515 PMCID: PMC7587579 DOI: 10.3390/molecules25204738] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Dental resin composites have been widely used in a variety of direct and indirect dental restorations due to their aesthetic properties compared to amalgams and similar metals. Despite the fact that dental resin composites can contribute similar mechanical properties, they are more likely to have microbial accumulations leading to secondary caries. Therefore, the effective and long-lasting antimicrobial properties of dental resin composites are of great significance to their clinical applications. The approaches of ascribing antimicrobial properties to the resin composites may be divided into two types: The filler-type and the resin-type. In this review, the resin-type approaches were highlighted. Focusing on the antimicrobial polymers used in dental resin composites, their chemical structures, mechanical properties, antimicrobial effectiveness, releasing profile, and biocompatibility were included, and challenges, as well as future perspectives, were also discussed.
Collapse
|
18
|
Perdigão J. Current perspectives on dental adhesion: (1) Dentin adhesion - not there yet. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:190-207. [PMID: 34188727 PMCID: PMC8216299 DOI: 10.1016/j.jdsr.2020.08.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
The essential goal of any adhesive restoration is to achieve a tight and long-lasting adaptation of the restorative material to enamel and dentin. The key challenge for new dental adhesives is to be simultaneously effective on two dental substrates of conflicting nature. Some barriers must be overcome to accomplish this objective. While bonding to enamel by micromechanical interlocking of resin tags within the array of microporosities in acid-etched enamel can be reliably achieved and can effectively seal the restoration margins against leakage, bonding effectively and durably to organic and humid dentin is the most puzzling task in adhesive dentistry. Much of the research and development of dental adhesives has focused on making the clinical procedure more user-friendly by reducing the number of bottles and/or steps. Although clinicians certainly prefer less complicated and more versatile adhesive materials, there is a trade-off between simplification of dental adhesives and clinical outcomes. Likewise, new materials are launched with claims of being novel and having special properties without much supporting evidence. This review article discusses dental adhesion acknowledging pioneer work in the field, highlights the substrate as a major challenge to obtain durable adhesive restorations, as well as analyzes the three adhesion strategies and their shortcomings. It also reviews the potential of chemical/ionic dental adhesion, discusses the issue of extensively published laboratory research that does not translate to clinical relevance, and leaves a few thoughts in regard to recent research that may have implications for future adhesive materials.
Collapse
Affiliation(s)
- Jorge Perdigão
- Professor, University of Minnesota, Department of Restorative Sciences, 515 SE Delaware St, 8-450 Moos Tower, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Zhou W, Peng X, Zhou X, Weir MD, Melo MAS, Tay FR, Imazato S, Oates TW, Cheng L, Xu HHK. In vitro evaluation of composite containing DMAHDM and calcium phosphate nanoparticles on recurrent caries inhibition at bovine enamel-restoration margins. Dent Mater 2020; 36:1343-1355. [PMID: 32800353 DOI: 10.1016/j.dental.2020.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/09/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Recurrent caries is a primary reason for restoration failure caused by biofilm acids. The objectives of this study were to: (1) develop a novel multifunctional composite with antibacterial function and calcium (Ca) and phosphate (P) ion release, and (2) investigate the effects on enamel demineralization and hardness at the margins under biofilms. METHODS Dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) were incorporated into composite. Four groups were tested: (1) Commercial control (Heliomolar), (2) Experimental control (0% DMAHDM + 0% NACP), (3) antibacterial group (3% DMAHDM + 0% NACP), (D) antibacterial and remineralizing group (3% DMAHDM + 30% NACP). Mechanical properties and Ca and P ion release were measured. Colony-forming units (CFU), lactic acid and polysaccharide of Streptococcus mutans (S. mutans) biofilms were evaluated. Demineralization of bovine enamel with restorations was induced via S. mutans, and enamel hardness was measured. Data were analyzed via one-way and two-way analyses of variance and Tukey's multiple comparison tests. RESULTS Adding DMAHDM and NACP into composite did not compromise the mechanical properties (P > 0.05). Ca and P ion release of 3% DMAHDM + 30% NACP was increased at cariogenic low pH. Biofilm lactic acid and polysaccharides were greatly decreased via DMAHDM, and CFU was reduced by 4 logs (P < 0.05). Under biofilm acids, enamel hardness at the margins was decreased to about 0.5 GPa for control; it was about 1 GPa for antibacterial group, and 1.3 GPa for antibacterial and remineralizing group (P < 0.05). CONCLUSIONS The novel 3% DMAHDM + 30% NACP composite had strong antibacterial effects. It substantially reduced enamel demineralization adjacent to restorations under biofilm acid attacks, yielding enamel hardness that was 2-fold greater than that of control composites. The novel multifunctional composite is promising to inhibit recurrent caries.
Collapse
Affiliation(s)
- Wen Zhou
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Mary Anne S Melo
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
20
|
Balhaddad AA, Ibrahim MS, Weir MD, Xu HH, Melo MAS. Concentration dependence of quaternary ammonium monomer on the design of high-performance bioactive composite for root caries restorations. Dent Mater 2020; 36:e266-e278. [DOI: 10.1016/j.dental.2020.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/18/2020] [Indexed: 01/30/2023]
|
21
|
Functional Coatings for Orthodontic Archwires-A Review. MATERIALS 2020; 13:ma13153257. [PMID: 32707959 PMCID: PMC7435379 DOI: 10.3390/ma13153257] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 01/06/2023]
Abstract
In this literature review, the current state-of-art of coatings for orthodontic archwires’ increasing antimicrobial and relevant mechanical properties, such as surface topography, friction or corrosion resistance, has been presented. There is a growing request for orthodontic appliances, therefore, most researchers focus on innovative functional coatings to cover orthodontic archwires and brackets. Orthodontic appliances are exposed to the unfavorable oral cavity environment, consisting of saliva flow, food, temperature and appliance force. As a consequence, friction or biocorrosion processes may occur. This can affect the functionality of the orthodontic elements, causing changes in their microstructure, surface topography and mechanical properties. Furthermore, the material which the orthodontic archwire is made from is of particular importance in terms of the possible corrosion resistance. This is especially important for patients who are hypersensitive to metals, for example, nickel, which causes allergic reactions. In the literature, there are some studies, carried out in vitro and in vivo, mostly examining the antibacterial, antiadherent, mechanical and roughness properties of functional coatings. They are clinically acceptable but still some properties have to be studied and be developed for better results. In this paper the influence of additives such as nanoparticles of silver and nitrogen-doped TiO2 applied on orthodontic brackets by different methods on the antimicrobial properties was analyzed. Future improvement of coating techniques as well as modification of the archwire composition can reduce the release of nickel ions and eliminate friction and bacterial adhesion problems, thus accelerating treatment time.
