1
|
Thuma TBT, Procopio RA, Jimenez HJ, Gunton KB, Pulido JS. Hypomorphic variants in inherited retinal and ocular diseases: A review of the literature with clinical cases. Surv Ophthalmol 2024; 69:337-348. [PMID: 38036193 DOI: 10.1016/j.survophthal.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Hypomorphic variants decrease, but do not eliminate, gene function via a reduction in the amount of mRNA or protein product produced by a gene or by production of a gene product with reduced function. Many hypomorphic variants have been implicated in inherited retinal diseases (IRDs) and other genetic ocular conditions; however, there is heterogeneity in the use of the term "hypomorphic" in the scientific literature. We searched for all hypomorphic variants reported to cause IRDs and ocular disorders. We also discuss the presence of hypomorphic variants in the patient population of our ocular genetics department over the past decade. We propose that standardized criteria should be adopted for use of the term "hypomorphic" to describe gene variants to improve genetic counseling and patient care outcomes.
Collapse
Affiliation(s)
- Tobin B T Thuma
- Department of Pediatric Ophthalmology and Strabismus, Wills Eye Hospital, Philadelphia, PA, USA
| | | | - Hiram J Jimenez
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA, USA
| | - Kammi B Gunton
- Department of Pediatric Ophthalmology and Strabismus, Wills Eye Hospital, Philadelphia, PA, USA
| | - Jose S Pulido
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Retina Service, Wills Eye Hospital, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Neugebauer A, Sipatchin A, Stingl K, Ivanov I, Wahl S. Influence of open-source virtual-reality based gaze training on navigation performance in Retinitis pigmentosa patients in a crossover randomized controlled trial. PLoS One 2024; 19:e0291902. [PMID: 38300913 PMCID: PMC10833541 DOI: 10.1371/journal.pone.0291902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
METHODS A group of RP patients (n = 8, aged 20-60) participated in a study consisting of two 4-week-phases, both carried out by the same patient group in randomized order: In the 'training phase', participants carried out a Virtual-Reality gaze training for 30 minutes per day; In the 'control phase', no training occurred. Before and after each phase, participants were tasked to move through a randomized real-world obstacle course. Navigation performance in the obstacle course as well as eye-tracking data during the trials were evaluated. The study is registered at the German Clinical Trials Register (DRKS) with the ID DRKS00032628. RESULTS On average, the time required to move through the obstacle course decreased by 17.0% after the training phase, the number of collisions decreased by 50.0%. Both effects are significantly higher than those found in the control phase (p < 0.001 for required time, p = 0.0165 for number of collisions), with the required time decreasing by 5.9% and number of collisions decreasing by 10.4% after the control phase. The average visual area observed by participants increases by 4.41% after training, however the effect is not found to be significantly higher than in the control phase (p = 0.394). CONCLUSION The performance increase over the training phase significantly surpasses the natural learning effect found in the control phase, suggesting that Virtual-Reality based gaze training can have a positive effect on real-world navigation tasks for patients with RP. The training is available as work-in-progress open-source software.
Collapse
Affiliation(s)
- Alexander Neugebauer
- Institute for Ophthalmic Research, ZEISS Vision Science Lab, University of Tübingen, Tübingen, Germany
| | - Alexandra Sipatchin
- Institute for Ophthalmic Research, ZEISS Vision Science Lab, University of Tübingen, Tübingen, Germany
| | - Katarina Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Iliya Ivanov
- Carl Zeiss Vision International GmbH, Aalen, Germany
| | - Siegfried Wahl
- Institute for Ophthalmic Research, ZEISS Vision Science Lab, University of Tübingen, Tübingen, Germany
- Carl Zeiss Vision International GmbH, Aalen, Germany
| |
Collapse
|
3
|
Gabriel E, Albanna W, Pasquini G, Ramani A, Josipovic N, Mariappan A, Riparbelli MG, Callaini G, Karch CM, Goureau O, Papantonis A, Busskamp V, Schneider T, Gopalakrishnan J. Generation of iPSC-derived human forebrain organoids assembling bilateral eye primordia. Nat Protoc 2023:10.1038/s41596-023-00814-x. [PMID: 37198320 DOI: 10.1038/s41596-023-00814-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/13/2023] [Indexed: 05/19/2023]
Abstract
Induced pluripotent stem cell-derived brain organoids enable the developmental complexities of the human brain to be deconstructed. During embryogenesis, optic vesicles (OVs), the eye primordium attached to the forebrain, develop from diencephalon. However, most 3D culturing methods generate either brain or retinal organoids individually. Here we describe a protocol to generate organoids with both forebrain entities, which we call OV-containing brain organoids (OVB organoids). In this protocol, we first induce neural differentiation (days 0-5) and collect neurospheres, which we culture in a neurosphere medium to initiate their patterning and further self-assembly (days 5-10). Then, upon transfer to spinner flasks containing OVB medium (days 10-30), neurospheres develop into forebrain organoids with one or two pigmented dots restricted to one pole, displaying forebrain entities of ventral and dorsal cortical progenitors and preoptic areas. Further long-term culture results in photosensitive OVB organoids constituting complementary cell types of OVs, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections and electrically active neuronal networks. OVB organoids provide a system to help dissect interorgan interactions between the OVs as sensory organs and the brain as a processing unit, and can help model early eye patterning defects, including congenital retinal dystrophy. To conduct the protocol, experience in sterile cell culture and maintenance of human induced pluripotent stem cells is essential; theoretical knowledge of brain development is advantageous. Furthermore, specialized expertise in 3D organoid culture and imaging for the analysis is needed.
