1
|
Hoffman ET, Uhl FE, Asarian L, Deng B, Becker C, Uriarte JJ, Downs I, Young B, Weiss DJ. Regional and disease specific human lung extracellular matrix composition. Biomaterials 2023; 293:121960. [PMID: 36580718 PMCID: PMC9868084 DOI: 10.1016/j.biomaterials.2022.121960] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), are characterized by regional extracellular matrix (ECM) remodeling which contributes to disease progression. Previous proteomic studies on whole decellularized lungs have provided detailed characterization on the impact of COPD and IPF on total lung ECM composition. However, such studies are unable to determine the differences in ECM composition between individual anatomical regions of the lung. Here, we employ a post-decellularization dissection method to compare the ECM composition of whole decellularized lungs (wECM) and specific anatomical lung regions, including alveolar-enriched ECM (aECM), airway ECM (airECM), and vasculature ECM (vECM), between non-diseased (ND), COPD, and IPF human lungs. We demonstrate, using mass spectrometry, that individual regions possess a unique ECM signature characterized primarily by differences in collagen composition and basement-membrane associated proteins, including ECM glycoproteins. We further demonstrate that both COPD and IPF lead to alterations in lung ECM composition in a region-specific manner, including enrichment of type-III collagen and fibulin in IPF aECM. Taken together, this study provides methodology for future studies, including isolation of region-specific lung biomaterials, as well as a dataset that may be applied for the identification of novel ECM targets for therapeutics.
Collapse
Affiliation(s)
- Evan T. Hoffman
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Franziska E. Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Loredana Asarian
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Bin Deng
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Chloe Becker
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Juan J. Uriarte
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Isaac Downs
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Brad Young
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Daniel J. Weiss
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
2
|
Wen Y, Wu Q, Zhang L, He J, Chen Y, Yang X, Zhang K, Niu X, Li S. Association of Intrauterine Microbes with Endometrial Factors in Intrauterine Adhesion Formation and after Medicine Treatment. Pathogens 2022; 11:pathogens11070784. [PMID: 35890029 PMCID: PMC9322781 DOI: 10.3390/pathogens11070784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Intrauterine adhesions (IUAs) have caused serious harm to women’s reproductive health. Although emerging evidence has linked intrauterine microbiome to gynecological diseases, the association of intrauterine microbiome with IUA, remains unknown. We performed metagenome-wide association, metabolomics, and transcriptomics studies on IUA and non-IUA uteri of adult rats to identify IUA-associated microbial species, which affected uterine metabolites and endometrial transcriptions. A rat model was used with one side of the duplex uterus undergoing IUA and the other remaining as a non-IUA control. Both 16S rRNA sequencing and metagenome-wide association analysis revealed that instead of Mycoplasmopsis specie in genital tract, murine lung pathogen Mycoplasmopsispulmonis markedly increased in IUA samples and displayed a distinct positive interaction with the host immune system. Moreover, most of the IUA-enriched 58 metabolites positively correlate with M.pulmonis, which inversely correlates with a mitotic progression inhibitor named 3-hydroxycapric acid. A comparison of metabolic profiles of intrauterine flushing fluids from human patients with IUA, endometritis, and fallopian tube obstruction suggested that rat IUA shared much similarity to human IUA. The endometrial gene Tenascin-N, which is responsible for extracellular matrix of wounds, was highly up-regulated, while the key genes encoding parvalbumin, trophectoderm Dkkl1 and telomerase involved in leydig cells, trophectoderm cells, activated T cells and monocytes were dramatically down-regulated in rat IUA endometria. Treatment for rat IUA with estrogen (E2), oxytetracycline (OTC), and a traditional Chinese patent medicine GongXueNing (GXN) did not reduce the incidence of IUA, though inflammatory factor IL-6 was dramatically down-regulated (96–86%) with all three. Instead, in both the E2 and OTC treated groups, IUA became worse with a highly up-regulated B cell receptor signaling pathway, which may be associated with the significantly increased proportions of Ulvibacter or Staphylococcus. Our results suggest an association between intrauterine microbiota alterations, certain uterine metabolites, characteristic changes in endometrial transcription, and IUA and the possibility to intervene in IUA formation by targeting the causal factors, microbial infection, and Tenascin-like proteins.
Collapse
Affiliation(s)
- Ya Wen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650091, China
| | - Qunfu Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Longlong Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Jiangbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Kunming Key Laboratory of Respiratory Disease, Kunming University, Kunming 650214, China
| | - Yonghong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Xiaoyu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Regenerative Medicine Research Center, The First People’s Hospital of Yunnan Province, Kunming 650034, China
| | - Keqin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Correspondence: (X.N.); (S.L.)
| | - Shenghong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (X.N.); (S.L.)
| |
Collapse
|
3
|
Tomlin H, Piccinini AM. A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. Immunology 2018; 155:186-201. [PMID: 29908065 PMCID: PMC6142291 DOI: 10.1111/imm.12972] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
The role of the host extracellular matrix (ECM) in infection tends to be neglected. However, the complex interactions between invading pathogens, host tissues and immune cells occur in the context of the ECM. On the pathogen side, a variety of surface and secreted molecules, including microbial surface components recognizing adhesive matrix molecules and tissue-degrading enzymes, are employed that interact with different ECM proteins to effectively establish an infection at specific sites. Microbial pathogens can also hijack or misuse host proteolytic systems to modify the ECM, evade immune responses or process biologically active molecules such as cell surface receptors and cytokines that direct cell behaviour and immune defence. On the host side, the ECM composition and three-dimensional ultrastructure undergo significant modifications, which have a profound impact on the specific signals that the ECM conveys to immune cells at the forefront of infection. Unexpectedly, activated immune cells participate in the remodelling of the local ECM by synthesizing ECM glycoproteins, proteoglycans and collagen molecules. The close interplay between the ECM and the innate immune response to microbial pathogens ultimately affects the outcome of infection. This review explores and discusses recent data that implicate an active role for the ECM in the immune response to infection, encompassing antimicrobial activities, microbial recognition, macrophage activation, phagocytosis, leucocyte population balance, and transcriptional and post-transcriptional regulation of inflammatory networks, and may foster novel antimicrobial approaches.
