1
|
Yu J, Rioux N, Gardner I, Owens K, Ragueneau-Majlessi I. Metabolite Measurement in Index Substrate Drug Interaction Studies: A Review of the Literature and Recent New Drug Application Reviews. Metabolites 2024; 14:522. [PMID: 39452902 PMCID: PMC11509402 DOI: 10.3390/metabo14100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Index substrates are used to understand the processes involved in pharmacokinetic (PK) drug-drug interactions (DDIs). The aim of this analysis is to review metabolite measurement in clinical DDI studies, focusing on index substrates for cytochrome P450 (CYP) enzymes, including CYP1A2 (caffeine), CYP2B6 (bupropion), CYP2C8 (repaglinide), CYP2C9 ((S)-warfarin, flurbiprofen), CYP2C19 (omeprazole), CYP2D6 (desipramine, dextromethorphan, nebivolol), and CYP3A (midazolam, triazolam). METHODS All data used in this evaluation were obtained from the Certara Drug Interaction Database. Clinical index substrate DDI studies with PK data for at least one metabolite, available from literature and recent new drug application reviews, were reviewed. Further, for positive DDI studies, a correlation analysis was performed between changes in plasma exposure of index substrates and their marker metabolites. RESULTS A total of 3261 individual index DDI studies were available, with 45% measuring at least one metabolite. The occurrence of metabolite measurement in clinical DDI studies varied widely between index substrates and enzymes. DISCUSSION AND CONCLUSIONS For substrates such as caffeine, bupropion, omeprazole, and dextromethorphan, the use of the metabolite/parent area under the curve ratio can provide greater sensitivity to DDI or reduce intrasubject variability. In some cases (e.g., omeprazole, repaglinide), the inclusion of metabolite measurement can provide mechanistic insights to understand complex interactions.
Collapse
Affiliation(s)
- Jingjing Yu
- Center of Excellence in Drug Interaction Science, Certara USA, 4 Radnor Corporate Center, Suite 350, Radnor, PA 19087, USA; (N.R.); (I.R.-M.)
| | - Nathalie Rioux
- Center of Excellence in Drug Interaction Science, Certara USA, 4 Radnor Corporate Center, Suite 350, Radnor, PA 19087, USA; (N.R.); (I.R.-M.)
| | - Iain Gardner
- Center of Excellence in Drug Interaction Science, Certara UK, 1 Concourse Way, Sheffield S1 2BJ, UK;
| | - Katie Owens
- Drug Interaction Solutions, Certara USA, 4 Radnor Corporate Center, Suite 350, Radnor, PA 19087, USA;
| | - Isabelle Ragueneau-Majlessi
- Center of Excellence in Drug Interaction Science, Certara USA, 4 Radnor Corporate Center, Suite 350, Radnor, PA 19087, USA; (N.R.); (I.R.-M.)
| |
Collapse
|
2
|
Kharasch ED, Lenze EJ. Pharmacogenetic Influence on Stereoselective Steady-State Disposition of Bupropion. Drug Metab Dispos 2024; 52:455-466. [PMID: 38467432 PMCID: PMC11023817 DOI: 10.1124/dmd.124.001697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
Bupropion is used for treating depression, obesity, and seasonal affective disorder, and for smoking cessation. Bupropion is commonly prescribed, but has complex pharmacokinetics and interindividual variability in metabolism and bioactivation may influence therapeutic response, tolerability, and safety. Bupropion is extensively and stereoselectively metabolized, the metabolites are pharmacologically active, and allelic variation in cytochrome P450 (CYP) 2B6 affects clinical hydroxylation of single-dose bupropion. Genetic effects on stereoselective disposition of steady-state bupropion are not known. In this preplanned secondary analysis of a prospective, randomized, double-blinded, crossover study which compared brand and generic bupropion XL 300 mg drug products, we measured steady-state enantiomeric plasma and urine parent bupropion and primary and secondary metabolite concentrations. This investigation evaluated the influence of genetic polymorphisms in CYP2B6, CYP2C19, and P450 oxidoreductase on the disposition of Valeant Pharmaceuticals Wellbutrin brand bupropion in 67 participants with major depressive disorder. We found that hydroxylation of both bupropion enantiomers was lower in carriers of the CYP2B6*6 allele and in carriers of the CYP2B6 516G>T variant, with correspondingly greater bupropion and lesser hydroxybupropion plasma concentrations. Hydroxylation was 25-50% lower in CYP2B6*6 carriers and one-third to one-half less in 516T carriers. Hydroxylation of the bupropion enantiomers was comparably affected by CYP2B6 variants. CYP2C19 polymorphisms did not influence bupropion plasma concentrations or hydroxybupropion formation but did influence the minor pathway of 4'-hydroxylation of bupropion and primary metabolites. P450 oxidoreductase variants did not influence bupropion disposition. Results show that CYP2B6 genetic variants affect steady-state metabolism and bioactivation of Valeant brand bupropion, which may influence therapeutic outcomes. SIGNIFICANCE STATEMENT: Bupropion, used for depression, obesity, and smoking cessation, undergoes metabolic bioactivation, with incompletely elucidated interindividual variability. We evaluated cytochrome P450 (CYP) 2B6, CYP2C19 and P450 oxidoreductase genetic variants and steady-state bupropion and metabolite enantiomers disposition. Both enantiomers hydroxylation was lower in CYP2B6*6 and CYP2B6 516G>T carriers, with greater bupropion and lesser hydroxybupropion plasma concentrations. CYP2C19 polymorphisms did not affect bupropion or hydroxybupropion but did influence minor 4'-hydroxylation of bupropion and primary metabolites. CYP2B6 variants affect steady-state bupropion bioactivation, which may influence therapeutic outcomes.
Collapse
Affiliation(s)
- Evan D Kharasch
- Department of Anesthesiology, Duke University, Durham, North Carolina (E.D.K.); Bermaride, LLC (E.D.K.); and Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri (E.J.L.)
| | - Eric J Lenze
- Department of Anesthesiology, Duke University, Durham, North Carolina (E.D.K.); Bermaride, LLC (E.D.K.); and Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri (E.J.L.)
| |
Collapse
|
3
|
Toopaang W, Panyawicha K, Srisuksam C, Hsu WC, Lin CC, Tanticharoen M, Yang YL, Amnuaykanjanasin A. Metabolomic Analysis Demonstrates the Impacts of Polyketide Synthases PKS14 and PKS15 on the Production of Beauvericins, Bassianolide, Enniatin A, and Ferricrocin in Entomopathogen Beauveria bassiana. Metabolites 2023; 13:metabo13030425. [PMID: 36984865 PMCID: PMC10057652 DOI: 10.3390/metabo13030425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Beauveria bassiana is a globally distributed entomopathogenic fungus that produces various secondary metabolites to support its pathogenesis in insects. Two polyketide synthase genes, pks14 and pks15, are highly conserved in entomopathogenic fungi and are important for insect virulence. However, understanding of their mechanisms in insect pathogenicity is still limited. Here, we overexpressed these two genes in B. bassiana and compared the metabolite profiles of pks14 and pks15 overexpression strains to those of their respective knockout strains in culture and in vivo using tandem liquid chromatography-mass spectrometry (LC-MS/MS) with Global Natural Products Social Molecular Networking (GNPS). The pks14 and pks15 clusters exhibited crosstalk with biosynthetic clusters encoding insect-virulent metabolites, including beauvericins, bassianolide, enniatin A, and the intracellular siderophore ferricrocin under certain conditions. These secondary metabolites were upregulated in the pks14-overexpressing strain in culture and the pks15-overexpressing strain in vivo. These data suggest that pks14 and pks15, their proteins or their cluster components might be directly or indirectly associated with key pathways in insect pathogenesis of B. bassiana, particularly those related to secondary metabolism. Information about interactions between the polyketide clusters and other biosynthetic clusters improves scientific understanding about crosstalk among biosynthetic pathways and mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Wachiraporn Toopaang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kullyanee Panyawicha
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Chettida Srisuksam
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wei-Chen Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711010, Taiwan
| | - Ching-Chih Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711010, Taiwan
| | - Morakot Tanticharoen
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711010, Taiwan
- Correspondence: (Y.-L.Y.); (A.A.)
| | - Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- Correspondence: (Y.-L.Y.); (A.A.)
| |
Collapse
|
4
|
Characterization of the Stereoselective Disposition of Bupropion and Its Metabolites in Rat Plasma and Brain. Eur J Drug Metab Pharmacokinet 2023; 48:171-187. [PMID: 36823342 DOI: 10.1007/s13318-023-00817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND AND OBJECTIVES Bupropion is an atypical antidepressant and smoking cessation aid; its use is associated with wide intersubject variability in efficacy and safety. Knowledge of the brain pharmacokinetics of bupropion and its pharmacologically active metabolites is considered important for understanding the cause-effect relationships driving this variability. METHODS Brain concentrations from rats administered a 10 mg/kg subcutaneous dose of racemic bupropion were analyzed using a stereoselective LC/MS-MS method. A 2 mg/kg dose of (S,S)-hydroxybupropion, which has comparable pharmacologic potency to bupropion, was administered to a separate group of rats. Plasma exposure and unbound concentrations in both matrices from companion equilibrium dialysis experiments were determined to assess potential carrier-mediated transport at the blood-brain barrier. RESULTS Exposures to unbound forms of bupropion enantiomers were similar in plasma; this was also true in brain. This trend held for reductive diastereomer metabolite pairs in the two matrices. Unbound (R,R)-hydroxybupropion exposure was 1.5-fold higher than (S,S)-hydroxybupropion exposure in plasma and brain following bupropion administration. Unbound concentration ratios (Kp,uu) of a given molecular form decreased over time: between 4 and 6 h, these were < 1 for the two bupropion enantiomers, and they were ~ 1 for metabolites that formed. Administration of preformed (S,S)-hydroxybupropion also demonstrated a declining Kp,uu. CONCLUSIONS The temporal shift in Kp,uu among the different molecular forms provides evidence regarding the operation of carrier-mediated transport and/or within-brain metabolism of bupropion, and, thereby, fresh insight regarding the causes of intersubject variability in the safety and efficacy of bupropion therapy.
Collapse
|
5
|
Allelic and Genotype Frequencies of CYP2B6 ∗2 (64C > T) and CYP2B6 ∗3 (777C > A) in Three Dominant Ethnicities of the Iranian Population. Genet Res (Camb) 2023; 2023:8283470. [PMID: 36817260 PMCID: PMC9934979 DOI: 10.1155/2023/8283470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Background Cytochrome P450 complex plays a key role in drug metabolism. CYP2B6 has an essential part in Cytochrome P450 complex metabolism. This study aims to determine the allelic distribution of CYP2B6∗2 and CYP2B6∗3 in three main Iranian ethnicities: Fars, Turk, and Kurd. Methods The study was conducted on 174 unrelated healthy volunteers from three main Iranian ethnicities. After DNA extraction from peripheral blood samples, genotyping of CYP2B6∗2 and ∗3 was performed using tetra ARMS and ARMS PCR, respectively. Results The average age of 174 cases was 40.69 ± 11.87 (mean ± SD) and 39.06 ± 11.63 (mean ± SD) for males and females. In the CYP2B6∗2 variant, the genotyping frequency of wild type (C/C), heterozygous (C/T), and homozygous mutant (T/T) was 8.7%, 86%, and 5.2%, respectively. The CYP2B6∗2 (c.64C > T) allele frequency was 48.2% (95% CI: (37.8-58.6)). In the CYP2B6∗3 variant, the frequency of wild type (C/C), heterozygous (C/T), and homozygous mutant (T/T) was 75.3%, 11%, and 13.6%, respectively. The CYP2B6∗3 (c.777C > A) allelic frequency was 19.1% (95% CI: (17.5-20.7)). Conclusion Allelic distribution in three main Iranian ethnicities, i.e., Turk, Kurd, and Fars, is remarkably higher than that in other populations, even that in Southern Iran. High frequencies of CYP2B6∗2 and ∗3 in the Iranian population highly affect drug responsiveness. Understanding such variability could help to increase drug efficacy and reduce its toxicity.