Collapse
|
22
|
Ramachandruni N, Moinuddin K, Smitha R, Naga Maheshwari X, Harish Kumar TVS. Influence of Diode Laser on the Bond Strength of Self-Etching Adhesive Systems to Human Dentin: An in vitro Study. Contemp Clin Dent 2020; 10:338-343. [PMID: 32308300 PMCID: PMC7145229 DOI: 10.4103/ccd.ccd_589_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introduction The treatment of dental tissues before adhesive restorative procedures is an important step in the bonding protocol and determines the clinical success of restorations. Aim The aim of this study is to evaluate in vitro the influence of diode laser on the shear bond strength of one- and two-step self-etch (SE) adhesives to dentin when the laser is applied over the adhesives before photopolymerization. Methodology About 20 freshly extracted noncarious intact maxillary premolars were collected, and the buccal and lingual surfaces of the tooth were ground with the help of diamond disk under water coolant till dentin was exposed. The specimens were divided into two groups of 10 each. Buccal surfaces of all the specimens were exposed to diode laser before light curing (test/experimental group) act as control group. In Group I, Clearfil SE with laser was used on the buccal surface, whereas in Group II, G-bond SE adhesive with laser was used on the buccal surface. Shear bond test was measured using an universal testing machine and the values were obtained in megapascals (MPa). Results P < 0.05 was considered statistically significant. According to the results, it was found that the mean bond strength values of the laser-treated groups were significantly higher than groups not treated with laser. Conclusion Within the limitations of this study, it can be concluded that mean bond strength Clearfil SE with and without laser was significantly higher than G-bond with and without laser values.
Collapse
Affiliation(s)
- Nimeshika Ramachandruni
- Department of Conservative Dentistry, Mallareddy Dental College for Women, Hyderabad, Telangana, India
| | - Khwaja Moinuddin
- Department of Conservative Dentistry, Mallareddy Dental College for Women, Hyderabad, Telangana, India
| | - R Smitha
- Department of Conservative Dentistry, Mallareddy Dental College for Women, Hyderabad, Telangana, India
| | - Xnm Naga Maheshwari
- Department of Conservative Dentistry, Mallareddy Dental College for Women, Hyderabad, Telangana, India
| | - T V S Harish Kumar
- Department of Conservative Dentistry, Mallareddy Dental College for Women, Hyderabad, Telangana, India
| |
Collapse
|
23
|
Xie SX, Song L, Yuca E, Boone K, Sarikaya R, VanOosten SK, Misra A, Ye Q, Spencer P, Tamerler C. Antimicrobial Peptide-Polymer Conjugates for Dentistry. ACS APPLIED POLYMER MATERIALS 2020; 2:1134-1144. [PMID: 33834166 PMCID: PMC8026165 DOI: 10.1021/acsapm.9b00921] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bacterial adhesion and growth at the composite/adhesive/tooth interface remain the primary cause of dental composite restoration failure. Early colonizers, including Streptococcus mutans, play a critical role in the formation of dental caries by creating an environment that reduces the adhesive's integrity. Subsequently, other bacterial species, biofilm formation, and lactic acid from S. mutans demineralize the adjoining tooth. Because of their broad spectrum of antibacterial activity and low risk for antibiotic resistance, antimicrobial peptides (AMPs) have received significant attention to prevent bacterial biofilms. Harnessing the potential of AMPs is still very limited in dentistry-a few studies have explored peptide-enabled antimicrobial adhesive copolymer systems using mainly nonspecific adsorption. In the current investigation, to avoid limitations from nonspecific adsorption and to prevent potential peptide leakage out of the resin, we conjugated an AMP with a commonly used monomer for dental adhesive formulation. To tailor the flexibility between the peptide and the resin material, we designed two different spacer domains. The spacer-integrated antimicrobial peptides were conjugated to methacrylate (MA), and the resulting MA-AMP monomers were next copolymerized into dental adhesives as AMP-polymer conjugates. The resulting bioactivity of the polymethacrylate-based AMP conjugated matrix activity was investigated. The antimicrobial peptide conjugated to the resin matrix demonstrated significant antimicrobial activity against S. mutans. Secondary structure analyses of conjugated peptides were applied to understand the activity differential. When mechanical properties of the adhesive system were investigated with respect to AMP and cross-linking concentration, resulting AMP-polymer conjugates maintained higher compressive moduli compared to hydrogel analogues including polyHEMA. Overall, our result provides a robust approach to develop a fine-tuned bioenabled peptide adhesive system with improved mechanical properties and antimicrobial activity. The results of this study represent a critical step toward the development of peptide-conjugated dentin adhesives for treatment of secondary caries and the enhanced durability of dental composite restorations.
Collapse
Affiliation(s)
| | | | - Esra Yuca
- University of Kansas (KU), Lawrence, Kansas, and Yildiz Technical University, Istanbul, Turkey
| | - Kyle Boone
- University of Kansas (KU), Lawrence, Kansas
| | | | | | - Anil Misra
- University of Kansas (KU), Lawrence, Kansas
| | - Qiang Ye
- University of Kansas (KU), Lawrence, Kansas
| | | | | |
Collapse
|
24
|
Liu Q, Wu B, Yu Q, Wang Y. Immobilization of quaternary ammonium based antibacterial monomer onto dentin substrate by non-thermal atmospheric plasma. Dent Mater J 2019; 38:821-829. [PMID: 31366767 DOI: 10.4012/dmj.2018-267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Use of non-thermal atmospheric plasma (NTAP) brush on immobilization of dimethylaminohexadecyl methacrylate (DMAHDM) onto dentin bonding substrate, and resulting antibacterial activity against Streptococcus mutans were investigated. A bonding substrate with several-micron-demineralized layer was created from human dentin. DMAHDM was applied onto the demineralized layer with or without plasma exposure. Scanning electron microscopy (SEM) and Fourier transformed infrared (FTIR) spectroscopy were employed to verify immobilization/grafting of DMAHDM onto the substrate. Antibacterial activity of the resulting substrate was assessed by using colony-forming unit (CFU) and confocal scanning laser microscopy. Effects of saliva pellicle treatment and aging process on the above substrate were also evaluated. The SEM/FTIR results demonstrated that NTAP could induce DMAHDM immobilization onto dentin substrate, which was further verified via quantitative FTIR analysis. Comparing with non-plasma-treated, the plasmatreated substrate, with CFU 4 log lower, exhibited much stronger inhibitory effects, which were minimally affected by saliva or aging. The DMAHDM-immobilized dentin substrate showed effective and sustained antibacterial characteristics.