Collapse
Affiliation(s)
- Hannah Tomlin
- School of PharmacyUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
4
|
Ishizaki J, Takemori A, Suemori K, Matsumoto T, Akita Y, Sada KE, Yuzawa Y, Amano K, Takasaki Y, Harigai M, Arimura Y, Makino H, Yasukawa M, Takemori N, Hasegawa H. Targeted proteomics reveals promising biomarkers of disease activity and organ involvement in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Res Ther 2017; 19:218. [PMID: 28962592 PMCID: PMC5622475 DOI: 10.1186/s13075-017-1429-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Targeted proteomics, which involves quantitative analysis of targeted proteins using selected reaction monitoring (SRM) mass spectrometry, has emerged as a new methodology for discovery of clinical biomarkers. In this study, we used targeted serum proteomics to identify circulating biomarkers for prediction of disease activity and organ involvement in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). METHODS A large-scale SRM assay targeting 135 biomarker candidates was established using a triple-quadrupole mass spectrometer coupled with nanoflow liquid chromatography. Target proteins in serum samples from patients in the active and remission (6 months after treatment) stages were quantified using the established assays. Identified marker candidates were further validated by enzyme-linked immunosorbent assay using serum samples (n = 169) collected in a large-cohort Japanese study (the RemIT-JAV-RPGN study). RESULTS Our proteomic analysis identified the following proteins as biomarkers for discriminating patients with highly active AAV from those in remission or healthy control subjects: tenascin C (TNC), C-reactive protein (CRP), tissue inhibitor of metalloproteinase 1 (TIMP1), leucine-rich alpha-2-glycoprotein 1, S100A8/A9, CD93, matrix metalloproteinase 9, and transketolase (TKT). Of these, TIMP1 was the best-performing marker of disease activity, allowing distinction between mildly active AAV and remission. Moreover, in contrast to CRP, serum levels of TIMP1 in patients with active AAV were significantly higher than those in patients with infectious diseases. The serum levels of TKT and CD93 were higher in patients with renal involvement than in those without, and they predicted kidney outcome. The level of circulating TNC was elevated significantly in patients with lung infiltration. AAV severity was associated with markers reflecting organ involvement (TKT, CD93, and TNC) rather than inflammation. The eight markers and myeloperoxidase (MPO)-ANCA were clustered into three groups: MPO-ANCA, renal involvement (TKT and CD93), and inflammation (the other six markers). CONCLUSIONS We have identified promising biomarkers of disease activity, disease severity, and organ involvement in AAV with a targeted proteomics approach using serum samples obtained from a large-cohort Japanese study. Especially, our analysis demonstrated the effectiveness of TIMP1 as a marker of AAV activity. In addition, we identified TKT and CD93 as novel markers for evaluation of renal involvement and kidney outcome in AAV.
Collapse
Affiliation(s)
- Jun Ishizaki
- Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan
| | - Ayako Takemori
- Division of Proteomics Research, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295 Japan
| | - Koichiro Suemori
- Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan
| | - Takuya Matsumoto
- Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan
| | - Yoko Akita
- Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan
| | - Ken-ei Sada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yukio Yuzawa
- Department of Nephrology, Fujita Health University School of Medicine, Aichi, Japan
| | - Koichi Amano
- Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yoshinari Takasaki
- Department of Rheumatology, Juntendo University Koshigaya Hospital, Saitama, Japan
| | - Masayoshi Harigai
- Division of Epidemiology and Pharmacoepidemiology of Rheumatic Diseases, Institute of Rheumatology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yoshihiro Arimura
- Nephrology and Rheumatology, First Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | | | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan
| | - Nobuaki Takemori
- Division of Proteomics Research, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295 Japan
| | - Hitoshi Hasegawa
- Department of Hematology, Clinical Immunology, and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan
| |
Collapse
|
5
|
Xu H, He Y, Feng JQ, Shu R, Liu Z, Li J, Wang Y, Xu Y, Zeng H, Xu X, Xiang Z, Xue C, Bai D, Han X. Wnt3α and transforming growth factor-β induce myofibroblast differentiation from periodontal ligament cells via different pathways. Exp Cell Res 2017; 353:55-62. [PMID: 28223136 DOI: 10.1016/j.yexcr.2016.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 02/05/2023]
Abstract
Myofibroblasts are specialized cells that play a key role in connective tissue remodeling and reconstruction. Alpha-smooth muscle actin (α-SMA), vimentin and tenascin-C are myofibroblast phenotype, while α-SMA is the phenotypic marker. The observation that human periodontal ligament cells (hPDLCs) differentiate into myofibroblasts under orthodontic force has provided a new perspective for understanding of the biological and biomechanical mechanisms involved in orthodontic tooth movement. However, the cell-specific molecular mechanisms leading to myofibroblast differentiation in the periodontal ligament (PDL) remain unclear. In this study, we found that expression of Wnt3α, transforming growth factor-β1 (TGF-β1), α-SMA and tenascin-C increased in both tension and compression regions of the PDL under orthodontic load compared with unloaded control, suggesting that upregulated Wnt3α and TGF-β1 signaling might have roles in myofibroblast differentiation in response to orthodontic force. We reveal in vitro that both Wnt3α and TGF-β1 promote myofibroblast differentiation from hPDLCs. Dickkopf-1 (DKK1) impairs Wnt3α-induced myofibroblast differentiation in a β-catenin-dependent manner. TGF-β1 stimulates myofibroblast differentiation via a JNK-dependent mechanism. DKK1 has no significant effect on TGF-β1-induced myofibroblastic phenotype.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Yao He
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Jian Q Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, TX A&M University, 3302 Gaston Ave, Dallas, TX 75246, USA.
| | - Rui Shu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Zhe Liu
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Jingyu Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Yating Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Yang Xu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Huan Zeng
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Xin Xu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Zichao Xiang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Chaoran Xue
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Ding Bai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section of Renmin South Road, Chengdu 610041, PR China.
| |
Collapse
|
6
|
Hasibuan FM, Shiratori B, Senoputra MA, Chagan-Yasutan H, Koesoemadinata RC, Apriani L, Takahashi Y, Niki T, Alisjahbana B, Hattori T. Evaluation of matricellular proteins in systemic and local immune response to Mycobacterium tuberculosis infection. Microbiol Immunol 2016; 59:623-32. [PMID: 26337438 DOI: 10.1111/1348-0421.12320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/19/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022]
Abstract
Matricellular proteins such as osteopontin (OPN), galectin-9 (Gal-9), and tenascin-C (TN-C) are expressed not only under normal physiological conditions, but also during infection, inflammation and tumorigenesis. Plasma concentrations of matricellular proteins were studied to determine their diagnostic value as potential markers of tuberculosis (TB) activity. It was found that concentrations of OPN and TN-C were higher in patients with active TB than in healthy controls and individuals with latent infection. Moreover, LTBI patients had higher concentrations of OPN than did healthy controls. Gal-9 concentrations did not differ significantly between groups. Concentrations of matricellular proteins were higher in pleural fluid than in the plasma of patients with TB. Expression of matricellular proteins was also investigated in TB granulomas and other granulomatous diseases. Positive OPN and Gal-9 staining was observed in TB and sarcoidosis granulomas, but not in Crohn disease granulomas. The fibrotic ring around granulomas stained positive for TN-C in TB and sarcoidosis, but not in Crohn disease. Of the three matricellular proteins studied, OPN and TN-C may serve as reliable plasma markers for monitoring TB activity, whereas Gal-9 seems to be expressed more at the site of infection than in the systemic circulation.
