1
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
2
|
Rytter H, Naimi S, Wu G, Lewis J, Duquesnoy M, Vigué L, Tenaillon O, Belda E, Vazquez-Gomez M, Touly N, Arnone D, Hao F, Ley RE, Clément K, Peyrin-Biroulet L, Patterson AD, Gewirtz AT, Chassaing B. In vitro microbiota model recapitulates and predicts individualised sensitivity to dietary emulsifier. Gut 2025:gutjnl-2024-333925. [PMID: 39870396 DOI: 10.1136/gutjnl-2024-333925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/26/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Non-absorbed dietary emulsifiers, including carboxymethylcellulose (CMC), directly disturb intestinal microbiota, thereby promoting chronic intestinal inflammation in mice. A randomised controlled-feeding study (Functional Research on Emulsifiers in Humans, FRESH) found that CMC also detrimentally impacts intestinal microbiota in some, but not all, healthy individuals. OBJECTIVES This study aimed to establish an approach for predicting an individual's sensitivity to dietary emulsifiers via their baseline microbiota. DESIGN We evaluated the ability of an in vitro microbiota model (MiniBioReactor Arrray, MBRA) to reproduce and predict an individual donor's sensitivity to emulsifiers. Metagenomes were analysed to identify signatures of emulsifier sensitivity. RESULTS Exposure of human microbiotas, maintained in the MBRA, to CMC recapitulated the differential CMC sensitivity previously observed in FRESH subjects. Furthermore, select FRESH control subjects (ie, not fed CMC) had microbiotas that were highly perturbed by CMC exposure in the MBRA model. CMC-induced microbiota perturbability was associated with a baseline metagenomic signature, suggesting the possibility of using one's metagenome to predict sensitivity to dietary emulsifiers. Transplant of human microbiotas that the MBRA model deemed CMC-sensitive, but not those deemed insensitive, into IL-10-/- germfree mice resulted in overt colitis following CMC feeding. CONCLUSION These results suggest that an individual's sensitivity to emulsifier is a consequence of, and can thus be predicted by, examining their baseline microbiota, paving the way to microbiota-based personalised nutrition.
Collapse
Affiliation(s)
- Héloïse Rytter
- Microbiome-Host Interactions, INSERM U1306, CNRS UMR6047, Institut Pasteur, Université Paris Cité, Paris, France
- INSERM U1016, CNRS UMR8104, Mucosal Microbiota in Chronic Inflammatory Diseases, Université de Paris, Paris, France
| | - Sabrine Naimi
- INSERM U1016, CNRS UMR8104, Mucosal Microbiota in Chronic Inflammatory Diseases, Université de Paris, Paris, France
| | - Gary Wu
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jim Lewis
- Center for Clinical Epidemiology and Biostatistics, Division of Gastroenterology and Hepatology,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maeva Duquesnoy
- Microbiome-Host Interactions, INSERM U1306, CNRS UMR6047, Institut Pasteur, Université Paris Cité, Paris, France
- INSERM U1016, CNRS UMR8104, Mucosal Microbiota in Chronic Inflammatory Diseases, Université de Paris, Paris, France
| | - Lucile Vigué
- Robustness and Evolvability of Life, CNRS UMR10 8104, INSERM U1016, Université Paris Cité, Paris, France
| | - Olivier Tenaillon
- Robustness and Evolvability of Life, CNRS UMR10 8104, INSERM U1016, Université Paris Cité, Paris, France
| | - Eugeni Belda
- Inserm, Nutrition and Obesities: Systemic Approaches Research Unit, NutriOmics, Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, Bondy, France
| | - Marta Vazquez-Gomez
- Inserm, Nutrition and Obesities: Systemic Approaches Research Unit, NutriOmics, Sorbonne University, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, IRD, Sorbonne Université, Bondy, France
| | - Nina Touly
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, Nancy, France
- FHU-CURE, Nancy University Hospital, Vandoeuvre les Nancy, France
- CHRU Nancy, IHU Infiny, Vandoeuvre-les-Nancy, France
| | - Djésia Arnone
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, Nancy, France
- FHU-CURE, Nancy University Hospital, Vandoeuvre les Nancy, France
- CHRU Nancy, IHU Infiny, Vandoeuvre-les-Nancy, France
| | - Fuhua Hao
- Center for Molecular Toxicology and Carcinogenesis, Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ruth E Ley
- Microbiome Science, Max-Planck-Institute for Biology, Tübingen, Germany
| | - Karine Clément
- Inserm, Nutrition and Obesities: Systemic Approaches Research Unit, NutriOmics, Sorbonne University, Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
| | - Laurent Peyrin-Biroulet
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France
- INSERM, NGERE, University of Lorraine, Nancy, France
- FHU-CURE, Nancy University Hospital, Vandoeuvre les Nancy, France
- CHRU Nancy, IHU Infiny, Vandoeuvre-les-Nancy, France
- Department of Gastroenterology, Nancy University Hospital, Vandoeuvre-lès-Nancy, France
| | - Andrew D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Benoit Chassaing
- Microbiome-Host Interactions, INSERM U1306, CNRS UMR6047, Institut Pasteur, Université Paris Cité, Paris, France
- INSERM U1016, CNRS UMR8104, Mucosal Microbiota in Chronic Inflammatory Diseases, Université de Paris, Paris, France
- CHRU Nancy, IHU Infiny, Vandoeuvre-les-Nancy, France
| |
Collapse
|
3
|
Dremova O, Mimmler M, Paeslack N, Khuu MP, Gao Z, Bosmann M, Garo LP, Schön N, Mechler A, Beneich Y, Rebling V, Mann A, Pontarollo G, Kiouptsi K, Reinhardt C. Sterility testing of germ-free mouse colonies. Front Immunol 2023; 14:1275109. [PMID: 38022683 PMCID: PMC10662041 DOI: 10.3389/fimmu.2023.1275109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
In biomedical research, germ-free and gnotobiotic mouse models enable the mechanistic investigation of microbiota-host interactions and their role on (patho)physiology. Throughout any gnotobiotic experiment, standardized and periodic microbiological testing of defined gnotobiotic housing conditions is a key requirement. Here, we review basic principles of germ-free isolator technology, the suitability of various sterilization methods, and the use of sterility testing methods to monitor germ-free mouse colonies. We also discuss their effectiveness and limitations, and share the experience with protocols used in our facility. In addition, possible sources of isolator contamination are discussed and an overview of reported contaminants is provided.
Collapse
Affiliation(s)
- Olga Dremova
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Maximilian Mimmler
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadja Paeslack
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - My Phung Khuu
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Zhenling Gao
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Lucien P. Garo
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Nathalie Schön
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexa Mechler
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yunes Beneich
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Vivian Rebling
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Amrit Mann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), University Medical Center of the Johannes Gutenberg-University Mainz, Partner Site Rhine-Main, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), University Medical Center of the Johannes Gutenberg-University Mainz, Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
4
|
Daoust L, Choi BSY, Agrinier AL, Varin TV, Ouellette A, Mitchell PL, Samson N, Pilon G, Levy E, Desjardins Y, Laplante M, Anhê FF, Houde VP, Marette A. Gnotobiotic mice housing conditions critically influence the phenotype associated with transfer of faecal microbiota in a context of obesity. Gut 2022; 72:896-905. [PMID: 36881441 DOI: 10.1136/gutjnl-2021-326475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/20/2022] [Indexed: 03/08/2023]
Abstract
OBJECTIVE Faecal microbiota transplantation (FMT) in germ-free (GF) mice is a common approach to study the causal role of the gut microbiota in metabolic diseases. Lack of consideration of housing conditions post-FMT may contribute to study heterogeneity. We compared the impact of two housing strategies on the metabolic outcomes of GF mice colonised by gut microbiota from mice treated with a known gut modulator (cranberry proanthocyanidins (PAC)) or vehicle. DESIGN High-fat high-sucrose diet-fed GF mice underwent FMT-PAC colonisation in sterile individual positive flow ventilated cages under rigorous housing conditions and then maintained for 8 weeks either in the gnotobiotic-axenic sector or in the specific pathogen free (SPF) sector of the same animal facility. RESULTS Unexpectedly, 8 weeks after colonisation, we observed opposing liver phenotypes dependent on the housing environment of mice. Mice housed in the GF sector receiving the PAC gut microbiota showed a significant decrease in liver weight and hepatic triglyceride accumulation compared with control group. Conversely, exacerbated liver steatosis was observed in the FMT-PAC mice housed in the SPF sector. These phenotypic differences were associated with housing-specific profiles of colonising bacterial in the gut and of faecal metabolites. CONCLUSION These results suggest that the housing environment in which gnotobiotic mice are maintained post-FMT strongly influences gut microbiota composition and function and can lead to distinctive phenotypes in recipient mice. Better standardisation of FMT experiments is needed to ensure reproducible and translatable results.