Collapse
Affiliation(s)
- Elke Gabriel
- Institute of Human Genetics, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Walid Albanna
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Giovanni Pasquini
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anand Ramani
- Institute of Human Genetics, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Natasa Josipovic
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Giuliano Callaini
- Department of Life Sciences and Medical Biotechnology University of Siena, Siena, Italy
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Argyris Papantonis
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
4
|
Krueger LA, Bills JD, Lim ZY, Skidmore JM, Martin DM, Morris AC. Chromatin remodeler Chd7 regulates photoreceptor development and outer segment length. Exp Eye Res 2023; 226:109299. [PMID: 36343670 PMCID: PMC10354686 DOI: 10.1016/j.exer.2022.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/29/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Mutations in the chromatin remodeling factor CHD7 are the predominant cause of CHARGE syndrome, a congenital disorder that frequently includes ocular coloboma. Although CHD7 is known to be required for proper ocular morphogenesis, its role in retinal development has not been thoroughly investigated. Given that individuals with CHARGE syndrome can experience visual impairment even in the absence of coloboma, a better understanding of CHD7 function in the retina is needed. In this study, we characterized the expression pattern of Chd7 in the developing zebrafish and mouse retina and documented ocular and retinal phenotypes in Chd7 loss-of-function mutants. Zebrafish Chd7 was expressed throughout the retinal neuroepithelium when retinal progenitor cells were actively proliferating, and later in subsets of newly post-mitotic retinal cells. At stages of retinal development when most retinal cell types had terminally differentiated, Chd7 expression remained strong in the ganglion cell layer and in some cells in the inner nuclear layer. Intriguingly, strong expression of Chd7 was also observed in the outer nuclear layer where it was co-expressed with markers of post-mitotic cone and rod photoreceptors. Expression of mouse CHD7 displayed a similar pattern, including expression in the ganglion cells, subsets of inner nuclear layer cells, and in the distal outer nuclear layer as late as P15. Two different mutant chd7 zebrafish lines were characterized for ocular and retinal defects. These mutants displayed microphthalmia, reduced numbers of cone photoreceptors, and truncated rod and cone photoreceptor outer segments. Reduced cone photoreceptor number and abnormal outer segments were also observed in heterozygous Chd7 mutant mice. Taken together, our results in zebrafish and mouse reveal a conserved, previously undescribed role for Chd7 in retinal development and photoreceptor outer segment morphogenesis. Moreover, our work suggests an avenue of future investigation into the pathogenesis of visual system defects in CHARGE syndrome.
Collapse
Affiliation(s)
- Laura A Krueger
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA
| | - Jessica D Bills
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA
| | - Zun Yi Lim
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA
| | | | - Donna M Martin
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ann C Morris
- Department of Biology, University of Kentucky, Lexington, KY, 40506-0225, USA.
| |
Collapse
|
5
|
Love SL, Emerson JD, Koide K, Hoskins AA. Pre-mRNA splicing-associated diseases and therapies. RNA Biol 2023; 20:525-538. [PMID: 37528617 PMCID: PMC10399480 DOI: 10.1080/15476286.2023.2239601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
Precursor mRNA (pre-mRNA) splicing is an essential step in human gene expression and is carried out by a large macromolecular machine called the spliceosome. Given the spliceosome's role in shaping the cellular transcriptome, it is not surprising that mutations in the splicing machinery can result in a range of human diseases and disorders (spliceosomopathies). This review serves as an introduction into the main features of the pre-mRNA splicing machinery in humans and how changes in the function of its components can lead to diseases ranging from blindness to cancers. Recently, several drugs have been developed that interact directly with this machinery to change splicing outcomes at either the single gene or transcriptome-scale. We discuss the mechanism of action of several drugs that perturb splicing in unique ways. Finally, we speculate on what the future may hold in the emerging area of spliceosomopathies and spliceosome-targeted treatments.