Collapse
Affiliation(s)
- Fakhrial Mirwan Hasibuan
- Division of Emerging Infectious Diseases, Graduate School of Medicine, Tohoku University.,Public Health Science Program
| | - Beata Shiratori
- Division of Emerging Infectious Diseases, Graduate School of Medicine, Tohoku University.,Division of Disaster-related Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1 Seiryo-machi
| | - Muhammad Andrian Senoputra
- Division of Emerging Infectious Diseases, Graduate School of Medicine, Tohoku University.,Public Health Science Program
| | - Haorile Chagan-Yasutan
- Division of Emerging Infectious Diseases, Graduate School of Medicine, Tohoku University.,Division of Disaster-related Infectious Diseases, International Research Institute of Disaster Science, Tohoku University, 2-1 Seiryo-machi
| | | | - Lika Apriani
- TB-HIV Research Center, Faculty of Medicine, Padjadjaran University, Jl Eicjkman 38, Bandung, 40161, West Java, Indonesia
| | - Yayoi Takahashi
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi
| | - Toshiro Niki
- Research Division, GalPharma Company, NEXT-Kagawa 204, 2217-44 Hayashi-cho, Takamatsu-shi, Kagawa, 760-0301, Japan
| | - Bachti Alisjahbana
- TB-HIV Research Center, Faculty of Medicine, Padjadjaran University, Jl Eicjkman 38, Bandung, 40161, West Java, Indonesia
| | - Toshio Hattori
- Division of Emerging Infectious Diseases, Graduate School of Medicine, Tohoku University.,Public Health Science Program
| |
Collapse
|
7
|
Xu H, Bai D, Ruest LB, Feng JQ, Guo YW, Tian Y, Jing Y, He Y, Han XL. Expression analysis of α-smooth muscle actin and tenascin-C in the periodontal ligament under orthodontic loading or in vitro culture. Int J Oral Sci 2015; 7:232-41. [PMID: 26674425 PMCID: PMC5153592 DOI: 10.1038/ijos.2015.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 02/05/2023] Open
Abstract
α-smooth muscle actin (α-SMA) and tenascin-C are stress-induced phenotypic features of myofibroblasts. The expression levels of these two proteins closely correlate with the extracellular mechanical microenvironment. We investigated how the expression of α-SMA and tenascin-C was altered in the periodontal ligament (PDL) under orthodontic loading to indirectly reveal the intrinsic mechanical microenvironment in the PDL. In this study, we demonstrated the synergistic effects of transforming growth factor-β1 (TGF-β1) and mechanical tensile or compressive stress on myofibroblast differentiation from human periodontal ligament cells (hPDLCs). The hPDLCs under higher tensile or compressive stress significantly increased their levels of α-SMA and tenascin-C compared with those under lower tensile or compressive stress. A similar trend was observed in the tension and compression areas of the PDL under continuous light or heavy orthodontic load in rats. During the time-course analysis of expression, we observed that an increase in α-SMA levels was matched by an increase in tenascin-C levels in the PDL under orthodontic load in vivo. The time-dependent variation of α-SMA and tenascin-C expression in the PDL may indicate the time-dependent variation of intrinsic stress under constant extrinsic loading.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L-Bruno Ruest
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University, Dallas, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University, Dallas, USA
| | - Yong-Wen Guo
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Tian
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Jing
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yao He
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiang-Long Han
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University, Dallas, USA
| |
Collapse
|
8
|
Kasprzycka M, Hammarström C, Haraldsen G. Tenascins in fibrotic disorders-from bench to bedside. Cell Adh Migr 2015; 9:83-9. [PMID: 25793575 DOI: 10.4161/19336918.2014.994901] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although fibrosis is becoming increasingly recognized as a major cause of morbidity and mortality in chronic inflammatory diseases, available treatment strategies are limited. Tenascins constitute a family of matricellular proteins, primarily modulating interactions of cells with other matrix components and growth factors. Data obtained from tenascin C deficient mice show important roles of this molecule in several models of fibrosis. Moreover there is growing evidence that tenascin C has a strong impact on chronic inflammation, myofibroblast differentiation and recruitment. Tenascin C as well as tenascin X has furthermore been shown to affect TGF-β activation and signaling. Taken together these data suggest that these proteins might be important factors in fibrosis development and make them attractive both as biological markers and as targets for therapeutical intervention. So far most clinical research in fibrosis has been focused on tenascin C. This review aims at summarizing our up-to-date knowledge on the involvement of tenascin C in the pathogenesis of fibrotic disorders.
Collapse
|
9
|
Carbon Monoxide Inhibits Tenascin-C Mediated Inflammation via IL-10 Expression in a Septic Mouse Model. Mediators Inflamm 2015; 2015:613249. [PMID: 26557739 PMCID: PMC4617695 DOI: 10.1155/2015/613249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/07/2023] Open
Abstract
Tenascin-C (TN-C), an extracellular matrix (ECM) glycoprotein, is specifically induced upon tissue injury and infection and during septic conditions. Carbon monoxide (CO) gas is known to exert various anti-inflammatory effects in various inflammatory diseases. However, the mechanisms underlying the effect of CO on TN-C-mediated inflammation are unknown. In the present study, we found that treatment with LPS significantly enhanced TN-C expression in macrophages. CO gas, or treatment with the CO-donor compound, CORM-2, dramatically reduced LPS-induced expression of TN-C and proinflammatory cytokines while significantly increased the expression of IL-10. Treatment with TN-C siRNA significantly suppressed the effects of LPS on proinflammatory cytokines production. TN-C siRNA did not affect the CORM-2-dependent increase of IL-10 expression. In cells transfected with IL-10 siRNA, CORM-2 had no effect on the LPS-induced expression of TN-C and its downstream cytokines. These data suggest that IL-10 mediates the inhibitory effect of CO on TN-C and the downstream production of proinflammatory cytokines. Additionally, administration of CORM-2 dramatically reduced LPS-induced TN-C and proinflammatory cytokines production while expression of IL-10 was significantly increased. In conclusion, CO regulated IL-10 expression and thus inhibited TN-C-mediated inflammation in vitro and in vivo.
Collapse
|
10
|
Achkar JM, Cortes L, Croteau P, Yanofsky C, Mentinova M, Rajotte I, Schirm M, Zhou Y, Junqueira-Kipnis AP, Kasprowicz VO, Larsen M, Allard R, Hunter J, Paramithiotis E. Host Protein Biomarkers Identify Active Tuberculosis in HIV Uninfected and Co-infected Individuals. EBioMedicine 2015; 2:1160-8. [PMID: 26501113 PMCID: PMC4588417 DOI: 10.1016/j.ebiom.2015.07.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 01/28/2023] Open
Abstract
Biomarkers for active tuberculosis (TB) are urgently needed to improve rapid TB diagnosis. The objective of this study was to identify serum protein expression changes associated with TB but not latent Mycobacterium tuberculosis infection (LTBI), uninfected states, or respiratory diseases other than TB (ORD). Serum samples from 209 HIV uninfected (HIV−) and co-infected (HIV+) individuals were studied. In the discovery phase samples were analyzed via liquid chromatography and mass spectrometry, and in the verification phase biologically independent samples were analyzed via a multiplex multiple reaction monitoring mass spectrometry (MRM-MS) assay. Compared to LTBI and ORD, host proteins were significantly differentially expressed in TB, and involved in the immune response, tissue repair, and lipid metabolism. Biomarker panels whose composition differed according to HIV status, and consisted of 8 host proteins in HIV− individuals (CD14, SEPP1, SELL, TNXB, LUM, PEPD, QSOX1, COMP, APOC1), or 10 host proteins in HIV+ individuals (CD14, SEPP1, PGLYRP2, PFN1, VASN, CPN2, TAGLN2, IGFBP6), respectively, distinguished TB from ORD with excellent accuracy (AUC = 0.96 for HIV− TB, 0.95 for HIV+ TB). These results warrant validation in larger studies but provide promise that host protein biomarkers could be the basis for a rapid, blood-based test for TB. Active tuberculosis leads to the differential expression of serum proteins involved in associated host processes. Serum protein expression changes in tuberculosis involve the immune response, tissue repair, and lipid metabolism. Panels of 8–10 host proteins can distinguish active tuberculosis from latent infection, and other respiratory diseases.