Collapse
Affiliation(s)
- Laurence Daoust
- Quebec Heart and Lung Institute, Quebec, Québec, Canada.,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | - Béatrice S-Y Choi
- Quebec Heart and Lung Institute, Quebec, Québec, Canada.,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | - Anne-Laure Agrinier
- Quebec Heart and Lung Institute, Quebec, Québec, Canada.,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | - Adia Ouellette
- Quebec Heart and Lung Institute, Quebec, Québec, Canada.,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | - Patricia L Mitchell
- Quebec Heart and Lung Institute, Quebec, Québec, Canada.,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | | | - Genevieve Pilon
- Quebec Heart and Lung Institute, Quebec, Québec, Canada.,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | - Emile Levy
- Institute of Nutrition and Functional Foods, Quebec, Québec, Canada.,CHU Ste-Justine Research Center, Université de Montréal, Montreal, Quebec, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | | | - Fernando F Anhê
- Department of Biochemistry and Biomedical Sciences; Farncombe Family Digestive Health Research Institute and Centre for Metabolsim, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Vanessa P Houde
- Quebec Heart and Lung Institute, Quebec, Québec, Canada.,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| | - Andre Marette
- Quebec Heart and Lung Institute, Quebec, Québec, Canada .,Institute of Nutrition and Functional Foods, Quebec, Québec, Canada
| |
Collapse
|
5
|
Yu Q, Newsome RC, Beveridge M, Hernandez MC, Gharaibeh RZ, Jobin C, Thomas RM. Intestinal microbiota modulates pancreatic carcinogenesis through intratumoral natural killer cells. Gut Microbes 2022; 14:2112881. [PMID: 35980869 PMCID: PMC9397420 DOI: 10.1080/19490976.2022.2112881] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Preclinical data demonstrate that the gut microbiota can promote pancreatic ductal adenocarcinoma (PDAC), but mechanisms remain unclear. We hypothesized that intestinal microbiota alters anti-tumor innate immunity response to facilitate PDAC progression. Human PDAC L3.6pl cells were heterotopically implanted into Rag1-/- mice after microbiota depletion with antibiotics, while syngeneic murine PDAC Pan02 cells were implanted intrapancreatic into germ-free (GF) C57BL/6 J mice. Natural killer (NK) cells and their IFNγ expression were quantitated by flow cytometry. NK cells were depleted in vivo using anti-Asialo GM1 antibody to confirm the role of NK cells. Bacteria-free supernatant from SPF and GF mice feces was used to test its effect on NK-92MI cell anti-tumor response in vitro. SPF and ex-GF mice (reconstituted with SPF microbiota) developed larger PDAC tumors with decreased NK cell tumor infiltration and IFNγ expression versus GF-Rag1-/-. Microbiota-induced PDAC tumorigenesis was attenuated by antibiotic exposure, a process reversed following NK cell depletion in both Rag1-/- and C57BL/6 J mice. Compared to GF, SPF-Rag1-/- abiotic stool culture supernatant inhibited NK-92MI cytotoxicity, migration, and anti-cancer related gene expression. Gut microbiota promotes PDAC tumor progression through modulation of the intratumoral infiltration and activity of NK cells.
Collapse
Affiliation(s)
- Qin Yu
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rachel C. Newsome
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mark Beveridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Maria C. Hernandez
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Raad Z. Gharaibeh
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA,Christian Jobin Department of Medicine, University of Florida, 2033 Mowry Rd, 461, Gainesville, Florida32610, USA
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA,CONTACT Ryan M. Thomas Department of Surgery, University of Florida, PO Box 100109, Gainesville, Florida32610, USA
| |
Collapse
|
6
|
Newsome RC, Gharaibeh RZ, Pierce CM, da Silva WV, Paul S, Hogue SR, Yu Q, Antonia S, Conejo-Garcia JR, Robinson LA, Jobin C. Interaction of bacterial genera associated with therapeutic response to immune checkpoint PD-1 blockade in a United States cohort. Genome Med 2022; 14:35. [PMID: 35346337 PMCID: PMC8961902 DOI: 10.1186/s13073-022-01037-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/08/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Recent studies show that human gut microbial composition can determine whether a patient is a responder or non-responder to immunotherapy but have not identified a common microbial signal shared by responding patients. The functional relationship between immunity, intestinal microbiota, and NSCLC response to immune checkpoint inhibitor/inhibition (ICI) in an American cohort remains unexplored. METHODS RNAlater-preserved fecal samples were collected from 65 pre-treatment (baseline) and post-treatment stage III/IV NSCLC patients undergoing ICI therapy, categorized as responders or non-responders according to RECIST criteria. Pooled and individual responder and non-responder microbiota were transplanted into a gnotobiotic mouse model of lung cancer and treated with ICIs. 16S rDNA and RNA sequencing was performed on patient fecal samples, 16S rDNA sequencing on mouse fecal samples, and flow cytometric analysis on mouse tumor tissue. RESULTS Responder patients have both a different microbial community structure than non-responders (P = 0.004) and a different bacterial transcriptome (PC2 = 0.03) at baseline. Taxa significantly enriched in responders include amplicon sequence variants (ASVs) belonging to the genera Ruminococcus, Akkermansia, and Faecalibacterium. Pooled and individual responder microbiota transplantation into gnotobiotic mice decreased tumor growth compared to non-responder colonized mice following ICI (P = 0.023, P = 0.019, P = 0.008, respectively). Responder tumors showed an increased anti-tumor cellular phenotype following ICI treatment. Responder mice are enriched with ASVs belonging to the genera Bacteroides, Blautia, Akkermansia, and Faecalibacterium. Overlapping taxa mapping between human and mouse cohorts correlated with tumor size and weight revealed a network highlighting responder-associated ASVs belonging to the genera Colidextribacter, Frisingicoccus, Marvinbryantia, and Blautia which have not yet been reported. CONCLUSIONS The role of isolate-specific function and bacterial gene expression in gut microbial-driven responsiveness to ICI has been underappreciated. This work supports further investigation using isolate-driven models to characterize the mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Rachel C Newsome
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Raad Z Gharaibeh
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christine M Pierce
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
- Present Address: Department of Epidemiology, BARDS, MRL, Merck Sharp & Dohme Corp., a Subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Shirlene Paul
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Stephanie R Hogue
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Qin Yu
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Scott Antonia
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Lary A Robinson
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, FL, USA.
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
7
|
Delaroque C, Chervy M, Gewirtz AT, Chassaing B. Social overcrowding impacts gut microbiota, promoting stress, inflammation, and dysglycemia. Gut Microbes 2022; 13:2000275. [PMID: 34856844 PMCID: PMC8726700 DOI: 10.1080/19490976.2021.2000275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An array of chronic inflammatory diseases, including metabolic diseases such as obesity and diabetes, are thought to be promoted by disturbance of the intestinal microbiota. Such diseases disproportionately impact low-income communities, which are frequently afflicted by chronic stress and increased density housing. Hence, we hypothesized that overcrowded housing might promote stress, microbiota dysbiosis, inflammation, and, consequently, metabolic diseases. We tested this hypothesis in a tractable murine model of social overcrowding (SOC), in which mice were housed at twice normal density. SOC moderately impacted behavior in some widely used assays (Open Field, Elevated Plus Maze and Light/Dark tests) and resulted in a stark increase in corticosterone levels. Such indices of stress were associated with mild chronic gut inflammation, hyperglycemia, elevations in colonic cytokines, and alterations in gut microbiota composition. All of these consequences of SOC were eliminated by broad spectrum antibiotics, while some (inflammation and hyperglycemia) were transmitted by microbiota transplantation from SOC mice to germfree mice housed at normal density. Altogether, these results suggest a central role for intestinal microbiota in driving stress, inflammation, and chronic diseases that are promoted by overcrowded housing.
Collapse
Affiliation(s)
- Clara Delaroque
- Inserm U1016, Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Cnrs Umr 8104, Université de Paris, Paris, France
| | - Mélissa Chervy
- Université Clermont Auvergne, Inserm U1071; Usc-inrae 2018, Microbes, Intestin, Inflammation Et Susceptibilité de l’Hôte (M2ish), 28 Place Henri Dunant, Clermont-Ferrand, France
| | - Andrew T. Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, GeorgiaCalifornia, USA
| | - Benoit Chassaing
- Inserm U1016, Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Cnrs Umr 8104, Université de Paris, Paris, France,CONTACT Benoit Chassaing Inserm, U1016, Team “Mucosal Microbiota in Chronic Inflammatory Diseases” Paris, France
| |
Collapse
|
8
|
Mills RH, Dulai PS, Vázquez-Baeza Y, Sauceda C, Daniel N, Gerner RR, Batachari LE, Malfavon M, Zhu Q, Weldon K, Humphrey G, Carrillo-Terrazas M, Goldasich LD, Bryant M, Raffatellu M, Quinn RA, Gewirtz AT, Chassaing B, Chu H, Sandborn WJ, Dorrestein PC, Knight R, Gonzalez DJ. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat Microbiol 2022; 7:262-276. [PMID: 35087228 PMCID: PMC8852248 DOI: 10.1038/s41564-021-01050-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
Ulcerative colitis (UC) is driven by disruptions in host-microbiota homoeostasis, but current treatments exclusively target host inflammatory pathways. To understand how host-microbiota interactions become disrupted in UC, we collected and analysed six faecal- or serum-based omic datasets (metaproteomic, metabolomic, metagenomic, metapeptidomic and amplicon sequencing profiles of faecal samples and proteomic profiles of serum samples) from 40 UC patients at a single inflammatory bowel disease centre, as well as various clinical, endoscopic and histologic measures of disease activity. A validation cohort of 210 samples (73 UC, 117 Crohn's disease, 20 healthy controls) was collected and analysed separately and independently. Data integration across both cohorts showed that a subset of the clinically active UC patients had an overabundance of proteases that originated from the bacterium Bacteroides vulgatus. To test whether B. vulgatus proteases contribute to UC disease activity, we first profiled B. vulgatus proteases found in patients and bacterial cultures. Use of a broad-spectrum protease inhibitor improved B. vulgatus-induced barrier dysfunction in vitro, and prevented colitis in B. vulgatus monocolonized, IL10-deficient mice. Furthermore, transplantation of faeces from UC patients with a high abundance of B. vulgatus proteases into germfree mice induced colitis dependent on protease activity. These results, stemming from a multi-omics approach, improve understanding of functional microbiota alterations that drive UC and provide a resource for identifying other pathways that could be inhibited as a strategy to treat this disease.