Collapse
|
6
|
Gufford BT, Metzger IF, Bamfo NO, Benson EA, Masters AR, Lu JBL, Desta Z.
Influence of CYP2B6 Pharmacogenetics on Stereoselective Inhibition and Induction of Bupropion Metabolism by Efavirenz in Healthy Volunteers.
. J Pharmacol Exp Ther 2022; 382:JPET-AR-2022-001277. [PMID: 35798386 PMCID: PMC9426761 DOI: 10.1124/jpet.122.001277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022] Open
Abstract
We investigated the acute and chronic effects of efavirenz, a widely used antiretroviral drug, and CYP2B6 genotypes on the disposition of racemic and stereoisomers of bupropion (BUP) and its active metabolites, 4-hydroxyBUP, threohydroBUP and erythrohydroBUP. The primary objective of this study was to test how multiple processes unique to the efavirenz-CYP2B6 genotype interaction influence the extent of efavirenz-mediated drug-drug interaction (DDI) with the CYP2B6 probe substrate BUP. In a three-phase, sequential, open-label study, healthy volunteers (N=53) were administered a single 100 mg oral dose of BUP alone (control phase), with a single 600 mg oral efavirenz dose (inhibition phase), and after 17-days pretreatment with efavirenz (600 mg/day) (induction phase). Compared to the control phase, we show for the first time that efavirenz significantly decreases and chronically increases the exposure of hydroxyBUP and its diastereomers, respectively, and these interactions were CYP2B6 genotype dependent. Chronic efavirenz enhances the elimination of racemic BUP and its enantiomers as well as of threo- and erythro-hydroBUP and their diastereomers, suggesting additional novel mechanisms underlying efavirenz interaction with BUP. The effects of efavirenz and genotypes were nonstereospecific. In conclusion, acute and chronic administration of efavirenz inhibits and induces CYP2B6 activity. Efavirenz-BUP interaction is complex involving time- and CYP2B6 genotype-dependent inhibition and induction of primary and secondary metabolic pathways. Our findings highlight important implications to the safety and efficacy of BUP, study design considerations for future efavirenz interactions, and individualized drug therapy based on CYP2B6 genotypes. Significance Statement The effects of acute and chronic doses of efavirenz on the disposition of racemic and stereoisomers of BUP and its active metabolites were investigated in healthy volunteers. Efavirenz causes an acute inhibition, but chronic induction of CYP2B6 in a genotype dependent manner. Chronic efavirenz induces BUP reduction and the elimination of BUP active metabolites. Efavirenz's effects were non-stereospecific. These data reveal novel mechanisms underlying efavirenz DDI with BUP and provide important insights into time- and CYP2B6 genotype dependent DDIs.
Collapse
Affiliation(s)
| | | | - Nadia O Bamfo
- Division of Clinical Pharmacology, Indiana University School of Medicine, United States
| | - Eric A Benson
- Medicine, Indiana University School of Medicine, United States
| | - Andrea R Masters
- Melvin and Bren Simon Comprehensive Cancer Center Clinical Pharmacology Analytical Core, Indiana University School of Medicine, United States
| | - Jessica Bo Li Lu
- Division of Clinical Pharmacology, Indiana University School of Medicine, United States
| | - Zeruesenay Desta
- Medicine/Division of Clinical Pharmacology, Indiana University School of Medicine, United States
| |
Collapse
|
7
|
Vashistha VK, Sethi S, Tyagi I, Das DK. Chirality of antidepressive drugs: an overview of stereoselectivity. ASIAN BIOMED 2022; 16:55-69. [PMID: 37551287 PMCID: PMC10321182 DOI: 10.2478/abm-2022-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stereochemistry plays an important role in drug design because the enantiomers of a drug frequently vary in their biological action and pharmacokinetic profiles. Racemates of a drug with either an inactive or an unsafe enantiomer can lead to detrimental effects. The manufacturing industry may still produce racemates, but such decisions must pass through rigorous analyses of the pharmacological and pharmacokinetic characteristics of the particular enantiomer related to the racemates. The pharmacokinetics of antidepressants or antidepressive agents is stereoselective and predominantly favors one enantiomer. The use of pure enantiomers offers (i) better specificity than the racemates in terms of certain pharmacological actions, (ii) enhanced clinical indications, and (iii) optimized pharmacokinetics. Therefore, controlling the stereoselectivity in the pharmacokinetics of antidepressive drugs is of critical importance in dealing with depression and psychiatric conditions. The objective of this review is to highlight the importance of the stereochemistry of antidepressants in the context of the design and development of new chirally pure pharmaceuticals, the potential complications caused by using racemates, and the benefits of using pure enantiomers.
Collapse
Affiliation(s)
| | - Sonika Sethi
- Department of Chemistry, GD Goenka University, Gurgaon, Haryana122103, India
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Ministry of Environment, Forest and Climate Change, Government of India, Kolkata700053, India
| | - Dipak Kumar Das
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh281406, India
| |
Collapse
|
8
|
Fay EE, Czuba LC, Sager JE, Shum S, Stephenson-Famy A, Isoherranen N. Pregnancy Has No Clinically Significant Effect on the Pharmacokinetics of Bupropion or Its Metabolites. Ther Drug Monit 2021; 43:780-788. [PMID: 33814540 PMCID: PMC8426418 DOI: 10.1097/ftd.0000000000000885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bupropion (BUP) is a chiral antidepressant and smoking cessation aide with benefits and side effects correlated with parent and active metabolite concentrations. BUP is metabolized by CYP2B6, CYP2C19, and CYP3A4 to hydroxy-BUP (OH-BUP) as well as by 11β-hydroxysteroid dehydrogenase-1 and aldo-keto reductases to threohydrobupropion (Threo) and erythrohydrobupropion (Erythro), respectively. As pregnancy alters the activity of drug-metabolizing enzymes, the authors hypothesized that BUP metabolism and BUP metabolite concentrations would be altered during pregnancy, potentially affecting the efficacy and safety of BUP in pregnant women. METHODS Pregnant women (n = 8) taking BUP chronically were enrolled, and steady-state plasma samples and dosing interval urine samples were collected during pregnancy and postpartum. Maternal and umbilical cord venous blood samples were collected at delivery from 3 subjects, and cord blood/maternal plasma concentration ratios were calculated. The concentrations of BUP stereoisomers and their metabolites were measured. Paired t tests were used to compare pharmacokinetic parameters during pregnancy and postpartum. RESULTS No significant changes were observed in the steady-state plasma concentrations, metabolite to parent ratios, formation clearances, or renal clearance of any of the compounds during pregnancy when compared with postpartum. The umbilical cord venous plasma concentrations of BUP and its metabolites were 30%-60% lower than maternal plasma concentrations. CONCLUSIONS This study showed that there are no clinically meaningful differences in the stereoselective disposition of BUP or its metabolites during pregnancy, indicating that dose adjustment during pregnancy may not be necessary. The results also showed that the placenta provides a partial barrier for bupropion and its metabolite distribution to the fetus, with possible placental efflux transport of bupropion and its metabolites.
Collapse
Affiliation(s)
- Emily E. Fay
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA
| | - Lindsay C. Czuba
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, WA
| | - Jennifer E Sager
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, WA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, WA
| | - Alyssa Stephenson-Famy
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, WA
| |
Collapse
|
9
|
Eap CB, Gründer G, Baumann P, Ansermot N, Conca A, Corruble E, Crettol S, Dahl ML, de Leon J, Greiner C, Howes O, Kim E, Lanzenberger R, Meyer JH, Moessner R, Mulder H, Müller DJ, Reis M, Riederer P, Ruhe HG, Spigset O, Spina E, Stegman B, Steimer W, Stingl J, Suzen S, Uchida H, Unterecker S, Vandenberghe F, Hiemke C. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants. World J Biol Psychiatry 2021; 22:561-628. [PMID: 33977870 DOI: 10.1080/15622975.2021.1878427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives: More than 40 drugs are available to treat affective disorders. Individual selection of the optimal drug and dose is required to attain the highest possible efficacy and acceptable tolerability for every patient.Methods: This review, which includes more than 500 articles selected by 30 experts, combines relevant knowledge on studies investigating the pharmacokinetics, pharmacodynamics and pharmacogenetics of 33 antidepressant drugs and of 4 drugs approved for augmentation in cases of insufficient response to antidepressant monotherapy. Such studies typically measure drug concentrations in blood (i.e. therapeutic drug monitoring) and genotype relevant genetic polymorphisms of enzymes, transporters or receptors involved in drug metabolism or mechanism of action. Imaging studies, primarily positron emission tomography that relates drug concentrations in blood and radioligand binding, are considered to quantify target structure occupancy by the antidepressant drugs in vivo. Results: Evidence is given that in vivo imaging, therapeutic drug monitoring and genotyping and/or phenotyping of drug metabolising enzymes should be an integral part in the development of any new antidepressant drug.Conclusions: To guide antidepressant drug therapy in everyday practice, there are multiple indications such as uncertain adherence, polypharmacy, nonresponse and/or adverse reactions under therapeutically recommended doses, where therapeutic drug monitoring and cytochrome P450 genotyping and/or phenotyping should be applied as valid tools of precision medicine.
Collapse
Affiliation(s)
- C B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Switzerland, Geneva, Switzerland
| | - G Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - P Baumann
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - N Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Conca
- Department of Psychiatry, Health Service District Bolzano, Bolzano, Italy.,Department of Child and Adolescent Psychiatry, South Tyrolean Regional Health Service, Bolzano, Italy
| | - E Corruble
- INSERM CESP, Team ≪MOODS≫, Service Hospitalo-Universitaire de Psychiatrie, Universite Paris Saclay, Le Kremlin Bicetre, France.,Service Hospitalo-Universitaire de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - S Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M L Dahl
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J de Leon
- Eastern State Hospital, University of Kentucky Mental Health Research Center, Lexington, KY, USA
| | - C Greiner
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - O Howes
- King's College London and MRC London Institute of Medical Sciences (LMS)-Imperial College, London, UK
| | - E Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - J H Meyer
- Campbell Family Mental Health Research Institute, CAMH and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R Moessner
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - H Mulder
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands.,GGZ Drenthe Mental Health Services Drenthe, Assen, The Netherlands.,Department of Pharmacotherapy, Epidemiology and Economics, Department of Pharmacy and Pharmaceutical Sciences, University of Groningen, Groningen, The Netherlands.,Department of Psychiatry, Interdisciplinary Centre for Psychopathology and Emotion Regulation, University of Groningen, Groningen, The Netherlands
| | - D J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Reis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - H G Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - O Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Stegman
- Institut für Pharmazie der Universität Regensburg, Regensburg, Germany
| | - W Steimer
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany
| | - J Stingl
- Institute for Clinical Pharmacology, University Hospital of RWTH Aachen, Germany
| | - S Suzen
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - H Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - S Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - F Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
10
|
Classification of drugs for evaluating drug interaction in drug development and clinical management. Drug Metab Pharmacokinet 2021; 41:100414. [PMID: 34666290 DOI: 10.1016/j.dmpk.2021.100414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/22/2022]
Abstract
During new drug development, clinical drug interaction studies are carried out in accordance with the mechanism of potential drug interactions evaluated by in vitro studies. The obtained information should be provided efficiently to medical experts through package inserts and various information materials after the drug's launch. A recently updated Japanese guideline presents general procedures that are considered scientifically valid at the present moment. In this review, we aim to highlight the viewpoints of the Japanese guideline and enumerate drugs that were involved or are anticipated to be involved in evident pharmacokinetic drug interactions and classify them by their clearance pathway and potential intensity based on systematic reviews of the literature. The classification would be informative for designing clinical studies during the development stage, and the appropriate management of drug interactions in clinical practice.