Collapse
Affiliation(s)
- Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City School of Dentistry
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University
| | - Qingsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri
| | - Yong Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City School of Dentistry
| |
Collapse
|
25
|
Poly(amido amine) and rechargeable adhesive containing calcium phosphate nanoparticles for long-term dentin remineralization. J Dent 2019; 85:47-56. [PMID: 31034857 DOI: 10.1016/j.jdent.2019.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The objective of the present study was to investigate long-term dentin remineralization via the combination of poly(amido amine) (PAMAM) with a novel rechargeable adhesive containing nanoparticles of amorphous calcium phosphate (NACP). METHODS The NACP adhesive was immersed in lactic acid at pH 4 to exhaust its calcium (Ca) and phosphate (P) ion release, and then recharged with Ca and P ions. Dentin samples were pre-demineralized with 37% phosphoric acid, and then divided into four groups: (1) dentin control, (2) dentin treated with PAMAM, (3) dentin with recharged NACP adhesive, (4) dentin with PAMAM + recharged NACP adhesive. In group (2) and (4), the PAMAM-coated dentin was immersed in phosphate-buffered saline with vigorous shaking for 77 days to accelerate any detachment of the PAMAM macromolecules from the demineralized dentin. Samples were treated with a cyclic remineralization/demineralization regimen for 21 days. RESULTS After 77 days of fluid flow challenge, the immersed PAMAM still retained its nucleation template function. The recharged NACP adhesive possessed sustained ion re-release and acid-neutralization capability, both of which did not decrease with repeated recharge and re-release cycles. The immersed PAMAM with the recharged NACP adhesive achieved long-term dentin remineralization, and restored dentin hardness to that of healthy dentin. CONCLUSIONS The PAMAM + NACP adhesive completely remineralizes pre-demineralized dentin even after long-term fluid challenges and provides long-term remineralization to protect tooth structures. CLINICAL SIGNIFICANCE The novel PAMAM + NACP adhesive provides long-term bond protection and caries inhibition to increase the longevity of resin-based restorations.
Collapse
|
26
|
Lapinska B, Konieczka M, Zarzycka B, Sokolowski K, Grzegorczyk J, Lukomska-Szymanska M. Flow Cytometry Analysis of Antibacterial Effects of Universal Dentin Bonding Agents on Streptococcus mutans. Molecules 2019; 24:E532. [PMID: 30717140 PMCID: PMC6384823 DOI: 10.3390/molecules24030532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
There is no consensus on the antibacterial activity of dentin bonding systems (DBS). Many study models have been used to evaluate the antimicrobial activity of dental materials. In this study, a novel detection method, flow cytometry, was introduced. It allows for evaluation of the antibacterial activity of DBS, based on assessment of the disruption of the bacterial physical membrane induced by DBS. The aim of the study was to evaluate the antibacterial properties of selected dentin bonding systems against Streptococcus mutans. The highest antibacterial activity against S. mutans was observed for Adhese Universal (99.68% dead cells) and was comparable to that of Prime&Bond Universal, OptiBond Universal, or Clearfil Universal Bond Quick (p > 0.05). The lowest activity of all tested systems was displayed by the multi-mode adhesive, Universal Bond (12.68% dead bacteria cells), followed by the self-etch adhesive, OptiBond FL (15.58% dead bacteria cells). The present study showed that in the case of two-component DBS, the primer exhibited higher antimicrobial activity than the adhesive (or bond) itself.
Collapse
Affiliation(s)
- Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Magdalena Konieczka
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Beata Zarzycka
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Krzysztof Sokolowski
- Department of Conservative Dentistry, Medical University of Lodz, 92-213 Lodz, Poland.
| | - Janina Grzegorczyk
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 92-213 Lodz, Poland.
| | | |
Collapse
|
27
|
Xiao S, Wang H, Liang K, Tay F, Weir MD, Melo MAS, Wang L, Wu Y, Oates TW, Ding Y, Xu HHK. Novel multifunctional nanocomposite for root caries restorations to inhibit periodontitis-related pathogens. J Dent 2018; 81:17-26. [PMID: 30552930 DOI: 10.1016/j.jdent.2018.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/02/2018] [Accepted: 12/08/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The objectives of this study were to: (1) develop a novel multifunctional composite with nanoparticles of silver (NAg), 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate biofilm-inhibition via the multifunctional nanocomposite against three species of periodontal pathogens for the first time. METHODS The multifunctional nanocomposite was fabricated by incorporating NAg, MPC, DMAHDM and NACP into the resin consisting of pyromellitic glycerol dimethacrylate (PMDGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA). Three species (Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum) were tested for metabolic activity (MTT), live/dead staining, polysaccharide production and colony-forming units (CFU) of biofilms grown on resins. RESULTS Incorporation of 0.08% to 0.12% NAg, 3% MPC, 3% DMAHDM and 30% NACP did not compromise the mechanical properties of the composite (p > 0.1). The multifunctional nanocomposite reduced protein adsorption to nearly 1/10 of that of a commercial control (p < 0.05). For all three species, the biofilm CFU was reduced by about 5 and 1 orders of magnitude via the nanocomposite containing NAg + MPC + DMAHDM, compared to commercial control and the composite with MPC + DMAHDM, respectively. CONCLUSIONS The novel multifunctional nanocomposite achieved the greatest reduction in metabolic activity, polysaccharide and biofilm growth of three periodontal pathogens. CLINICAL SIGNIFICANCE The strongly-antibacterial, multifunctional composite is promising for treating root lesions, alleviating periodontitis and protecting the periodontal tissues.
Collapse
Affiliation(s)
- Shimeng Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Haohao Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.
| | - Franklin Tay
- Department of Endodontics, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Mary Anne S Melo
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Lin Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA; VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, 130011, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, China
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
28
|
Gu L, Cai X, Guo J, Pashley D, Breschi L, Xu H, Wang X, Tay F, Niu L. Chitosan-Based Extrafibrillar Demineralization for Dentin Bonding. J Dent Res 2018; 98:186-193. [DOI: 10.1177/0022034518805419] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Instability of resin-dentin bonds is the Achilles’ heel of adhesive dentistry. To address this problem, a chelate-and-rinse extrafibrillar dentin demineralization strategy has been developed that keeps intrafibrillar minerals within collagen fibrils intact to prevent activation of endogenous proteases that are responsible for collagen degradation within hybrid layers. The objective of the present study was to evaluate the potential of using chitosan >40 kDa as an antimicrobial extrafibrillar dentin-chelating agent to enhance bond durability. Transmission electron microscopy provided evidence for retention of intrafibrillar minerals and smear plugs in dentin conditioned with 1 wt% chitosan. Analyzed by Kruskal-Wallis analysis of variance, Dunn’s statistic, and separate Mann-Whitney tests, tensile bond strengths to wet- and dry-bonded dentin indicated that chelating dentin with chitosan for 60 s prior to bonding did not result in a significant decline in resin-dentin bond strength when compared with that of phosphoric acid etching ( P > 0.05). Gelatinolytic activity within the hybrid layers was examined via in situ zymography after 24-h storage or after thermomechanical cycling and analyzed with 3-factor analysis of variance. After 24 h, enzymatic activity was detected only within completely demineralized phosphoric acid–etched dentin, with values derived from dry bonding significantly higher than those derived from wet bonding ( P < 0.05). Negligible fluorescence was detected within hybrid layers when dentin was conditioned with chitosan, even after thermomechanical cycling, as compared with the controls. Reduction in water permeability in chitosan-conditioned dentin, attributed to smear plug retention, also fostered long-term bond stability. Antibacterial testing performed with live/dead staining indicated that the acetic acid–solubilized chitosan possessed antibacterial activities against 3 single-species biofilms: Streptococcus mutans, Actinomyces naeslundii, and Enterococcus faecalis. Taken together, the new chitosan-based extrafibrillar demineralization strategy retains intrafibrillar minerals, reduces endogenous protease-initiated collagen degradation, prevents water permeation within hybrid layers, and kills bacteria on dentin surfaces, which are crucial factors for enhancing resin-dentin bond durability.