Accurate biomarkers for active tuberculosis (TB) are urgently needed to improve rapid diagnosis. Current diagnostics for TB rely on microbiologic or molecular confirmation of M. tuberculosis, and are therefore dependent on a specimen from the site of disease which is not always accessible. This study demonstrates that human host proteins are differentially expressed in TB compared to latent M. tuberculosis infection, or respiratory diseases other than TB. Our data thus provide promise that host proteins have the potential to become the basis of rapid blood tests that do not require a sample from the site of disease.
Collapse
Affiliation(s)
- Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA ; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Laetitia Cortes
- Caprion Proteomics Inc., 201 President-Kennedy Ave., Montreal H2X 3Y7, Quebec, Canada
| | - Pascal Croteau
- Caprion Proteomics Inc., 201 President-Kennedy Ave., Montreal H2X 3Y7, Quebec, Canada
| | - Corey Yanofsky
- Caprion Proteomics Inc., 201 President-Kennedy Ave., Montreal H2X 3Y7, Quebec, Canada
| | - Marija Mentinova
- Caprion Proteomics Inc., 201 President-Kennedy Ave., Montreal H2X 3Y7, Quebec, Canada
| | - Isabelle Rajotte
- Caprion Proteomics Inc., 201 President-Kennedy Ave., Montreal H2X 3Y7, Quebec, Canada
| | - Michael Schirm
- Caprion Proteomics Inc., 201 President-Kennedy Ave., Montreal H2X 3Y7, Quebec, Canada
| | - Yiyong Zhou
- Caprion Proteomics Inc., 201 President-Kennedy Ave., Montreal H2X 3Y7, Quebec, Canada
| | - Ana Paula Junqueira-Kipnis
- Department of Microbiology, Immunology, Parasitology and Pathology, Public Health and Tropical Medicine Institute, Federal University of Goias, Rua 235 esq. Primeira avenida, Goiania, Goias, 74605-050, Brazil
| | - Victoria O Kasprowicz
- KwaZulu-Natal Research Institute for TB HIV (K-RITH), KwaZulu-Natal, Durban, South Africa ; The Ragon Institute of MGH, MIT and Harvard, Charlestown, Boston, USA ; HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Michelle Larsen
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - René Allard
- Caprion Proteomics Inc., 201 President-Kennedy Ave., Montreal H2X 3Y7, Quebec, Canada
| | - Joanna Hunter
- Caprion Proteomics Inc., 201 President-Kennedy Ave., Montreal H2X 3Y7, Quebec, Canada
| | | |
Collapse
|
11
|
Magnusson MK, Strid H, Isaksson S, Bajor A, Lasson A, Ung KA, Öhman L. Response to infliximab therapy in ulcerative colitis is associated with decreased monocyte activation, reduced CCL2 expression and downregulation of Tenascin C. J Crohns Colitis 2015; 9:56-65. [PMID: 25518051 DOI: 10.1093/ecco-jcc/jju008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The cellular mechanisms leading to infliximab therapy response in patients with ulcerative colitis (UC) are incompletely known. We therefore investigated early effects of infliximab therapy on monocytes and associated chemokines linked to clinical therapy response in UC patients. METHODS Blood and biopsies were obtained from anti-TNF therapy-naïve UC patients (n = 43) before (baseline) and during induction therapy with infliximab. Therapy response was evaluated at Week 14. Expression of monocyte activation markers and levels of chemokines in serum and biopsies were determined. Quantitative proteomic analysis was performed in cultured mucosal biopsies, and obtained data was validated in serum. RESULTS In therapy responders, but not in non-responders, infliximab reduced blood monocyte expression of CD14 and CD86, 2 weeks after therapy commenced, relative to baseline. Serum CCL2 levels were decreased only among therapy responders at Week 2 and Week 14, relative to baseline. These data corresponded with lower levels of CD14, CD86 and CCL2 in intestinal tissue in responders as compared with non-responders at Week 14. Proteomic analysis of cultured biopsies showed that infliximab induced a reduction in Tenascin C that predicted downregulation of CCL2. Therapy responders, but not non-responders, had decreased serum Tenascin C levels at Week 2 and Week 14, relative to baseline. CONCLUSIONS Infliximab therapy response in UC patients is associated with reduced monocyte activation and serum levels of CCL2 2 weeks after therapy commencement. In therapy responders, infliximab influenced Tenascin C, which might be a regulator of CCL2 expression and important for induction of the clinical therapy response.
