1
|
Klosen P. Thirty-seven years of MT1 and MT2 melatonin receptor localization in the brain: Past and future challenges. J Pineal Res 2024; 76:e12955. [PMID: 38606787 DOI: 10.1111/jpi.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/21/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
Identifying the target cells of a hormone is a key step in understanding its function. Once the molecular nature of the receptors for a hormone has been established, researchers can use several techniques to detect these receptors. Here I will review the different tools used over the years to localize melatonin receptors and the problems associated with each of these techniques. The radioligand 2-[125I] iodomelatonin was the first tool to allow localization of melatonin receptors on tissue sections. Once the MT1 and MT2 receptors were cloned, in situ hybridization could be used to detect the messenger RNA for these receptors. The deduced amino acid sequences for MT1 and MT2 receptors allowed the production of peptide immunogens to generate antibodies against the MT1 and MT2 receptors. Finally, transgenic reporters driven by the promoter elements of the MT1 and MT2 genes have been used to map the expression of MT1 and MT2 in the brain and the retina. Several issues have complicated the localization of melatonin receptors and the characterization of melatonin target cells over the last three decades. Melatonin receptors are expressed at low levels, leading to sensitivity issues for their detection. The second problem are specificity issues with antibodies directed against the MT1 and MT2 melatonin receptors. These receptors are G protein-coupled receptors and many antibodies directed against such receptors have been shown to present similar problems concerning their specificity. Despite these specificity problems which start to be seriously addressed by recent studies, antibodies will be important tools in the future to identify and phenotype melatonin target cells. However, we will have to be more stringent than previously when establishing their specificity. The results obtained by these antibodies will have to be confronted and be coherent with results obtained by other techniques.
Collapse
Affiliation(s)
- Paul Klosen
- Regulation and Disruption of Neuroendocrine Rhythms, Institute of Cellular and Integrative Neurosciences, INCI CNRS UPR-3212, University of Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Elvira-Hurtado L, López-Cuenca I, de Hoz R, Salas M, Sánchez-Puebla L, Ramírez-Toraño F, Matamoros JA, Fernández-Albarral JA, Rojas P, Alfonsín S, Delgado-Losada ML, Ramírez AI, Salazar JJ, Maestu F, Gil P, Ramírez JM, Salobrar-García E. Alzheimer's disease: a continuum with visual involvements. Front Psychol 2023; 14:1124830. [PMID: 37484098 PMCID: PMC10359162 DOI: 10.3389/fpsyg.2023.1124830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is the most common form of dementia affecting the central nervous system, and alteration of several visual structures has been reported. Structural retinal changes are usually accompanied by changes in visual function in this disease. The aim of this study was to analyse the differences in visual function at different stages of the pathology (family history group (FH+), mild cognitive impairment (MCI), mild AD and moderate AD) in comparison with a control group of subjects with no cognitive decline and no family history of AD. Methods We included 53 controls, 13 subjects with FH+, 23 patients with MCI, 25 patients with mild AD and, 21 patients with moderate AD. All were ophthalmologically healthy. Visual acuity (VA), contrast sensitivity (CS), colour perception, visual integration, and fundus examination were performed. Results The analysis showed a statistically significant decrease in VA, CS and visual integration score between the MCI, mild AD and moderate AD groups compared to the control group. In the CS higher frequencies and in the colour perception test (total errors number), statistically significant differences were also observed in the MCI, mild AD and moderate AD groups with respect to the FH+ group and also between the control and AD groups. The FH+ group showed no statistically significant difference in visual functions compared to the control group. All the test correlated with the Mini Mental State Examination score and showed good predictive value when memory decline was present, with better values when AD was at a more advanced stage. Conclusion Alterations in visual function appear in subjects with MCI and evolve when AD is established, being stable in the initial stages of the disease (mild AD and moderate AD). Therefore, visual psychophysical tests are a useful, simple and complementary tool to neuropsychological tests to facilitate diagnosis in the preclinical and early stages of AD.
Collapse
Affiliation(s)
- Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Optics and Optometry, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| | - Mario Salas
- Memory Unit, Geriatrics Service, Hospital Clínico San Carlos, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
| | - Federico Ramírez-Toraño
- Center for Cognitive and Computational Neuroscience, Laboratory of Cognitive and Computational Neuroscience, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - José A. Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Pilar Rojas
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Madrid Eye Institute, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Soraya Alfonsín
- Center for Cognitive and Computational Neuroscience, Laboratory of Cognitive and Computational Neuroscience, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - María Luisa Delgado-Losada
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Optics and Optometry, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Optics and Optometry, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| | - Fernando Maestu
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Laboratory of Cognitive and Computational Neuroscience, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Pedro Gil
- Memory Unit, Geriatrics Service, Hospital Clínico San Carlos, Madrid, Spain
- Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Medicine, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Optics and Optometry, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Hoti G, Ferrero R, Caldera F, Trotta F, Corno M, Pantaleone S, Desoky MMH, Brunella V. A Comparison between the Molecularly Imprinted and Non-Molecularly Imprinted Cyclodextrin-Based Nanosponges for the Transdermal Delivery of Melatonin. Polymers (Basel) 2023; 15:polym15061543. [PMID: 36987322 PMCID: PMC10057034 DOI: 10.3390/polym15061543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Melatonin is a neurohormone that ameliorates many health conditions when it is administered as a drug, but its drawbacks are its oral and intravenous fast release. To overcome the limitations associated with melatonin release, cyclodextrin-based nanosponges (CD-based NSs) can be used. Under their attractive properties, CD-based NSs are well-known to provide the sustained release of the drug. Green cyclodextrin (CD)-based molecularly imprinted nanosponges (MIP-NSs) are successfully synthesized by reacting β-Cyclodextrin (β-CD) or Methyl-β Cyclodextrin (M-βCD) with citric acid as a cross-linking agent at a 1:8 molar ratio, and melatonin is introduced as a template molecule. In addition, CD-based non-molecularly imprinted nanosponges (NIP-NSs) are synthesized following the same procedure as MIP-NSs without the presence of melatonin. The resulting polymers are characterized by CHNS-O Elemental, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric (TGA), Differential Scanning Calorimetry (DSC), Zeta Potential, and High-Performance Liquid Chromatography (HPLC-UV) analyses, etc. The encapsulation efficiencies are 60-90% for MIP-NSs and 20-40% for NIP-NSs, whereas melatonin loading capacities are 1-1.5% for MIP-NSs and 4-7% for NIP-NSs. A better-controlled drug release performance (pH = 7.4) for 24 h is displayed by the in vitro release study of MIP-NSs (30-50% released melatonin) than NIP-NSs (50-70% released melatonin) due to the different associations within the polymeric structure. Furthermore, a computational study, through the static simulations in the gas phase at a Geometry Frequency Non-covalent interactions (GFN2 level), is performed to support the inclusion complex between βCD and melatonin with the automatic energy exploration performed by Conformer-Rotamer Ensemble Sampling Tool (CREST). A total of 58% of the CD/melatonin interactions are dominated by weak forces. CD-based MIP-NSs and CD-based NIP-NSs are mixed with cream formulations for enhancing and sustaining the melatonin delivery into the skin. The efficiency of cream formulations is determined by stability, spreadability, viscosity, and pH. This development of a new skin formulation, based on an imprinting approach, will be of the utmost importance in future research at improving skin permeation through transdermal delivery, associated with narrow therapeutic windows or low bioavailability of drugs with various health benefits.
Collapse
Affiliation(s)
- Gjylije Hoti
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Riccardo Ferrero
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Fabrizio Caldera
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Marta Corno
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Stefano Pantaleone
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Mohamed M H Desoky
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Valentina Brunella
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
4
|
Yu H, Wang Q, Wu W, Zeng W, Feng Y. Therapeutic Effects of Melatonin on Ocular Diseases: Knowledge Map and Perspective. Front Pharmacol 2021; 12:721869. [PMID: 34795578 PMCID: PMC8593251 DOI: 10.3389/fphar.2021.721869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023] Open
Abstract
Melatonin plays a critical role in the pathophysiological process including circadian rhythm, apoptosis, and oxidative stress. It can be synthesized in ocular tissues, and its receptors are also found in the eye, triggering more investigations concentrated on the role of melatonin in the eye. In the past decades, the protective and therapeutic potentials of melatonin for ocular diseases have been widely revealed in animal models. Herein, we construct a knowledge map of melatonin in treating ocular diseases through bibliometric analysis and review its current understanding and clinical evidence. The overall field could be divided into twelve topics through keywords co-occurrence analysis, in which the glaucoma, myopia, and retinal diseases were of greatest research interests according to the keywords burst detection. The existing clinical trials of melatonin in ocular diseases mainly focused on the glaucoma, and more research should be promoted, especially for various diseases and drug administration. We also discuss its bioavailability and further research topics including developing melatonin sensors for personalized medication, acting as stem cell therapy assistant drug, and consuming food-derived melatonin for facilitating its clinical transformation.