Collapse
Affiliation(s)
- Robert H Mills
- Department of Pharmacology, University of California, San Diego, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA.,Department of Pediatrics, University of California, San Diego, CA, USA
| | - Parambir S Dulai
- Division of Gastroenterology, University of California, San Diego, CA, USA
| | - Yoshiki Vázquez-Baeza
- Department of Pediatrics, University of California, San Diego, CA, USA.,Department of Computer Science and Engineering, University of California, San Diego, CA, USA.,Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Consuelo Sauceda
- Department of Pharmacology, University of California, San Diego, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Noëmie Daniel
- INSERM U1016, team Mucosal microbiota in chronic inflammatory diseases, CNRS UMR 8104, Université de Paris, Paris, France
| | - Romana R Gerner
- Department of Pediatrics, University of California, San Diego, CA, USA.,Division of Host-Microbe Systems and Therapeutics, University of California, San Diego, CA, USA
| | | | - Mario Malfavon
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Qiyun Zhu
- Department of Pediatrics, University of California, San Diego, CA, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kelly Weldon
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Greg Humphrey
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Marvic Carrillo-Terrazas
- Department of Pharmacology, University of California, San Diego, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA.,Department of Pathology, University of California, San Diego, CA, USA
| | | | - MacKenzie Bryant
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Manuela Raffatellu
- Center for Microbiome Innovation, University of California, San Diego, CA, USA.,Division of Host-Microbe Systems and Therapeutics, University of California, San Diego, CA, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benoit Chassaing
- INSERM U1016, team Mucosal microbiota in chronic inflammatory diseases, CNRS UMR 8104, Université de Paris, Paris, France
| | - Hiutung Chu
- Department of Pathology, University of California, San Diego, CA, USA
| | - William J Sandborn
- Division of Gastroenterology, University of California, San Diego, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA.,Department of Pediatrics, University of California, San Diego, CA, USA.,Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA, USA. .,Department of Computer Science and Engineering, University of California, San Diego, CA, USA. .,Center for Microbiome Innovation, University of California, San Diego, CA, USA.
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, CA, USA. .,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA. .,Center for Microbiome Innovation, University of California, San Diego, CA, USA.
| |
Collapse
|
9
|
Lebeuf M, Turgeon N, Faubert C, Pleau A, Robillard J, Paradis É, Marette A, Duchaine C. Contaminants and Where to Find Them: Microbiological Quality Control in Axenic Animal Facilities. Front Microbiol 2021; 12:709399. [PMID: 34484147 PMCID: PMC8415547 DOI: 10.3389/fmicb.2021.709399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
The use of axenic animal models in experimental research has exponentially grown in the past few years and the most reliable way for confirming their axenic status remains unclear. It is especially the case when using individual ventilated positive-pressure cages such as the Isocage. This type of cage are at a greater risk of contamination and expose animals to a longer handling process leading to more potential stress when opened compared to isolators. The aim of this study was to propose simple ways to detect microbial contaminants with Isocages type isolator resulting by developing, validating and optimizing three different methods (culture, microscopy, and molecular). These three approaches were also tested in situ by spiking 21 axenic mice with different microorganisms. Our results suggest that the culture method can be used for feces and surface station (IBS) swabs exclusively (in Brain Heart Infusion for 7 days at 25°C and 37°C in aerobic conditions, and at 30°C in anaerobic conditions), while microscopy (wet mounts) and molecular method (quantitative PCR) were only suitable for fecal matter analyses. In situ results suggests that the culture and molecular methods can detect up to 100% of bacterial contamination events while the microscopy approach generates many erroneous results when not performed by a skilled microscopist. In situ results also suggest that when an axenic mouse is contaminated by a microbial agent, the microorganism will colonize the mouse to such an extent that detection is obvious in 4 days, in average. This report validates simple but complimentary tests that can be used for optimal detection of contaminants in axenic animal facilities using Isocage type isolators.
Collapse
Affiliation(s)
- Maria Lebeuf
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Quebec City, QC, Canada
| | - Nathalie Turgeon
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Cynthia Faubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Alexandre Pleau
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Justin Robillard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Éric Paradis
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - André Marette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada.,Département de Médecine, Université Laval, Quebec City, QC, Canada.,Pfizer Canada - CIHR Chair in the Pathogenesis of Insulin Resistance and Cardiovascular Diseases, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| | - Caroline Duchaine
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Quebec City, QC, Canada.,Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada.,Tier-1 Canada Research Chair in Bioaerosols, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC, Canada
| |
Collapse
|
10
|
Lebeuf M, Turgeon N, Faubert C, Robillard J, Paradis É, Duchaine C. Managing the bacterial contamination risk in an axenic mice animal facility. Can J Microbiol 2021; 67:657-666. [PMID: 33844954 DOI: 10.1139/cjm-2020-0519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A gap exists between good laboratory practices with axenic animals and the procedures applied. This work examined the efficacy of sodium dichloroisocyanurate (MB-10) and potassium peroxymonosulfate (Virkon™) disinfectants, as well as the appropriate soaking time for materials used with the ISOcage Biosafety Station™. We also compared the microbial load in cage systems hosting mice over 2 weeks in axenic rooms (ARs) and in typical specific-pathogen-free (SPF) non-axenic rooms (NARs) to identify resistant microorganisms, targeted for longer soaking disinfection, and evaluated the necessary procedures for reducing the microbial load in AR. Staphylococcus was the most frequently isolated genus (in both ARs and NARs). An average of three spore-forming microorganisms per cage were counted from AR. The disinfection time to reach 1 log reduction for Bacillus atrophaeus spores varied from 138 s (100 ppm MB-10) to 290 (Virkon™) to <20 s for S. epidermidis (100 ppm MB-10). AR management protocols lead to a microbial load that is 1000 times lower than that found in NARs. Data comparing the microbial load in SPF and axenic facilities can be used to improve the effectiveness of their microbial control procedures.
Collapse
Affiliation(s)
- Maria Lebeuf
- Département de biochimie, microbiologie et bioinformatique, Université Laval, Quebec city, Quebec, Canada
| | - Nathalie Turgeon
- Research center, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Cynthia Faubert
- Research animal facility, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Justin Robillard
- Research animal facility, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Éric Paradis
- Research center, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| | - Caroline Duchaine
- Département de biochimie, microbiologie et bioinformatique, Université Laval, Quebec city, Quebec, Canada; Tier-1, Canada Research Chair on Bioaerosols, Institutuniversitaire de cardiologie et de pneumologie de Québec, Quebec City, Quebec, Canada
| |
Collapse
|
11
|
Basic M, Bolsega S, Smoczek A, Gläsner J, Hiergeist A, Eberl C, Stecher B, Gessner A, Bleich A. Monitoring and contamination incidence of gnotobiotic experiments performed in microisolator cages. Int J Med Microbiol 2021; 311:151482. [PMID: 33636479 DOI: 10.1016/j.ijmm.2021.151482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022] Open
Abstract
With the increased interest in the microbiome research, gnotobiotic animals and techniques emerged again as valuable tools to investigate functional effects of host-microbe and microbe-microbe interactions. The increased demand for gnotobiotic experiments has resulted in the greater need for housing systems for short-term maintenance of gnotobiotic animals. During the last six years, the gnotobiotic facility of the Hannover Medical School has worked intensively with different housing systems for gnotobiotic animals. Here, we report our experience in handling, contamination incidence, and monitoring strategies that we apply for controlling gnotobiotic experiments. From our experience, the risk of introducing contaminants to animals housed in microisolator cages is higher than in isolators. However, with strict operating protocols, the contamination rate in these systems can be minimized. In addition to spore-forming bacteria and fungi from the environment, spore-forming bacteria from defined bacterial communities used in experiments represent the major risk for contamination of gnotobiotic experiments performed in microisolator cages. The presence/absence of contaminants in germ-free animals can be easily monitored by preparation of wet mounts and Gram staining of fecal samples. Contaminants in animals colonized with specific microorganisms need to be tracked with methods such as next-generation sequencing. However, when using PCR-based methods it is important to consider that relatively small amounts of bacterial DNA detected likely originates from food, bedding, or reagents and is not to be interpreted as true contamination.