Collapse
Affiliation(s)
- Maria K Magnusson
- University of Gothenburg, Institute for Biomedicine, Sahlgrenska Academy, Department of Microbiology and Immunology, Gothenburg, Sweden University of Gothenburg, Institute for Medicine, Sahlgrenska Academy, Department of Internal Medicine and Clinical Nutrition, Gothenburg, Sweden
| | - Hans Strid
- University of Gothenburg, Institute for Medicine, Sahlgrenska Academy, Department of Internal Medicine and Clinical Nutrition, Gothenburg, Sweden
| | - Stefan Isaksson
- University of Gothenburg, Institute for Biomedicine, Sahlgrenska Academy, Department of Microbiology and Immunology, Gothenburg, Sweden University of Gothenburg, Institute for Medicine, Sahlgrenska Academy, Department of Internal Medicine and Clinical Nutrition, Gothenburg, Sweden
| | - Antal Bajor
- University of Gothenburg, Institute for Medicine, Sahlgrenska Academy, Department of Internal Medicine and Clinical Nutrition, Gothenburg, Sweden
| | - Anders Lasson
- University of Gothenburg, Institute for Medicine, Sahlgrenska Academy, Department of Internal Medicine and Clinical Nutrition, Gothenburg, Sweden Södra Älvsborg Hospital, Department of Internal Medicine, Borås, Sweden
| | - Kjell-Arne Ung
- Department of Internal Medicine, Skaraborgs Hospital Skovde, Sweden
| | - Lena Öhman
- University of Gothenburg, Institute for Biomedicine, Sahlgrenska Academy, Department of Microbiology and Immunology, Gothenburg, Sweden University of Gothenburg, Institute for Medicine, Sahlgrenska Academy, Department of Internal Medicine and Clinical Nutrition, Gothenburg, Sweden
| |
Collapse
|
12
|
Clancy P, Lincz LF, Maguire J, McEvoy M, Koblar SA, Golledge J. Tenascin-C is increased in atherothrombotic stroke patients and has an anti-inflammatory effect in the human carotid artery. Biofactors 2014; 40:448-57. [PMID: 24823872 DOI: 10.1002/biof.1170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/14/2014] [Accepted: 05/01/2014] [Indexed: 12/14/2022]
Abstract
Tenascin-C (Tn-C) is an endogenous ligand of toll-like receptor-4 (TLR-4); a key signalling molecule associated with chronic inflammatory conditions. Both Tn-C and TLR-4 are increased in unstable human atheroma, but their effects on local inflammatory conditions have not been investigated. The aim of the present study was to investigate the association and functional implications of Tn-C/TLR-4 signalling in large artery atherosclerotic stroke. Plasma Tn-C was measured by ELISA and found to be higher in recent stroke patients (n = 336; median 12.77 µg/mL, inter-quartile range 10.23-15.74 µg/mL) than in controls (n = 321; median 11.31 µg/mL, inter-quartile range 8.89-13.90 µg/mL), P < 0.001. Plasma Tn-C was also independently positively associated with stroke (odds ratio for highest Tn-C quartile 2.27, 95% confidence interval 1.37-3.76). Assessment of Tn-C associated chronic cytokine secretion was performed in vitro using paired, human, macroscopically disease matched, carotid atheroma tissue biopsies obtained from five patients undergoing carotid endarterectomy. A 4-day incubation with specific Tn-C blocking antibodies (Abs) increased secretion of TLR-4-associated cytokines, interleukin (IL)-8, IL-1β, tumour necrosis factor and C-C motif chemokine (CCL)3 and expression of TLR-4 in the tissue. These results suggest with Tn-C blockade another endogenous TLR-4 ligand upregulates TLR-4 expression and subsequent cytokine secretion. Titration of the Tn-C Abs also dose dependently increased secretion of IL-6, IL-8, IL-1β, and CCL3 in mixed, healthy, primary vascular cell culture. In summary, circulating concentrations of Tn-C are higher in patients with a recent history of atherosclerotic stroke and may play an anti-inflammatory role by reducing pro-inflammatory cytokine release from atheroma.
Collapse
Affiliation(s)
- Paula Clancy
- Health practitioners And Researchers Together-Blood, Endothelium And Tissue (HART-BEAT), Australian Institute for Tropical Health and Medicine, School of Veterinary and Biomedical Sciences, James Cook University, Townsville, QLD, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Xu H, Han X, Meng Y, Gao L, Guo Y, Jing Y, Bai D. Favorable effect of myofibroblasts on collagen synthesis and osteocalcin production in the periodontal ligament. Am J Orthod Dentofacial Orthop 2014; 145:469-79. [PMID: 24703285 DOI: 10.1016/j.ajodo.2013.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 12/01/2013] [Accepted: 12/01/2013] [Indexed: 02/05/2023]
Abstract
INTRODUCTION In this study, we aimed to explore the expressions of α-smooth muscle actin, collagen type I, collagen type III, and osteocalcin in the periodontal ligament (PDL) under orthodontic loading, and to investigate the effect of myofibroblasts on collagen synthesis and osteocalcin production. METHODS The teeth in the right maxillae of the rats were orthodontically loaded while the contralateral teeth remained unloaded as controls. The total 30 rats were divided into 5 groups, with each group corresponding to a treatment duration (0, 3, 5, 7, or 14 days, respectively). The expressions of α-smooth muscle actin, collagen type I, collagen type III, and osteocalcin in the tension area of the PDL over time were analyzed by immunochemistry staining. For the in-vitro study, the expressions of α-smooth muscle actin, collagen type I, collagen type III, and osteocalcin in the myofibroblasts and human osteoblast-like cells (MG63) coculture and PDL cells-MG63 coculture systems were examined by Western blot and real-time polymerase chain reaction. RESULTS Enhanced expression of α-smooth muscle actin, collagen type I, collagen type III, and osteocalcin in the tension area of the PDL under orthodontic loading were observed in vivo, and increased expressions of α-smooth muscle actin, collagen type I, collagen type III, and osteocalcin in the myofibroblasts-MG63 coculture system were observed compared with the controls. CONCLUSIONS Expressions of α-smooth muscle actin, collagen type I, collagen type III, and osteocalcin are up-regulated in the PDL under orthodontic tensile loading. Myofibroblasts have a more positive effect on collagen synthesis and osteocalcin expression than do PDL cells.
Collapse
Affiliation(s)
- Hui Xu
- PhD candidate, State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianglong Han
- Lecturer, State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yao Meng
- Associate professor, Department of Orthodontics, Shenzhen Children's Hospital, Shenzhen, China
| | - Lei Gao
- Postgraduate student, State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongwen Guo
- PhD candidate, State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Jing
- PhD candidate, State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding Bai
- Professor and chair, State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Avasarala S, Zhang F, Liu G, Wang R, London SD, London L. Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome. PLoS One 2013; 8:e57285. [PMID: 23437361 PMCID: PMC3577717 DOI: 10.1371/journal.pone.0057285] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/21/2013] [Indexed: 01/02/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a clinical syndrome characterized by diffuse alveolar damage usually secondary to an intense host inflammatory response of the lung to a pulmonary or extrapulmonary infectious or non-infectious insult often leading to the development of intra-alveolar and interstitial fibrosis. Curcumin, the principal curcumoid of the popular Indian spice turmeric, has been demonstrated as an anti-oxidant and anti-inflammatory agent in a broad spectrum of diseases. Using our well-established model of reovirus 1/L-induced acute viral pneumonia, which displays many of the characteristics of the human ALI/ARDS, we evaluated the anti-inflammatory and anti-fibrotic effects of curcumin. Female CBA/J mice were treated with curcumin (50 mg/kg) 5 days prior to intranasal inoculation with 10(7)pfu reovirus 1/L and daily, thereafter. Mice were evaluated for key features associated with ALI/ARDS. Administration of curcumin significantly modulated inflammation and fibrosis, as revealed by histological and biochemical analysis. The expression of IL-6, IL-10, IFNγ, and MCP-1, key chemokines/cytokines implicated in the development of ALI/ARDS, from both the inflammatory infiltrate and whole lung tissue were modulated by curcumin potentially through a reduction in the phosphorylated form of NFκB p65. While the expression of TGFß1 was not modulated by curcumin, TGFß Receptor II, which is required for TGFß signaling, was significantly reduced. In addition, curcumin also significantly inhibited the expression of α-smooth muscle actin and Tenascin-C, key markers of myofibroblast activation. This data strongly supports a role for curcumin in modulating the pathogenesis of viral-induced ALI/ARDS in a pre-clinical model potentially manifested through the alteration of inflammation and myofibroblast differentiation.