Collapse
Affiliation(s)
- Haozhe Yu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Qicong Wang
- Department of Chinese Medicine of Taiwan, Hong Kong and Macao, Beijing University of Chinese Medicine, Beijing, China
| | - Wenyu Wu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Weizhen Zeng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
5
|
Empowering Melatonin Therapeutics with Drosophila Models. Diseases 2021; 9:diseases9040067. [PMID: 34698120 PMCID: PMC8544433 DOI: 10.3390/diseases9040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin functions as a central regulator of cell and organismal function as well as a neurohormone involved in several processes, e.g., the regulation of the circadian rhythm, sleep, aging, oxidative response, and more. As such, it holds immense pharmacological potential. Receptor-mediated melatonin function mainly occurs through MT1 and MT2, conserved amongst mammals. Other melatonin-binding proteins exist. Non-receptor-mediated activities involve regulating the mitochondrial function and antioxidant cascade, which are frequently affected by normal aging as well as disease. Several pathologies display diseased or dysfunctional mitochondria, suggesting melatonin may be used therapeutically. Drosophila models have extensively been employed to study disease pathogenesis and discover new drugs. Here, we review the multiple functions of melatonin through the lens of functional conservation and model organism research to empower potential melatonin therapeutics to treat neurodegenerative and renal diseases.
Collapse
|
6
|
Features of Retinal Neurogenesis as a Key Factor of Age-Related Neurodegeneration: Myth or Reality? Int J Mol Sci 2021; 22:ijms22147373. [PMID: 34298993 PMCID: PMC8303671 DOI: 10.3390/ijms22147373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial neurodegenerative disease that constitutes the most common cause of irreversible blindness in the elderly in the developed countries. Incomplete knowledge about its pathogenesis prevents the search for effective methods of prevention and treatment of AMD, primarily of its "dry" type which is by far the most common (90% of all AMD cases). In the recent years, AMD has become "younger": late stages of the disease are now detected in relatively young people. It is known that AMD pathogenesis-according to the age-related structural and functional changes in the retina-is linked with inflammation, hypoxia, oxidative stress, mitochondrial dysfunction, and an impairment of neurotrophic support, but the mechanisms that trigger the conversion of normal age-related changes to the pathological process as well as the reason for early AMD development remain unclear. In the adult mammalian retina, de novo neurogenesis is very limited. Therefore, the structural and functional features that arise during its maturation and formation can exert long-term effects on further ontogenesis of this tissue. The aim of this review was to discuss possible contributions of the changes/disturbances in retinal neurogenesis to the early development of AMD.
Collapse
|
7
|
Influence of Circadian Rhythm in the Eye: Significance of Melatonin in Glaucoma. Biomolecules 2021; 11:biom11030340. [PMID: 33668357 PMCID: PMC7996162 DOI: 10.3390/biom11030340] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Circadian rhythm and the molecules involved in it, such as melanopsin and melatonin, play an important role in the eye to regulate the homeostasis and even to treat some ocular conditions. As a result, many ocular pathologies like dry eye, corneal wound healing, cataracts, myopia, retinal diseases, and glaucoma are affected by this cycle. This review will summarize the current scientific literature about the influence of circadian patterns on the eye, focusing on its relationship with increased intraocular pressure (IOP) fluctuations and glaucoma. Regarding treatments, two ways should be studied: the first one, to analyze if some treatments could improve their effect on the ocular disease when their posology is established in function of circadian patterns, and the second one, to evaluate new drugs to treat eye pathologies related to the circadian rhythm, as it has been stated with melatonin or its analogs, that not only could be used as the main treatment but as coadjutant, improving the circadian pattern or its antioxidant and antiangiogenic properties.
Collapse
|
8
|
Sheng W, Weng S, Li F, Zhang Y, He Q, Sheng W, Fu Y, Yan H, Liu K. Immunohistological Localization of Mel1a Melatonin Receptor in Pigeon Retina. Nat Sci Sleep 2021; 13:113-121. [PMID: 33574722 PMCID: PMC7872906 DOI: 10.2147/nss.s290757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Melatonin (N-acetyl-5-methoxytryptamine), a significant indoleamine neuromodulator implicated in circadian rhythms and sleep patterns, regulates diverse rhythmic functions via activating its high-affinity G-protein-coupled receptors. However, the detailed cellular expression of the Mel1a receptor in the retina is still a research gap. METHODS The expression of the Mel1a receptor in pigeon retina was assessed using Western blot analysis and immunofluorescent staining. The cellular localization of the Mel1a receptor was studied using double immunofluorescent staining and laser-scanning confocal microscopy. RESULTS Our data suggested that the Mel1a receptor was extensively expressed in the outer segment of Rho4D2-labeled rod and L/M-opsin-labeled red/green cone and in the somata of the CB-labeled horizontal cell, TH-labeled dopaminergic amacrine cell, ChAT-labeled cholinergic amacrine cell, PV-labeled AII amacrine cell, Brn3a-labeled conventional ganglion cell, melanopsin-containing ganglion cell and CRALBP-labeled Müller glial cell. In addition, the Mel1a receptor was diffusely distributed throughout the full thickness of the inner plexiform layer. However, the outer segment of S-opsin-labeled blue cone, the somata of ChX-10-labeled bipolar cell and outer plexiform layer seemed to lack immunoreactivity of the Mel1a receptor. CONCLUSION The finding that multiple types of retinal cells express the Mel1a receptor provides a new neurobiological basis for the participation of melatonin in the regulation of retinal functions through activating the Mel1a receptor.
Collapse
Affiliation(s)
- Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Fei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Wenxiang Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Ying Fu
- Shandong Science and Technology Exchange Center, Jinan, People's Republic of China
| | - Haiyue Yan
- Shandong Institute of Scientific and Technical Information, Jinan, People's Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| |
Collapse
|
9
|
Bhatwadekar AD, Rameswara V. Circadian rhythms in diabetic retinopathy: an overview of pathogenesis and investigational drugs. Expert Opin Investig Drugs 2020; 29:1431-1442. [PMID: 33107770 DOI: 10.1080/13543784.2020.1842872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Circadian rhythm is a natural endogenous process occurring roughly every 24 hours. Circadian rhythm dysfunction is involved in diabetic retinopathy (DR) pathogenesis. Interestingly, there are investigational drugs that exhibit potential in the treatment of DR by targeting circadian rhythm dysfunction. AREAS COVERED We performed a literature search in June 2020 using PubMed's Medical Subject Heading (MeSH) terms 'circadian clock,' 'circadian rhythms,' and 'diabetic retinopathy.' This article offers an overview of the physiology of the biological clock and clock regulatory genes and presents an examination of the retinal clock. It discusses the pathogenic mechanisms of DR and emphasizes how circadian rhythm dysfunction at structural, physiological, metabolic and cellular levels, plays a critical role in the development of DR. The latter part of the paper sheds light on those investigational drugs (such as melatonin, tasimelteon and metformin) which exhibit potential in the treatment of DR by the targeting of circadian rhythm dysfunction. EXPERT OPINION An enhanced understanding of circadian rhythm and its role in DR could offer therapeutic potential by targeting of circadian rhythm dysfunction.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute , Indianapolis, IN, USA
| | - Varun Rameswara
- Indiana University School of Medicine. Indiana University , Indianapolis, IN, USA
| |
Collapse
|
10
|
Kharwar RK, Singh V, Haldar C. Expression of Melatonin and Glucocorticoid
Receptor Varies along with Lung-Associated Cell-Mediated Immunity
in the Jungle Bush Quail Perdicula asiatica:
a Trade-off between Melatonin and Dexamethasone. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020040079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Kharwar RK, Singh V, Haldar C. Trade-off expression of melatonin receptor subtypes (Mel1a and Mel1b) and androgen receptor in lung of a tropical bird, Perdicula asiatica. Anat Histol Embryol 2020; 49:457-463. [PMID: 32173889 DOI: 10.1111/ahe.12548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/17/2020] [Accepted: 02/14/2020] [Indexed: 11/29/2022]
Abstract
The role of circulatory steroid hormone along with melatonin in lung of any seasonally breeding bird has never been explored so far. This could be interesting because steroid hormones are immunosuppressive while melatonin is immunostimulatory in nature. In our present study, we report the effect of exogenous melatonin and testosterone on expression of melatonin receptor subtypes (Mel1a and Mel1b ) and androgen receptor in lung of a tropical bird Perdicula asiatica. Birds were collected from vicinity of Varanasi and acclimatized in laboratory with sufficient food and water. The birds were treated with melatonin and testosterone at dose of 25 µg/100 g B.wt./day and 1 mg/100 g B.wt./day, respectively, for 28 days. At the end of the experiment, the birds were sacrificed and lung tissue and blood sample were collected for immunohistochemistry, Western blot analysis and hormonal assay. Testosterone treatment increased circulatory testosterone and upregulated expression of androgen receptors whereas downregulated expression of melatonin receptor subtypes Mel1a and Mel1b . Melatonin administration increased peripheral melatonin and upregulated expression of melatonin receptor subtypes Mel1a and Mel1b while downregulated androgen receptor. Thus, our results suggest that a trade-off relationship between melatonin and testosterone exists in regulation of their receptors in lung of Perdicula asiatica.