Collapse
Affiliation(s)
- L.S. Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - X. Cai
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - J.M. Guo
- School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - D.H. Pashley
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - L. Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Bologna, Italy
| | - H.H.K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, USA
| | - X.Y. Wang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - F.R. Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - L.N. Niu
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
29
|
The antibacterial, cytotoxic, and flexural properties of a composite resin containing a quaternary ammonium monomer. J Prosthet Dent 2018; 120:609-616. [DOI: 10.1016/j.prosdent.2017.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022]
|
30
|
Vallittu PK, Durgesh BH, AlKheraif AA, Hjerppe J. From body‐on‐frame to unibody constructions and designs mimicking biological structures – an overview. Eur J Oral Sci 2018; 126 Suppl 1:95-101. [DOI: 10.1111/eos.12419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Pekka K. Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre – TCBC Institute of Dentistry University of Turku Turku Finland
- King Saud University Riyadh Kingdom of Saudi Arabia
- City of Turku Welfare Division Turku Finland
| | - Bangalore H. Durgesh
- College of Applied Medical Sciences King Saud University Riyadh Kingdom of Saudi Arabia
| | | | - Jenni Hjerppe
- Department of Prosthetic Dentistry and Stomatognathic Physiology University of Turku Turku Finland
- Departments of Oral and Maxillofacial Diseases Helsinki University Hospital (HUH) Helsinki Finland
| |
Collapse
|
31
|
Li Y, Hu X, Xia Y, Ji Y, Ruan J, Weir MD, Lin X, Nie Z, Gu N, Masri R, Chang X, Xu HHK. Novel magnetic nanoparticle-containing adhesive with greater dentin bond strength and antibacterial and remineralizing capabilities. Dent Mater 2018; 34:1310-1322. [PMID: 29935766 PMCID: PMC6103821 DOI: 10.1016/j.dental.2018.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES A nanoparticle-doped adhesive that can be controlled with magnetic forces was recently developed to deliver drugs to the pulp and improve adhesive penetration into dentin. However, it did not have bactericidal and remineralization abilities. The objectives of this study were to: (1) develop a magnetic nanoparticle-containing adhesive with dimethylaminohexadecyl methacrylate (DMAHDM), amorphous calcium phosphate nanoparticles (NACP) and magnetic nanoparticles (MNP); and (2) investigate the effects on dentin bond strength, calcium (Ca) and phosphate (P) ion release and anti-biofilm properties. METHODS MNP, DMAHDM and NACP were mixed into Scotchbond SBMP at 2%, 5% and 20% by mass, respectively. Two types of magnetic nanoparticles were used: acrylate-functionalized iron nanoparticles (AINPs); and iron oxide nanoparticles (IONPs). Each type was added into the resin at 1% by mass. Dentin bonding was performed with a magnetic force application for 3min, provided by a commercial cube-shaped magnet. Dentin shear bond strengths were measured. Streptococcus mutans biofilms were grown on resins, and metabolic activity, lactic acid and colony-forming units (CFU) were determined. Ca and P ion concentrations in, and pH of biofilm culture medium were measured. RESULTS Magnetic nanoparticle-containing adhesive using magnetic force increased the dentin shear bond strength by 59% over SBMP Control (p<0.05). Adding DMAHDM and NACP did not adversely affect the dentin bond strength (p>0.05). The adhesive with MNP+DMAHDM+NACP reduced the S. mutans biofilm CFU by 4 logs. For the adhesive with NACP, the biofilm medium became a Ca and P ion reservoir. The biofilm culture medium of the magnetic nanoparticle-containing adhesive with NACP had a safe pH of 6.9, while the biofilm medium of commercial adhesive had a cariogenic pH of 4.5. SIGNIFICANCE Magnetic nanoparticle-containing adhesive with DMAHDM and NACP under a magnetic force yielded much greater dentin bond strength than commercial control. The novel adhesive reduced biofilm CFU by 4 logs and increased the biofilm pH from a cariogenic pH 4.5-6.9, and therefore is promising to enhance the resin-tooth bond, strengthen tooth structures, and suppress secondary caries at the restoration margins.
Collapse
Affiliation(s)
- Yuncong Li
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Xiaoyi Hu
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Department of Oral Maxillofacial Surgery, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yang Xia
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yadong Ji
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jianping Ruan
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Xiaoying Lin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Zhihong Nie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Radi Masri
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Xiaofeng Chang
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
32
|
Li J, Chen B, Hong N, Wu S, Li Y. Effect of Baicalein on Matrix Metalloproteinases and Durability of Resin-Dentin Bonding. Oper Dent 2018. [PMID: 29513641 DOI: 10.2341/17-097-l] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE In an attempt to increase resin-dentin bonding quality, this study used baicalein as a preconditioner in an etch-and-rinse adhesive to evaluate its effect on matrix metalloproteinases (MMPs) and adhesive durability. METHODS As a MMP inhibitor and potential collagen cross-linking agent, baicalein was used as a preconditioner in an etch-and-rinse adhesive system. The degree of conversion was evaluated by Fourier-transform infrared spectroscopy. EnzChek gelatinase/collagenase assay kits were then used to detect the MMP inhibitory effect of different concentrations of baicalein (0.1, 0.5, 2.5, and 5.0 μg/mL) on dentin powders. During in vitro bonding procedures, flat dentin surfaces on sound third molars were preconditioned with 2.5 μg/mL baicalein after being acid-etched; this step was followed by continuation of adhesive processes and build-up of resin composite. After resin-dentin stick preparation, bonding strength, failure mode, and interface nanoleakage were respectively evaluated via microtensile testing, stereomicroscopy, and field emission scanning electron microscopy either immediately or after storage in artificial saliva for three or six months. Data were analyzed by two-way analysis of variance and Tukey test (α=0.05). RESULTS Baicalein at a concentration of 0-5.0 μg/mL did not influence the conversion of adhesives. However, it inhibited the activities of dentin-bond gelatinase and collagenase, especially at a concentration of 2.5 μg/mL, while effectively increasing microtensile bonding strength and decreasing nanoleakage in vitro, both immediately and after aging. CONCLUSIONS Baicalein used as preconditioner in an etch-and-rinse adhesive system has an anti-MMP function and effectively improves resin-dentin bonding durability in vitro, which has potential value in clinical bonding procedures.