Collapse
Affiliation(s)
- Sreedevi Avasarala
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Fangfang Zhang
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Guangliang Liu
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Ruixue Wang
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Steven D. London
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Lucille London
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Jakovcevski I, Miljkovic D, Schachner M, Andjus PR. Tenascins and inflammation in disorders of the nervous system. Amino Acids 2012; 44:1115-27. [DOI: 10.1007/s00726-012-1446-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
|
16
|
Piccinini AM, Midwood KS. Endogenous control of immunity against infection: tenascin-C regulates TLR4-mediated inflammation via microRNA-155. Cell Rep 2012; 2:914-26. [PMID: 23084751 PMCID: PMC3607221 DOI: 10.1016/j.celrep.2012.09.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/30/2012] [Accepted: 09/07/2012] [Indexed: 01/08/2023] Open
Abstract
Endogenous molecules generated upon pathogen invasion or tissue damage serve as danger signals that activate host defense; however, their precise immunological role remains unclear. Tenascin-C is an extracellular matrix glycoprotein that is specifically induced upon injury and infection. Here, we show that its expression is required to generate an effective immune response to bacterial lipopolysaccharide (LPS) during experimental sepsis in vivo. Tenascin-C enables macrophage translation of proinflammatory cytokines upon LPS activation of toll-like receptor 4 (TLR4) and suppresses the synthesis of anti-inflammatory cytokines. It mediates posttranscriptional control of a specific subset of inflammatory mediators via induction of the microRNA miR-155. Thus, tenascin-C plays a key role in regulating the inflammatory axis during pathogenic activation of TLR signaling.
Collapse
Affiliation(s)
- Anna M Piccinini
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University, 65 Aspenlea Road, London W6 8LH, UK
| | | |
Collapse
|
17
|
Pfau JC, Li S, Holland S, Sentissi JJ. Alteration of fibroblast phenotype by asbestos-induced autoantibodies. J Immunotoxicol 2011; 8:159-69. [PMID: 21457077 PMCID: PMC3201780 DOI: 10.3109/1547691x.2011.562257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is a relentlessly progressive disease for which the etiology can be idiopathic or associated with environmental or occupational exposures. There is not a clear explanation for the chronic and progressive nature of the disease, leaving treatment and prevention options limited. However, there is increasing evidence of an autoimmune component, since fibrotic diseases are often accompanied by production of autoantibodies. Because exposure to silicates such as silica and asbestos can lead to both autoantibodies and pulmonary/pleural fibrosis, these exposures provide an excellent tool for examining the relationship between these outcomes. This study explored the possibility that autoantibodies induced by asbestos exposure in mice would affect fibroblast phenotype. L929 fibroblasts and primary lung fibroblasts were treated with serum IgG from asbestos- or saline-treated mice, and tested for binding using cell-based ELISA, and for phenotypic changes using immunofluorescence, laser scanning cytometry and Sirius Red collagen assay. Autoantibodies in the serum of C57Bl/6 mice exposed to asbestos (but not sera from untreated mice) bound to mouse fibroblasts. The autoantibodies induced differentiation to a myofibroblast phenotype, as demonstrated by increased expression of smooth muscle α-actin (SMA), which was lost when the serum was cleared of IgG. Cells treated with purified IgG of exposed mice produced excess collagen. Using ELISA, we tested serum antibody binding to DNA topoisomerase (Topo) I, vimentin, TGFβ-R, and PDGF-Rα. Antibodies to DNA Topo I and to PDGF-Rα were detected, both of which have been shown by others to be able to affect fibroblast phenotype. The anti-fibroblast antibodies (AFA) also induced STAT-1 activation, implicating the PDGF-R pathway as part of the response to AFA binding. These data support the hypothesis that asbestos induces AFA that modify fibroblast phenotype, and suggest a mechanism whereby autoantibodies may mediate some of the fibrotic manifestations of asbestos exposure.
Collapse
Affiliation(s)
- Jean C Pfau
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA.
| | | | | | | |
Collapse
|
18
|
Tenascin-C in chronic sclerosing sialadenitis. Head Neck Pathol 2011; 5:221-5. [PMID: 21559807 PMCID: PMC3173529 DOI: 10.1007/s12105-011-0265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
Tenascin-C is an extracellular matrix glycoprotein that has been implicated in the development of fibrosis in certain chronic inflammatory/sclerosing conditions. This study was undertaken to expand our understanding of the processes involved in fibrosis that occurs in chronic sclerosing sialadenitis (CSS) by investigating the distribution of tenascin-C. Fifteen specimens of CSS with varying degrees of fibrosis and five normal submandibular glands were retrospectively examined immunohistochemically for the distribution of TNC. Linear deposition of TNC was found around collecting ducts in normal glands and around collecting ducts without surrounding fibrotic tissue in CSS; percentage incidences were not statistically different. In contrast, broader, band-like deposition of TNC was found in the fibrous tissue around collecting ducts in CSS with widespread degree of fibrosis compared to little or no fibrosis; the percentage incidence was statistically different. In addition, deposition of TNC was found around duct-like structures and extremely atrophic acini but, interestingly, however, was not found in fibrotic interlobular septa. The results of this investigation suggest that TNC is likely involved in the fibrosis that occurs around collecting ducts in CSS.
Collapse
|
19
|
Mane DR, Kale AD, Naik VV. Immunohistochemical expression of Tenascin in embryogenesis, tumorigenesis and inflammatory oral mucosa. Arch Oral Biol 2011; 56:655-63. [PMID: 21208610 DOI: 10.1016/j.archoralbio.2010.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 11/22/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Tenascin is a large extracellular matrix glycoprotein that plays specific role in cell matrix interaction. This protein is mainly attracted because of its oncofetal predominance expression at epithelial-mesenchymal interaction and also been associated with inflammatory response. Thus the aim was to study the expression of Tenascin within the oral cavity in a developing tooth, normal oral mucosa, squamous cell carcinoma and inflammatory mucosa and further to compare its expression in inflammatory mucosa with that of squamous cell carcinoma. DESIGN A total numbers of 92 cases were included, with 22 being all morphological stages of developing tooth, 10 cases of normal oral mucosa, 30 cases each of inflammatory gingival hyperplasia and oral squamous cell carcinoma. The intensity and pattern of expression was assessed immunohistochemically using anti-human mouse monoclonal Tenascin antibody. RESULTS AND CONCLUSION Tenascin expression in developing tooth was seen mainly at epithelial-mesenchymal junctions, but temporally reduced at cap stage. In normal mucosa TN expression was restricted only at basement membrane zone. Inflammatory gingival hyperplasia intensity of expression was enhanced at the juxtraepithelial stroma and showed reticular pattern of expression. In oral squamous cell carcinoma, intensity of expression was seen in superficial front of the stroma and also around tumour islands with intraepithelial expression and predominantly showed fibrillar pattern of expression. Furthermore, Tenascin expression was noticed around neovascularization. Hence, there is a regulatory system in Tenascin expression and plays a vital role in embryogenesis, tumerogenesis and inflammation in remodelling the stroma for cell migration and also for healing.