Collapse
Affiliation(s)
| | - Vaishali Singh
- Department of Zoology, Kutir Post Graduate College, Jaunpur, India
| | - Chandana Haldar
- Pineal Research Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
Salobrar-García E, de Hoz R, Ramírez AI, López-Cuenca I, Rojas P, Vazirani R, Amarante C, Yubero R, Gil P, Pinazo-Durán MD, Salazar JJ, Ramírez JM. Changes in visual function and retinal structure in the progression of Alzheimer's disease. PLoS One 2019; 14:e0220535. [PMID: 31415594 PMCID: PMC6695171 DOI: 10.1371/journal.pone.0220535] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/17/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Alzheimer's Disease (AD) can cause degeneration in the retina and optic nerve either directly, as a result of amyloid beta deposits, or secondarily, as a result of the degradation of the visual cortex. These effects raise the possibility that tracking ophthalmologic changes in the retina can be used to assess neurodegeneration in AD. This study aimed to detect retinal changes and associated functional changes in three groups of patients consisting of AD patients with mild disease, AD patients with moderate disease and healthy controls by using non-invasive psychophysical ophthalmological tests and optical coherence tomography (OCT). METHODS We included 39 patients with mild AD, 21 patients with moderate AD and 40 age-matched healthy controls. Both patients and controls were ophthalmologically healthy. Visual acuity, contrast sensitivity, colour perception, visual integration, and choroidal thicknesses were measured. In addition, OCT and OCT angiography (OCTA) were applied. FINDINGS Visual acuity, contrast sensitivity, colour perception, and visual integration were significantly lower in AD patients than in healthy controls. Compared to healthy controls, macular thinning in the central region was significant in the mild AD patients, while macular thickening in the central region was found in the moderate AD group. The analysis of macular layers revealed significant thinning of the retinal nerve fibre layer, the ganglion cell layer and the outer plexiform layer in AD patients relative to controls. Conversely, significant thickening was observed in the outer nuclear layer of the patients. However, mild AD was associated with significant thinning of the subfovea and the nasal and inferior sectors of the choroid. Significant superonasal and inferotemporal peripapillary thinning was observed in patients with moderate disease. CONCLUSIONS The first changes in the mild AD patients appear in the psychophysical tests and in the central macula with a decrease in the central retinal thickness. When there was a disease progression to moderate AD, psychophysical tests remained stable with respect to the decrease in mild AD, but significant thinning in the peripapillary retina and thickening in the central retina appeared. The presence of AD is best indicated based on contrast sensitivity.
Collapse
Affiliation(s)
- Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana I. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Servicio de Oftalmología, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Ravi Vazirani
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Carla Amarante
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Raquel Yubero
- Unidad de Memoria, Servicio de Geriatría, Hospital Clínico San Carlos, Madrid, Spain
| | - Pedro Gil
- Unidad de Memoria, Servicio de Geriatría, Hospital Clínico San Carlos, Madrid, Spain
| | - María D. Pinazo-Durán
- Unidad de Investigación Oftalmológica «Santiago Grisolia»/FISABIO, Valencia, Spain
- Grupo de Oftalmobiología Celular y Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, Valencia, Spain
| | - Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Shi Y, Fang YY, Wei YP, Jiang Q, Zeng P, Tang N, Lu Y, Tian Q. Melatonin in Synaptic Impairments of Alzheimer's Disease. J Alzheimers Dis 2019; 63:911-926. [PMID: 29710712 DOI: 10.3233/jad-171178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) underlies dementia for millions of people worldwide with no effective treatment. The dementia of AD is thought stem from the impairments of the synapses because of their critical roles in cognition. Melatonin is a neurohormone mainly released by the pineal gland in a circadian manner and it regulates brain functions in various manners. It is reported that both the melatonin deficit and synaptic impairments are present in the very early stage of AD and strongly contribute to the progress of AD. In the mammalian brains, the effects of melatonin are mainly relayed by two of its receptors, melatonin receptor type 1a (MT1) and 1b (MT2). To have a clear idea on the roles of melatonin in synaptic impairments of AD, this review discussed the actions of melatonin and its receptors in the stabilization of synapses, modulation of long-term potentiation, as well as their contributions in the transmissions of glutamatergic, GABAergic and dopaminergic synapses, which are the three main types of synapses relevant to the synaptic strength. The synaptic protective roles of melatonin in AD treatment were also summarized. Regarding its protective roles against amyloid-β neurotoxicity, tau hyperphosphorylation, oxygenation, inflammation as well as synaptic dysfunctions, melatonin may be an ideal therapeutic agent against AD at early stage.
Collapse
Affiliation(s)
- Yan Shi
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ping Wei
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Integrated TCM and Western Medicine Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Tang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Youming Lu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Melatonin MT1 receptor as a novel target in neuropsychopharmacology: MT1 ligands, pathophysiological and therapeutic implications, and perspectives. Pharmacol Res 2019; 144:343-356. [DOI: 10.1016/j.phrs.2019.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/06/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
|
15
|
Cecon E, Ivanova A, Luka M, Gbahou F, Friederich A, Guillaume JL, Keller P, Knoch K, Ahmad R, Delagrange P, Solimena M, Jockers R. Detection of recombinant and endogenous mouse melatonin receptors by monoclonal antibodies targeting the C-terminal domain. J Pineal Res 2019; 66:e12540. [PMID: 30475390 DOI: 10.1111/jpi.12540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/04/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
Melatonin receptors play important roles in the regulation of circadian and seasonal rhythms, sleep, retinal functions, the immune system, depression, and type 2 diabetes development. Melatonin receptors are approved drug targets for insomnia, non-24-hour sleep-wake disorders, and major depressive disorders. In mammals, two melatonin receptors (MTRs) exist, MT1 and MT2 , belonging to the G protein-coupled receptor (GPCR) superfamily. Similar to most other GPCRs, reliable antibodies recognizing melatonin receptors proved to be difficult to obtain. Here, we describe the development of the first monoclonal antibodies (mABs) for mouse MT1 and MT2 . Purified antibodies were extensively characterized for specific reactivity with mouse, rat, and human MT1 and MT2 by Western blot, immunoprecipitation, immunofluorescence, and proximity ligation assay. Several mABs were specific for either mouse MT1 or MT2 . None of the mABs cross-reacted with rat MTRs, and some were able to react with human MTRs. The specificity of the selected mABs was validated by immunofluorescence microscopy in three established locations (retina, suprachiasmatic nuclei, pituitary gland) for MTR expression in mice using MTR-KO mice as control. MT2 expression was not detected in mouse insulinoma MIN6 cells or pancreatic beta-cells. Collectively, we report the first monoclonal antibodies recognizing recombinant and native mouse melatonin receptors that will be valuable tools for future studies.