Collapse
Affiliation(s)
- Sierra L. Love
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph D. Emerson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Yee T, Wert KJ. Base and Prime Editing in the Retina-From Preclinical Research toward Human Clinical Trials. Int J Mol Sci 2022; 23:12375. [PMID: 36293232 PMCID: PMC9604474 DOI: 10.3390/ijms232012375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous group of diseases that are one of the leading causes of vision loss in young and aged individuals. IRDs are mainly caused by a loss of the post-mitotic photoreceptor neurons of the retina, or by the degeneration of the retinal pigment epithelium. Unfortunately, once these cells are damaged, it is irreversible and leads to permanent vision impairment. Thought to be previously incurable, gene therapy has been rapidly evolving to be a potential treatment to prevent further degeneration of the retina and preserve visual function. The development of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) base and prime editors have increased the capabilities of the genome editing toolbox in recent years. Both base and prime editors evade the creation of double-stranded breaks in deoxyribonucleic acid (DNA) and the requirement of donor template of DNA for repair, which make them advantageous methods in developing clinical therapies. In addition, establishing a permanent edit within the genome could be better suited for patients with progressive degeneration. In this review, we will summarize published uses of successful base and prime editing in treating IRDs.
Collapse
Affiliation(s)
- Tiffany Yee
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katherine J. Wert
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Lohia A, Sahel DK, Salman M, Singh V, Mariappan I, Mittal A, Chitkara D. Delivery Strategies for CRISPR/Cas Genome editing tool for Retinal Dystrophies: challenges and opportunities. Asian J Pharm Sci 2022; 17:153-176. [PMID: 36320315 PMCID: PMC9614410 DOI: 10.1016/j.ajps.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
CRISPR/Cas, an adaptive immune system in bacteria, has been adopted as an efficient and precise tool for site-specific gene editing with potential therapeutic opportunities. It has been explored for a variety of applications, including gene modulation, epigenome editing, diagnosis, mRNA editing, etc. It has found applications in retinal dystrophic conditions including progressive cone and cone-rod dystrophies, congenital stationary night blindness, X-linked juvenile retinoschisis, retinitis pigmentosa, age-related macular degeneration, leber's congenital amaurosis, etc. Most of the therapies for retinal dystrophic conditions work by regressing symptoms instead of reversing the gene mutations. CRISPR/Cas9 through indel could impart beneficial effects in the reversal of gene mutations in dystrophic conditions. Recent research has also consolidated on the approaches of using CRISPR systems for retinal dystrophies but their delivery to the posterior part of the eye is a major concern due to high molecular weight, negative charge, and in vivo stability of CRISPR components. Recently, non-viral vectors have gained interest due to their potential in tissue-specific nucleic acid (miRNA/siRNA/CRISPR) delivery. This review highlights the opportunities of retinal dystrophies management using CRISPR/Cas nanomedicine.
Collapse
|
8
|
Markan A, Neupane S, Agrawal R, Gupta V. Newer therapeutic agents for retinal diseases. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2030709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ashish Markan
- Advanced Eye Centre, Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Swechya Neupane
- Advanced Eye Centre, Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rupesh Agrawal
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Sen Hospital, Novena, Singapore
| | - Vishali Gupta
- Advanced Eye Centre, Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
9
|
Xu Z, Wang C, Chen M, Yuan Y, Li L, Huang Z, Yuan Y, Yang H, Wang Q, Zhang X. Retina Cell Atlases of Multiple Species and an Online Platform for Retina Cell-Type Markers. J Genet Genomics 2021; 49:262-265. [PMID: 34800706 DOI: 10.1016/j.jgg.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 01/23/2023]
Affiliation(s)
- Zaoxu Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Changzheng Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China
| | - Min Chen
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Yuting Yuan
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | | | - Zhen Huang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, P.R. China
| | - Yue Yuan
- BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730010, China; Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang, 745000, China.