Collapse
|
33
|
Muratovska I, Kitagawa H, Hirose N, Kitagawa R, Imazato S. Antibacterial activity and dentin bonding ability of combined use of Clearfil SE Protect and sodium hypochlorite. Dent Mater J 2018; 37:460-464. [PMID: 29415973 DOI: 10.4012/dmj.2017-294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to evaluate the antibacterial activity and dentin bonding ability of a commercial self-etch adhesive Clearfil SE Protect (Kuraray Noritake Dental, Tokyo, Japan) in combination with sodium hypochlorite (NaOCl). Agar disc diffusion tests and measurement of minimum inhibitory/bactericidal concentrations (MIC/MBC) against Streptococcus mutans were performed to evaluate antibacterial effects. The mixture solution of 5.25% NaOCl and the primer of Clearfil SE Protect demonstrated less antibacterial activity than primer only. In microtensile bond strength tests using non-carious human molars, pretreatment with 5.25% NaOCl aqueous solution had no influence on the bond strength of Clearfil SE Protect. These results indicate that pretreatment with NaOCl does not influence the bonding ability of Clearfil SE Protect, while their combined use does not enhance cavity disinfecting effects.
Collapse
Affiliation(s)
- Ilijana Muratovska
- Department of Cariology and Endodontics, Faculty of Dental Medicine, University Ss
| | - Haruaki Kitagawa
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | - Nanako Hirose
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry
| | - Ranna Kitagawa
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| |
Collapse
|
34
|
New adhesive system based in metals cross-linking methacrylate. J Mech Behav Biomed Mater 2017; 77:519-526. [PMID: 29040963 DOI: 10.1016/j.jmbbm.2017.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 12/25/2022]
Abstract
This study evaluated the anti-antibiofilm potential of silver methacrylate (Ag) or di-n-butyldimethacrylatetin (Sn) in experimental adhesive systems. Ag and Sn methacrylates were incorporated at 0.5mol%, 1mol% and 2mol% in an adhesive resin. The anti-antibiofilm potential, degree of conversion (DC), microtensile bond strength (μTBS), water sorption/solubility (WSR/SL), bonded interfaces pattern (SEM), cytotoxicity and leaching of Ag and Sn ions were evaluated. Data were statistically analyzed considering α = 0.05. Only Ag at 2% affected DC and μTBS. Ag at 1% and 2% and Sn at 1% and 2% showed anti-biofilm potential against Mutans streptococci. Ag at 1% and 2% and Sn at 2% showed a statistically significant difference to the control in WSR/SL (p < 0.05). The additions of metal methacrylate did not affect cell viability, being the adhesive resins statistically similar to controls. Leached metals of Ag were more than 100x higher than for Sn. Between the concentration tested, Ag and Sn methacrylate at 1% presented an anti-biofilm effect without altering the mechanical properties evaluated.
Collapse
|
35
|
Lukomska-Szymanska M, Konieczka M, Zarzycka B, Lapinska B, Grzegorczyk J, Sokolowski J. Antibacterial Activity of Commercial Dentine Bonding Systems against E. faecalis-Flow Cytometry Study. MATERIALS 2017; 10:ma10050481. [PMID: 28772841 PMCID: PMC5458997 DOI: 10.3390/ma10050481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Literature presents inconsistent results on the antibacterial activity of dentine bonding systems (DBS). Antibacterial activity of adhesive systems depends on several factors, including composition and acidity. Flow cytometry is a novel detection method to measure multiple characteristics of a single cell: total cell number, structural (size, shape), and functional parameters (viability, cell cycle). The LIVE/DEAD® BacLight™ bacterial viability assay was used to evaluate an antibacterial activity of DBS by assessing physical membrane disruption of bacteria mediated by DBS. Ten commercial DBSs: four total-etching (TE), four self-etching (SE) and two selective enamel etching (SEE) were tested. Both total-etching DBS ExciTE F and OptiBond Solo Plus showed comparatively low antibacterial activity against E. faecalis. The lowest activity of all tested TE systems showed Te-Econom Bond. Among SE DBS, G-ænial Bond (92.24% dead cells) followed by Clearfil S3 Bond Plus (88.02%) and Panavia F 2.0 ED Primer II (86.67%) showed the highest antibacterial activity against E. faecalis, which was comparable to isopropranol (positive control). In the present study, self-etching DBS exhibited higher antimicrobial activity than tested total-etching adhesives against E. faecalis.
Collapse
Affiliation(s)
| | - Magdalena Konieczka
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz 92-213, Poland.
| | - Beata Zarzycka
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz 92-213, Poland.
| | - Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, Lodz 92-213, Poland.
| | - Janina Grzegorczyk
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz 92-213, Poland.
| | - Jerzy Sokolowski
- Department of General Dentistry, Medical University of Lodz, Lodz 92-213, Poland.
| |
Collapse
|
36
|
Lingling J, Qianbing W. [Progress on matrix metalloproteinase inhibitors]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:208-214. [PMID: 28682555 DOI: 10.7518/hxkq.2017.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Continuing advances in dentin bonding technology and adhesives revolutionized bonding of resin-based composite restorations. However, hybrid layers created by contemporary dentin adhesives present imperfect durability, and degradation of collagen matrix by endogenous enzymes is a significant factor causing destruction of hybrid layers. Bond durability can be improved by using enzyme inhibitors to prevent collagen degradation and to preserve integrity of collagen matrix. This review summarizes progress on matrix metalloproteinase inhibitors (including chlorhexidine, ethylenediaminetetraacetic acid, quaternary ammonium salt, tetracycline and its derivatives, hydroxamic acid inhibitors, bisphosphonate derivative, and cross-linking agents) and suggests prospects for these compounds.
Collapse
Affiliation(s)
- Jia Lingling
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Prosthetics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wan Qianbing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Prosthetics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Jiao Y, Niu LN, Ma S, Li J, Tay FR, Chen JH. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog Polym Sci 2017; 71:53-90. [PMID: 32287485 PMCID: PMC7111226 DOI: 10.1016/j.progpolymsci.2017.03.001] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022]
Abstract
Microbial infections affect humans worldwide. Many quaternary ammonium compounds have been synthesized that are not only antibacterial, but also possess antifungal, antiviral and anti-matrix metalloproteinase capabilities. Incorporation of quaternary ammonium moieties into polymers represents one of the most promising strategies for preparation of antimicrobial biomaterials. Various polymerization techniques have been employed to prepare antimicrobial surfaces with quaternary ammonium functionalities; in particular, syntheses involving controlled radical polymerization techniques enable precise control over macromolecular structure, order and functionality. Although recent publications report exciting advances in the biomedical field, some of these technological developments have also been accompanied by potential toxicological and antimicrobial resistance challenges. Recent evidenced-based data on the biomedical applications of antimicrobial quaternary ammonium-containing biomaterials that are based on randomized human clinical trials, the golden standard in contemporary medicinal science, are included in the present review. This should help increase visibility, stimulate debates and spur conversations within a wider scientific community on the implications and plausibility for future developments of quaternary ammonium-based antimicrobial biomaterials.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Department of Stomatology, PLA Army General Hospital, 100700, Beijing, China
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Sai Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Jing Li
- Department of Orthopaedic Oncology, Xijing Hospital Affiliated to the Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
| | - Franklin R. Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
- Corresponding authors.