Collapse
Affiliation(s)
- Erika Cecon
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Anna Ivanova
- Molecular Diabetology, Faculty of Medicine, University Hospital, TU Dresden, Dresden, Germany
- Faculty of Medicine, Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Marine Luka
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Florence Gbahou
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Anne Friederich
- Molecular Diabetology, Faculty of Medicine, University Hospital, TU Dresden, Dresden, Germany
- Faculty of Medicine, Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Jean-Luc Guillaume
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Patrick Keller
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Klaus Knoch
- Molecular Diabetology, Faculty of Medicine, University Hospital, TU Dresden, Dresden, Germany
- Faculty of Medicine, Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
| | - Raise Ahmad
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| | - Philippe Delagrange
- Pôle d'Innovation Thérapeutique Neuropsychiatrie, Institut de Recherches Servier, Croissy, France
| | - Michele Solimena
- Molecular Diabetology, Faculty of Medicine, University Hospital, TU Dresden, Dresden, Germany
- Faculty of Medicine, Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Munich Neuherberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Ralf Jockers
- Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Sorbonne Paris Cité, Univ. Paris Descartes, Paris, France
| |
Collapse
|
16
|
Melatonin Levels in Patients With Primary Open-angle Glaucoma With High or Low Intraocular Pressure. J Glaucoma 2019; 28:154-160. [DOI: 10.1097/ijg.0000000000001130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Singh SS, Deb A, Sutradhar S. Effect of melatonin on arsenic-induced oxidative stress and expression of MT1 and MT2 receptors in the kidney of laboratory mice. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1566993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Shiv Shankar Singh
- Molecular Endocrinology Research Lab, Department of Zoology, Tripura University, Suryamaninagar, India
| | - Anindita Deb
- Molecular Endocrinology Research Lab, Department of Zoology, Tripura University, Suryamaninagar, India
| | - Sangita Sutradhar
- Molecular Endocrinology Research Lab, Department of Zoology, Tripura University, Suryamaninagar, India
| |
Collapse
|
18
|
Luo C, Yang Q, Liu Y, Zhou S, Jiang J, Reiter RJ, Bhattacharya P, Cui Y, Yang H, Ma H, Yao J, Lawler SE, Zhang X, Fu J, Rozental R, Aly H, Johnson MD, Chiocca EA, Wang X. The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radic Biol Med 2019; 130:215-233. [PMID: 30315933 DOI: 10.1016/j.freeradbiomed.2018.10.402] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/01/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a neurohormone associated with sleep and wakefulness and is mainly produced by the pineal gland. Numerous physiological functions of melatonin have been demonstrated including anti-inflammation, suppressing neoplastic growth, circadian and endocrine rhythm regulation, and its potent antioxidant activity as well as its role in regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others. In this review, we summarize the recent advances related to the multiple protective roles of melatonin receptor agonists, melatonin and N-acetylserotonin (NAS), in brain injury, liver damage, and bone health. Brain injury, including traumatic brain injury, ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, and newborn perinatal hypoxia-ischemia encephalopathy, is a major cause of mortality and disability. Liver disease causes serious public health problems and various factors including alcohol, chemical pollutants, and drugs induce hepatic damage. Osteoporosis is the most common bone disease in humans. Due in part to an aging population, both the cost of care of fracture patients and the annual fracture rate have increased steadily. Despite the discrepancy in the pathophysiological processes of these disorders, time frames and severity, they may share several common molecular mechanisms. Oxidative stress is considered to be a critical factor in these pathogeneses. We update the current state of knowledge related to the molecular processes, mainly including anti-oxidative stress, anti-apoptosis, autophagy dysfunction, and anti-inflammation as well as other properties of melatonin and NAS. Particularly, the abilities of melatonin and NAS to directly scavenge oxygen-centered radicals and toxic reactive oxygen species, and indirectly act through antioxidant enzymes are disscussed. In this review, we summarize the similarities and differences in the protection provided by melatonin and/or NAS in brain, liver and bone damage. We analyze the involvement of melatonin receptor 1A (MT1), melatonin receptor 1B (MT2), and melatonin receptor 1C (MT3) in the protection of melatonin and/or NAS. Additionally, we evaluate their potential clinical applications. The multiple mechanisms of action and multiple organ-targeted properties of melatonin and NAS may contribute to development of promising therapies for clinical trials.
Collapse
Affiliation(s)
- Chengliang Luo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei, China
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiying Jiang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University Texas Health Science Center, San Antonio, TX, USA
| | - Pallab Bhattacharya
- National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Yongchun Cui
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongwei Yang
- Department of Neurosurgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - He Ma
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiemin Yao
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Sean E Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinmu Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianfang Fu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Renato Rozental
- Lab Neuroproteção & Estratégias Regenerativas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hany Aly
- Department of Neonatology, Cleveland Clinic Children's Hospital, Cleveland, OH, USA
| | - Mark D Johnson
- Department of Neurosurgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol 2018; 175:3263-3280. [PMID: 28707298 PMCID: PMC6057902 DOI: 10.1111/bph.13950] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, an evolutionally old molecule, is produced by the pineal gland in vertebrates, and it binds with high affinity to melatonin receptors, which are members of the GPCR family. Among the multiple effects attributed to melatonin, we will focus here on those that are dependent on the activation of the two mammalian MT1 and MT2 melatonin receptors. We briefly summarize the latest developments on synthetic melatonin receptor ligands, including multi-target-directed ligands, and the characterization of signalling-biased ligands. We discuss signalling pathways activated by melatonin receptors that appear to be highly cell- and tissue-dependent, emphasizing the impact of system bias on the functional outcome. Different proteins have been demonstrated to interact with melatonin receptors, and thus, we postulate that part of this system bias has its molecular basis in differences of the expression of receptor-associated proteins including heterodimerization partners. Finally, bias at the level of the receptor, by the expression of genetic receptor variants, will be discussed to show how a modified receptor function can have an effect on the risk for common diseases like type 2 diabetes in humans. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Erika Cecon
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Atsuro Oishi
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Ralf Jockers
- Institut CochinInserm, U1016ParisFrance
- CNRS UMR 8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| |
Collapse
|
20
|
Palmitoylation as a Functional Regulator of Neurotransmitter Receptors. Neural Plast 2018; 2018:5701348. [PMID: 29849559 PMCID: PMC5903346 DOI: 10.1155/2018/5701348] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation) within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LICs). From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.
Collapse
|
21
|
Oishi A, Cecon E, Jockers R. Melatonin Receptor Signaling: Impact of Receptor Oligomerization on Receptor Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:59-77. [DOI: 10.1016/bs.ircmb.2018.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Gnaz couples the circadian and dopaminergic system to G protein-mediated signaling in mouse photoreceptors. PLoS One 2017; 12:e0187411. [PMID: 29088301 PMCID: PMC5663513 DOI: 10.1371/journal.pone.0187411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023] Open
Abstract
The mammalian retina harbors a circadian clockwork that regulates vision and promotes healthiness of retinal neurons, mainly through directing the rhythmic release of the neurohormones dopamine—acting on dopamine D4 receptors—and melatonin—acting on MT1 and MT2 receptors. The gene Gnaz—a unique Gi/o subfamily member—was seen in the present study to be expressed in photoreceptors where its protein product Gαz shows a daily rhythm in its subcellular localization. Apart from subcellular localization, Gnaz displays a daily rhythm in expression—with peak values at night—in preparations of the whole retina, microdissected photoreceptors and photoreceptor-related pinealocytes. In retina, Gnaz rhythmicity was observed to persist under constant darkness and to be abolished in retina deficient for Clock or dopamine D4 receptors. Furthermore, circadian regulation of Gnaz was disturbed in the db/db mouse, a model of diabetic retinopathy. The data of the present study suggest that Gnaz links the circadian clockwork—via dopamine acting on D4 receptors—to G protein-mediated signaling in intact but not diabetic retina.
Collapse
|
23
|
Gupta T, Sahni D, Gupta R, Gupta S. Expanding the horizons of melatonin use: An immunohistochemical neuroanatomic distribution of MT1 and MT2 receptors in human brain and retina. J ANAT SOC INDIA 2017. [DOI: 10.1016/j.jasi.2017.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Melatonin receptors: distribution in mammalian brain and their respective putative functions. Brain Struct Funct 2017; 222:2921-2939. [DOI: 10.1007/s00429-017-1439-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/28/2017] [Indexed: 12/15/2022]
|
25
|
Hou B, Fu Y, Weng C, Liu W, Zhao C, Yin ZQ. Homeostatic Plasticity Mediated by Rod-Cone Gap Junction Coupling in Retinal Degenerative Dystrophic RCS Rats. Front Cell Neurosci 2017; 11:98. [PMID: 28473754 PMCID: PMC5397418 DOI: 10.3389/fncel.2017.00098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/22/2017] [Indexed: 11/14/2022] Open
Abstract
Rod-cone gap junctions open at night to allow rod signals to pass to cones and activate the cone-bipolar pathway. This enhances the ability to detect large, dim objects at night. This electrical synaptic switch is governed by the circadian clock and represents a novel form of homeostatic plasticity that regulates retinal excitability according to network activity. We used tracer labeling and ERG recording in the retinae of control and retinal degenerative dystrophic RCS rats. We found that in the control animals, rod-cone gap junction coupling was regulated by the circadian clock via the modulation of the phosphorylation of the melatonin synthetic enzyme arylalkylamine N-acetyltransferase (AANAT). However, in dystrophic RCS rats, AANAT was constitutively phosphorylated, causing rod-cone gap junctions to remain open. A further b/a-wave ratio analysis revealed that dystrophic RCS rats had stronger synaptic strength between photoreceptors and bipolar cells, possibly because rod-cone gap junctions remained open. This was despite the fact that a decrease was observed in the amplitude of both a- and b-waves as a result of the progressive loss of rods during early degenerative stages. These results suggest that electric synaptic strength is increased during the day to allow cone signals to pass to the remaining rods and to be propagated to rod bipolar cells, thereby partially compensating for the weak visual input caused by the loss of rods.