Collapse
Affiliation(s)
- Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Silvia Bolsega
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Anna Smoczek
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Joachim Gläsner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Claudia Eberl
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Germany; German Center of Infection Research (DZIF), Partner Site Munich, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
12
|
Ka Y, Ogura T, Tomiyama K, Ueno M, Nozu R, Tsuruzono N, Nozawa Y, Hamano M, Takakura A, Takahashi R. Creation of an experimental rearing environment for microbiome animal research using an individually ventilated cage system and bioBUBBLE enclosure. Exp Anim 2020; 70:177-184. [PMID: 33239489 PMCID: PMC8150247 DOI: 10.1538/expanim.20-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
To avoid microbial contamination risk, vinyl film isolators are generally used in animal microbiome experiments involving germ-free (GF) mice and/or
gnotobiotic (GB) mice. However, it can take several months to gain expertise in operating the isolator competently. Furthermore, sterilization and sterility
testing, which are essential for isolator preparation, can take more than 20 days. Hence, we built an experimental rearing environment that combines an
individual ventilation cage system and a bioBUBBLE clean room enclosure to easily set up an experimental animal microbiome environment for animal facilities. In
this work, a three-step evaluation was conducted. First, we examined whether GF mice can be maintained in this rearing environment without bacterial
contamination. Next, we examined whether GF and GB mice can be maintained without cross-contamination in one individual ventilation cage rack. Finally, we
tested whether GF mice can be maintained in a biological safety cabinet controlled by negative pressure. In our series of experiments, no microbial
contamination occurred over more than 3 months. These results indicated that our rearing system that combines the individual ventilation cage and bioBUBBLE
systems can be used not only for experiments with GF mice but also for Biosafety Level 2 experiments that handle bacteria. Our system can mitigate various
disadvantages of using vinyl film isolators. In conclusion, we established an experimental method with improved working time and efficiency compared with those
of the previous vinyl isolator method.
Collapse
Affiliation(s)
- Yuyo Ka
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Tomoyuki Ogura
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Kayo Tomiyama
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Masami Ueno
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Ryoko Nozu
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Nobuyuki Tsuruzono
- NOMURA JIMUSHO, Inc., Hibiya Central Bldg, 1-2-9 Nishi Shimbashi, Minato-ku, Tokyo 105-0003, Japan
| | - Yuya Nozawa
- CLEA Japan, Inc., 1-2-7 Higashiyama, Meguro-ku, Tokyo 153-8533, Japan
| | - Mariko Hamano
- CLEA Japan, Inc., 1-2-7 Higashiyama, Meguro-ku, Tokyo 153-8533, Japan
| | - Akira Takakura
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
13
|
Viennois E, Bretin A, Dubé PE, Maue AC, Dauriat CJG, Barnich N, Gewirtz AT, Chassaing B. Dietary Emulsifiers Directly Impact Adherent-Invasive E. coli Gene Expression to Drive Chronic Intestinal Inflammation. Cell Rep 2020; 33:108229. [PMID: 33027647 PMCID: PMC7539532 DOI: 10.1016/j.celrep.2020.108229] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary emulsifiers carboxymethylcellulose (CMC) and polysorbate-80 (P80) disturb gut microbiota, promoting chronic inflammation. Mice with minimal microbiota are protected against emulsifiers’ effects, leading us to hypothesize that these compounds might provoke select pathobionts to promote inflammation. Gnotobiotic wild-type (WT) and interleukin-10 (IL-10)−/− mice were colonized with Crohn’s-disease-associated adherent-invasive E. coli (AIEC) and subsequently administered CMC or P80. AIEC colonization of GF and altered Schaedler flora (ASF) mice results in chronic intestinal inflammation and metabolism dysregulations when consuming the emulsifier. In IL-10−/− mice, AIEC mono-colonization results in severe intestinal inflammation in response to emulsifiers. Exposure of AIEC to emulsifiers in vitro increases its motility and ability to adhere to intestinal epithelial cells. Transcriptomic analysis reveals that emulsifiers directly induce expression of clusters of genes that mediate AIEC virulence and promotion of inflammation. To conclude, emulsifiers promote virulence and encroachment of pathobionts, providing a means by which these compounds may drive inflammation in hosts carrying such bacteria. Dietary emulsifiers alter the intestinal microbiota, promoting chronic inflammation Select pathobionts are required to mediate the detrimental effects of emulsifiers Emulsifiers directly induce the expression of bacterial virulence genes Microbiota-based dietary intervention appears warranted
Collapse
Affiliation(s)
- Emilie Viennois
- INSERM, U1149, Center of Research on Inflammation, Université de Paris, Paris, France; Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Alexis Bretin
- Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | | | | | - Charlène J G Dauriat
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université de Paris, Paris, France
| | - Nicolas Barnich
- Université Clermont Auvergne/Inserm U1071 USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Benoit Chassaing
- Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA; INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université de Paris, Paris, France; Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Kitamoto S, Nagao-Kitamoto H, Jiao Y, Gillilland MG, Hayashi A, Imai J, Sugihara K, Miyoshi M, Brazil JC, Kuffa P, Hill BD, Rizvi SM, Wen F, Bishu S, Inohara N, Eaton KA, Nusrat A, Lei YL, Giannobile WV, Kamada N. The Intermucosal Connection between the Mouth and Gut in Commensal Pathobiont-Driven Colitis. Cell 2020; 182:447-462.e14. [PMID: 32758418 DOI: 10.1016/j.cell.2020.05.048] [Citation(s) in RCA: 381] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 04/22/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
The precise mechanism by which oral infection contributes to the pathogenesis of extra-oral diseases remains unclear. Here, we report that periodontal inflammation exacerbates gut inflammation in vivo. Periodontitis leads to expansion of oral pathobionts, including Klebsiella and Enterobacter species, in the oral cavity. Amassed oral pathobionts are ingested and translocate to the gut, where they activate the inflammasome in colonic mononuclear phagocytes, triggering inflammation. In parallel, periodontitis results in generation of oral pathobiont-reactive Th17 cells in the oral cavity. Oral pathobiont-reactive Th17 cells are imprinted with gut tropism and migrate to the inflamed gut. When in the gut, Th17 cells of oral origin can be activated by translocated oral pathobionts and cause development of colitis, but they are not activated by gut-resident microbes. Thus, oral inflammation, such as periodontitis, exacerbates gut inflammation by supplying the gut with both colitogenic pathobionts and pathogenic T cells.
Collapse
Affiliation(s)
- Sho Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hiroko Nagao-Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yizu Jiao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Merritt G Gillilland
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Atsushi Hayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Research Laboratory, Miyarisan Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Jin Imai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kohei Sugihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mao Miyoshi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Peter Kuffa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Brett D Hill
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Syed M Rizvi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shrinivas Bishu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Naohiro Inohara
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kathryn A Eaton
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - William V Giannobile
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Sevrin G, Massier S, Chassaing B, Agus A, Delmas J, Denizot J, Billard E, Barnich N. Adaptation of adherent-invasive E. coli to gut environment: Impact on flagellum expression and bacterial colonization ability. Gut Microbes 2020; 11:364-380. [PMID: 29494278 PMCID: PMC7524368 DOI: 10.1080/19490976.2017.1421886] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The pathogenesis of Crohn's disease (CD) is multifactorial and involves genetic susceptibility, environmental triggers and intestinal microbiota. Adherent-invasive Escherichia coli (AIEC) are flagellated bacteria more prevalent in CD patients than in healthy subjects and promote chronic intestinal inflammation. We aim at deciphering the role of flagella and flagellin modulation by intestinal conditions. AIEC flagellum expression is required for optimal adhesion to and invasion of intestinal epithelial cells. Interestingly, differential flagellin regulation was observed between commensal E. coli (HS) and AIEC (LF82) strains: flagellum expression by AIEC bacteria, in contrast to that of commensal E. coli, is enhanced under intestinal conditions (the presence of bile acids and mucins). Flagella are involved in the ability of the AIEC LF82 strain to cross a mucus layer in vitro and in vivo, conferring a selective advantage in penetrating the mucus layer and reaching the epithelial surface. In a CEABAC10 mouse model, a non-motile mutant (LF82-ΔfliC) exhibits reduced colonization that is restored by a dextran sodium sulfate treatment that alters mucus layer integrity. Moreover, a mutant that continuously secretes flagellin (LF82-ΔflgM) triggers a stronger inflammatory response than the wild-type strain, and the mutant's ability to colonize the CEABAC10 mouse model is decreased. Overexpression of flagellin in bacteria in contact with epithelial cells can be detrimental to their virulence by inducing acute inflammation that enhances AIEC clearance. AIEC pathobionts must finely modulate flagellum expression during the infection process, taking advantage of their specific virulence gene regulation to improve their adaptability and flexibility within the gut environment.