Collapse
|
11
|
Landry I, Aluri J, Nakai K, Hall N, Miyajima Y, Ueno T, Dayal S, Filippov G, Lalovic B, Moline M, Reyderman L. Evaluation of the CYP3A and CYP2B6 Drug-Drug Interaction Potential of Lemborexant. Clin Pharmacol Drug Dev 2021; 10:681-690. [PMID: 33455055 PMCID: PMC8248323 DOI: 10.1002/cpdd.915] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
Lemborexant is approved for treating insomnia and is under investigation for treating irregular sleep‐wake rhythm disorder. Based on in vitro drug‐drug interaction (DDI) characteristics, phase 1, open‐label DDI studies were conducted to evaluate lemborexant's cytochrome P450 3A (CYP3A) and CYP2B6 interaction potential. Interactions between lemborexant 10 mg and strong and moderate CYP3A inhibitors (itraconazole and fluconazole), a strong CYP3A inducer (rifampin), and CYP3A (midazolam) and CYP2B6 substrates (bupropion) were evaluated. Coadministration of lemborexant with itraconazole or fluconazole resulted in 1.4‐ to 1.6‐fold and 3.7‐ to 4‐fold increases in lemborexant maximum observed concentration (Cmax) and area under the concentration‐time curve from zero time extrapolated to infinity (AUC0‐inf), respectively. Coadministration of lemborexant with rifampin resulted in >90% decreases in lemborexant Cmax and AUC0‐inf. Midazolam exposure was not affected. Coadministration of lemborexant with bupropion resulted in 49.9% and 45.5% decreases in S‐bupropion Cmax and AUC0‐inf, respectively.Comparison of estimated exposures for patients in phase 3 trials who were/were not receiving concomitant weak CYP3A inhibitors substantiated the DDI pharmacokinetic findings. Lemborexant was generally well tolerated in the phase 1 studies. In summary, lemborexant does not affect the pharmacokinetics of CYP3A substrates and has potential to induce CYP2B6. Consistent with in vitro findings, moderate and strong CYP3A inhibitors and inducers affected the pharmacokinetics of lemborexant; hence, patients taking lemborexant 5 or 10 mg should avoid coadministration with moderate and strong CYP3A inhibitors and inducers.
Collapse
Affiliation(s)
| | | | | | - Nancy Hall
- Eisai Inc., Woodcliff Lake, New Jersey, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kharasch ED, Neiner A, Kraus K, Blood J, Stevens A, Miller JP, Lenze EJ. Stereoselective Steady-State Disposition and Bioequivalence of Brand and Generic Bupropion in Adults. Clin Pharmacol Ther 2020; 108:1036-1048. [PMID: 32386065 DOI: 10.1002/cpt.1888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
Abstract
The antidepressant bupropion is stereoselectively metabolized and metabolite enantiomers have differential pharmacologic effects, but steady-state enantiomeric disposition is unknown. Controversy persists about bupropion XL 300 mg generic equivalence to brand product, and whether generics might have different stereoselective disposition leading to enantiomeric non-bioequivalence and, thus, clinical nonequivalence. This preplanned follow-on analysis of a prospective, randomized, double-blinded, crossover study of brand and 3 generic bupropion XL 300 mg products measured steady-state enantiomeric plasma and urine parent bupropion and primary and secondary metabolite concentrations and evaluated bioequivalence and pharmacokinetics. Steady-state plasma and urine bupropion disposition was markedly stereoselective, with up to 40-fold differences in plasma concentrations of the active metabolite S,S-hydroxybupropion vs. R,R,-hydroxybupropion. Urine metabolite glucuronides were prominent, but glucuronidation was metabolite-specific and enantioselective. There were no differences between any generic and brand, or between generics, in plasma enantiomer concentrations of bupropion or the major metabolites. All generic products satisfied formal bioequivalence criteria (peak plasma concentration (Cmax ) and area under the plasma concentration-time curve over 24 hours (AUC0-24 )) using enantiomers for bupropion as well as for metabolites, and generics were comparable to each other, and were considered bioequivalent, based on enantiomeric analysis. Enantiomeric bioequivalence explains the previously observed therapeutic equivalence of bupropion generics and brand in treating major depression. These results have important implications for understanding the clinical therapeutic effects of bupropion based on complex and stereoselective metabolism.
Collapse
Affiliation(s)
- Evan D Kharasch
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alicia Neiner
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kristin Kraus
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jane Blood
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Angela Stevens
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - J Philip Miller
- Division of Biostatistics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Wang PF, Neiner A, Kharasch ED. Stereoselective Bupropion Hydroxylation by Cytochrome P450 CYP2B6 and Cytochrome P450 Oxidoreductase Genetic Variants. Drug Metab Dispos 2020; 48:438-445. [PMID: 32238417 DOI: 10.1124/dmd.119.090407] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Bioactivation of the antidepressant and smoking cessation drug bupropion is catalyzed predominantly by CYP2B6. The metabolite hydroxybupropion derived from t-butylhydroxylation is considered to contribute to the antidepressant and smoking-cessation effects of the parent drug. Bupropion hydroxylation is the canonical in vitro and in vivo probe for CYP2B6 activity. P450 also requires obligate partnership with P450 oxidoreductase (POR). Human CYP2B6 and POR genes are highly polymorphic. Some CYP2B6 variants affect bupropion disposition. This investigation evaluated the influence of several human CYP2B6 and POR genetic variants on stereoselective bupropion metabolism, using an insect cell coexpression system containing CYP2B6, POR, and cytochrome b 5 Based on intrinsic clearances (Clints), relative activities for S,S-hydroxybupropion formation were in the order CYP2B6.4 > CYP2B6.1 > CYP2B6.17 > CYP2B6.5 > CYP2B6.6 ≈ CYP2B6.26 ≈ CYP2B6.19 > CYP2B6.7 > CYP2B6.9 > > CYP2B6.16 and CYP2B6.18; relative activities for R,R-hydroxybupropion formation were in the order CYP2B6.17 > CYP2B6.4 > CYP2B6.1 > CYP2B6.5 ≈ CYP2B6.19 ≈ CYP2B6.26 > CYP2B6.6 > CYP2B6.7 ≈ CYP2B6.9 > > CYP2B6.16 and CYP2B6.18. Bupropion hydroxylation was not influenced by POR variants. CYP2B6-catalyzed bupropion hydroxylation is stereoselective. Though Vmax and Km varied widely among CYP2B6 variants, stereoselectivity was preserved, reflected by similar Clint(S,S-hydroxybupropion)/Clint(R,R-hydroxybupropion) ratios (1.8-2.9), except CYP2B6.17, which was less enantioselective. Established concordance between human bupropion hydroxylation in vitro and in vivo, together with these new results, suggests additional CYP2B6 variants may influence human bupropion disposition. SIGNIFICANCE STATEMENT: Bupropion pharmacokinetics, metabolism, and clinical effects are affected by the CYP2B6*6 polymorphism. Other expressed CYP2B6 polymorphisms had diminished (*5, *6, *7, *9, *19, *26) or defective (*16, *18) in vitro bupropion hydroxylation. P450 oxidoreductase genetic variants had no effect on metabolism, suggesting no clinical consequence of this polymorphism. These CYP2B6 polymorphisms may portend diminished in vivo bupropion hydroxylation and predict additional clinically important variant alleles.
Collapse
Affiliation(s)
- Pan-Fen Wang
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (A.N.)
| | - Alicia Neiner
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (A.N.)
| | - Evan D Kharasch
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (A.N.)
| |
Collapse
|
14
|
Bhattacharya C, Kirby D, Van Stipdonk M, Stratford RE. Comparison of In Vitro Stereoselective Metabolism of Bupropion in Human, Monkey, Rat, and Mouse Liver Microsomes. Eur J Drug Metab Pharmacokinet 2019; 44:261-274. [PMID: 30298475 DOI: 10.1007/s13318-018-0516-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Bupropion is an atypical antidepressant and smoking cessation aid associated with wide intersubject variability. This study compared the formation kinetics of three phase I metabolites (hydroxybupropion, threohydrobupropion, and erythrohydrobupropion) in human, marmoset, rat, and mouse liver microsomes. The objective was to establish suitability and limitations for subsequent use of nonclinical species to model bupropion central nervous system (CNS) disposition in humans. METHODS Hepatic microsomal incubations were conducted separately for the R- and S-bupropion enantiomers, and the formation of enantiomer-specific metabolites was determined using LC-MS/MS. Intrinsic formation clearance (CLint) of metabolites across the four species was determined from the formation rate versus substrate concentration relationship. RESULTS The total clearance of S-bupropion was higher than that of R-bupropion in monkey and human liver microsomes. The contribution of hydroxybupropion to the total racemic bupropion clearance was 38%, 62%, 17%, and 96% in human, monkey, rat, and mouse, respectively. In the same species order, threohydrobupropion contributed 53%, 23%, 17%, and 3%, and erythrohydrobupropion contributed 9%, 14%, 66%, and 1.3%, respectively, to racemic bupropion clearance. CONCLUSION The results demonstrate that phase I metabolism in monkeys best approximates that observed in humans, and support the preferred use of this species to investigate possible pharmacokinetic factors that influence the CNS disposition of bupropion and contribute to its high intersubject variability.
Collapse
Affiliation(s)
- Chandrali Bhattacharya
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.,Department of Pharmacy Practice, Purdue University, Indianapolis, IN, 46202, USA
| | - Danielle Kirby
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Michael Van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Robert E Stratford
- Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA. .,Indiana University School of Medicine, Research II, Suite 480, 950 W. Walnut St, Indianapolis, IN, 46202-5188, USA. .,Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
15
|
Costa R, Oliveira NG, Dinis-Oliveira RJ. Pharmacokinetic and pharmacodynamic of bupropion: integrative overview of relevant clinical and forensic aspects. Drug Metab Rev 2019; 51:293-313. [DOI: 10.1080/03602532.2019.1620763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rafaela Costa
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- IINFACTS – Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| |
Collapse
|
16
|
Kharasch ED, Greenblatt DJ. Methadone Disposition: Implementing Lessons Learned. J Clin Pharmacol 2019; 59:1044-1048. [PMID: 31044453 DOI: 10.1002/jcph.1427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Evan D Kharasch
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - David J Greenblatt
- Program in Pharmacology and Drug Development, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
17
|
Kharasch ED, Crafford A. Common Polymorphisms of CYP2B6 Influence Stereoselective Bupropion Disposition. Clin Pharmacol Ther 2018; 105:142-152. [PMID: 29756345 DOI: 10.1002/cpt.1116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
Bupropion hydroxylation is a bioactivation and metabolic pathway, and the standard clinical CYP2B6 probe. This investigation determined the influence of CYP2B6 allelic variants on clinical concentrations and metabolism of bupropion enantiomers. Secondary objectives evaluated the influence of CYP2C19 and P450 oxidoreductase variants. Healthy volunteers in specific cohorts (CYP2B6*1/*1, CYP2B6*1/*6, CYP2B6*6/*6, and also CYP2B6*4 carriers) received single-dose oral bupropion. Plasma and urine bupropion and hydroxybupropion was quantified. Subjects were also genotyped for CYP2C19 and P450 oxidoreductase variants. Hydroxylation of both bupropion enantiomers, assessed by plasma hydroxybupropion/bupropion AUC ratios and urine hydroxybupropion formation clearances, was lower in CYP2B6*6/*6 but not CYP2B6*1/*6 compared with CYP2B6*1/*1 genotypes, and numerically greater in CYP2B6*4 carriers. CYP2C19 and P450 oxidoreductase variants did not influence bupropion enantiomers hydroxylation or plasma concentrations. The results show that clinical hydroxylation of both bupropion enantiomers was equivalently influenced by CYP2B6 allelic variation. CYP2B6 polymorphisms affect S-bupropion bioactivation, which may affect therapeutic outcomes.