Collapse
Affiliation(s)
- Baoke Hou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Department of Ophthalmology, Chinese PLA General HospitalBeijing, China
| | - Yan Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| | - Chuanhuang Weng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| | - Weiping Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| | - Congjian Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical UniversityChongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of ChongqingChongqing, China
| |
Collapse
|
26
|
Singh SS, Deb A, Sutradhar S. Dexamethasone modulates melatonin MT2 receptor expression in splenic tissue and humoral immune response in mice. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1268330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shiv Shankar Singh
- Molecular Endocrinology Research Lab, Department of Zoology, Tripura University, Suryamaninagar, India
| | - Anindita Deb
- Molecular Endocrinology Research Lab, Department of Zoology, Tripura University, Suryamaninagar, India
| | - Sangita Sutradhar
- Molecular Endocrinology Research Lab, Department of Zoology, Tripura University, Suryamaninagar, India
| |
Collapse
|
27
|
Pévet P. Melatonin receptors as therapeutic targets in the suprachiasmatic nucleus. Expert Opin Ther Targets 2016; 20:1209-18. [DOI: 10.1080/14728222.2016.1179284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Paul Pévet
- Institut des neurosciences cellulaires et Integratives, INCI UPR 3212, CNRS and the University of Strasbourg, Strasbourg, France
| |
Collapse
|
28
|
Pack W, Hill DD, Wong KY. Melatonin modulates M4-type ganglion-cell photoreceptors. Neuroscience 2015; 303:178-88. [PMID: 26141846 PMCID: PMC4532552 DOI: 10.1016/j.neuroscience.2015.06.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/30/2015] [Accepted: 06/23/2015] [Indexed: 11/21/2022]
Abstract
In the retina, melatonin is secreted at night by rod/cone photoreceptors and serves as a dark-adaptive signal. Melatonin receptors have been found in many retinal neurons including melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs), suggesting it could modulate the physiology of these inner retinal photoreceptors. Here, we investigated whether melatonin modulates the alpha-like M4-type ipRGCs, which are believed to mediate image-forming vision as well as non-image-forming photoresponses. Applying melatonin during daytime (when endogenous melatonin secretion is low) caused whole-cell-recorded M4 cells' rod/cone-driven depolarizing photoresponses to become broader and larger, whereas the associated elevation in spike rate was reduced. Melanopsin-based light responses were not affected significantly. Nighttime application of the melatonin receptor antagonist luzindole also altered M4 cells' rod/cone-driven light responses but in the opposite ways: the duration and amplitude of the graded depolarization were reduced, whereas the accompanying spiking increase was enhanced. These luzindole-induced changes confirmed that M4 cells are modulated by endogenous melatonin. Melatonin could induce the above effects by acting directly on M4 cells because immunohistochemistry detected MT1 receptors in these cells, although it could also act presynaptically. Interestingly, the daytime and nighttime recordings showed significant differences in resting membrane potential, spontaneous spike rate and rod/cone-driven light responses, suggesting that M4 cells are under circadian control. This is the first report of a circadian variation in ipRGCs' resting properties and synaptic input, and of melatoninergic modulation of ipRGCs.
Collapse
Affiliation(s)
- W Pack
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, United States
| | - D D Hill
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, United States
| | - K Y Wong
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, United States; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, United States.
| |
Collapse
|
29
|
Lacoste B, Angeloni D, Dominguez-Lopez S, Calderoni S, Mauro A, Fraschini F, Descarries L, Gobbi G. Anatomical and cellular localization of melatonin MT1 and MT2 receptors in the adult rat brain. J Pineal Res 2015; 58:397-417. [PMID: 25726952 DOI: 10.1111/jpi.12224] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/26/2015] [Indexed: 12/12/2022]
Abstract
The involvement of melatonin in mammalian brain pathophysiology has received growing interest, but information about the anatomical distribution of its two G-protein-coupled receptors, MT1 and MT2 , remains elusive. In this study, using specific antibodies, we examined the precise distribution of both melatonin receptors immunoreactivity across the adult rat brain using light, confocal, and electron microscopy. Our results demonstrate a selective MT1 and MT2 localization on neuronal cell bodies and dendrites in numerous regions of the rat telencephalon, diencephalon, and mesencephalon. Confocal and ultrastructural examination confirmed the somatodendritic nature of MT1 and MT2 receptors, both being localized on neuronal membranes. Overall, striking differences were observed in the anatomical distribution pattern of MT1 and MT2 proteins, and the labeling often appeared complementary in regions displaying both receptors. Somadendrites labeled for MT1 were observed for instance in the retrosplenial cortex, the dentate gyrus of the hippocampus, the islands of Calleja, the medial habenula, the suprachiasmatic nucleus, the superior colliculus, the substantia nigra pars compacta, the dorsal raphe nucleus, and the pars tuberalis of the pituitary gland. Somadendrites endowed with MT2 receptors were mostly observed in the CA3 field of the hippocampus, the reticular thalamic nucleus, the supraoptic nucleus, the inferior colliculus, the substantia nigra pars reticulata, and the ventrolateral periaqueductal gray. Together, these data provide the first detailed neurocytological mapping of melatonin receptors in the adult rat brain, an essential prerequisite for a better understanding of melatonin distinct receptor function and neurophysiology.
Collapse
Affiliation(s)
- Baptiste Lacoste
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Singh SS, Laskar P, Acharjee S. Age- and sex-dependent effect of exogenous melatonin on expression pattern of melatonin receptor (MT1 and MT2) proteins in spleen of mice. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1020198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Co-expression of two subtypes of melatonin receptor on rat M1-type intrinsically photosensitive retinal ganglion cells. PLoS One 2015; 10:e0117967. [PMID: 25714375 PMCID: PMC4340921 DOI: 10.1371/journal.pone.0117967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 12/15/2014] [Indexed: 12/15/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian and other non-image forming visual responses. An open question is whether the activity of these neurons may also be under the regulation mediated by the neurohormone melatonin. In the present work, by double-staining immunohistochemical technique, we studied the expression of MT1 and MT2, two known subtypes of mammalian melatonin receptors, in rat ipRGCs. A single subset of retinal ganglion cells labeled by the specific antibody against melanopsin exhibited the morphology typical of M1-type ipRGCs. Immunoreactivity for both MT1 and MT2 receptors was clearly seen in the cytoplasm of all labeled ipRGCs, indicating that these two receptors were co-expressed in each of these neurons. Furthermore, labeling for both the receptors were found in neonatal M1 cells as early as the day of birth. It is therefore highly plausible that retinal melatonin may directly modulate the activity of ipRGCs, thus regulating non-image forming visual functions.
Collapse
|
32
|
Tosini G, Owino S, Guillaume JL, Jockers R. Understanding melatonin receptor pharmacology: latest insights from mouse models, and their relevance to human disease. Bioessays 2014; 36:778-87. [PMID: 24903552 PMCID: PMC4151498 DOI: 10.1002/bies.201400017] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications toward type 2 diabetes development, visual functions, sleep disturbances, and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2 , which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1 /MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models.
Collapse
Affiliation(s)
- Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | | | | | | |
Collapse
|
33
|
Chenu F, Shim S, El Mansari M, Blier P. Role of melatonin, serotonin 2B, and serotonin 2C receptors in modulating the firing activity of rat dopamine neurons. J Psychopharmacol 2014; 28:162-7. [PMID: 24189440 DOI: 10.1177/0269881113510071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Melatonin has been widely used for the management of insomnia, but is devoid of antidepressant effect in the clinic. In contrast, agomelatine which is a potent melatonin receptor agonist is an effective antidepressant. It is, however, a potent serotonin 2B (5-HT(2B)) and serotonin 2C (5-HT(2C)) receptor antagonist as well. The present study was aimed at investigating the in vivo effects of repeated administration of melatonin (40 mg/kg/day), the 5-HT(2C) receptor antagonist SB 242084 (0.5 mg/kg/day), the selective 5-HT(2B) receptor antagonist LY 266097 (0.6 mg/kg/day) and their combination on ventral tegmental area (VTA) dopamine (DA), locus coeruleus (LC) norepinephrine (NE), and dorsal raphe nucleus (DRN) serotonin (5-HT) firing activity. Administration of melatonin twice daily increased the number of spontaneously active DA neurons but left the firing of NE neurons unaltered. Long-term administration of melatonin and SB 242084, by themselves, had no effect on the firing rate and burst parameters of 5-HT and DA neurons. Their combination, however, enhanced only the number of spontaneously active DA neurons, while leaving the firing of 5-HT neurons unchanged. The addition of LY 266097, which by itself is devoid of effect, to the previous regimen increased for DA neurons the number of bursts per minute and the percentage of spikes occurring in bursts. In conclusion, the combination of melatonin receptor activation as well as 5-HT(2C) receptor blockade resulted in a disinhibition of DA neurons. When 5-HT(2B) receptors were also blocked, the firing and the bursting activity of DA neurons were both enhanced, thus reproducing the effect of agomelatine.