Collapse
Affiliation(s)
- Gwladys Sevrin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France
| | - Sébastien Massier
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France
| | - Benoit Chassaing
- Neuroscience Institute & Institute for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Allison Agus
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France
| | - Julien Delmas
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Service de Bactériologie, Parasitologie Mycologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jérémy Denizot
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Elisabeth Billard
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000Clermont-Ferrand, France,Université Clermont Auvergne, Institut Universitaire de Technologie de Clermont-Ferrand, Clermont-Ferrand, France,CONTACT Nicolas Barnich M2iSH, Inserm, Université Clermont Auvergne, USC-INRA 2018, 28 place Henri Dunant, 63001Clermont-Ferrand, France
| |
Collapse
|
16
|
Nagao-Kitamoto H, Leslie JL, Kitamoto S, Jin C, Thomsson KA, Gillilland MG, Kuffa P, Goto Y, Jenq RR, Ishii C, Hirayama A, Seekatz AM, Martens EC, Eaton KA, Kao JY, Fukuda S, Higgins PDR, Karlsson NG, Young VB, Kamada N. Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nat Med 2020; 26:608-617. [PMID: 32066975 PMCID: PMC7160049 DOI: 10.1038/s41591-020-0764-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
The involvement of host immunity in the gut microbiota-mediated colonization resistance to Clostridioides difficile infection (CDI) is incompletely understood. Here, we show that interleukin (IL)-22, induced by colonization of the gut microbiota, is crucial for the prevention of CDI in human microbiota-associated (HMA) mice. IL-22 signaling in HMA mice regulated host glycosylation, which enabled the growth of succinate-consuming bacteria Phascolarctobacterium spp. within the gut microbiome. Phascolarctobacterium reduced the availability of luminal succinate, a crucial metabolite for the growth of C. difficile, and therefore prevented the growth of C. difficile. IL-22-mediated host N-glycosylation is likely impaired in patients with ulcerative colitis (UC) and renders UC-HMA mice more susceptible to CDI. Transplantation of healthy human-derived microbiota or Phascolarctobacterium reduced luminal succinate levels and restored colonization resistance in UC-HMA mice. IL-22-mediated host glycosylation thus fosters the growth of commensal bacteria that compete with C. difficile for the nutritional niche.
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jhansi L Leslie
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- The University of Virginia, Washington, VA, USA
| | - Sho Kitamoto
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chunsheng Jin
- Institute of Biomedicine, Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Kristina A Thomsson
- Institute of Biomedicine, Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Merritt G Gillilland
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter Kuffa
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yoshiyuki Goto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Mucosal Symbiosis, International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Robert R Jenq
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston TX, USA
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Anna M Seekatz
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Clemson University, Columbia, SC, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathryn A Eaton
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John Y Kao
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Ebina, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Peter D R Higgins
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Niclas G Karlsson
- Institute of Biomedicine, Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Vincent B Young
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
The microbiota programs DNA methylation to control intestinal homeostasis and inflammation. Nat Microbiol 2020; 5:610-619. [PMID: 32015497 DOI: 10.1038/s41564-019-0659-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Although much research has been done on the diversity of the gut microbiome, little is known about how it influences intestinal homeostasis under normal and pathogenic conditions. Epigenetic mechanisms have recently been suggested to operate at the interface between the microbiota and the intestinal epithelium. We performed whole-genome bisulfite sequencing on conventionally raised and germ-free mice, and discovered that exposure to commensal microbiota induced localized DNA methylation changes at regulatory elements, which are TET2/3-dependent. This culminated in the activation of a set of 'early sentinel' response genes to maintain intestinal homeostasis. Furthermore, we demonstrated that exposure to the microbiota in dextran sodium sulfate-induced acute inflammation results in profound DNA methylation and chromatin accessibility changes at regulatory elements, leading to alterations in gene expression programs enriched in colitis- and colon-cancer-associated functions. Finally, by employing genetic interventions, we show that microbiota-induced epigenetic programming is necessary for proper intestinal homeostasis in vivo.
Collapse
|
18
|
Niimi K, Takahashi E. New system to examine the activity and water and food intake of germ-free mice in a sealed positive-pressure cage. Heliyon 2019; 5:e02176. [PMID: 31463382 PMCID: PMC6706585 DOI: 10.1016/j.heliyon.2019.e02176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/09/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023] Open
Abstract
Germ-free (GF) mice are useful models for the examination of host–microbe interactions in health and disease. We recently reported on the maintenance of individual GF mice for more than 1 year in a sealed positive-pressure cage. However, no useful system exists to automatically record basic behavioral patterns, such as activity and the intake of water and food, under GF status. In this study, we examined basic behavior by combining the sealed positive-pressure cage with a behavioral monitoring system and observed the gross morphology of GF mice at 4 weeks and 8 months of age. GF mice exhibited cecal enlargement and had lower body and adipose tissue weights compared with age-matched specific pathogen–free (SPF) mice. Although both strains had similar circadian rhythms, GF mice exhibited decreased activity compared with age-matched SPF mice. GF mice also exhibited increased levels of water intake compared with age-matched SPF mice. Although GF mice demonstrated decreased food intake levels at the age of 4 weeks, they exhibited increased food intake levels compared with age-matched SPF mice at the age of 8 months. The present research indicates that automated measurement systems that record the basic behaviors of GF mice for long periods are useful for the acceleration of the study of metabolic functions and host–microbe interactions.
Collapse
Affiliation(s)
- Kimie Niimi
- Research Resources Division, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Eiki Takahashi
- Research Resources Division, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
19
|
Iannone LF, Preda A, Blottière HM, Clarke G, Albani D, Belcastro V, Carotenuto M, Cattaneo A, Citraro R, Ferraris C, Ronchi F, Luongo G, Santocchi E, Guiducci L, Baldelli P, Iannetti P, Pedersen S, Petretto A, Provasi S, Selmer K, Spalice A, Tagliabue A, Verrotti A, Segata N, Zimmermann J, Minetti C, Mainardi P, Giordano C, Sisodiya S, Zara F, Russo E, Striano P. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Rev Neurother 2019; 19:1037-1050. [PMID: 31260640 DOI: 10.1080/14737175.2019.1638763] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The microbiota-gut brain (MGB) axis is the bidirectional communication between the intestinal microbiota and the brain. An increasing body of preclinical and clinical evidence has revealed that the gut microbial ecosystem can affect neuropsychiatric health. However, there is still a need of further studies to elucidate the complex gene-environment interactions and the role of the MGB axis in neuropsychiatric diseases, with the aim of identifying biomarkers and new therapeutic targets, to allow early diagnosis and improving treatments. Areas covered: To review the role of MGB axis in neuropsychiatric disorders, prediction and prevention of disease through exploitation, integration, and combination of data from existing gut microbiome/microbiota projects and appropriate other International '-Omics' studies. The authors also evaluated the new technological advances to investigate and modulate, through nutritional and other interventions, the gut microbiota. Expert opinion: The clinical studies have documented an association between alterations in gut microbiota composition and/or function, whereas the preclinical studies support a role for the gut microbiota in impacting behaviors which are of relevance to psychiatry and other central nervous system (CNS) disorders. Targeting MGB axis could be an additional approach for treating CNS disorders and all conditions in which alterations of the gut microbiota are involved.
Collapse
Affiliation(s)
- Luigi Francesco Iannone
- Science of Health Department, School of Medicine, University of Catanzaro , Catanzaro , Italy
| | - Alberto Preda
- Paediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute , Genova , Italy
| | - Hervé M Blottière
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, JouyenJosas&MetaGenoPolis, INRA, Université Paris-Saclay , Jouyen Josas , France
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork , Cork , Ireland
| | - Diego Albani
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | | | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania 'Luigi Vanvitelli' , Napoli , Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli , Brescia , Italy.,Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry , King's College , London
| | - Rita Citraro
- Science of Health Department, School of Medicine, University of Catanzaro , Catanzaro , Italy
| | - Cinzia Ferraris
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine University of Pavia , Pavia , Italy
| | - Francesca Ronchi
- Department forBiomedical Research, University of Bern , Bern , Switzerland
| | - Gaia Luongo
- Ordine dei Tecnologi Alimentari Campania e Lazio , Napoli , Italy
| | | | - Letizia Guiducci
- National Research Council, Institute of Clinical Physiology , Pisa , Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, Section of Physiology, University of Genova , Genova , Italy
| | - Paola Iannetti
- Department of Pediatrics`, "Sapienza" University of Rome , Rome , Italy
| | - Sigrid Pedersen
- Department of Refractory Epilepsy, Division of Clinical Neuroscience, Oslo University Hospital , Oslo , Norway
| | - Andrea Petretto
- Laboratory of Mass Spectrometry - Core Facilities, Istituto Giannina Gaslini , Genova , Italy
| | - Stefania Provasi
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli , Brescia , Italy
| | - Kaja Selmer
- Department of Research and Development, Division of Clinical Neuroscience, Oslo University Hospital, Osla, Norway and Department of Refractory Epilepsy, Division of Clinical Neuroscience, Oslo University Hospital , Osla , Norway
| | - Alberto Spalice
- Department of Experimental Medicine, Section of Physiology, University of Genova , Genova , Italy
| | - Anna Tagliabue
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry , King's College , London
| | - Alberto Verrotti
- Department of Pediatrics, University of L'Aquila , L'Aquila , Italy
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento , Trento , Italy
| | - Jakob Zimmermann
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine University of Pavia , Pavia , Italy
| | - Carlo Minetti
- Paediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute , Genova , Italy
| | | | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano , Milano , Italy
| | - Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology , Queen Square, London , UK
| | - Federico Zara
- Laboratory of Neurogenetics, Istituto Giannina Gaslini , Genova , Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University of Catanzaro , Catanzaro , Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute , Genova , Italy
| |
Collapse
|
20
|
Abstract
Gnotobiotics or gnotobiology is a research field exploring organisms with a known microbiological state. In animal research, the development of gnotobiotics started in the late 19th century with the rederivation of germ-free guinea pigs. Cutting-edge achievements were accomplished by scientists in the Laboratories of Bacteriology at the University of Notre Dame (LOBUND). The primary goals of gnotobiotics were not only the development of the equipment required for long-term husbandry but also phenotypic characterization of germ-free animals. The first isolators were designed by Reynolds and Gustafsson as rigid-wall stainless steel autoclave-like chambers, which were subsequently replaced by Trexler’s flexible-film polyvinyl plastic isolators. Flexible-film or semi-rigid isolators are commonly used today. The long-term maintenance of gnotobiotic rodents is performed in positive-pressure isolators. However, to facilitate gnotobiotic experimental procedures, short-term husbandry systems have been developed. Gnotobiotic animal husbandry is laborious and requires experienced staff. Germ-free animals can be rederived from existing rodent colonies by hysterectomy or embryo transfer. The physiology and anatomy of germ-free rodents are different from those of specified pathogen-free (SPF) rodents. Furthermore, to guarantee gnotobiotic status, the colonies need to be regularly microbiologically monitored. Today, gnotobiotics provides a powerful tool to analyse functional effects of host-microbe interactions, especially in complex disease models. Gnotobiotic models combined with ‘omics’ approaches will be indispensable for future advances in microbiome research. Furthermore, these approaches will contribute to the development of novel therapeutic targets. In addition, regional or national gnotobiotic core facilities should be established in the future to support further applications of gnotobiotic models.