Collapse
Affiliation(s)
- Evan D Kharasch
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri, USA.,Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, Missouri, USA
| | - Amanda Crafford
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Kharasch ED. Current Concepts in Methadone Metabolism and Transport. Clin Pharmacol Drug Dev 2018; 6:125-134. [PMID: 28263461 DOI: 10.1002/cpdd.326] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022]
Abstract
Methadone is a cornerstone therapy for opioid addiction and a public health strategy for HIV/AIDS and hepatitis C reduction. Methadone is also used for acute and chronic pain. As use for chronic pain has grown, so too have adverse events. Constitutive and acquired (drug interactions) inter- and intraindividual variability in methadone pharmacokinetics and pharmacodynamics confounds reliable clinical use. Identification of enzymes and transporters responsible for methadone disposition has been a long-sought ideal. Initial in vitro studies identified CYP3A4 as metabolizing methadone. Subsequently, by extrapolation, CYP3A4 was long assumed to be responsible for clinical methadone disposition. However, CYP2B6 is also a major catalyst of methadone metabolism in vitro. It has now been unequivocally established that CYP2B6, not CYP3A4, is the principal determinant of methadone metabolism, clearance, elimination, and plasma concentrations in humans. Methadone disposition is susceptible to inductive and inhibitory drug interactions. CYP2B6 genetics also influences methadone metabolism and clearance, which were diminished in CYP2B6*6 carriers and increased in CYP2B6*4 carriers. CYP2B6 genetics can explain, in part, interindividual variability in methadone metabolism and clearance. Thus, both constitutive variability due to CYP2B6 genetics, and CYP2B6-mediated drug interactions, can alter methadone disposition, clinical effect, and drug safety. Methadone is not a substrate for major influx or efflux transporters.
Collapse
Affiliation(s)
- Evan D Kharasch
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biochemistry and Biophysics, Washington University in St. Louis, St. Louis, MO, USA.,The Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Dash RP, Rais R, Srinivas NR. Chirality and neuropsychiatric drugs: an update on stereoselective disposition and clinical pharmacokinetics of bupropion. Xenobiotica 2017; 48:945-957. [DOI: 10.1080/00498254.2017.1376765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ranjeet Prasad Dash
- Drug Metabolism and Pharmacokinetics, Johns Hopkins Drug Discovery Program, Johns Hopkins University, Baltimore, MD, USA,
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA, and
| | - Rana Rais
- Drug Metabolism and Pharmacokinetics, Johns Hopkins Drug Discovery Program, Johns Hopkins University, Baltimore, MD, USA,
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA, and
| | | |
Collapse
|
20
|
Chenoweth MJ, Tyndale RF. Pharmacogenetic Optimization of Smoking Cessation Treatment. Trends Pharmacol Sci 2017; 38:55-66. [PMID: 27712845 PMCID: PMC5195866 DOI: 10.1016/j.tips.2016.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022]
Abstract
Worldwide, approximately one billion people smoke cigarettes. Cigarette smoking persists in part because long-term smoking cessation rates are modest on existing treatments. Smoking cessation outcomes are influenced by genetic factors, including genetic variation in enzymes that metabolize nicotine and smoking cessation medications, as well as in receptor targets for nicotine and treatment medications. For example, smokers with genetically slow nicotine metabolism have higher cessation success on behavioural counseling and nicotine patches compared with smokers with genetically fast nicotine metabolism. In this review, we highlight new progress in our understanding of how genetic variation in the pharmacological targets of nicotine and smoking cessation medications could be used to tailor smoking cessation therapy, increase quit rates, and reduce tobacco-related harm.
Collapse
Affiliation(s)
- Meghan J Chenoweth
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ONT, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ONT, Canada
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ONT, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ONT, Canada; Department of Psychiatry, University of Toronto, Toronto, ONT, Canada.
| |
Collapse
|
21
|
Sager JE, Tripathy S, Price LSL, Nath A, Chang J, Stephenson-Famy A, Isoherranen N. In vitro to in vivo extrapolation of the complex drug-drug interaction of bupropion and its metabolites with CYP2D6; simultaneous reversible inhibition and CYP2D6 downregulation. Biochem Pharmacol 2016; 123:85-96. [PMID: 27836670 DOI: 10.1016/j.bcp.2016.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/04/2016] [Indexed: 01/05/2023]
Abstract
Bupropion is a widely used antidepressant and smoking cessation aid and a strong inhibitor of CYP2D6 in vivo. Bupropion is administered as a racemic mixture of R- and S-bupropion and has stereoselective pharmacokinetics. Four primary metabolites of bupropion, threo- and erythro-hydrobupropion and R,R- and S,S-OH-bupropion, circulate at higher concentrations than the parent drug and are believed to contribute to the efficacy and side effects of bupropion as well as to the CYP2D6 inhibition. However, bupropion and its metabolites are only weak inhibitors of CYP2D6 in vitro, and the magnitude of the in vivo drug-drug interactions (DDI) caused by bupropion cannot be explained by the in vitro data even when CYP2D6 inhibition by the metabolites is accounted for. The aim of this study was to quantitatively explain the in vivo CYP2D6 DDI magnitude by in vitro DDI data. Bupropion and its metabolites were found to inhibit CYP2D6 stereoselectively with up to 10-fold difference in inhibition potency between enantiomers. However, the reversible inhibition or active uptake into hepatocytes did not explain the in vivo DDIs. In HepG2 cells and in plated human hepatocytes bupropion and its metabolites were found to significantly downregulate CYP2D6 mRNA in a concentration dependent manner. The in vivo DDI was quantitatively predicted by significant down-regulation of CYP2D6 mRNA and reversible inhibition of CYP2D6 by bupropion and its metabolites. This study is the first example of a clinical DDI resulting from CYP down-regulation and first demonstration of a CYP2D6 interaction resulting from transcriptional regulation.
Collapse
Affiliation(s)
- Jennifer E Sager
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Sasmita Tripathy
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Lauren S L Price
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Abhinav Nath
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Justine Chang
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Alyssa Stephenson-Famy
- Department of Obstetrics and Gynecology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Anderson GD, Chan LN. Pharmacokinetic Drug Interactions with Tobacco, Cannabinoids and Smoking Cessation Products. Clin Pharmacokinet 2016; 55:1353-1368. [PMID: 27106177 DOI: 10.1007/s40262-016-0400-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tobacco smoke contains a large number of compounds in the form of metals, volatile gases and insoluble particles, as well as nicotine, a highly addictive alkaloid. Marijuana is the most widely used illicit drug of abuse in the world, with a significant increase in the USA due to the increasing number of states that allow medical and recreational use. Of the over 70 phytocannabinoids in marijuana, Δ9-tetrahydrocannabinol (Δ9THC), cannabidiol (CBD) and cannibinol are the three main constituents. Both marijuana and tobacco smoking induce cytochrome P450 (CYP) 1A2 through activation of the aromatic hydrocarbon receptor, and the induction effect between the two products is additive. Smoking cessation is associated with rapid downregulation of CYP1A enzymes. On the basis of the estimated half-life of CYP1A2, dose reduction of CYP1A drugs may be necessary as early as the first few days after smoking cessation to prevent toxicity, especially for drugs with a narrow therapeutic index. Nicotine is a substrate of CYP2A6, which is induced by oestrogen, resulting in lower concentrations of nicotine in females than in males, especially in females taking oral contraceptives. The significant effects of CYP3A4 inducers and inhibitors on the pharmacokinetics of Δ9THC/CBD oromucosal spray suggest that CYP3A4 is the primary enzyme responsible for the metabolism of Δ9THC and CBD. Limited data also suggest that CBD may significantly inhibit CYP2C19. With the increasing use of marijuana and cannabis products, clinical studies are needed in order to determine the effects of other drugs on pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Gail D Anderson
- Department of Pharmacy, Box 357630, University of Washington, Seattle, WA, 98195, USA.
| | - Lingtak-Neander Chan
- Department of Pharmacy, Box 357630, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
23
|
Inhibition of Cytochrome P450 2B6 Activity by Voriconazole Profiled Using Efavirenz Disposition in Healthy Volunteers. Antimicrob Agents Chemother 2016; 60:6813-6822. [PMID: 27600044 DOI: 10.1128/aac.01000-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/27/2016] [Indexed: 01/11/2023] Open
Abstract
Cytochrome P450 2B6 (CYP2B6) metabolizes clinically important drugs and other compounds. Its expression and activity vary widely among individuals, but quantitative estimation is hampered by the lack of safe and selective in vivo probes of CYP2B6 activity. Efavirenz, a nonnucleoside HIV-1 reverse transcriptase inhibitor, is mainly cleared by CYP2B6, an enzyme strongly inhibited in vitro by voriconazole. To test efavirenz metabolism as an in vivo probe of CYP2B6 activity, we quantified the inhibition of CYP2B6 activity by voriconazole in 61 healthy volunteers administered a single 100-mg oral dose of efavirenz with and without voriconazole administration. The kinetics of efavirenz metabolites demonstrated formation rate-limited elimination. Compared to control, voriconazole prolonged the elimination half-life (t1/2) and increased both the maximum concentration of drug in serum (Cmax) and the area under the concentration-time curve from 0 h to t (AUC0-t) of efavirenz (mean change of 51%, 36%, and 89%, respectively) (P < 0.0001) with marked intersubject variability (e.g., the percent change in efavirenz AUC0-t ranged from 0.4% to ∼224%). Voriconazole decreased efavirenz 8-hydroxylation by greater than 60% (P < 0.0001), whereas its effect on 7-hydroxylation was marginal. The plasma concentration ratio of efavirenz to 8-hydroxyefavirenz, determined 1 to 6 h after dosing, was significantly increased by voriconazole and correlated with the efavirenz AUC0-t (Pearson r = >0.8; P < 0.0001). This study demonstrates the mechanisms of voriconazole-efavirenz interaction, establishes the use of a low dose of efavirenz as a safe and selective in vivo probe for phenotyping CYP2B6 activity, and identifies several easy-to-use indices that should enhance understanding of the mechanisms of CYP2B6 interindividual variability. (This study is registered at ClinicalTrials.gov under identifier NCT01104376.).