Collapse
Affiliation(s)
- Franck Chenu
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
34
|
McMahon DG, Iuvone PM, Tosini G. Circadian organization of the mammalian retina: from gene regulation to physiology and diseases. Prog Retin Eye Res 2013; 39:58-76. [PMID: 24333669 DOI: 10.1016/j.preteyeres.2013.12.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 01/27/2023]
Abstract
The retinal circadian system represents a unique structure. It contains a complete circadian system and thus the retina represents an ideal model to study fundamental questions of how neural circadian systems are organized and what signaling pathways are used to maintain synchrony of the different structures in the system. In addition, several studies have shown that multiple sites within the retina are capable of generating circadian oscillations. The strength of circadian clock gene expression and the emphasis of rhythmic expression are divergent across vertebrate retinas, with photoreceptors as the primary locus of rhythm generation in amphibians, while in mammals clock activity is most robust in the inner nuclear layer. Melatonin and dopamine serve as signaling molecules to entrain circadian rhythms in the retina and also in other ocular structures. Recent studies have also suggested GABA as an important component of the system that regulates retinal circadian rhythms. These transmitter-driven influences on clock molecules apparently reinforce the autonomous transcription-translation cycling of clock genes. The molecular organization of the retinal clock is similar to what has been reported for the SCN although inter-neural communication among retinal neurons that form the circadian network is apparently weaker than those present in the SCN, and it is more sensitive to genetic disruption than the central brain clock. The melatonin-dopamine system is the signaling pathway that allows the retinal circadian clock to reconfigure retinal circuits to enhance light-adapted cone-mediated visual function during the day and dark-adapted rod-mediated visual signaling at night. Additionally, the retinal circadian clock also controls circadian rhythms in disk shedding and phagocytosis, and possibly intraocular pressure. Emerging experimental data also indicate that circadian clock is also implicated in the pathogenesis of eye disease and compelling experimental data indicate that dysfunction of the retinal circadian system negatively impacts the retina and possibly the cornea and the lens.
Collapse
Affiliation(s)
- Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, 30310 GA, USA.
| |
Collapse
|
35
|
Baba K, Benleulmi-Chaachoua A, Journé AS, Kamal M, Guillaume JL, Dussaud S, Gbahou F, Yettou K, Liu C, Contreras-Alcantara S, Jockers R, Tosini G. Heteromeric MT1/MT2 melatonin receptors modulate photoreceptor function. Sci Signal 2013; 6:ra89. [PMID: 24106342 DOI: 10.1126/scisignal.2004302] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The formation of G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) heteromers enables signaling diversification and holds great promise for improved drug selectivity. Most studies of these oligomerization events have been conducted in heterologous expression systems, and in vivo validation is lacking in most cases, thus questioning the physiological significance of GPCR heteromerization. The melatonin receptors MT1 and MT2 exist as homomers and heteromers when expressed in cultured cells. We showed that melatonin MT1/MT2 heteromers mediated the effect of melatonin on the light sensitivity of rod photoreceptors in mice. This effect of melatonin involved activation of the heteromer-specific phospholipase C and protein kinase C (PLC/PKC) pathway and was abolished in MT1(-/-) or MT2(-/-) mice, as well as in mice overexpressing a nonfunctional MT2 mutant that interfered with the formation of functional MT1/MT2 heteromers in photoreceptor cells. Not only does this study establish an essential role of melatonin receptor heteromers in retinal function, it also provides in vivo support for the physiological importance of GPCR heteromerization. Thus, the MT1/MT2 heteromer complex may provide a specific pharmacological target to improve photoreceptor function.
Collapse
Affiliation(s)
- Kenkichi Baba
- 1Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vishwas DK, Haldar C. Photoperiodic induced melatonin regulates immunity and expression pattern of melatonin receptor MT1 in spleen and bone marrow mononuclear cells of male golden hamster. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 128:107-14. [PMID: 24090924 DOI: 10.1016/j.jphotobiol.2013.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 12/15/2022]
Abstract
The pineal gland transduces day length information into chemical signal of melatonin that ultimately translates photic stimulus into season-specific immune responses to promote survival of individual from incidence of opportunistic diseases. To date, the immune adjustments being a result of photoperiodic exposures for any nocturnal seasonally breeding rodent have not been systematically examined. Therefore, we evaluated the humoral and cell mediated immune responses of photoperiodically entrained male golden hamsters. Short day induced melatonin increased the immune parameters such as spleen mass, total leukocyte (TLC) and lymphocyte count (LC), proliferation of splenocytes, peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMMNCs) along with serum IL-2 and anti-Keyhole Limpet Hemocyanin (KLH) IgG production when compared with long day experienced hamsters. Short term melatonin treatment (for two weeks) to long day hamsters enhanced to some extent the proliferation of splenocytes, PBMC and TLC/LC. We also localized the melatonin membrane receptor MT1 in spleen and BMMNCs that strongly supported our western blot analysis for the expression of MT1 in spleen suggesting that different photoperiodically induced circulatory melatonin is responsible for the immunomodulation. Therefore, photoperiod can influence the peripheral melatonin level to improve immune responses of hamsters according to season for better survival.
Collapse
Affiliation(s)
- Dipanshu Kumar Vishwas
- Pineal Research Lab, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India
| | | |
Collapse
|
37
|
Yim APY, Yeung HY, Sun G, Lee KM, Ng TB, Lam TP, Ng BKW, Qiu Y, Moreau A, Cheng JCY. Abnormal Skeletal Growth in Adolescent Idiopathic Scoliosis Is Associated with Abnormal Quantitative Expression of Melatonin Receptor, MT2. Int J Mol Sci 2013; 14:6345-58. [PMID: 23519105 PMCID: PMC3634428 DOI: 10.3390/ijms14036345] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 12/15/2022] Open
Abstract
The defect of the melatonin signaling pathway has been proposed to be one of the key etiopathogenic factors in adolescent idiopathic scoliosis (AIS). A previous report showed that melatonin receptor, MT2, was undetectable in some AIS girls. The present study aimed to investigate whether the abnormal MT2 expression in AIS is quantitative or qualitative. Cultured osteoblasts were obtained from 41 AIS girls and nine normal controls. Semi-quantification of protein expression by Western blot and mRNA expression by TaqMan real-time PCR for both MT1 and MT2 were performed. Anthropometric parameters were also compared and correlated with the protein expression and mRNA expression of the receptors. The results showed significantly lower protein and mRNA expression of MT2 in AIS girls compared with that in normal controls (p = 0.02 and p = 0.019, respectively). No differences were found in the expression of MT1. When dichotomizing the AIS girls according to their MT2 expression, the group with low expression was found to have a significantly longer arm span (p = 0.036). The results of this study showed for the first time a quantitative change of MT2 in AIS that was also correlated with abnormal arm span as part of abnormal systemic skeletal growth.
Collapse
Affiliation(s)
- Annie Po-yee Yim
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China; E-Mails: (A.P.Y.); (H.Y.); (G.S.); (T.L.); (B.K.N.)
| | - Hiu-yan Yeung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China; E-Mails: (A.P.Y.); (H.Y.); (G.S.); (T.L.); (B.K.N.)
| | - Guangquan Sun
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China; E-Mails: (A.P.Y.); (H.Y.); (G.S.); (T.L.); (B.K.N.)
| | - Kwong-man Lee
- Lee Hysan clinical research laboratory, The Chinese University of Hong Kong, Hong Kong, China; E-Mail:
| | - Tzi-bun Ng
- School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, China; E-Mail:
| | - Tsz-ping Lam
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China; E-Mails: (A.P.Y.); (H.Y.); (G.S.); (T.L.); (B.K.N.)
| | - Bobby Kin-wah Ng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China; E-Mails: (A.P.Y.); (H.Y.); (G.S.); (T.L.); (B.K.N.)
| | - Yong Qiu
- Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; E-Mail:
- The Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Hong Kong, China
| | - Alain Moreau
- Research Center, Sainte-Justine Hospital, University of Montreal, Montreal, QC H3T 1C5, Canada; E-Mail:
| | - Jack Chun-yiu Cheng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China; E-Mails: (A.P.Y.); (H.Y.); (G.S.); (T.L.); (B.K.N.)