| | - Xingliang Zhang
- Institute of Pediatrics, Department of Pediatric Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China; Department of Pediatrics, the Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
10
|
Kralik J, Kleinlogel S. Functional Availability of ON-Bipolar Cells in the Degenerated Retina: Timing and Longevity of an Optogenetic Gene Therapy. Int J Mol Sci 2021; 22:ijms222111515. [PMID: 34768944 PMCID: PMC8584043 DOI: 10.3390/ijms222111515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 01/19/2023] Open
Abstract
Degenerative diseases of the retina are responsible for the death of photoreceptors and subsequent loss of vision in patients. Nevertheless, the inner retinal layers remain intact over an extended period of time, enabling the restoration of light sensitivity in blind retinas via the expression of optogenetic tools in the remaining retinal cells. The chimeric Opto-mGluR6 protein represents such a tool. With exclusive ON-bipolar cell expression, it combines the light-sensitive domains of melanopsin and the intracellular domains of the metabotropic glutamate receptor 6 (mGluR6), which naturally mediates light responses in these cells. Albeit vision restoration in blind mice by Opto-mGluR6 delivery was previously shown, much is left to be explored in regard to the effects of the timing of the treatment in the degenerated retina. We performed a functional evaluation of Opto-mGluR6-treated murine blind retinas using multi-electrode arrays (MEAs) and observed long-term functional preservation in the treated retinas, as well as successful therapeutical intervention in later stages of degeneration. Moreover, the treatment decreased the inherent retinal hyperactivity of the degenerated retinas to levels undistinguishable from healthy controls. Finally, we observed for the first time micro electroretinograms (mERGs) in optogenetically treated animals, corroborating the origin of Opto-mGluR6 signalling at the level of mGluR6 of ON-bipolar cells.
Collapse
|
11
|
Farmer C, Bullement A, Packman D, Long L, Robinson S, Nikram E, Hatswell AJ, Melendez-Torres GJ, Crathorne L. Voretigene Neparvovec for Treating Inherited Retinal Dystrophies Caused by RPE65 Gene Mutations: An Evidence Review Group Perspective of a NICE Highly Specialised Technology Appraisal. PHARMACOECONOMICS 2020; 38:1309-1318. [PMID: 32875526 DOI: 10.1007/s40273-020-00953-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The UK National Institute for Health and Care Excellence (NICE) considered evidence for voretigene neparvovec (VN; Luxturna®) for the treatment of RPE65-mediated inherited retinal dystrophies (IRD) within its highly specialised technology programme. This paper summarises the evidence provided by the company; the appraisal of the evidence by the Peninsula Technology Appraisal Group, who were commissioned to act as the independent evidence review group (ERG); and the development of the NICE guidance by the appraisal committee. The evidence presented by the company highlighted the significant lifelong burden of IRD for patients and carers. Evidence to support the effectiveness of VN was lacking, but the available evidence showed a modest, sustained improvement across a variety of vision-related outcomes. While patients would remain visually impaired, the committee considered that VN would prevent further deterioration in vision. The modelling approach used by the company had a number of limitations and relied heavily upon a large volume of clinical expert input to produce cost-effectiveness estimates with large uncertainty around long-term effectiveness. The ERG's main concerns revolved around these long-term outcomes and the plausibility of utility values. The NICE committee were convinced that the clinical benefits of VN were important and an appropriate use of national health service resources within a specialised service. The committee concluded that a high unmet need existed in patients with RPE65-mediated IRD and that VN represents a step change in the management of this condition.
Collapse
Affiliation(s)
- Caroline Farmer
- Peninsula Technology Assessment Group (PenTAG), University of Exeter, South Cloisters, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK.