Collapse
|
24
|
Fahmi OA, Shebley M, Palamanda J, Sinz MW, Ramsden D, Einolf HJ, Chen L, Wang H. Evaluation of CYP2B6 Induction and Prediction of Clinical Drug-Drug Interactions: Considerations from the IQ Consortium Induction Working Group-An Industry Perspective. Drug Metab Dispos 2016; 44:1720-30. [PMID: 27422672 PMCID: PMC11024975 DOI: 10.1124/dmd.116.071076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/14/2016] [Indexed: 04/20/2024] Open
Abstract
Drug-drug interactions (DDIs) due to CYP2B6 induction have recently gained prominence and clinical induction risk assessment is recommended by regulatory agencies. This work aimed to evaluate the potency of CYP2B6 versus CYP3A4 induction in vitro and from clinical studies and to assess the predictability of efavirenz versus bupropion as clinical probe substrates of CYP2B6 induction. The analysis indicates that the magnitude of CYP3A4 induction was higher than CYP2B6 both in vitro and in vivo. The magnitude of DDIs caused by induction could not be predicted for bupropion with static or dynamic models. On the other hand, the relative induction score, net effect, and physiologically based pharmacokinetics SimCYP models using efavirenz resulted in improved DDI predictions. Although bupropion and efavirenz have been used and are recommended by regulatory agencies as clinical CYP2B6 probe substrates for DDI studies, CYP3A4 contributes to the metabolism of both probes and is induced by all reference CYP2B6 inducers. Therefore, caution must be taken when interpreting clinical induction results because of the lack of selectivity of these probes. Although in vitro-in vivo extrapolation for efavirenz performed better than bupropion, interpretation of the clinical change in exposure is confounded by the coinduction of CYP2B6 and CYP3A4, as well as the increased contribution of CYP3A4 to efavirenz metabolism under induced conditions. Current methods and probe substrates preclude accurate prediction of CYP2B6 induction. Identification of a sensitive and selective clinical substrate for CYP2B6 (fraction metabolized > 0.9) is needed to improve in vitro-in vivo extrapolation for characterizing the potential for CYP2B6-mediated DDIs. Alternative strategies and a framework for evaluating the CYP2B6 induction risk are proposed.
Collapse
Affiliation(s)
- Odette A Fahmi
- Pfizer Inc., Groton, Connecticut (O.A.F.); AbbVie Inc., North Chicago, Illinois (M.S.); Merck Research Laboratories, Rahway, New Jersey (J.P.); Bristol-Myers Squibb, Wallingford, Connecticut (M.W.S.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); and University of Maryland School of Pharmacy, Baltimore, Maryland (H.W.)
| | - Mohamad Shebley
- Pfizer Inc., Groton, Connecticut (O.A.F.); AbbVie Inc., North Chicago, Illinois (M.S.); Merck Research Laboratories, Rahway, New Jersey (J.P.); Bristol-Myers Squibb, Wallingford, Connecticut (M.W.S.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); and University of Maryland School of Pharmacy, Baltimore, Maryland (H.W.)
| | - Jairam Palamanda
- Pfizer Inc., Groton, Connecticut (O.A.F.); AbbVie Inc., North Chicago, Illinois (M.S.); Merck Research Laboratories, Rahway, New Jersey (J.P.); Bristol-Myers Squibb, Wallingford, Connecticut (M.W.S.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); and University of Maryland School of Pharmacy, Baltimore, Maryland (H.W.)
| | - Michael W Sinz
- Pfizer Inc., Groton, Connecticut (O.A.F.); AbbVie Inc., North Chicago, Illinois (M.S.); Merck Research Laboratories, Rahway, New Jersey (J.P.); Bristol-Myers Squibb, Wallingford, Connecticut (M.W.S.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); and University of Maryland School of Pharmacy, Baltimore, Maryland (H.W.)
| | - Diane Ramsden
- Pfizer Inc., Groton, Connecticut (O.A.F.); AbbVie Inc., North Chicago, Illinois (M.S.); Merck Research Laboratories, Rahway, New Jersey (J.P.); Bristol-Myers Squibb, Wallingford, Connecticut (M.W.S.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); and University of Maryland School of Pharmacy, Baltimore, Maryland (H.W.)
| | - Heidi J Einolf
- Pfizer Inc., Groton, Connecticut (O.A.F.); AbbVie Inc., North Chicago, Illinois (M.S.); Merck Research Laboratories, Rahway, New Jersey (J.P.); Bristol-Myers Squibb, Wallingford, Connecticut (M.W.S.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); and University of Maryland School of Pharmacy, Baltimore, Maryland (H.W.)
| | - Liangfu Chen
- Pfizer Inc., Groton, Connecticut (O.A.F.); AbbVie Inc., North Chicago, Illinois (M.S.); Merck Research Laboratories, Rahway, New Jersey (J.P.); Bristol-Myers Squibb, Wallingford, Connecticut (M.W.S.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); and University of Maryland School of Pharmacy, Baltimore, Maryland (H.W.)
| | - Hongbing Wang
- Pfizer Inc., Groton, Connecticut (O.A.F.); AbbVie Inc., North Chicago, Illinois (M.S.); Merck Research Laboratories, Rahway, New Jersey (J.P.); Bristol-Myers Squibb, Wallingford, Connecticut (M.W.S.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Novartis, East Hanover, New Jersey (H.J.E.); GlaxoSmithKline, King of Prussia, Pennsylvania (L.C.); and University of Maryland School of Pharmacy, Baltimore, Maryland (H.W.)
| |
Collapse
|
25
|
Sager JE, Price LSL, Isoherranen N. Stereoselective Metabolism of Bupropion to OH-bupropion, Threohydrobupropion, Erythrohydrobupropion, and 4'-OH-bupropion in vitro. ACTA ACUST UNITED AC 2016; 44:1709-19. [PMID: 27495292 PMCID: PMC5034696 DOI: 10.1124/dmd.116.072363] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/04/2016] [Indexed: 02/05/2023]
Abstract
Bupropion is a widely used antidepressant, smoking cessation aid, and weight-loss therapy. It is administered as a racemic mixture, but the pharmacokinetics and activity of bupropion are stereoselective. The activity and side effects of bupropion are attributed to bupropion and its metabolites S,S- and R,R-OH-bupropion, threohydrobupropion, and erythrohydrobupropion. Yet the stereoselective metabolism in vitro and the enzymes contributing to the stereoselective disposition of bupropion have not been characterized. In humans, the fraction of bupropion metabolized (fm) to the CYP2B6 probe metabolite OH-bupropion is 5-16%, but ticlopidine increases bupropion exposure by 61%, suggesting a 40% CYP2B6 and/or CYP2C19 fm for bupropion. Yet, the CYP2C19 contribution to bupropion clearance has not been defined, and the enzymes contributing to overall bupropion metabolite formation have not been fully characterized. The aim of this study was to characterize the stereoselective metabolism of bupropion in vitro to explain the stereoselective pharmacokinetics and the effect of drug-drug interactions (DDIs) and CYP2C19 pharmacogenetics on bupropion exposure. The data predict that threohydrobupropion accounts for 50 and 82%, OH-bupropion for 34 and 12%, erythrohydrobupropion for 8 and 4%, and 4'-OH-bupropion for 8 and 2% of overall R- and S-bupropion clearance, respectively. The fm,CYP2B6 was predicted to be 21%, and the fm,CYP2C19, 6% for racemic bupropion. Importantly, ticlopidine was found to inhibit all metabolic pathways of bupropion in vitro, including threohydrobupropion, erythrohydrobupropion, and 4'OH-bupropion formation, explaining the in vivo DDI. The stereoselective pharmacokinetics of bupropion were quantitatively explained by the in vitro metabolic clearances and in vivo interconversion between bupropion stereoisomers.
Collapse
Affiliation(s)
- Jennifer E Sager
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Lauren S L Price
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
26
|
Masters AR, Gufford BT, Lu JBL, Metzger IF, Jones DR, Desta Z. Chiral Plasma Pharmacokinetics and Urinary Excretion of Bupropion and Metabolites in Healthy Volunteers. J Pharmacol Exp Ther 2016; 358:230-8. [PMID: 27255113 DOI: 10.1124/jpet.116.232876] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/01/2016] [Indexed: 11/22/2022] Open
Abstract
Bupropion, widely used as an antidepressant and smoking cessation aid, undergoes complex metabolism to yield numerous metabolites with unique disposition, effect, and drug-drug interactions (DDIs) in humans. The stereoselective plasma and urinary pharmacokinetics of bupropion and its metabolites were evaluated to understand their potential contributions to bupropion effects. Healthy human volunteers (n = 15) were administered a single oral dose of racemic bupropion (100 mg), which was followed by collection of plasma and urine samples and determination of bupropion and metabolite concentrations using novel liquid chromatography-tandem mass spectrometry assays. Time-dependent, elimination rate-limited, stereoselective pharmacokinetics were observed for all bupropion metabolites. Area under the plasma concentration-time curve from zero to infinity ratios were on average approximately 65, 6, 6, and 4 and Cmax ratios were approximately 35, 6, 3, and 0.5 for (2R,3R)-/(2S,3S)-hydroxybupropion, R-/S-bupropion, (1S,2R)-/(1R,2S)-erythrohydrobupropion, and (1R,2R)-/(1S,2S)-threohydrobupropion, respectively. The R-/S-bupropion and (1R,2R)-/(1S,2S)-threohydrobupropion ratios are likely indicative of higher presystemic metabolism of S- versus R-bupropion by carbonyl reductases. Interestingly, the apparent renal clearance of (2S,3S)-hydroxybupropion was almost 10-fold higher than that of (2R,3R)-hydroxybupropion. The prediction of steady-state pharmacokinetics demonstrated differential stereospecific accumulation [partial area under the plasma concentration-time curve after the final simulated bupropion dose (300-312 hours) from 185 to 37,447 nM⋅h] and elimination [terminal half-life of approximately 7-46 hours] of bupropion metabolites, which may explain observed stereoselective differences in bupropion effect and DDI risk with CYP2D6 at steady state. Further elucidation of bupropion and metabolite disposition suggests that bupropion is not a reliable in vivo marker of CYP2B6 activity. In summary, to our knowledge, this is the first comprehensive report to provide novel insight into mechanisms underlying bupropion disposition by detailing the stereoselective pharmacokinetics of individual bupropion metabolites, which will enhance clinical understanding of bupropion's effects and DDIs with CYP2D6.
Collapse
Affiliation(s)
- Andrea R Masters
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brandon T Gufford
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jessica Bo Li Lu
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ingrid F Metzger
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - David R Jones
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zeruesenay Desta
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
27
|
Steuer AE, Schmidhauser C, Tingelhoff EH, Schmid Y, Rickli A, Kraemer T, Liechti ME. Impact of Cytochrome P450 2D6 Function on the Chiral Blood Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine (MDMA) and Its Phase I and II Metabolites in Humans. PLoS One 2016; 11:e0150955. [PMID: 26967321 PMCID: PMC4788153 DOI: 10.1371/journal.pone.0150955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/22/2016] [Indexed: 12/05/2022] Open
Abstract
3,4-methylenedioxymethamphetamine (MDMA; ecstasy) metabolism is known to be stereoselective, with preference for S-stereoisomers. Its major metabolic step involves CYP2D6-catalyzed demethylenation to 3,4-dihydroxymethamphetamine (DHMA), followed by methylation and conjugation. Alterations in CYP2D6 genotype and/or phenotype have been associated with higher toxicity. Therefore, the impact of CYP2D6 function on the plasma pharmacokinetics of MDMA and its phase I and II metabolites was tested by comparing extensive metabolizers (EMs), intermediate metabolizers (IMs), and EMs that were pretreated with bupropion as a metabolic inhibitor in a controlled MDMA administration study. Blood plasma samples were collected from 16 healthy participants (13 EMs and three IMs) up to 24 h after MDMA administration in a double-blind, placebo-controlled, four-period, cross-over design, with subjects receiving 1 week placebo or bupropion pretreatment followed by a single placebo or MDMA (125 mg) dose. Bupropion pretreatment increased the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC24) of R-MDMA (9% and 25%, respectively) and S-MDMA (16% and 38%, respectively). Bupropion reduced the Cmax and AUC24 of the CYP2D6-dependently formed metabolite stereoisomers of DHMA 3-sulfate, DHMA 4-sulfate, and 4-hydroxy-3-methoxymethamphetamine (HMMA sulfate and HMMA glucuronide) by approximately 40%. The changes that were observed in IMs were generally comparable to bupropion-pretreated EMs. Although changes in stereoselectivity based on CYP2D6 activity were observed, these likely have low clinical relevance. Bupropion and hydroxybupropion stereoisomer pharmacokinetics were unaltered by MDMA co-administration. The present data might aid further interpretations of toxicity based on CYP2D6-dependent MDMA metabolism.