- The Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Hong Kong, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +852-26-098-631; Fax: +852-26-036-889
| |
Collapse
|
38
|
Huang H, Wang Z, Weng SJ, Sun XH, Yang XL. Neuromodulatory role of melatonin in retinal information processing. Prog Retin Eye Res 2013; 32:64-87. [PMID: 22986412 DOI: 10.1016/j.preteyeres.2012.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Hai Huang
- Institute of Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
39
|
Role of melatonin and its receptors in the vertebrate retina. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:211-42. [PMID: 23273863 DOI: 10.1016/b978-0-12-405210-9.00006-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melatonin is a chemical signal of darkness that is produced by retinal photoreceptors and pinealocytes. In the retina, melatonin diffuses from the photoreceptors to bind to specific receptors on a variety of inner retinal neurons to modify their activity. Potential target cells for melatonin in the inner retina are amacrine cells, bipolar cells, horizontal cells, and ganglion cells. Melatonin inhibits the release of dopamine from amacrine cells and increases the light sensitivity of horizontal cells. Melatonin receptor subtypes show differential, cell-specific patterns of expression that are likely to underlie differential functional modulation of specific retinal pathways. Melatonin potentiates rod signals to ON-type bipolar cells, via activation of the melatonin MT2 (Mel1b) receptor, suggesting that melatonin modulates the function of specific retinal circuits based on the differential distribution of its receptors. The selective and differential expression of melatonin receptor subtypes in cone circuits suggest a conserved function for melatonin in enhancing transmission from rods to second-order neurons and thus promote dark adaptation.
Collapse
|
40
|
Tosini G, Baba K, Hwang CK, Iuvone PM. Melatonin: an underappreciated player in retinal physiology and pathophysiology. Exp Eye Res 2012; 103:82-9. [PMID: 22960156 DOI: 10.1016/j.exer.2012.08.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 12/14/2022]
Abstract
In the vertebrate retina, melatonin is synthesized by the photoreceptors with high levels of melatonin at night and lower levels during the day. Melatonin exerts its influence by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylyl cyclase. Melatonin receptors belonging to the subtypes MT(1) and MT(2) have been identified in the mammalian retina. MT(1) and MT(2) receptors are found in all layers of the neural retina and in the retinal pigmented epithelium. Melatonin in the eye is believed to be involved in the modulation of many important retinal functions; it can modulate the electroretinogram (ERG), and administration of exogenous melatonin increases light-induced photoreceptor degeneration. Melatonin may also have protective effects on retinal pigment epithelial cells, photoreceptors and ganglion cells. A series of studies have implicated melatonin in the pathogenesis of age-related macular degeneration, and melatonin administration may represent a useful approach to prevent and treat glaucoma. Melatonin is used by millions of people around the world to retard aging, improve sleep performance, mitigate jet lag symptoms, and treat depression. Administration of exogenous melatonin at night may also be beneficial for ocular health, but additional investigation is needed to establish its potential.
Collapse
Affiliation(s)
- Gianluca Tosini
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Melatonin mediates neuroprotection in several experimental models of neurodegeneration. It is not yet known, however, whether melatonin provides neuroprotection in genetic models of Huntington's disease (HD). We report that melatonin delays disease onset and mortality in a transgenic mouse model of HD. Moreover, mutant huntingtin (htt)-mediated toxicity in cells, mice, and humans is associated with loss of the type 1 melatonin receptor (MT1). We observe high levels of MT1 receptor in mitochondria from the brains of wild-type mice but much less in brains from HD mice. Moreover, we demonstrate that melatonin inhibits mutant htt-induced caspase activation and preserves MT1 receptor expression. This observation is critical, because melatonin-mediated protection is dependent on the presence and activation of the MT1 receptor. In summary, we delineate a pathologic process whereby mutant htt-induced loss of the mitochondrial MT1 receptor enhances neuronal vulnerability and potentially accelerates the neurodegenerative process.
Collapse
|
42
|
Yadav SK, Haldar C, Singh SS. Variation in melatonin receptors (Mel(1a) and Mel(1b)) and androgen receptor (AR) expression in the spleen of a seasonally breeding bird, Perdicula asiatica. J Reprod Immunol 2011; 92:54-61. [PMID: 21963392 DOI: 10.1016/j.jri.2011.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/20/2011] [Accepted: 08/09/2011] [Indexed: 11/28/2022]
Abstract
Daily variation in the peripheral level of melatonin plays a major role in integrating reproduction and environmental information for seasonally breeding birds. However, the variation in immunity and reproduction has never been assessed in any avian species on a 24 h time scale. Therefore, to understand the relationship between immune function and reproductive phases in a seasonally breeding bird, Perdicula asiatica, the Indian jungle bush quail, we studied the daily variation of melatonin and testosterone levels along with expression of their receptors Mel(1a), Mel(1b), and androgen receptor in the spleen during the reproductively active phase. Immunocytochemistry for the melatonin receptors Mel(1a) and Mel(1b) presented a differential distribution pattern. Western blot of splenic protein suggested a daily rhythm of melatonin receptors, while acrophases for the two melatonin receptors Mel(1a) and Mel(1b) differed by 4 h, suggesting that the expression of the receptors may peak at different times, causing more of either Mel(1a) or Mel(1b) to be available at a particular time to mediate function. The circulatory melatonin level correlated with percentage stimulation ratio of splenocytes and plasma interleukin-2 level, but did not correlate with testosterone or androgen receptor, suggesting that melatonin could be a major hormone imparting a time-of-day effect on the modulation of immune function in a seasonally breeding bird during the reproductively active phase.
Collapse
Affiliation(s)
- S K Yadav
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|
43
|
Kumar Kharwar R, Haldar C. Anatomical and histological profile of bronchus-associated lymphoid tissue and localization of melatonin receptor types (Mel 1a and Mel 1b) in the lung-associated immune system of a tropical bird, Perdicula asiatica. Acta Histochem 2011; 113:333-9. [PMID: 20149420 DOI: 10.1016/j.acthis.2010.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/29/2009] [Accepted: 12/31/2009] [Indexed: 11/17/2022]
Abstract
The histological distribution of the lung-associated immune system (LAIS) and the expressional pattern of melatonin receptors are still unknown in birds. The aim of the present study was to determine the localization of the bronchus-associated lymphoid tissue (BALT nodule) in a tropical bird, the Indian jungle bush quail, Perdicula asiatica. We also demonstrate the expression of melatonin receptor types (Mel(1a) and Mel(1b)) in order to propose an immunomodulatory role of melatonin in LAIS. Localization of melatonin receptors in the lung of the Indian jungle bush quail, P. asiatica was supported immunohistochemically and by Western blot analysis using specific antibodies for those receptors. Immunolocalization for Mel(1b) receptor was noted in the bronchial region of the lungs, in finger-like projections of mucosal foldings, in lymphocytes in the BALT nodule as well as in free form. In contrast, immunolocalization for Mel(1a) receptor was noted in various areas of the lung instead of in the bronchial region. Western blot analysis showed a single band at 37 and 39kDa for Mel(1a) and Mel(1b) receptors, respectively, with the latter showing higher expression. The results demonstrate a well-developed LAIS and region-specific distribution of melatonin receptors in the lung and provide evidence for a possible functional role for melatonin in the LAIS of birds.
Collapse
Affiliation(s)
- Rajesh Kumar Kharwar
- Pineal Research Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
44
|
Kharwar RK, Haldar C. Reproductive phase dependent variation in lung-associated immune system (LAIS) and expression of melatonin receptors (Mel1a and Mel1b) in the lung of the Jungle-Bush Quail (Perdicula asiatica). CAN J ZOOL 2011. [DOI: 10.1139/z10-091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was performed to assess the variation of the lung-associated immune system (LAIS) in the Jungle-Bush Quail ( Perdicula asiatica (Latham, 1790)) during two different reproductive phases when differences in the circulatory level of hormones (melatonin and gonadal steroid) and environmental conditions were maximum. We noted high significant variation in size and number of bronchus-associated lymphoid tissue (BALT) nodules, as well as in the size and number of non-BALT nodules, during the reproductively inactive phase (RIP; December) compared with the active phase (RAP; June). We also noted high significant variation in the percent stimulation ratio of lung lymphocyte, as well as in the concentrations of plasma melatonin and melatonin receptors, during RIP compared with RAP. Testosterone level and number of macrophages in lungs were high during RAP. Thus, we suggest that the LAIS had reproductive phase dependent variation, which could be due to (i) variation in environmental factors (photoperiod, temperature, and humidity) and (ii) circulatory level of hormones (melatonin and testosterone). Because of the importance of melatonin in avian immune regulation, we assess and document the expression of melatonin receptor types Mel1a and Mel1b in the avian lung, which suggest that the lung is a target organ for melatonin and that melatonin is an immunomodulator for lung-associated immunity in birds.