Collapse
Affiliation(s)
- Deepa R Mane
- Department of Oral Pathology and Microbiology, KLE VK Institute of Dental Sciences and Hospital, Nehru Nagar, Belgaum 590010, Karnataka, India.
| | | | | |
Collapse
|
20
|
DAMPening inflammation by modulating TLR signalling. Mediators Inflamm 2010; 2010. [PMID: 20706656 PMCID: PMC2913853 DOI: 10.1155/2010/672395] [Citation(s) in RCA: 667] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 04/20/2010] [Indexed: 12/12/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) include endogenous intracellular molecules released by activated or necrotic cells and extracellular matrix (ECM) molecules that are upregulated upon injury or degraded following tissue damage. DAMPs are vital danger signals that alert our immune system to tissue damage upon both infectious and sterile insult. DAMP activation of Toll-like receptors (TLRs) induces inflammatory gene expression to mediate tissue repair. However, DAMPs have also been implicated in diseases where excessive inflammation plays a key role in pathogenesis, including rheumatoid arthritis (RA), cancer, and atherosclerosis. TLR activation by DAMPs may initiate positive feedback loops where increasing tissue damage perpetuates pro-inflammatory responses leading to chronic inflammation. Here we explore the current knowledge about distinct signalling cascades resulting from self TLR activation. We also discuss the involvement of endogenous TLR activators in disease and highlight how specifically targeting DAMPs may yield therapies that do not globally suppress the immune system.
Collapse
|
21
|
Hickey MM, Richardson T, Wang T, Mosqueira M, Arguiri E, Yu H, Yu QC, Solomides CC, Morrisey EE, Khurana TS, Christofidou-Solomidou M, Simon MC. The von Hippel-Lindau Chuvash mutation promotes pulmonary hypertension and fibrosis in mice. J Clin Invest 2010; 120:827-39. [PMID: 20197624 DOI: 10.1172/jci36362] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 12/14/2009] [Indexed: 12/22/2022] Open
Abstract
Mutation of the von Hippel-Lindau (VHL) tumor suppressor protein at codon 200 (R200W) is associated with a disease known as Chuvash polycythemia. In addition to polycythemia, Chuvash patients have pulmonary hypertension and increased respiratory rates, although the pathophysiological basis of these symptoms is unclear. Here we sought to address this issue by studying mice homozygous for the R200W Vhl mutation (VhlR/R mice) as a model for Chuvash disease. These mice developed pulmonary hypertension independently of polycythemia and enhanced normoxic respiration similar to Chuvash patients, further validating VhlR/R mice as a model for Chuvash disease. Lungs from VhlR/R mice exhibited pulmonary vascular remodeling, hemorrhage, edema, and macrophage infiltration, and lungs from older mice also exhibited fibrosis. HIF-2alpha activity was increased in lungs from VhlR/R mice, and heterozygosity for Hif2a, but not Hif1a, genetically suppressed both the polycythemia and pulmonary hypertension in the VhlR/R mice. Furthermore, Hif2a heterozygosity resulted in partial protection against vascular remodeling, hemorrhage, and edema, but not inflammation, in VhlR/R lungs, suggesting a selective role for HIF-2alpha in the pulmonary pathology and thereby providing insight into the mechanisms underlying pulmonary hypertension. These findings strongly support a dependency of the Chuvash phenotype on HIF-2alpha and suggest potential treatments for Chuvash patients.
Collapse
Affiliation(s)
- Michele M Hickey
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer.
Collapse
|
23
|
Midwood KS, Orend G. The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal 2009; 3:287-310. [PMID: 19838819 PMCID: PMC2778592 DOI: 10.1007/s12079-009-0075-1] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 09/30/2009] [Indexed: 01/14/2023] Open
Abstract
The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer.
Collapse
Affiliation(s)
- Kim S. Midwood
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, 65 Aspenlea Road, Hammersmith, London, W6 8LH UK
| | - Gertraud Orend
- Inserm U682, Strasbourg, 67200 France
- University of Strasbourg, UMR-S682, Strasbourg, 67081 France
- Department of Molecular Biology, CHRU Strasbourg, Strasbourg, 67200 France
| |
Collapse
|
24
|
Brellier F, Tucker RP, Chiquet-Ehrismann R. Tenascins and their implications in diseases and tissue mechanics. Scand J Med Sci Sports 2009. [DOI: 10.1111/j.1600-0838.2009.00916.x doi:dx.doi.org] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Brellier F, Tucker RP, Chiquet-Ehrismann R. Tenascins and their implications in diseases and tissue mechanics. Scand J Med Sci Sports 2009; 19:511-9. [PMID: 19422658 DOI: 10.1111/j.1600-0838.2009.00916.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tenascins are glycoproteins found in the extracellular matrix (ECM) of many tissues. Their role is not only to support the tissue structurally but also to regulate the fate of the different cell types populating the ECM. For instance, tenascins are required when active tissue modeling during embryogenesis or re-modeling after injury occurs. Interestingly, the four members of the tenascin family, tenascin-C, -X, -R and -W, show different and often mutually exclusive expression patterns. As a consequence, these structurally related proteins display distinct functions and are associated with distinct pathologies. The present review aims at presenting the four members of the tenascin family with respect to their structure, expression patterns and implications in diseases and tissue mechanics.
Collapse
Affiliation(s)
- F Brellier
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | | | | |
Collapse
|
26
|
Epithelial tenascin predicts obliterative airway disease. J Heart Lung Transplant 2008; 27:400-7. [PMID: 18374876 DOI: 10.1016/j.healun.2008.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 11/27/2007] [Accepted: 01/02/2008] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Epithelial cell injury, inflammation, fibrosis and airway obliteration result in remodeling of terminal bronchi in post-transplant obliterative bronchiolitis. Tenascin as an extracellular matrix glycoprotein is expressed in several remodeling processes. METHODS Heterotopic bronchial allografts of pigs were studied to assess tenascin expression during development of post-transplant obliterative bronchiolitis. A total of 157 allografts or autograft controls were serially obtained 2 to 28 days after transplantation and processed for histology and immunocytochemistry for tenascin, CD4, CD8 and macrophages. Epithelial tenascin index was calculated by multiplying the percentage of positive cells by the grade of tenascin intensity (1 to 3). RESULTS Epithelial tenascin expression occurred during the initial ischemic damage to the respiratory epithelium. After partial recovery and before total epithelial loss and subsequent airway obliteration, tenascin expression peaked in allografts (p < 0.001). Epithelial tenascin index on Day 7 was predictive of subsequent epithelial damage, bronchial wall inflammation and the number of (CD4(+) and CD8(+)) cells, fibroproliferation, and obliteration of the bronchial lumen (R > or = 0.47, p < or = 0.01). Tenascin expression in the bronchial wall was more intense in allografts (p < 0.001), paralleling proliferation of fibroblasts and influx of inflammatory cells, and was predictive of inflammatory alterations also in the early obliterative lesions (R > or = 0.45, p < 0.05). Expression decreased during maturation of fibrosis (p < 0.05). CONCLUSIONS Epithelial tenascin was predictive of features observed in post-transplant obliterative bronchiolitis, demonstrating a role for tenascin in the development of obliterative bronchiolitis. Tenascin may have relevant properties in serving as a clinical marker for early obliterative bronchiolitis.