Collapse
Affiliation(s)
- Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| |
Collapse
|
21
|
Lange ME, Uwiera RRE, Inglis GD. Housing Gnotobiotic Mice in Conventional Animal Facilities. ACTA ACUST UNITED AC 2019; 9:e59. [DOI: 10.1002/cpmo.59] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Máximo E. Lange
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre; Lethbridge Alberta Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta; Edmonton Alberta Canada
| | - Richard R. E. Uwiera
- Department of Agricultural, Food, and Nutritional Science, University of Alberta; Edmonton Alberta Canada
| | - G. Douglas Inglis
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre; Lethbridge Alberta Canada
| |
Collapse
|
22
|
Moor AE, Harnik Y, Ben-Moshe S, Massasa EE, Rozenberg M, Eilam R, Bahar Halpern K, Itzkovitz S. Spatial Reconstruction of Single Enterocytes Uncovers Broad Zonation along the Intestinal Villus Axis. Cell 2018; 175:1156-1167.e15. [PMID: 30270040 DOI: 10.1016/j.cell.2018.08.063] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/29/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Abstract
The intestinal epithelium is a highly structured tissue composed of repeating crypt-villus units. Enterocytes perform the diverse tasks of absorbing a wide range of nutrients while protecting the body from the harsh bacterium-rich environment. It is unknown whether these tasks are spatially zonated along the villus axis. Here, we extracted a large panel of landmark genes characterized by transcriptomics of laser capture microdissected villus segments and utilized it for single-cell spatial reconstruction, uncovering broad zonation of enterocyte function along the villus. We found that enterocytes at villus bottoms express an anti-bacterial gene program in a microbiome-dependent manner. They next shift to sequential expression of carbohydrates, peptides, and fat absorption machineries in distinct villus compartments. Finally, they induce a Cd73 immune-modulatory program at the villus tips. Our approach can be used to uncover zonation patterns in other organs when prior knowledge of landmark genes is lacking.
Collapse
Affiliation(s)
- Andreas E Moor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Yotam Harnik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Efi E Massasa
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Milena Rozenberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
23
|
Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell 2018; 174:1388-1405.e21. [DOI: 10.1016/j.cell.2018.08.041] [Citation(s) in RCA: 725] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 06/05/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022]
|
24
|
Lu J, Synowiec S, Lu L, Yu Y, Bretherick T, Takada S, Yarnykh V, Caplan J, Caplan M, Claud EC, Drobyshevsky A. Microbiota influence the development of the brain and behaviors in C57BL/6J mice. PLoS One 2018; 13:e0201829. [PMID: 30075011 PMCID: PMC6075787 DOI: 10.1371/journal.pone.0201829] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
We investigated the contributions of commensal bacteria to brain structural maturation by magnetic resonance imaging and behavioral tests in four and 12 weeks old C57BL/6J specific pathogen free (SPF) and germ free (GF) mice. SPF mice had increased volumes and fractional anisotropy in major gray and white matter areas and higher levels of myelination in total brain, major white and grey matter structures at either four or 12 weeks of age, demonstrating better brain maturation and organization. In open field test, SPF mice had better mobility and were less anxious than GF at four weeks. In Morris water maze, SPF mice demonstrated better spatial and learning memory than GF mice at 12 weeks. In fear conditioning, SPF mice had better contextual memory than GF mice at 12 weeks. In three chamber social test, SPF mice demonstrated better social novelty than GF mice at 12 weeks. Our data demonstrate numerous significant differences in morphological brain organization and behaviors between SPF and GF mice. This suggests that commensal bacteria are necessary for normal morphological development and maturation in the grey and white matter of the brain regions with implications for behavioral outcomes such as locomotion and cognitive functions.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, Neonatology, Pritzker School of Medicine, the University of Chicago, Chicago, Illinois, United States of America
| | - Sylvia Synowiec
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, Illinois, United States of America
| | - Lei Lu
- Department of Pediatrics, Neonatology, Pritzker School of Medicine, the University of Chicago, Chicago, Illinois, United States of America
| | - Yueyue Yu
- Department of Pediatrics, Neonatology, Pritzker School of Medicine, the University of Chicago, Chicago, Illinois, United States of America
| | - Talitha Bretherick
- Laboratório de Neurogenética, Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Takada
- Laboratório de Neurogenética, Federal University of São Paulo, São Paulo, Brazil
| | - Vasily Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| | - Jack Caplan
- Department of Chemical Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, United States of America
| | - Michael Caplan
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, Illinois, United States of America
| | - Erika C. Claud
- Department of Pediatrics, Neonatology, Pritzker School of Medicine, the University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AD); (ECC)
| | - Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, Illinois, United States of America
- * E-mail: (AD); (ECC)
| |
Collapse
|
25
|
Mullineaux-Sanders C, Collins JW, Ruano-Gallego D, Levy M, Pevsner-Fischer M, Glegola-Madejska IT, Sågfors AM, Wong JLC, Elinav E, Crepin VF, Frankel G. Citrobacter rodentium Relies on Commensals for Colonization of the Colonic Mucosa. Cell Rep 2018; 21:3381-3389. [PMID: 29262319 PMCID: PMC5746604 DOI: 10.1016/j.celrep.2017.11.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/25/2017] [Accepted: 11/27/2017] [Indexed: 01/13/2023] Open
Abstract
We investigated the role of commensals at the peak of infection with the colonic mouse pathogen Citrobacter rodentium. Bioluminescent and kanamycin (Kan)-resistant C. rodentium persisted avirulently in the cecal lumen of mice continuously treated with Kan. A single Kan treatment was sufficient to displace C. rodentium from the colonic mucosa, a phenomenon not observed following treatment with vancomycin (Van) or metronidazole (Met). Kan, Van, and Met induce distinct dysbiosis, suggesting C. rodentium relies on specific commensals for colonic colonization. Expression of the master virulence regulator ler is induced in germ-free mice, yet C. rodentium is only seen in the cecal lumen. Moreover, in conventional mice, a single Kan treatment was sufficient to displace C. rodentium constitutively expressing Ler from the colonic mucosa. These results show that expression of virulence genes is not sufficient for colonization of the colonic mucosa and that commensals are essential for a physiological infection course. Specific dysbiosis rapidly displaces Citrobacter rodentium from the colonic mucosa Mucosal exclusion is independent of C. rodentium virulence gene expression Extended antibiotic treatment causes accumulation of luminal avirulent C. rodentium C. rodentium relies on commensals for survival at the colonic mucosa
Collapse
Affiliation(s)
- Caroline Mullineaux-Sanders
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - James W Collins
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - David Ruano-Gallego
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Maayan Levy
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Izabela T Glegola-Madejska
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Agnes M Sågfors
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Joshua L C Wong
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK; Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Eran Elinav
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Valerie F Crepin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, UK.