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, 710032, Xi’an, Shaanxi, China
- Corresponding authors.
| |
Collapse
|
38
|
Antibacterial Activity and Bonding Ability of an Orthodontic Adhesive Containing the Antibacterial Monomer 2-Methacryloxylethyl Hexadecyl Methyl Ammonium Bromide. Sci Rep 2017; 7:41787. [PMID: 28169312 PMCID: PMC5294631 DOI: 10.1038/srep41787] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/29/2016] [Indexed: 11/08/2022] Open
Abstract
Irreversible white spot lesion (WSL) occurs in up to 50% of patients during orthodontic treatment. Therefore, orthodontic adhesives need to be able to inhibit or reduce bacterial growth in order to prevent or minimize WSL. This study evaluated the antibacterial effect and shear bond strength (SBS) of a resin-based orthodontic adhesive containing the antibacterial monomer 2-methacryloxylethyl hexadecyl methyl ammonium bromide (MAE-HB). MAE-HB was added at three concentrations (1, 3, and 5 wt%) to a commercial orthodontic adhesive Transbond XT, while the blank control comprised unmodified Transbond XT. Their antibacterial effects on Streptococcus mutans were investigated after 0 and 180 days of aging. The SBS of metal brackets bonded to the buccal enamel surface of human premolars was assessed. Compared with the blank control, the MAE-HB-incorporated adhesive exhibited a significant contact inhibitory effect on the growth of S. mutans (P < 0.05), even after 180 days of aging. SBS and adhesive remnant index values revealed that the bonding ability of the experimental adhesive was not significantly adversely affected by the incorporation of MAE-HB at any of the three concentrations. Therefore, orthodontic adhesives with strong and long-lasting bacteriostatic properties can be created through the incorporation of MAE-HB without negatively influencing bonding ability.
Collapse
|
39
|
Askar H, Tu YK, Paris S, Yeh YC, Schwendicke F. Risk of caries adjacent to different restoration materials: Systematic review of in situ studies. J Dent 2017; 56:1-10. [DOI: 10.1016/j.jdent.2016.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/24/2022] Open
|
40
|
COLLARES FM, LEITUNE VCB, FRANKEN P, PAROLLO CF, OGLIARI FA, SAMUEL SMW. Influence of addition of [2-(methacryloyloxy)ethyl]trimethylammonium chloride to an experimental adhesive. Braz Oral Res 2017; 31:e31. [DOI: 10.1590/1807-3107bor-2017.vol31.0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/06/2017] [Indexed: 11/22/2022] Open
|
41
|
Primer containing dimethylaminododecyl methacrylate kills bacteria impregnated in human dentin blocks. Int J Oral Sci 2016; 8:239-245. [PMID: 27811846 PMCID: PMC5168419 DOI: 10.1038/ijos.2016.43] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2015] [Indexed: 11/08/2022] Open
Abstract
Antibacterial dimethylaminododecyl methacrylate (DMADDM) was recently synthesized. The objectives of this study were to: (1) investigate antibacterial activity of DMADDM-containing primer on Streptococcus mutans impregnated into dentin blocks for the first time, and (2) compare the antibacterial efficacy of DMADDM with a previous quaternary ammonium dimethacrylate (QADM). Scotchbond Multi-Purpose (SBMP) bonding agent was used. DMADDM and QADM were mixed into SBMP primer. Six primers were tested: SBMP control primer P, P+2.5% DMADDM, P+5% DMADDM, P+7.5% DMADDM, P+10% DMADDM, and P+10% QADM. S. mutans were impregnated into human dentin blocks, and each primer was applied to dentin to test its ability to kill bacteria in dentinal tubules. Bacteria in dentin were collected via a sonication method, and the colony-forming units (CFU) and inhibition zones were measured. The bacterial inhibition zone of P+10% DMADDM was 10 times that of control primer (P<0.05). CFU in dentin with P+10% DMADDM was reduced by three orders of magnitude, compared with control. DMADDM had a much stronger antibacterial effect than QADM, and antibacterial efficacy increased with increasing DMADDM concentration. Dentin shear bond strengths were similar among all groups (P>0.1). In conclusion, antibacterial DMADDM-containing primer was validated to kill bacteria inside dentin blocks, possessing a much stronger antibacterial potency than the previous QADM. DMADDM-containing bonding agent was effective in eradicating bacteria in dentin, and its efficacy was directly proportional to DMADDM mass fraction. Therefore, DMADDM may be promising for use in bonding agents as well as in other restorative and preventive materials to inhibit bacteria.
Collapse
|
42
|
Donmez N, Belli S, Pashley DH, Tay FR. Ultrastructural Correlates of in vivo/in vitro Bond Degradation in Self-etch Adhesives. J Dent Res 2016; 84:355-9. [PMID: 15790743 DOI: 10.1177/154405910508400412] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The morphologic correlates of bond degradation in self-etching primers have not been fully elucidated. We hypothesized that there is no difference between the mechanism of degradation of self-etching primers in vivo and in vitro. Class I cavities prepared in vivo in 24 caries-free human molars were bonded with Clearfil SE Bond or Clearfil Protect Bond, and restored with resin composites. Eight teeth were extracted after 24 hrs, and the rest after 1 yr. The same protocol was repeated in vitro with extracted molars. Degradation of resin-dentin bonds was assessed by microtensile bond testing and TEM of interfaces after tracer immersion. Both in vivo and in vitro bond strengths decreased with time for SE Bond but not for Protect Bond, with more pronounced water treeing observed in the former adhesive under both aging conditions. There is no difference between the mechanism of degradation of self-etch adhesives in vivo or in vitro.