Collapse
|
27
|
Thompson HGR, Mih JD, Krasieva TB, Tromberg BJ, George SC. Epithelial-derived TGF-beta2 modulates basal and wound-healing subepithelial matrix homeostasis. Am J Physiol Lung Cell Mol Physiol 2006; 291:L1277-85. [PMID: 16891397 DOI: 10.1152/ajplung.00057.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The epithelium influences the mesenchyme during dynamic processes such as embryogenesis, wound healing, fibrosis, and carcinogenesis. Since transforming growth factor-beta (TGF-beta) modulates these processes, we hypothesized that epithelial-derived TGF-beta also plays a critical role in maintaining the extracellular matrix at basal conditions. We utilized an in vitro model of the epithelial-mesenchymal trophic unit in the human airways to determine the role of epithelial-derived TGF-beta in modulating the extracellular matrix under basal and wound-healing conditions. When differentiated at an air-liquid interface, the human bronchial epithelium produces active TGF-beta2 at a concentration of 50-70 pg/ml, whereas TGF-beta1 is undetectable. TGF-beta2 increases two- to threefold following scrape injury in a dose-dependent fashion and significantly enhances both alpha-smooth muscle actin expression in the underlying collagen-embedded fibroblasts and secretion of tenascin-C into the matrix. Multiphoton microscopy demonstrates substantially enhanced second harmonic generation from fibrillar collagen in the matrix. Pretreatment of the matrix with either sirolimus (2.5 nM) or paclitaxel (10 nM) abolishes the increases in both TGF-beta2 and second harmonic generation in response to epithelial injury. In the absence of the epithelium, exogenous active TGF-beta2 (0-400 pg/ml) produces a biphasic response in the second harmonic signal with a minimum occurring at the epithelial-derived basal level. We conclude that epithelial-derived TGF-beta2 is secreted in response to injury, significantly alters the bulk optical properties of the extracellular matrix, and its tight regulation may be required for normal collagen homeostasis.
Collapse
Affiliation(s)
- H Garrett R Thompson
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697-2715, USA
| | | | | | | | | |
Collapse
|
28
|
Mohr S, Keith G, Galateau-Salle F, Icard P, Rihn BH. Cell protection, resistance and invasiveness of two malignant mesotheliomas as assessed by 10K-microarray. Biochim Biophys Acta Mol Basis Dis 2004; 1688:43-60. [PMID: 14732480 DOI: 10.1016/j.bbadis.2003.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive serosal tumor, strongly associated with former exposure to asbestos fibers and for which there is currently no effective treatment available. In human, MPM is characterized by a high local invasiveness, poor prognosis and therapeutic outcomes. In order to assess molecular changes that specify this phenotype, we performed a global gene expression profiling of human MPM. Using a 10,000-element microarray, we analyzed mRNA relative gene expression levels by comparing a mesothelioma cell line to either a pleural cell line or tumor specimens. To analyze these gene expression data, we used various bioinformatics softwares. Hierarchical clustering methods were used to group genes and samples with similar expression in an unsupervised mode. Genes of known function were further sorted by enzyme, function and pathway clusters using a supervised software (IncyteGenomics). Taken together, these data defined a molecular fingerprint of human MPM with more than 700 up- or down-regulated genes related to several traits of the malignant phenotype, specially associated with MPM invasiveness, protection and resistance to anticancer defenses. This portrait is meaningful in disease classification and management, and relevant in finding new specific markers of MPM. These molecular markers should improve the accuracy of mesothelioma diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Steve Mohr
- Département Polluants et Santé, Institut National de Recherche et de Sécurité, 30 Rue Lionnois, 54000 Vandoeuvre-les-Nancy, France
| | | | | | | | | |
Collapse
|
29
|
Abstract
The global incidence of asbestos-related lung diseases is expected to continue to rise. Although much attention is devoted to malignant diseases induced by asbestos, benign asbestos pleural diseases (pleural plaques, benign asbestos-related pleural effusion, diffuse pleural thickening, and rounded atelectasis) are common in clinical practice and often produce diagnostic difficulties. The authors describe the clinical features of benign asbestos-related pleural disease, before focusing on recent advances in radiology and on controversies surrounding the pathogenesis of asbestos-induced pleural injury. Advances in computed tomography have assisted the understanding and diagnosis of these diseases, and increasing evidence suggests radiologic appearances on computed tomography can predict impairment in pulmonary function tests. The pathogenesis of asbestos-induced pleural diseases has also been subject to extensive investigation. Asbestos fibers can provoke pleural inflammation from direct toxicity to mesothelial cells. Inhaled asbestos fibers can also elicit pleural injury indirectly via the release of growth factors and inflammatory cytokines from within the lung. Although progress has been made in the understanding of the mechanisms of asbestos pleural injury, many important questions remain unanswered. The role of genetic factors and possible environmental cofactors (eg, simian virus 40) in the pathogenesis of benign asbestos pleural diseases requires further research.
Collapse
Affiliation(s)
- Stephen J Chapman
- Osler Chest Unit, Churchill Hospital, Oxford, UK, and Department of Medicine, University of Western Australia, Perth, Australia
| | | | | | | |
Collapse
|
30
|
Kaarteenaho-Wiik R, Soini Y, Pöllänen R, Pääkkö P, Kinnula VL. Over-expression of tenascin-C in malignant pleural mesothelioma. Histopathology 2003; 42:280-91. [PMID: 12605648 DOI: 10.1046/j.1365-2559.2003.01568.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Tenascin-C is an extracellular matrix glycoprotein known to have anti-adhesive characteristics and to be expressed in various human malignant neoplasms. We hypothesized that the expression of tenascin-C would be increased in human malignant pleural mesothelioma, and its accumulation associated with the prognosis of the patients with this disease. METHODS AND RESULTS Thirty-seven cases of mesothelioma were studied by immunohistochemically using a monoclonal antibody against tenascin-C, and with a semiquantitative scoring system for tenascin-C in different areas of the tumours. In 10 selected cases tenascin-C mRNA in-situ hybridization was also analysed. Since transforming growth factor-beta (TGF-beta) is known to induce both the synthesis of tenascin-C and the growth of mesotheliomas, an immunohistochemical analysis of TGF-beta 1, -beta 2 and -beta 3 was also performed. Normal pleura (n = 7) and metastatic pleural adenocarcinomas (n = 7) were used as controls. Tenascin-C protein was expressed in every histological subtype of malignant mesothelioma, being most prominent in the fibrotic stroma of a tumour, around tumour cells and at the invasive border, whereas tenascin-C mRNA was scarce in tumour cells. The patients with less immunohistochemical expression for tenascin-C tended to live longer (P = 0.028 by Fishers' exact probability test). All mesotheliomas showed positivity for at least one isoform of TGF-beta. CONCLUSIONS In conclusion, high expression of tenascin-C protein in malignant pleural mesotheliomas may play a role in its invasive growth, and might serve as a prognostic marker of the disease.
Collapse
Affiliation(s)
- R Kaarteenaho-Wiik
- Department of Internal Medicine, University of Oulu and Oulu University Hospital, Oulu, Finland
| | | | | | | | | |
Collapse
|