| |
Collapse
|
26
|
Chassaing B, Gewirtz AT. Mice harboring pathobiont-free microbiota do not develop intestinal inflammation that normally results from an innate immune deficiency. PLoS One 2018; 13:e0195310. [PMID: 29617463 PMCID: PMC5884553 DOI: 10.1371/journal.pone.0195310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Inability to maintain a stable and beneficial microbiota is associated with chronic gut inflammation, which classically manifests as colitis but may more commonly exist as low-grade inflammation that promotes metabolic syndrome. Alterations in microbiota, and associated inflammation, can originate from dysfunction in host proteins that manage the microbiota, such as the flagellin receptor TLR5. That the complete absence of a microbiota (i.e. germfree conditions) eliminates all evidence of inflammation in TLR5-deficient mice demonstrates that this model of gut inflammation is microbiota-dependent. We hypothesize that such microbiota dependency reflects an inability to manage pathobionts, such as Adherent-Invasive E. coli (AIEC). Herein, we examined the extent to which microbiota mismanagement and associated inflammation in TLR5-deficient mice would manifest in a limited and pathobiont-free microbiota. For this purpose, WT and TLR5-deficient mice were generated and maintained with the 8-member consortium of bacteria referred to as "Altered Schaedler Flora" (ASF). Such ASF animals were subsequently inoculated with AIEC reference strain LF82. Feces were assayed for bacterial loads, fecal lipopolysaccharide and flagellin loads, fecal inflammatory marker lipocalin-2 and microbiota composition. RESULTS Relative to similarly maintained WT mice, mice lacking TLR5 (T5KO) did not display low-grade intestinal inflammation nor metabolic syndrome under ASF conditions. Concomitantly, the ASF microbial community was similar between WT and T5KO mice, while inoculation with AIEC strain LF82 resulted in alteration of the ASF community in T5KO mice compared to WT control animals. AIEC LF82 inoculation in ASF T5KO mice resulted in microbiota components having elevated levels of bioactive lipopolysaccharide and flagellin, a modest level of low-grade inflammation and increased adiposity. CONCLUSIONS In a limited-complexity pathobiont-free microbiota, loss of the flagellin receptor TLR5 does not impact microbiota composition nor its ability to promote inflammation. Addition of AIEC to this ecosystem perturbs microbiota composition, increases levels of lipopolysaccharide and flagellin, but only modestly promotes gut inflammation and adiposity, suggesting that the phenotypes previously associated with loss of this innate immune receptor require disruption of complex microbiota.
Collapse
Affiliation(s)
- Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America
| | - Andrew T. Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| |
Collapse
|
27
|
Rodriguez-Palacios A, Aladyshkina N, Ezeji JC, Erkkila HL, Conger M, Ward J, Webster J, Cominelli F. 'Cyclical Bias' in Microbiome Research Revealed by A Portable Germ-Free Housing System Using Nested Isolation. Sci Rep 2018; 8:3801. [PMID: 29491439 PMCID: PMC5830500 DOI: 10.1038/s41598-018-20742-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/12/2018] [Indexed: 12/24/2022] Open
Abstract
Germ-Free (GF) research has required highly technical pressurized HEPA-ventilation anchored systems for decades. Herein, we validated a GF system that can be easily implemented and portable using Nested Isolation (NesTiso). GF-standards can be achieved housing mice in non-HEPA-static cages, which only need to be nested 'one-cage-inside-another' resembling 'Russian dolls'. After 2 years of monitoring ~100,000 GF-mouse-days, NesTiso showed mice can be maintained GF for life (>1.3 years), with low animal daily-contamination-probability risk (1 every 867 days), allowing the expansion of GF research with unprecedented freedom and mobility. At the cage level, with 23,360 GF cage-days, the probability of having a cage contamination in NesTiso cages opened in biosafety hoods was statistically identical to that of opening cages inside (the 'gold standard') multi-cage pressurized GF isolators. When validating the benefits of using NesTiso in mouse microbiome research, our experiments unexpectedly revealed that the mouse fecal microbiota composition within the 'bedding material' of conventional SPF-cages suffers cyclical selection bias as moist/feces/diet/organic content ('soiledness') increases over time (e.g., favoring microbiome abundances of Bacillales, Burkholderiales, Pseudomonadales; and cultivable Enterococcus faecalis over Lactobacillus murinus and Escherichia coli), which in turn cyclically influences the gut microbiome dynamics of caged mice. Culture 'co-streaking' assays showed that cohoused mice exhibiting different fecal microbiota/hemolytic profiles in clean bedding (high-within-cage individual diversity) 'cyclically and transiently appear identical' (less diverse) as bedding soiledness increases, and recurs. Strategies are proposed to minimize this novel functional form of cyclical bedding-dependent microbiome selection bias.
Collapse
Affiliation(s)
- Alexander Rodriguez-Palacios
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Natalia Aladyshkina
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jessica C Ezeji
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Hailey L Erkkila
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Mathew Conger
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - John Ward
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Joshua Webster
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| |
Collapse
|
28
|
Chassaing B, De Bodt J, Marzorati M, Van de Wiele T, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 2017; 66:1414-1427. [PMID: 28325746 PMCID: PMC5940336 DOI: 10.1136/gutjnl-2016-313099] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/13/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The intestinal microbiota plays a central role in the development of many chronic inflammatory diseases including IBD and metabolic syndrome. Administration of substances that alter microbiota composition, including the synthetic dietary emulsifiers polysorbate 80 (P80) and carboxymethylcellulose (CMC), can promote such inflammatory disorders. However, that inflammation itself impacts microbiota composition has obfuscated defining the extent to which these compounds or other substances act directly upon the microbiota versus acting on host parameters that promote inflammation, which subsequently reshapes the microbiota. DESIGN We examined the direct impact of CMC and P80 on the microbiota using the mucosal simulator of the human intestinal microbial ecosystem (M-SHIME) model that maintains a complex stable human microbiota in the absence of a live host. RESULTS This approach revealed that both P80 and CMC acted directly upon human microbiota to increase its proinflammatory potential, as revealed by increased levels of bioactive flagellin. The CMC-induced increase in flagellin was rapid (1 day) and driven by altered microbiota gene expression. In contrast, the P80-induced flagellin increase occurred more slowly and was closely associated with altered species composition. Transfer of both emulsifier-treated M-SHIME microbiotas to germ-free recipient mice recapitulated many of the host and microbial alterations observed in mice directly treated with emulsifiers. CONCLUSIONS These results demonstrate a novel paradigm of deconstructing host-microbiota interactions and indicate that the microbiota can be directly impacted by these commonly used food additives, in a manner that subsequently drives intestinal inflammation.
Collapse
Affiliation(s)
- Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
| | - Jana De Bodt
- Center of Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
| | - Massimo Marzorati
- Center of Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
| | - Tom Van de Wiele
- Center of Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
| | - Andrew T. Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
| |
Collapse
|
29
|
Lundberg R, Bahl MI, Licht TR, Toft MF, Hansen AK. Microbiota composition of simultaneously colonized mice housed under either a gnotobiotic isolator or individually ventilated cage regime. Sci Rep 2017; 7:42245. [PMID: 28169374 PMCID: PMC5294411 DOI: 10.1038/srep42245] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 12/26/2022] Open
Abstract
Germ-free rodents colonized with microbiotas of interest are used for host-microbiota investigations and for testing microbiota-targeted therapeutic candidates. Traditionally, isolators are used for housing such gnotobiotic rodents due to optimal protection from the environment, but research groups focused on the microbiome are increasingly combining or substituting isolator housing with individually ventilated cage (IVC) systems. We compared the effect of housing systems on the gut microbiota composition of germ-free mice colonized with a complex microbiota and housed in either multiple IVC cages in an IVC facility or in multiple open-top cages in an isolator during three generations and five months. No increase in bacterial diversity as assessed by 16S rRNA gene sequencing was observed in the IVC cages, despite not applying completely aseptic cage changes. The donor bacterial community was equally represented in both housing systems. Time-dependent clustering between generations was observed in both systems, but was strongest in the IVC cages. Different relative abundance of a Rikenellaceae genus contributed to separate clustering of the isolator and IVC communities. Our data suggest that complex microbiotas are protected in IVC systems, but challenges related to temporal dynamics should be addressed.
Collapse
Affiliation(s)
- Randi Lundberg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.,Internal Research and Development, Taconic Biosciences, 4623 Lille Skensved, Denmark
| | - Martin I Bahl
- National Food Institute, Technical University of Denmark, 2860 Søborg, Denmark
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, 2860 Søborg, Denmark
| | - Martin F Toft
- Internal Research and Development, Taconic Biosciences, 4623 Lille Skensved, Denmark
| | - Axel K Hansen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
30
|
Chassaing B, Gewirtz AT. Use of Gnotobiotic Mice in the Study of Metabolic Syndrome. GNOTOBIOTICS 2017:385-390. [DOI: 10.1016/b978-0-12-804561-9.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
31
|
Nicklas W, Keubler L, Bleich A. Maintaining and Monitoring the Defined Microbiota Status of Gnotobiotic Rodents. ILAR J 2016; 56:241-9. [PMID: 26323633 DOI: 10.1093/ilar/ilv029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gnotobiotic (germfree, defined colonized) rodents have become powerful tools to advance our understanding of the host-microbiome relationship. However, the maintenance and ultimately the monitoring of gnotobiotic rodents is a critical, labor-intensive, and costly process (e.g., sterility, not absence of specific pathogens, must be demonstrated in germfree animals). Here, we provide information on the housing and maintenance of gnotobiotic animals, elucidate prophylactic measurements to avoid contamination, and make specific recommendations for sampling procedures, sampling frequencies, and test methods.