Collapse
Affiliation(s)
- N Donmez
- Faculty of Dentistry, Selçuk University, Konya, Turkey
| | | | | | | |
Collapse
|
43
|
Kuramoto A, Imazato S, Walls AWG, Ebisu S. Inhibition of Root Caries Progression by an Antibacterial Adhesive. J Dent Res 2016; 84:89-93. [PMID: 15615883 DOI: 10.1177/154405910508400116] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A dentin primer containing the antibacterial monomer 12-methacryloyloxydodecylpyridinium bromide (MDPB) has been shown to penetrate and kill the bacteria in artificially demineralized dentin. We hypothesized that an experimental adhesive system, which incorporates the MDPB-containing primer, would be effective in inhibiting the progression of root caries in vitro. Artificial caries lesions were prepared by either an acid-gel or a Streptococcus mutans culture technique on the roots of extracted human teeth. The progression of these lesions after the application of the experimental or proprietary adhesive system was examined. Further demineralization was completely prevented by the experimental adhesive system, while lesions managed with the proprietary materials showed limited ability to inhibit further demineralization. We conclude that the experimental adhesive system can inhibit the progression of root-surface caries in vitro, through a combination of its antimicrobial activity and sealing of the demineralized dentin.
Collapse
Affiliation(s)
- A Kuramoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
44
|
Lee J, Sabatini C. Glutaraldehyde collagen cross-linking stabilizes resin-dentin interfaces and reduces bond degradation. Eur J Oral Sci 2016; 125:63-71. [DOI: 10.1111/eos.12317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Joshua Lee
- Department of Restorative Dentistry; School of Dental Medicine; University at Buffalo; Buffalo NY USA
| | - Camila Sabatini
- Department of Restorative Dentistry; School of Dental Medicine; University at Buffalo; Buffalo NY USA
| |
Collapse
|
45
|
Gokcen EY, Oz FT, Ozcelik B, Orhan AI, Ozgul BM. Assessment of antibacterial activity of different treatment modalities in deciduous teeth: an in vitro study. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1223556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Esra Yesiloz Gokcen
- Department of Pedodontics, Faculty of Dentistry, Ankara University , Ankara, Turkey
| | - Firdevs Tulga Oz
- Department of Pedodontics, Faculty of Dentistry, Ankara University , Ankara, Turkey
| | - Berrin Ozcelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Gazi University , Ankara, Turkey
| | - Ayse Isıl Orhan
- Division of Pediatric Dentistry, Ministry of Health , 75th Year Ankara Oral and Dental Health Centre, Ankara, Turkey
| | - Betul Memis Ozgul
- Department of Pedodontics, Faculty of Dentistry, Baskent University , Ankara, Turkey
| |
Collapse
|
46
|
Hirose N, Kitagawa R, Kitagawa H, Maezono H, Mine A, Hayashi M, Haapasalo M, Imazato S. Development of a Cavity Disinfectant Containing Antibacterial Monomer MDPB. J Dent Res 2016; 95:1487-1493. [DOI: 10.1177/0022034516663465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
An experimental cavity disinfectant (ACC) that is intended to be used for various direct and indirect restorations was prepared by adding an antibacterial monomer 12-methacryloyloxydodecylpyridinum bromide (MDPB) at 5% into 80% ethanol. The antibacterial effectiveness of ACC and its influences on the bonding abilities of resin cements were investigated. To examine the antibacterial activity of unpolymerized MDPB, the minimum inhibitory and bactericidal concentrations (MIC and MBC) were determined for Streptococcus mutans, Lactobacillus casei, Actinomyces naeslundii, Parvimonas micra, Enterococcus faecalis, Fusobacterium nucleatum, and Porphyromonas gingivalis. Antibacterial activities of ACC and the commercial cavity disinfectant containing 2% chlorhexidine and ethanol (CPS) were evaluated by agar disk diffusion tests through 7 bacterial species and by MIC and MBC measurement for S. mutans. The effects of ACC and CPS to kill bacteria in dentinal tubules were compared with an S. mutans–infected dentin model. Shear bond strength tests were used to examine the influences of ACC on the dentin-bonding abilities of a self-adhesive resin cement and a dual-cure resin cement used with a primer. Unpolymerized MDPB showed strong antibacterial activity against 7 oral bacteria. ACC produced inhibition zones against all bacterial species similar to CPS. For ACC and CPS, the MIC value for S. mutans was identical, and the MBC was similar with only a 1-step dilution difference (1:2). Treatment of infected dentin with ACC resulted in significantly greater bactericidal effects than CPS ( P < 0.05, analysis of variance and Tukey’s honest significant difference test). ACC showed no negative influences on the bonding abilities to dentin for both resin cements, while CPS reduced the bond strength of the self-adhesive resin cement ( P < 0.05). This study clarified that the experimental cavity disinfectant containing 5% MDPB is more effective in vitro than the commercially available chlorhexidine solution to eradicate bacteria in dentin, without causing any adverse influences on the bonding abilities of resinous luting cements.
Collapse
Affiliation(s)
- N. Hirose
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - R. Kitagawa
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - H. Kitagawa
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - H. Maezono
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - A. Mine
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M. Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - M. Haapasalo
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - S. Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
47
|
Villat C, Attal JP, Brulat N, Decup F, Doméjean S, Dursun E, Fron-Chabouis H, Jacquot B, Muller Bolla M, Plasse-Pradelle N, Roche L, Maucort-Boulch D, Nony P, Gritsch K, Millet P, Gueyffier F, Grosgogeat B. One-step partial or complete caries removal and bonding with antibacterial or traditional self-etch adhesives: study protocol for a randomized controlled trial. Trials 2016; 17:404. [PMID: 27527342 PMCID: PMC4986347 DOI: 10.1186/s13063-016-1484-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/22/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Current concepts in conservative dentistry advocate minimally invasive dentistry and pulp vitality preservation. Moreover, complete removal of carious dentin in deep carious lesions often leads to pulp exposure and root canal treatment, despite the absence of irreversible pulp inflammation. For years, partial caries removal has been performed on primary teeth, but little evidence supports its effectiveness for permanent teeth. Furthermore, the recent development of new antibacterial adhesive systems could be interesting in the treatment of such lesions. The objectives of this study are to compare the effectiveness of partial versus complete carious dentin removal in deep lesions (primary objective) and the use of an antibacterial versus a traditional two-step self-etch adhesive system (main secondary objective). METHODS/DESIGN The DEep CAries Treatment (DECAT) study protocol is a multicenter, randomized, controlled superiority trial comparing partial versus complete caries removal followed by adhesive restoration. The minimum sample size required is 464 patients. Two successive randomizations will be performed (allocation ratio 1:1): the first for the type of excavation (partial versus complete) and the second (if no root canal treatment is required) for the type of adhesive (antibacterial versus traditional). For the two objectives, the outcome is the success of the treatment after 1 year, measured according to a composite outcome of five FDI criteria: material fracture and retention, marginal adaptation, radiographic examination (including apical pathologies), postoperative sensitivity and tooth vitality, and carious lesion recurrence. DISCUSSION The study will investigate the interest of a conservative approach for the management of deep carious lesions in terms of dentin excavation and bioactive adhesive systems. The results may help practitioners achieve the most efficient restorative procedure to maintain pulp vitality and increase the restoration longevity. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT02286388 . Registered in November 2014.