Collapse
Affiliation(s)
- Andrea E. Steuer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Corina Schmidhauser
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Eva H. Tingelhoff
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Yasmin Schmid
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Anna Rickli
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology & Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Matthias E. Liechti
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
28
|
Teitelbaum AM, Flaker AM, Kharasch ED. Development and validation of a high-throughput stereoselective LC-MS/MS assay for bupropion, hydroxybupropion, erythrohydrobupropion, and threohydrobupropion in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1017-1018:101-113. [PMID: 26963497 DOI: 10.1016/j.jchromb.2016.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
A stereoselective analytical method was developed and validated for the quantification of bupropion, and principle metabolites hydroxybupropion, erythrohydrobupropion and threohydrobupropion in human plasma. Separation of individual enantiomers (R)-bupropion, (S)-bupropion, (R,R)-hydroxybupropion, (S,S-hydroxybupropion), (1S,2S)-threohydrobupropion, (1R,2R)-threohydrobupropion, (1R,2S)-erythrohydrobupropion, and (1S,2R)-erythrohydrobupropion was achieved utilizing an α1-acid glycoprotein column within a 12-min run time. Chromatograph separation was significantly influenced by mobile phase pH and variability between columns. Analytes were quantified by positive ion electrospray tandem mass spectrometry following plasma protein precipitation with 20% trichloroacetic acid. Identification of erythrohydrobupropion enantiomer peaks and threohydrobupropion enantiomer peaks was achieved by sodium borohydride reduction of enantiopure (R)- and (S)-bupropion. Initial assay validation and sensitivity determination was on AB Sciex 3200, 4000 QTRAP, and 6500 mass spectrometers. Accuracy and precision were within 15% for each analyte. The assay was fully validated over analyte-specific concentrations using an AB Sciex 3200 mass spectrometer. Intra- and inter-assay precision and accuracy were within 12% for each analyte. The limits of quantification for bupropion (R and S), hydroxybupropion (R,R and S,S), threohydrobupropion (1S,2S and 1R,2R), and erythrohydrobupropion (1R,2S and 1S,2R) were 0.5, 2, 1, and 1ng/mL, respectively. All analytes were stable following freeze thaw cycles at -80°C and while stored at 4°C in the instrument autosampler. This method was applicable to clinical pharmacokinetic investigations of bupropion in patients. This is the first chromatographic method to resolve erythrohydrobupropion and threohydrobupropion enantiomers, and the first stereoselective LC-MS/MS assay to quantify bupropion, and principle metabolites hydroxybupropion, erythrohydrobupropion, and threohydrobupropion in human plasma.
Collapse
Affiliation(s)
- Aaron M Teitelbaum
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Alicia M Flaker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Evan D Kharasch
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63110, United States; Department of Biochemistry and Molecular Biology, Washington University in St. Louis, St. Louis, MO 63110, United States; The Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
29
|
Masters AR, McCoy M, Jones DR, Desta Z. Stereoselective method to quantify bupropion and its three major metabolites, hydroxybupropion, erythro-dihydrobupropion, and threo-dihydrobupropion using HPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1015-1016:201-208. [PMID: 26946423 DOI: 10.1016/j.jchromb.2016.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/15/2016] [Accepted: 02/14/2016] [Indexed: 10/22/2022]
Abstract
Bupropion metabolites formed via oxidation and reduction exhibit pharmacological activity, but little is known regarding their stereoselective disposition. A novel stereoselective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to separate and quantify enantiomers of bupropion, 4-hydroxybupropion, and erythro- and threo-dihydrobupropion. Liquid-liquid extraction was implemented to extract all analytes from 50 μL human plasma. Acetaminophen (APAP) was used as an internal standard. The analytes were separated on a Lux 3 μ Cellulose-3 250×4.6 mm column by methanol: acetonitrile: ammonium bicarbonate: ammonium hydroxide gradient elution and monitored using an ABSciex 5500 QTRAP triple-quadrupole mass spectrometer equipped with electrospray ionization probe in positive mode. Extraction efficiency for all analytes was ≥70%. The stability at a single non-extracted concentration for over 48 h at ambient temperature resulted in less than 9.8% variability for all analytes. The limit of quantification (LOQ) for enantiomers of bupropion and 4-hydroxybupropion was 0.3 ng/mL, while the LOQ for enantiomers of erythro- and threo-hydrobupropion was 0.15 ng/mL. The intra-day precision and accuracy estimates for enantiomers of bupropion and its metabolites ranged from 3.4% to 15.4% and from 80.6% to 97.8%, respectively, while the inter-day precision and accuracy ranged from 6.1% to 19.9% and from 88.5% to 99.9%, respectively. The current method was successfully implemented to determine the stereoselective pharmacokinetics of bupropion and its metabolites in 3 healthy volunteers administered a single 100mg oral dose of racemic bupropion. This novel, accurate, and precise HPLC-MS/MS method should enhance further research into bupropion stereoselective metabolism and drug interactions.
Collapse
Affiliation(s)
- Andrea R Masters
- Indiana University School of Medicine, Indiana University Melvin and Bren Simon Cancer Center, RR208, 699 Riley Hospital Drive, Indianapolis, IN 46202, United States.
| | - Michael McCoy
- Phenomenex, 411 Madrid Avenue, Torrance, CA 90501, United States.
| | - David R Jones
- Department of Medicine, Division of Clinical Pharmacology, RR 208, 699 Riley Hospital Drive, Indianapolis, IN 46202, United States.
| | - Zeruesenay Desta
- Department of Medicine, Division of Clinical Pharmacology, R2 402, 950 West Walnut Avenue, Indianapolis, IN 46202, United States.
| |
Collapse
|
30
|
Gufford BT, Lu JBL, Metzger IF, Jones DR, Desta Z. Stereoselective Glucuronidation of Bupropion Metabolites In Vitro and In Vivo. ACTA ACUST UNITED AC 2016; 44:544-53. [PMID: 26802129 DOI: 10.1124/dmd.115.068908] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 01/18/2023]
Abstract
Bupropion is a widely used antidepressant and smoking cessation aid in addition to being one of two US Food and Drug Administration-recommended probe substrates for evaluation of cytochrome P450 2B6 activity. Racemic bupropion undergoes oxidative and reductive metabolism, producing a complex profile of pharmacologically active metabolites with relatively little known about the mechanisms underlying their elimination. A liquid chromatography-tandem mass spectrometry assay was developed to simultaneously separate and detect glucuronide metabolites of (R,R)- and (S,S)-hydroxybupropion, (R,R)- and (S,S)-hydrobupropion (threo) and (S,R)- and (R,S)-hydrobupropion (erythro), in human urine and liver subcellular fractions to begin exploring mechanisms underlying enantioselective metabolism and elimination of bupropion metabolites. Human liver microsomal data revealed marked glucuronidation stereoselectivity [Cl(int), 11.4 versus 4.3 µl/min per milligram for the formation of (R,R)- and (S,S)-hydroxybupropion glucuronide; and Cl(max), 7.7 versus 1.1 µl/min per milligram for the formation of (R,R)- and (S,S)-hydrobupropion glucuronide], in concurrence with observed enantioselective urinary elimination of bupropion glucuronide conjugates. Approximately 10% of the administered bupropion dose was recovered in the urine as metabolites with glucuronide metabolites, accounting for approximately 40%, 15%, and 7% of the total excreted hydroxybupropion, erythro-hydrobupropion, and threo-hydrobupropion, respectively. Elimination pathways were further characterized using an expressed UDP-glucuronosyl transferase (UGT) panel with bupropion enantiomers (both individual and racemic) as substrates. UGT2B7 catalyzed the stereoselective formation of glucuronides of hydroxybupropion, (S,S)-hydrobupropion, (S,R)- and (R,S)-hydrobupropion; UGT1A9 catalyzed the formation of (R,R)-hydrobupropion glucuronide. These data systematically describe the metabolic pathways underlying bupropion metabolite disposition and significantly expand our knowledge of potential contributors to the interindividual and intraindividual variability in therapeutic and toxic effects of bupropion in humans.
Collapse
Affiliation(s)
- Brandon T Gufford
- Department of Medicine, Division of Clinical Pharmacology Indiana University School of Medicine, Indianapolis, Indiana
| | - Jessica Bo Li Lu
- Department of Medicine, Division of Clinical Pharmacology Indiana University School of Medicine, Indianapolis, Indiana
| | - Ingrid F Metzger
- Department of Medicine, Division of Clinical Pharmacology Indiana University School of Medicine, Indianapolis, Indiana
| | - David R Jones
- Department of Medicine, Division of Clinical Pharmacology Indiana University School of Medicine, Indianapolis, Indiana
| | - Zeruesenay Desta
- Department of Medicine, Division of Clinical Pharmacology Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
31
|
Cho DY, Shen JHQ, Lemler SM, Skaar TC, Li L, Blievernicht J, Zanger UM, Kim KB, Shin JG, Flockhart DA, Desta Z. Rifampin enhances cytochrome P450 (CYP) 2B6-mediated efavirenz 8-hydroxylation in healthy volunteers. Drug Metab Pharmacokinet 2015; 31:107-16. [PMID: 27053325 DOI: 10.1016/j.dmpk.2015.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/29/2015] [Accepted: 07/14/2015] [Indexed: 01/11/2023]
Abstract
The effect of rifampin on the in vivo metabolism of the antiretroviral drug efavirenz was evaluated in healthy volunteers. In a cross-over placebo control trial, healthy subjects (n = 20) were administered a single 600 mg oral dose of efavirenz after pretreatment with placebo or rifampin (600 mg/day for 10 days). Plasma and urine concentrations of efavirenz, 8-hydroxyefavirenz and 8,14-dihydroxyefavirenz were measured by LC-MS/MS. Compared to placebo treatment, rifampin increased the oral clearance (by ∼2.5-fold) and decreased maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC0-∞) of efavirenz (by ∼1.6- and ∼2.5-fold respectively) (p < 0.001). Rifampin treatment substantially increased the Cmax and AUC0-12h of 8-hydroxyefavirenz and 8,14-dihydroxyefavirenz, metabolic ratio (AUC0-72h of metabolites to AUC0-72h efavirenz) and the amount of metabolites excreted in urine (Ae0-12hr) (all, p < 0.01). Female subjects had longer elimination half-life (1.6-2.2-fold) and larger weight-adjusted distribution volume (1.6-1.9-fold) of efavirenz than male subjects (p < 0.05) in placebo and rifampin treated groups respectively. In conclusion, rifampin enhances CYP2B6-mediated efavirenz 8-hydroxylation in vivo. The metabolism of a single oral dose of efavirenz may be a suitable in vivo marker of CYP2B6 activity to evaluate induction drug interactions involving this enzyme.