Collapse
Affiliation(s)
- Werner Nicklas
- Werner Nicklas, Dr. med. vet., DipECLAM, is head of the Microbiological Diagnostics of the German Cancer Research Center in Heidelberg, Germany. Lydia Keubler, PhD, is German board certified veterinarian and research associate and André Bleich, PhD, DipECLAM, is director of the Institute for Laboratory Animal Science and Central Animal Facility of the Hannover Medical School in Hannover, Germany
| | - Lydia Keubler
- Werner Nicklas, Dr. med. vet., DipECLAM, is head of the Microbiological Diagnostics of the German Cancer Research Center in Heidelberg, Germany. Lydia Keubler, PhD, is German board certified veterinarian and research associate and André Bleich, PhD, DipECLAM, is director of the Institute for Laboratory Animal Science and Central Animal Facility of the Hannover Medical School in Hannover, Germany
| | - André Bleich
- Werner Nicklas, Dr. med. vet., DipECLAM, is head of the Microbiological Diagnostics of the German Cancer Research Center in Heidelberg, Germany. Lydia Keubler, PhD, is German board certified veterinarian and research associate and André Bleich, PhD, DipECLAM, is director of the Institute for Laboratory Animal Science and Central Animal Facility of the Hannover Medical School in Hannover, Germany
| |
Collapse
|
32
|
|
33
|
Nagao-Kitamoto H, Shreiner AB, Gillilland MG, Kitamoto S, Ishii C, Hirayama A, Kuffa P, El-Zaatari M, Grasberger H, Seekatz AM, Higgins PD, Young VB, Fukuda S, Kao JY, Kamada N. Functional Characterization of Inflammatory Bowel Disease-Associated Gut Dysbiosis in Gnotobiotic Mice. Cell Mol Gastroenterol Hepatol 2016; 2:468-481. [PMID: 27795980 PMCID: PMC5042563 DOI: 10.1016/j.jcmgh.2016.02.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Gut dysbiosis is closely involved in the pathogenesis of inflammatory bowel disease (IBD). However, it remains unclear whether IBD-associated gut dysbiosis contributes to disease pathogenesis or is merely secondary to intestinal inflammation. We established a humanized gnotobiotic (hGB) mouse system to assess the functional role of gut dysbiosis associated with 2 types of IBD: Crohn's disease (CD) and ulcerative colitis (UC). METHODS Germ-free mice were colonized by the gut microbiota isolated from patients with CD and UC, and healthy controls. Microbiome analysis, bacterial functional gene analysis, luminal metabolome analysis, and host gene expression analysis were performed in hGB mice. Moreover, the colitogenic capacity of IBD-associated microbiota was evaluated by colonizing germ-free colitis-prone interleukin 10-deficient mice with dysbiotic patients' microbiota. RESULTS Although the microbial composition seen in donor patients' microbiota was not completely reproduced in hGB mice, some dysbiotic features of the CD and UC microbiota (eg, decreased diversity, alteration of bacterial metabolic functions) were recapitulated in hGB mice, suggesting that microbial community alterations, characteristic for IBD, can be reproduced in hGB mice. In addition, colonization by the IBD-associated microbiota induced a proinflammatory gene expression profile in the gut that resembles the immunologic signatures found in CD patients. Furthermore, CD microbiota triggered more severe colitis than healthy control microbiota when colonized in germ-free interleukin 10-deficient mice. CONCLUSIONS Dysbiosis potentially contributes to the pathogenesis of IBD by augmenting host proinflammatory immune responses. Transcript profiling: GSE73882.
Collapse
Key Words
- CD, Crohn's disease
- CE-TOFMS, capillary electrophoresis time-of-flight mass spectrometry
- Crohn's Disease
- Dysbiosis
- GB, gnotobiotic
- GF, germ-free
- IBD, inflammatory bowel disease
- IFN, interferon
- IL, interleukin
- ILC, innate lymphoid cell
- IVC, individual ventilated cage
- Microbiota
- NK, natural killer
- OTU, operational taxonomic unit
- SCFA, short-chain fatty acid
- Th, T helper
- UC, ulcerative colitis
- Ulcerative Colitis
- WT, wild type
- hGB, humanized gnotobiotic
- rRNA, ribosomal RNA
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Andrew B. Shreiner
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Merritt G. Gillilland
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sho Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Peter Kuffa
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Mohamad El-Zaatari
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Helmut Grasberger
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anna M. Seekatz
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Peter D.R. Higgins
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Vincent B. Young
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - John Y. Kao
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,Correspondence Address correspondence to: Nobuhiko Kamada, PhD, Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, Michigan 48109. fax: (734) 763-2535.Division of GastroenterologyDepartment of Internal MedicineUniversity of Michigan Medical School1150 W Medical Center DriveAnn ArborMichigan 48109
| |
Collapse
|
34
|
Paik J, Pershutkina O, Meeker S, Yi JJ, Dowling S, Hsu C, Hajjar AM, Maggio-Price L, Beck DAC. Potential for using a hermetically-sealed, positive-pressured isocage system for studies involving germ-free mice outside a flexible-film isolator. Gut Microbes 2015; 6:255-65. [PMID: 26177210 PMCID: PMC4615381 DOI: 10.1080/19490976.2015.1064576] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Germ-free mice are used to examine questions about the role of the gut microbiota in development of diseases. Generally these animals are maintained in semi-rigid or flexible-film isolators to ensure their continued sterility or, if colonized with specific microbiota, to ensure that no new species are introduced. Here, we describe the use of a caging system in which individual cages are hermetically sealed and have their own filtered positive airflow. This isopositive caging system requires less space and reduces animal housing costs. By using strict sterile techniques, we kept mice germ-free in this caging system for 12 weeks. We also used this caging system and approach to conduct studies evaluating a) the stability of the microbiome in germ-free mice receiving a fecal transplant and b) the stability of dietary-induced microbiota changes in fecal-transplanted mice. As has been shown in fecal transfer studies in isolators, we found that the transferred microbiota stabilizes as early as 2 weeks post transfer although recipient microbiota did not completely recapitulate those of the donors. Interestingly, we also noted some sex effects in these studies indicating that the sex of recipients or donors may play a role in colonization of microbiota. However, a larger study will be needed to determine what role, if any, sex plays in colonization of microbiota. Based on our studies, an isopositive caging system may be utilized to test multiple donor samples for their effects on phenotypes of mice in both normal and disease states even with limited available space for housing.
Collapse
Affiliation(s)
- Jisun Paik
- The Department of Comparative Medicine; University of Washington; Seattle, WA USA,Correspondence to: Jisun Paik;
| | - Olesya Pershutkina
- The Department of Comparative Medicine; University of Washington; Seattle, WA USA
| | - Stacey Meeker
- The Department of Comparative Medicine; University of Washington; Seattle, WA USA
| | - Jaehun J Yi
- The Department of Comparative Medicine; University of Washington; Seattle, WA USA
| | - Susan Dowling
- The Department of Comparative Medicine; University of Washington; Seattle, WA USA
| | - Charlie Hsu
- The Department of Comparative Medicine; University of Washington; Seattle, WA USA
| | - Adeline M Hajjar
- The Department of Comparative Medicine; University of Washington; Seattle, WA USA
| | - Lillian Maggio-Price
- The Department of Comparative Medicine; University of Washington; Seattle, WA USA
| | - David A C Beck
- Department of Chemical Engineering; University of Washington; Seattle, WA USA,eScience Institute; University of Washington; Seattle, WA USA
| |
Collapse
|
35
|
Fontaine CA, Skorupski AM, Vowles CJ, Anderson NE, Poe SA, Eaton KA. How free of germs is germ-free? Detection of bacterial contamination in a germ free mouse unit. Gut Microbes 2015; 6:225-33. [PMID: 26018301 PMCID: PMC4615677 DOI: 10.1080/19490976.2015.1054596] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Management of germ free animals has changed little since the beginning of the 20th century. The current upswing in their use, however, has led to interest in improved methods of screening and housing. Traditionally, germ free colonies are screened for bacterial colonization by culture and examination of Gram stained fecal samples, but some investigators have reported using PCR-based methods of microbial detection, presumably because of perceived increased sensitivity. The accuracy and detection limit for traditional compared to PCR-based screening assays are not known. The purpose of this study was to determine the limit of detection of bacterial contamination of mouse feces by aerobic and anaerobic culture, Gram stain, and qPCR, and to compare the accuracy of these tests in the context of a working germ free mouse colony. We found that the limit of detection for qPCR (approximately 10(5) cfu/g of feces) was lower than for Gram stain (approximately 10(9) cfu/g), but that all 3 assays were of similar accuracy. Bacterial culture was the most sensitive, but the least specific, and qPCR was the least sensitive and most specific. Gram stain but not qPCR detected heat-killed bacteria, indicating that bacteria in autoclaved diet are unlikely to represent a potential confounding factor for PCR screening. We conclude that as a practical matter, bacterial culture and Gram stain are adequate for screening germ free mouse colonies for bacterial contaminants, but that should low numbers of unculturable bacteria be present, they would not be detected with any of the currently available means.
Collapse
Affiliation(s)
- Clinton A Fontaine
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI USA
| | - Anna M Skorupski
- College of Veterinary Medicine; Michigan State University; East Lansing, MI USA
| | - Chriss J Vowles
- Unit for Laboratory Animal Medicine; University of Michigan Medical School; Ann Arbor, MI USA
| | - Natalie E Anderson
- Unit for Laboratory Animal Medicine; University of Michigan Medical School; Ann Arbor, MI USA
| | - Sara A Poe
- Unit for Laboratory Animal Medicine; University of Michigan Medical School; Ann Arbor, MI USA
| | - Kathryn A Eaton
- Department of Microbiology and Immunology; University of Michigan Medical School; Ann Arbor, MI USA,Correspondence to: Kathryn A Eaton;
| |
Collapse
|