Collapse
Affiliation(s)
- Cyril Villat
- Université Lyon 1 and Hospices Civils de Lyon, LMI UMR CNRS, 5615, Lyon, France. .,Université Lyon 1. UFR d'Odontologie, 11 rue Guillaume Paradin, 69372, Lyon Cedex 08, France.
| | - Jean-Pierre Attal
- Université Paris Descartes and Assistance Publique des Hôpitaux de Paris, URB2i, EA 4462, Paris, France
| | - Nathalie Brulat
- Université de Nice Sophia Antipolis and CHU de Nice, Mines Paris Tech, CEMEF, UMR, CNRS 7635, Nice, France
| | - Franck Decup
- Université Paris Descartes and Assistance Publique des Hôpitaux de Paris, EA 2496, Paris, France
| | - Sophie Doméjean
- Université d'Auvergne Clermont-Ferrand and CHU de Clermont-Ferrand, CROC, EA 4847, Clermont-Ferrand, France
| | - Elisabeth Dursun
- Université Paris Descartes and Assistance Publique des Hôpitaux de Paris, URB2i, EA 4462, Paris, France
| | - Hélène Fron-Chabouis
- Université Paris Descartes and Assistance Publique des Hôpitaux de Paris, URB2i, EA 4462, Paris, France
| | - Bruno Jacquot
- Université d'Aix-Marseille and Assistance Publique des Hôpitaux de Marseille, BioSanté, EA 4203, Marseille, France
| | - Michèle Muller Bolla
- Université de Nice Sophia Antipolis and CHU de Nice, URB2i, EA 4462, Nice, France
| | - Nelly Plasse-Pradelle
- Université Paris Diderot and Assistance Publique des Hôpitaux de Paris, LMI UMR CNRS, 5615, Paris, France
| | - Laurent Roche
- Université Lyon 1 and Hospices Civils de Lyon, LBBE UMR CNRS, 5558, Lyon, France
| | | | - Patrice Nony
- Université Lyon 1 and Hospices Civils de Lyon, LBBE UMR CNRS, 5558, Lyon, France
| | - Kerstin Gritsch
- Université Lyon 1 and Hospices Civils de Lyon, LMI UMR CNRS, 5615, Lyon, France
| | - Pierre Millet
- Université de Reims Champagne Ardenne and CHU de Reims, LISM, EA4695, Reims, France
| | - François Gueyffier
- Université Lyon 1 and Hospices Civils de Lyon, LBBE UMR CNRS, 5558, Lyon, France
| | - Brigitte Grosgogeat
- Université Lyon 1 and Hospices Civils de Lyon, LMI UMR CNRS, 5615, Lyon, France
| |
Collapse
|
48
|
Gurpinar A, Onur MA, Cehreli ZC, Tasman F. Cytotoxicity of Two-step Self-etching Primer/Adhesives on L929 Cells. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911506060833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cytotoxicity of four self-etching primer/adhesive systems (Clearfil® SE Bond, Clearfil® Protect Bond, Mac Bond® II and FL® Bond) was tested against L929 fibroblasts. The primer or adhesive component of each adhesive system was diluted serially with the culture medium at a ratio of 1:1,000 and 1:4,000 (v/v). Cytotoxicity was identified by adding L929 cells in 24-well culture plates at an initial density of 35,000 cells mL 1. The cells were maintained for 5 days; every 24h, the medium was changed with fresh medium containing specific dilutions of the primer or adhesive components of the test materials. Cytotoxicity was assessed quantitatively at 24, 48, 72, 96 and 120h. Physiological and pathological cellular changes as well as reactions and growth of the cell cultures were examined under an inverted microscope. All self-etching systems were found to be cytotoxic to varying degrees; more pronounced toxic effects were observed at lower dilution (1:1,000 [v/v]). The adhesive components of Mac Bond® II and FL® Bond showed the highest cytotoxicity at 1:1,000 (v/v). The primer and adhesive of Clearfil® SE Bond, the primer of Mac Bond® II and the antibacterial monomer (MDPB)-containing Clearfil® Protect Bond (at 1:4,000 [v/v]) were relatively less cytotoxic.
Collapse
Affiliation(s)
- Aylin Gurpinar
- Faculty of Science, Department of Biology, Hacettepe University, Beytepe Campus, Ankara, Turkey,
| | - Mehmet Ali Onur
- Faculty of Science, Department of Biology, Hacettepe University, Beytepe Campus, Ankara, Turkey
| | - Zafer C. Cehreli
- Faculty of Dentistry, Department of Pediatric Dentistry, Hacettepe University, Ankara, Turkey
| | - Fugen Tasman
- Faculty of Dentistry, Department of Endodontics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
49
|
Physical and chemical properties of an antimicrobial Bis-GMA free dental resin with quaternary ammonium dimethacrylate monomer. J Mech Behav Biomed Mater 2016; 56:68-76. [DOI: 10.1016/j.jmbbm.2015.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 10/26/2015] [Accepted: 10/31/2015] [Indexed: 12/14/2022]
|
50
|
do Amaral GS, Negrini T, Maltz M, Arthur RA. Restorative materials containing antimicrobial agents: is there evidence for their antimicrobial and anticaries effects? A systematic review. Aust Dent J 2016; 61:6-15. [PMID: 26018839 DOI: 10.1111/adj.12338] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 01/28/2023]
Abstract
The aim of this systematic literature review was to investigate whether the incorporation of antimicrobial agents into dental restorative materials truly exerts an antimicrobial effect against common cariogenic bacteria (primary outcome), and whether the inclusion of antimicrobial agents is able to prevent caries around restorations (secondary outcome). MEDLINE, via PubMed, was searched for papers published between 1980 and 30 November 2014. A total of 1126 articles were retrieved. After inclusion/exclusion assessment, 147 full text articles were read and included in the review, comprising 130 in vitro, 1 in situ, and 4 in vivo studies, as well as 12 literature reviews. In about 78% of in vitro studies, and in all identified in situ and in vivo studies, a positive antimicrobial effect had been found. However, the anticaries effect had not been tested in any of the selected studies. It was concluded that there is indeed evidence that restorative dental materials containing antimicrobial agents exert an antimicrobial effect, both in laboratory and in clinical studies. However, no evidence has been found regarding the role of these agents in preventing or controlling dental caries, or in preventing caries around restorations.
Collapse
Affiliation(s)
- G S do Amaral
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Federal University of Rio Grande do Sul, Brazil
| | - T Negrini
- Department of Conservative Dentistry, Faculty of Dentistry, Federal University of Rio Grande do Sul, Brazil
| | - M Maltz
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Federal University of Rio Grande do Sul, Brazil
| | - R A Arthur
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Federal University of Rio Grande do Sul, Brazil
| |
Collapse
|