Collapse
Affiliation(s)
- Doo-Yeoun Cho
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN 46202, USA
| | - Joan H Q Shen
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN 46202, USA
| | - Suzanne M Lemler
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN 46202, USA
| | - Todd C Skaar
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN 46202, USA
| | - Lang Li
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN 46202, USA
| | - Julia Blievernicht
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Ulrich M Zanger
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Kwon-Bok Kim
- Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - Jae-Gook Shin
- Inje University College of Medicine, Inje University Busan Paik Hospital, Busan 614-735, Republic of Korea
| | - David A Flockhart
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN 46202, USA
| | - Zeruesenay Desta
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN 46202, USA.
| |
Collapse
|
32
|
Oh DA, Crean CS. Single-dose pharmacokinetics of bupropion hydrobromide and metabolites in healthy adolescent and adult subjects. Clin Pharmacol Drug Dev 2015; 4:346-53. [DOI: 10.1002/cpdd.195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 04/10/2015] [Indexed: 01/26/2023]
Affiliation(s)
- D. Alexander Oh
- Valeant Pharmaceuticals North America, LLC; Bridgewater NJ USA
| | | |
Collapse
|
33
|
Connarn JN, Zhang X, Babiskin A, Sun D. Metabolism of bupropion by carbonyl reductases in liver and intestine. Drug Metab Dispos 2015; 43:1019-27. [PMID: 25904761 DOI: 10.1124/dmd.115.063107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/22/2015] [Indexed: 11/22/2022] Open
Abstract
Bupropion's metabolism and the formation of hydroxybupropion in the liver by cytochrome P450 2B6 (CYP2B6) has been extensively studied; however, the metabolism and formation of erythro/threohydrobupropion in the liver and intestine by carbonyl reductases (CR) has not been well characterized. The purpose of this investigation was to compare the relative contribution of the two metabolism pathways of bupropion (by CYP2B6 and CR) in the subcellular fractions of liver and intestine and to identify the CRs responsible for erythro/threohydrobupropion formation in the liver and the intestine. The results showed that the liver microsome generated the highest amount of hydroxybupropion (Vmax = 131 pmol/min per milligram, Km = 87 μM). In addition, liver microsome and S9 fractions formed similar levels of threohydrobupropion by CR (Vmax = 98-99 pmol/min per milligram and Km = 186-265 μM). Interestingly, the liver has similar capability to form hydroxybupropion (by CYP2B6) and threohydrobupropion (by CR). In contrast, none of the intestinal fractions generate hydroxybupropion, suggesting that the intestine does not have CYP2B6 available for metabolism of bupropion. However, intestinal S9 fraction formed threohydrobupropion to the extent of 25% of the amount of threohydrobupropion formed by liver S9 fraction. Enzyme inhibition and Western blots identified that 11β-dehydrogenase isozyme 1 in the liver microsome fraction is mainly responsible for the formation of threohydrobupropion, and in the intestine AKR7 may be responsible for the same metabolite formation. These quantitative comparisons of bupropion metabolism by CR in the liver and intestine may provide new insight into its efficacy and side effects with respect to these metabolites.
Collapse
Affiliation(s)
- Jamie N Connarn
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan (J.N.C., D.S.); Office of Generic Drugs, Food and Drug Administration, Rockville, Maryland (X.Z., A.B.)
| | - Xinyuan Zhang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan (J.N.C., D.S.); Office of Generic Drugs, Food and Drug Administration, Rockville, Maryland (X.Z., A.B.)
| | - Andrew Babiskin
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan (J.N.C., D.S.); Office of Generic Drugs, Food and Drug Administration, Rockville, Maryland (X.Z., A.B.)
| | - Duxin Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan (J.N.C., D.S.); Office of Generic Drugs, Food and Drug Administration, Rockville, Maryland (X.Z., A.B.)
| |
Collapse
|
34
|
Schmid Y, Rickli A, Schaffner A, Duthaler U, Grouzmann E, Hysek CM, Liechti ME. Interactions between Bupropion and 3,4-Methylenedioxymethamphetamine in Healthy Subjects. J Pharmacol Exp Ther 2015; 353:102-11. [DOI: 10.1124/jpet.114.222356] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
35
|
Bupropion and Bupropion Analogs as Treatments for CNS Disorders. ADVANCES IN PHARMACOLOGY 2014; 69:177-216. [DOI: 10.1016/b978-0-12-420118-7.00005-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
|
37
|
Jiang F, Desta Z, Shon JH, Yeo CW, Kim HS, Liu KH, Bae SK, Lee SS, Flockhart DA, Shin JG. Effects of clopidogrel and itraconazole on the disposition of efavirenz and its hydroxyl metabolites: exploration of a novel CYP2B6 phenotyping index. Br J Clin Pharmacol 2013; 75:244-53. [PMID: 22554354 DOI: 10.1111/j.1365-2125.2012.04314.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIMS To evaluate the effects of clopidogrel and itraconazole on the disposition of efavirenz and its hydroxyl metabolites in relation to the CYP2B6*6 genotype and explore potential phenotyping indices for CYP2B6 activity in vivo using a low dose of oral efavirenz. METHODS We conducted a randomized three phase crossover study in 17 healthy Korean subjects pre-genotyped for the CYP2B6*6 allele (CYP2B6*1/*1, n = 6; *1/*6, n = 6; *6/*6, n = 5). Subjects were pretreated with clopidogrel (75 mg day(-1) for 4 days), itraconazole (200 mg day(-1) for 6 days), or placebo and then given a single dose of efavirenz (200 mg). The plasma (0-120 h) and urine (0-24 h) concentrations of efavirenz and its metabolites (7- and 8-hydroxyefavirenz and 8,14-dihydroxyefavirenz) were determined by LC/MS/MS. RESULTS This study is the first to delineate quantitatively the full (phase I and II) metabolic profile of efavirenz and its three hydroxyl metabolites in humans. Clopidogrel pretreatment markedly decreased AUC(0,48 h), C(max) and Ae(0,24 h) for 8,14-dihydroxyefavirenz, compared with placebo; 95% CI of the ratios were 0.55, 0.73, 0.30, 0.45 and 0.25, 0.47, respectively. The 8,14-dihydroxyefavirenz : efavirenz AUC(0,120 h) ratio was significantly correlated with the weight-adjusted CL/F of efavirenz (r(2) ≈ 0.4, P < 0.05), differed with CYP2B6*6 genotype and was affected by clopidogrel pretreatment (P < 0.05) but not by itraconazole pretreatment. CONCLUSIONS The disposition of 8,14-dihydroxy-EFV appears to be sensitive to CYP2B6 activity alterations in human subjects. The 8,14-dihydroxyefaviremz : efavirenz AUC(0,120 h) ratio is attractive as a candidate phenotyping index for CYP2B6 activity in vivo.
Collapse
Affiliation(s)
- Fen Jiang
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Influence of CYP2B6 genetic variants on plasma and urine concentrations of bupropion and metabolites at steady state. Pharmacogenet Genomics 2013; 23:135-41. [PMID: 23344581 DOI: 10.1097/fpc.0b013e32835d9ab0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bupropion, an antidepressant and smoking cessation medication, is metabolized to hydroxybupropion (HB), an active metabolite, primarily by CYP2B6. OBJECTIVES To compare plasma concentrations of bupropion and metabolites at steady state in healthy volunteers with and without CYP2B6 genetic variants. METHODS In a genotype-guided study of 42 healthy individuals, we measured the plasma and urine concentrations of bupropion and its metabolites, HB, threohydrobupropion, and erythrohydrobupropion after 7 days of sustained-release bupropion dosing. RESULTS CYP2B6*6 and *18 gene variants were associated with ~33% reduced concentrations of HB, with no effects on concentrations of bupropion or other metabolites. We could account for 50% of the variation in HB concentrations in a model including genotype and sex. CONCLUSION As HB is active and its steady-state concentrations are more than 10 times higher than bupropion, CYP2B6 variants are likely to affect pharmacological activity. Because of the large individual variation within the genotype group, the use of therapeutic drug monitoring for dose optimization may be necessary.
Collapse
|
39
|
Stereoselectivity in the cytochrome P450-dependent N-demethylation and flavin monooxygenase-dependent N-oxidation of N,N-dimethylamphetamine. Arch Pharm Res 2013; 36:1385-91. [PMID: 23640382 DOI: 10.1007/s12272-013-0137-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
Abstract
N,N-dimethylamphetamine (DMA), a methamphetamine (MA) analog, is known as a weak central nervous system stimulant. As DMA possesses a chiral center, we investigated the enantioselective formation of N,N-dimethylamphetamine N-oxide (DMANO) and MA from DMA using human liver microsomes, recombinant cytochrome P450 (CYP) 2D6, and flavin monooxygenases (FMO) 1 and 3. d-DMA was preferentially metabolized to MA, whereas l-DMA was more rapidly transformed to DMANO in human liver microsomes. CYP2D6 showed a preference for catalyzing N-demethylation of d-DMA, and the intrinsic clearance (Clint) ratio of d-isomer to l-isomer was 1.41. FMO1 catalyzed the formation of slightly less d-DMANO than l-DMANO, and the Clint ratio of the D- to L-isomer was 0.78. The reverse was observed for the formation of DMANO by FMO3. However, given the minor contribution of FMO3 compared with FMO1, it would not affect the overall enantioselective formation of DMANO in human liver microsomes. Enantioselectivities in the formation of MA and DMANO in human liver microsomes were consistent with those of CYP2D6 and FMO1, respectively.
Collapse
|
40
|
Ilic K, Hawke RL, Thirumaran RK, Schuetz EG, Hull JH, Kashuba ADM, Stewart PW, Lindley CM, Chen ML. The influence of sex, ethnicity, and CYP2B6 genotype on bupropion metabolism as an index of hepatic CYP2B6 activity in humans. Drug Metab Dispos 2012; 41:575-81. [PMID: 23238783 DOI: 10.1124/dmd.112.048108] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The effects of sex, ethnicity, and genetic polymorphism on hepatic CYP2B6 (cytochrome P450 2B6) expression and activity were previously demonstrated in vitro. Race/ethnic differences in CYP2B6 genotype and phenotype were observed only in women. To identify important covariates associated with interindividual variation in CYP2B6 activity in vivo, we evaluated these effects in healthy volunteers using bupropion (Wellbutrin SR GlaxoSmithKline, Research Triangle Park, NC) as a CYP2B6 probe substrate. A fixed 150-mg oral sustained-release dose of bupropion was administered to 100 healthy volunteers comprising four sex/ethnicity cohorts (n = 25 each): Caucasian men and Caucasian, African American, and Hispanic women. Blood samples were obtained at 0 and 6 hours postdose for the measurement of serum bupropion (BU) and hydroxybupropion (HB) concentrations. Whole blood was obtained at baseline for CYP2B6 genotyping. To characterize the relationship between CYP2B6 activity and ethnicity, sex, and genotype when accounting for serum BU concentrations (dose-adjusted log(10)-transformed), analysis of covariance model was fitted in which the dependent variable was CYP2B6 activity represented as the log(10)-transformed, metabolic ratio of HB to BU concentrations. Several CYP2B6 polymorphisms were associated with CYP2B6 activity. Evidence of dependence of CYP2B6 activity on ethnicity or genotype-by-ethnicity interactions was not detected in women. These results suggest that CYP2B6 genotype is the most important patient variable for predicting the level of CYP2B6 activity in women, when measured by the metabolism of bupropion. The bupropion metabolic ratio appears to detect known differences in CYP2B6 activity associated with genetic polymorphism, across different ethnic groups. Prospective studies will be needed to validate the use of bupropion as a probe substrate for clinical use.