Collapse
Affiliation(s)
- R. K. Kharwar
- Pineal Research Laboratory, Department of Zoology, Banaras Hindu University, Varanasi – 221 005, India
| | - C. Haldar
- Pineal Research Laboratory, Department of Zoology, Banaras Hindu University, Varanasi – 221 005, India
| |
Collapse
|
45
|
Ahmad R, Haldar C. Photoperiodic regulation of MT1 and MT2 melatonin receptor expression in spleen and thymus of a tropical rodent Funambulus pennanti during reproductively active and inactive phases. Chronobiol Int 2010; 27:446-62. [PMID: 20524795 DOI: 10.3109/07420521003666408] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoperiodic regulation of melatonin receptor types on target tissues, such as lymphatic organs, has never been explored for any seasonal breeder. In the present study, we accessed the high affinity membrane melatonin receptors MT1 and MT2 expression dynamics in lymphoid organs (i.e., spleen and thymus) of a seasonally breeding rodent Funambulus pennanti during two major reproductive phases (i.e., active and inactive), when the internal hormonal (melatonin and gonadal steroid) as well as the ecological conditions were entirely different. Photoperiod regulates circulatory melatonin level; hence, we noted the effect of different photoperiodic regimes (long; 16L:8D and short; 10L:14D photoperiod) equivalent to summer and winter daylength on membrane melatonin receptor MT1 and MT2 expression in spleen and thymus. We have correlated the melatonin receptor expression with two major hormones varying seasonally (i.e., melatonin and testosterone) also being responsible for modulation of immunity of a seasonal breeder. Differential immunoreactivity of MT1 and MT2 receptor in spleen and thymus of F. pennanti suggests an involvement of both the receptor types in signal transduction of photoperiod for seasonal immunomodulation, because in the tropical zone, a slight difference (1:45-2 h) in daylength may change reproductive physiology and immunity of animals for adaptation. Our above suggestion receives strong support from the experiment of photoperiodic exposure on MT1 and MT2 expression at the translational level, where long daylength decreased the circulatory melatonin level and melatonin receptor expression in both lymphatic tissues. On the other hand, under short daylength, expression of MT1 and MT2 receptor increased in both spleen and thymus along with concomitant increase in circulatory melatonin level. Differential hormonal level of melatonin and gonadal hormones during reproductively active and inactive phase and its direct relation with melatonin receptor expression dynamics in lymphoid organs could be responsible for seasonal adjustment of immunity and reproduction.
Collapse
Affiliation(s)
- Raise Ahmad
- Pineal Research Lab, Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
46
|
Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 2010; 62:343-80. [PMID: 20605968 PMCID: PMC2964901 DOI: 10.1124/pr.110.002832] [Citation(s) in RCA: 400] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The hormone melatonin (5-methoxy-N-acetyltryptamine) is synthesized primarily in the pineal gland and retina, and in several peripheral tissues and organs. In the circulation, the concentration of melatonin follows a circadian rhythm, with high levels at night providing timing cues to target tissues endowed with melatonin receptors. Melatonin receptors receive and translate melatonin's message to influence daily and seasonal rhythms of physiology and behavior. The melatonin message is translated through activation of two G protein-coupled receptors, MT(1) and MT(2), that are potential therapeutic targets in disorders ranging from insomnia and circadian sleep disorders to depression, cardiovascular diseases, and cancer. This review summarizes the steps taken since melatonin's discovery by Aaron Lerner in 1958 to functionally characterize, clone, and localize receptors in mammalian tissues. The pharmacological and molecular properties of the receptors are described as well as current efforts to discover and develop ligands for treatment of a number of illnesses, including sleep disorders, depression, and cancer.
Collapse
Affiliation(s)
- Margarita L Dubocovich
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo State University of New York, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Rosenstein RE, Pandi-Perumal SR, Srinivasan V, Spence DW, Brown GM, Cardinali DP. Melatonin as a therapeutic tool in ophthalmology: implications for glaucoma and uveitis. J Pineal Res 2010; 49:1-13. [PMID: 20492443 DOI: 10.1111/j.1600-079x.2010.00764.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several lines of evidence support the view that increased free radical generation and altered nitric oxide (NO) metabolism play a role in the pathogenesis of highly prevalent ocular diseases, such as glaucoma and uveitis. Data are discussed indicating that melatonin, being an efficient antioxidant that displays antinitridergic properties, has a promising role in the treatment of these ocular dysfunctions. Melatonin synthesis occurs in the eye of most species, and melatonin receptors are localized in different ocular structures. In view of the fact that melatonin lacks significant adverse collateral effects even at high doses, the application of melatonin could potentially protect ocular tissues by effectively scavenging free radicals and excessive amounts of NO generated in the glaucomatous or uveitic eye.
Collapse
Affiliation(s)
- Ruth E Rosenstein
- Department of Human Biochemistry, School of Medicine, CEFyBO, University of Buenos Aires, CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
48
|
Zhao WJ, Zhang M, Miao Y, Yang XL, Wang Z. Melatonin potentiates glycine currents through a PLC/PKC signalling pathway in rat retinal ganglion cells. J Physiol 2010; 588:2605-19. [PMID: 20519319 PMCID: PMC2916991 DOI: 10.1113/jphysiol.2010.187641] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/24/2010] [Indexed: 12/15/2022] Open
Abstract
In vertebrate retina, melatonin regulates various physiological functions. In this work we investigated the mechanisms underlying melatonin-induced potentiation of glycine currents in rat retinal ganglion cells (RGCs). Immunofluorescence double labelling showed that rat RGCs were solely immunoreactive to melatonin MT(2) receptors. Melatonin potentiated glycine currents of RGCs, which was reversed by the MT(2) receptor antagonist 4-P-PDOT. The melatonin effect was blocked by intracellular dialysis of GDP-beta-S. Either preincubation with pertussis toxin or application of the phosphatidylcholine (PC)-specific phospholipase C (PLC) inhibitor D609, but not the phosphatidylinositol (PI)-PLC inhibitor U73122, blocked the melatonin effect. The protein kinase C (PKC) activator PMA potentiated the glycine currents and in the presence of PMA melatonin failed to cause further potentiation of the currents, whereas application of the PKC inhibitor bisindolylmaleimide IV abolished the melatonin-induced potentiation. The melatonin effect persisted when [Ca(2+)](i) was chelated by BAPTA, and melatonin induced no increase in [Ca(2+)](i). Neither cAMP-PKA nor cGMP-PKG signalling pathways seemed to be involved because 8-Br-cAMP or 8-Br-cGMP failed to cause potentiation of the glycine currents and both the PKA inhibitor H-89 and the PKG inhibitor KT5823 did not block the melatonin-induced potentiation. In consequence, a distinct PC-PLC/PKC signalling pathway, following the activation of G(i/o)-coupled MT(2) receptors, is most likely responsible for the melatonin-induced potentiation of glycine currents of rat RGCs. Furthermore, in rat retinal slices melatonin potentiated light-evoked glycine receptor-mediated inhibitory postsynaptic currents in RGCs. These results suggest that melatonin, being at higher levels at night, may help animals to detect positive or negative contrast in night vision by modulating inhibitory signals largely mediated by glycinergic amacrine cells in the inner retina.
Collapse
Affiliation(s)
- Wen-Jie Zhao
- Institutes of Brain Science and Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
49
|
Mor M, Rivara S, Pala D, Bedini A, Spadoni G, Tarzia G. Recent advances in the development of melatonin MT1and MT2receptor agonists. Expert Opin Ther Pat 2010; 20:1059-77. [DOI: 10.1517/13543776.2010.496455] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
50
|
Gagné AM, Danilenko KV, Rosolen SG, Hébert M. Impact of oral melatonin on the electroretinogram cone response. J Circadian Rhythms 2009; 7:14. [PMID: 19922677 PMCID: PMC2785757 DOI: 10.1186/1740-3391-7-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/19/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the eye, melatonin plays a role in promoting light sensitivity at night and modulating many aspects of circadian retinal physiology. It is also an inhibitor of retinal dopamine, which is a promoter of day vision through the cone system. Consequently, it is possible that oral melatonin (an inhibitor of retinal dopamine) taken to alleviate circadian disorders may affect cone functioning. Our aim was to assess the impact of melatonin on the cone response of the human retina using electroretinography (ERG). METHODS Twelve healthy participants aged between 18 to 52 years old were submitted to a placebo-controlled, double-blind, crossover, and counterbalanced-order design. The subjects were tested on 2 sessions beginning first with a baseline ERG, followed by the administration of the placebo or melatonin condition and then, 30 min later, a second ERG to test the effect. RESULTS Following oral melatonin administration, a significant decrease of about 8% of the cone maximal response was observed (mean 6.9 muV +/- SEM 2.0; P = 0.0065) along with a prolonged b-wave implicit time of 0.4 ms +/- 0.1, 50 minutes after ingestion. CONCLUSION Oral melatonin appears to reach the eye through the circulation. When it is administered at a time of day when it is not usually present, melatonin appears to reduce input to retinal cones. We believe that the impact of melatonin on retinal function should be taken into consideration when used without supervision in chronic self-medication for sleep or circadian disorder treatment.
Collapse
Affiliation(s)
- Anne-Marie Gagné
- Centre de Recherche Université Laval Robert-Giffard, Faculty of Medicine, Université Laval, Québec, Canada.
| | | | | | | |
Collapse
|