Collapse
Affiliation(s)
- Katarina Ilic
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, CB #7569, Kerr Hall Rm 3310, Chapel Hill, NC 27599-7360, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Phenotyping drug disposition in oncology. Cancer Treat Rev 2012; 38:715-25. [DOI: 10.1016/j.ctrv.2011.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 12/11/2022]
|
42
|
Kirby BJ, Collier AC, Kharasch ED, Dixit V, Desai P, Whittington D, Thummel KE, Unadkat JD. Complex drug interactions of HIV protease inhibitors 2: in vivo induction and in vitro to in vivo correlation of induction of cytochrome P450 1A2, 2B6, and 2C9 by ritonavir or nelfinavir. Drug Metab Dispos 2011; 39:2329-37. [PMID: 21930825 DOI: 10.1124/dmd.111.038646] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Drug-drug interactions (DDIs) with the HIV protease inhibitors (PIs) are complex, paradoxical (e.g., ritonavir/alprazolam), and involve multiple mechanisms. As part of a larger study to better understand these DDIs and to devise a framework for in vitro to in vivo prediction of these DDIs, we determined the inductive effect of ∼2 weeks of administration of two prototypic PIs, nelfinavir (NFV), ritonavir (RTV), and rifampin (RIF; induction positive control) on the cytochrome P450 enzymes CYP1A2, CYP2B6, CYP2C9, and CYP2D6 and the inductive or inductive plus inhibitory effect of NFV, RTV, or RIF on CYP3A and P-glycoprotein in healthy human volunteers. Statistically significant induction of CYP1A2 (2.1-, 2.9-, and 2.2-fold), CYP2B6 (1.8-, 2.4-, and 4-fold), and CYP2C9 (1.3-, 1.8-, and 2.6-fold) was observed after NFV, RTV, or RIF treatment, respectively (as expected, CYP2D6 was not induced). Moreover, we accurately predicted the in vivo induction of these enzymes by quantifying their induction by the PIs in human hepatocytes and by using RIF as an in vitro to in vivo scalar. On the basis of the modest in vivo induction of CYP1A2, CYP2B6, or CYP2C9, the in vivo paradoxical DDIs with the PIs are likely explained by mechanisms other than induction of these enzymes such as induction of other metabolic enzymes, transporters, or both.
Collapse
Affiliation(s)
- Brian J Kirby
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Darnell M, Schreiter T, Zeilinger K, Urbaniak T, Söderdahl T, Rossberg I, Dillnér B, Berg AL, Gerlach JC, Andersson TB. Cytochrome P450-Dependent Metabolism in HepaRG Cells Cultured in a Dynamic Three-Dimensional Bioreactor. Drug Metab Dispos 2011; 39:1131-8. [DOI: 10.1124/dmd.110.037721] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
44
|
Contribution of N-glucuronidation to efavirenz elimination in vivo in the basal and rifampin-induced metabolism of efavirenz. Antimicrob Agents Chemother 2011; 55:1504-9. [PMID: 21282425 DOI: 10.1128/aac.00883-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this study, the contribution of efavirenz N-glucuronidation to efavirenz elimination in vivo was assessed. In a two-period placebo-controlled crossover trial design, a single 600-mg oral dose of efavirenz was administered to healthy volunteers (n = 10) pretreated with placebo pills or 600 mg/day rifampin orally for 10 days. Urine and plasma concentrations of efavirenz and 8-hydroxyefavirenz were measured by the liquid chromatography-tandem mass spectrometry method after enzymatic hydrolysis with β-glucuronidase (conjugated and unconjugated) and without enzymatic hydrolysis (unconjugated). Pharmacokinetic parameters of efavirenz within the placebo- or rifampin-treated group obtained after enzymatic hydrolysis did not show any statistically significant difference compared with those obtained without enzymatic hydrolysis (P > 0.05; paired t test, two-tailed). The amount of efavirenz excreted over 12 h was significantly larger after enzymatic hydrolysis in both the placebo (P = 0.007) and rifampin (P = 0.0001) treatment groups, supporting the occurrence of direct N-glucuronidation of efavirenz, but the relevance of this finding is limited because the amount of efavirenz excreted as unchanged or conjugated in urine is less than 1% of the dose administered. In both the placebo- and rifampin-treated groups, plasma concentrations of 8-hydroxyefavirenz and the amount excreted over 12 h were significantly larger (P < 0.00001) after enzymatic hydrolysis than without enzymatic hydrolysis. These findings suggest that although the occurrence of direct efavirenz N-glucuronidation is supported by the urine data, the abundance of efavirenz N-glucuronide in plasma is negligible and that the contribution of the N-glucuronidation pathway to the overall clearance of efavirenz seems minimal.
Collapse
|
45
|
Roy PP, Roy K. Pharmacophore mapping, molecular docking and QSAR studies of structurally diverse compounds as CYP2B6 inhibitors. MOLECULAR SIMULATION 2010. [DOI: 10.1080/08927022.2010.492834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Lukas RJ, Muresan AZ, Damaj MI, Blough BE, Huang X, Navarro HA, Mascarella SW, Eaton JB, Marxer-Miller SK, Carroll FI. Synthesis and characterization of in vitro and in vivo profiles of hydroxybupropion analogues: aids to smoking cessation. J Med Chem 2010; 53:4731-48. [PMID: 20509659 DOI: 10.1021/jm1003232] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To create potentially superior aids to smoking cessation and/or antidepressants and to elucidate bupropion's possible mechanisms of action(s), 23 analogues based on its active hydroxymetabolite (2S,3S)-4a were synthesized and tested for their abilities to inhibit monoamine uptake and nAChR subtype activities in vitro and acute effects of nicotine in vivo. The 3',4'-dichlorophenyl [(+/-)-4n], naphthyl (4r), and 3-chlorophenyl or 3-propyl analogues 4s and 4t, respectively, had higher inhibitory potency and/or absolute selectivity than (2S,3S)-4a for inhibition of DA, NE, or 5HT uptake. The 3'-fluorophenyl, 3'-bromophenyl, and 4-biphenyl analogues 4c, 4d, and 4l, respectively, had higher potency for antagonism of alpha4beta2-nAChR than (2S,3S)-4a. Several analogues also had higher potency than (2S,3S)-4a as antagonists of nicotine-mediated antinociception in the tail-flick assay. The results suggest that compounds acting via some combination of DA, NE, or 5HT inhibition and/or antagonism of alpha4beta2-nAChR can potentially be new pharmacotherapeutics for treatment of nicotine dependence.
Collapse
Affiliation(s)
- Ronald J Lukas
- Division of Neurobiology, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, Arizona 85013, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fahmi OA, Kish M, Boldt S, Obach RS. Cytochrome P450 3A4 mRNA is a more reliable marker than CYP3A4 activity for detecting pregnane X receptor-activated induction of drug-metabolizing enzymes. Drug Metab Dispos 2010; 38:1605-11. [PMID: 20566695 DOI: 10.1124/dmd.110.033126] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Induction of cytochrome P450 (P450) activity in the clinic can result in therapeutic failure such as tissue rejection in transplant patients or unwanted pregnancy, among others. CYP3A4 is by far the most abundant isoform and is responsible for the majority of P450-related metabolism of all marketed drugs. However, it is of importance to understand the significance of induction mediated through other P450 enzymes. The objective of this investigation was to evaluate several known inducers in vitro using cryopreserved human hepatocytes, with the aim of assessing the relevant induction of CYP3A4, CYP2B6, CYP2C9, CYP2C19, and CYP3A5, based on mRNA expression. CYP3A4 induction was also assessed based on enzymatic activity in three different lots to investigate whether mRNA expression data have any advantages over enzymatic activity. In general, the mRNA fold-induction data results were more sensitive compared with activity data, and more informative in cases in which the drug is also a P450 inhibitor. The induction of transcription of other drug-metabolizing enzymes including CYP2B6 and CYP2C enzymes occurred every time that CYP3A4 mRNA levels increased, but to a lesser extent, indicating that measurement of CYP3A4 mRNA is a sensitive marker for the induction of these other enzymes. This was the case even for enzymes and inducers that are known to also act via the constitutive androstane receptor pathway. Finally, the utility of in vitro induction measurements in the identification of clinically meaningful inducers was tested by using two simple binary classification approaches: 1) fold-induction versus vehicle control and 2) induction response relative to rifampin. The best classification was observed when the cutoff criteria based on fold induction relative to the vehicle control, using mRNA data are used.
Collapse
Affiliation(s)
- Odette A Fahmi
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Inc. Global Research & Development, Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | |
Collapse
|
48
|
Ogburn ET, Jones DR, Masters AR, Xu C, Guo Y, Desta Z. Efavirenz primary and secondary metabolism in vitro and in vivo: identification of novel metabolic pathways and cytochrome P450 2A6 as the principal catalyst of efavirenz 7-hydroxylation. Drug Metab Dispos 2010; 38:1218-29. [PMID: 20335270 DOI: 10.1124/dmd.109.031393] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Efavirenz primary and secondary metabolism was investigated in vitro and in vivo. In human liver microsome (HLM) samples, 7- and 8-hydroxyefavirenz accounted for 22.5 and 77.5% of the overall efavirenz metabolism, respectively. Kinetic, inhibition, and correlation analyses in HLM samples and experiments in expressed cytochrome P450 show that CYP2A6 is the principal catalyst of efavirenz 7-hydroxylation. Although CYP2B6 was the main enzyme catalyzing efavirenz 8-hydroxylation, CYP2A6 also seems to contribute. Both 7- and 8-hydroxyefavirenz were further oxidized to novel dihydroxylated metabolite(s) primarily by CYP2B6. These dihydroxylated metabolite(s) were not the same as 8,14-dihydroxyefavirenz, a metabolite that has been suggested to be directly formed via 14-hydroxylation of 8-hydroxyefavirenz, because 8,14-dihydroxyefavirenz was not detected in vitro when efavirenz, 7-, or 8-hydroxyefavirenz were used as substrates. Efavirenz and its primary and secondary metabolites that were identified in vitro were quantified in plasma samples obtained from subjects taking a single 600-mg oral dose of efavirenz. 8,14-Dihydroxyefavirenz was detected and quantified in these plasma samples, suggesting that the glucuronide or the sulfate of 8-hydroxyefavirenz might undergo 14-hydroxylation in vivo. In conclusion, efavirenz metabolism is complex, involving unique and novel secondary metabolism. Although efavirenz 8-hydroxylation by CYP2B6 remains the major clearance mechanism of efavirenz, CYP2A6-mediated 7-hydroxylation (and to some extent 8-hydroxylation) may also contribute. Efavirenz may be a valuable dual phenotyping tool to study CYP2B6 and CYP2A6, and this should be further tested in vivo.
Collapse
Affiliation(s)
- Evan T Ogburn
- Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
49
|
Joy MS, Frye RF, Stubbert K, Brouwer KR, Falk RJ, Kharasch ED. Use of enantiomeric bupropion and hydroxybupropion to assess CYP2B6 activity in glomerular kidney diseases. J Clin Pharmacol 2010; 50:714-20. [PMID: 20103693 DOI: 10.1177/0091270009353031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Melanie S Joy
- School of Medicine, University of North Carolina at Chapel Hill, UNC Kidney Center and Division of Nephrology and Hypertension, CB 7155, 7005 Burnett Womack Building, Chapel Hill, NC 27599-7155, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
AIM To compare in vitro metabolism rates for artemisinin and the CYP2B6 substrates, bupropion, propofol and efavirenz in human liver microsomes. METHODS Rate constants of artemisinin, bupropion, propofol and efavirenz metabolism by human liver microsomes from a panel of 12 donors, with different levels of CYP2B6 activity, were estimated in WinNonlin. Correlations between the metabolic rate constant for artemisinin and the other CYP2B6 substrates were examined. RESULTS Artemisinin and propofol depletion data in human liver microsomes were described by first order kinetic models. For bupropion and efavirenz, metabolite formation data were incorporated in the model. Rate constants varied considerably for all substrates. There was a high degree of correlation of rate constants between substrates (r> or =0.87, p<0.001). CONCLUSIONS The rate of in vitro metabolism of artemisinin was correlated significantly to that of bupropion, propofol and efavirenz, suggesting artemisinin to be a potential alternative marker to assess CYP2B6 activity. Further studies characterizing the metabolic fate of artemisinin are needed in order to evaluate its utility as an in vitro and in vivo CYP2B6 probe substrate, since CYP2B6 might not be the only CYP isoform involved in the depletion of artemisinin.
Collapse
Affiliation(s)
- Sara Asimus
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.
| | | |
Collapse
|