| | - Ash Bullement
- Peninsula Technology Assessment Group (PenTAG), University of Exeter, South Cloisters, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
- Delta Hat, Ltd., Nottingham, UK
| | - David Packman
- Peninsula Technology Assessment Group (PenTAG), University of Exeter, South Cloisters, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Linda Long
- Peninsula Technology Assessment Group (PenTAG), University of Exeter, South Cloisters, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Sophie Robinson
- Peninsula Technology Assessment Group (PenTAG), University of Exeter, South Cloisters, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Elham Nikram
- Peninsula Technology Assessment Group (PenTAG), University of Exeter, South Cloisters, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Anthony J Hatswell
- Peninsula Technology Assessment Group (PenTAG), University of Exeter, South Cloisters, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
- Delta Hat, Ltd., Nottingham, UK
| | - G J Melendez-Torres
- Peninsula Technology Assessment Group (PenTAG), University of Exeter, South Cloisters, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Louise Crathorne
- Peninsula Technology Assessment Group (PenTAG), University of Exeter, South Cloisters, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| |
Collapse
|
12
|
Mishra A, Mohan KV, Nagarajan P, Iyer S, Kesarwani A, Nath M, Moksha L, Bhattacharjee J, Das B, Jain K, Sahu P, Sinha P, Velapandian T, Upadhyay P. Peripheral blood-derived monocytes show neuronal properties and integration in immune-deficient rd1 mouse model upon phenotypic differentiation and induction with retinal growth factors. Stem Cell Res Ther 2020; 11:412. [PMID: 32967734 PMCID: PMC7510317 DOI: 10.1186/s13287-020-01925-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell therapy is one of the most promising therapeutic interventions for retinitis pigmentosa. In the current study, we aimed to assess if peripheral blood-derived monocytes which are highly abundant and accessible could be utilized as a potential candidate for phenotypic differentiation into neuron-like cells. METHODS The peripheral blood-derived monocytes were reconditioned phenotypically using extrinsic growth factors to induce pluripotency and proliferation. The reconditioned monocytes (RM) were further incubated with a cocktail of growth factors involved in retinal development and growth to induce retinal neuron-like properties. These cells, termed as retinal neuron-like cells (RNLCs) were characterized for their morphological, molecular and functional behaviour in vitro and in vivo. RESULTS The monocytes de-differentiated in vitro and acquired pluripotency with the expression of prominent stem cell markers. Treatment of RM with retinal growth factors led to an upregulation of neuronal and retinal lineage markers and downregulation of myeloid markers. These cells show morphological alterations resembling retinal neuron-like cells and expressed photoreceptor (PR) markers. The induced RNLCs also exhibited relative membrane potential change upon light exposure suggesting that they have gained some neuronal characteristics. Further studies showed that RNLCs could also integrate in an immune-deficient retinitis pigmentosa mouse model NOD.SCID-rd1 upon sub-retinal transplantation. The RNLCs engrafted in the inner nuclear layer (INL) and ganglion cell layer (GCL) of the RP afflicted retina. Mice transplanted with RNLCs showed improvement in depth perception, exploratory behaviour and the optokinetic response. CONCLUSIONS This proof-of-concept study demonstrates that reconditioned monocytes can be induced to acquire retinal neuron-like properties through differentiation using a defined growth media and can be a potential candidate for cell therapy-based interventions and disease modelling for ocular diseases.
Collapse
Affiliation(s)
- Alaknanda Mishra
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - K Varsha Mohan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Perumal Nagarajan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srikanth Iyer
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashwani Kesarwani
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Madhu Nath
- Department of Ocular Pharmacology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Laxmi Moksha
- Department of Ocular Pharmacology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Barun Das
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kshama Jain
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Parul Sahu
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prakriti Sinha
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - T Velapandian
- Department of Ocular Pharmacology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pramod Upadhyay
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
13
|
Sallum JMF, Motta FL, Arno G, Porto FBO, Resende RG, Belfort R. Clinical and molecular findings in a cohort of 152 Brazilian severe early onset inherited retinal dystrophy patients. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:728-752. [PMID: 32865313 DOI: 10.1002/ajmg.c.31828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset retinal dystrophy (EORD) are severe inherited retinal dystrophy that can cause deep blindness childhood. They represent 5% of all retinal dystrophies in the world population and about 10% in Brazil. Clinical findings and molecular basis of syndromic and nonsyndromic LCA/EORD in a Brazilian sample (152 patients/137 families) were studied. In this population, 15 genes were found to be related to the phenotype, 38 new variants were detected and four new complex alleles were discovered. Among 123 variants found, the most common were CEP290: c.2991+1655A>G, CRB1: p.Cys948Tyr, and RPGRIP1: exon10-18 deletion.
Collapse
Affiliation(s)
- Juliana Maria Ferraz Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Fabiana Louise Motta
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Fernanda Belga Ottoni Porto
- INRET Clínica e Centro de Pesquisa, Belo Horizonte, Minas Gerais, Brazil.,Centro Oftalmológico de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
14
|
Buck TM, Wijnholds J. Recombinant Adeno-Associated Viral Vectors (rAAV)-Vector Elements in Ocular Gene Therapy Clinical Trials and Transgene Expression and Bioactivity Assays. Int J Mol Sci 2020; 21:E4197. [PMID: 32545533 PMCID: PMC7352801 DOI: 10.3390/ijms21124197] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal dystrophies and optic neuropathies cause chronic disabling loss of visual function. The development of recombinant adeno-associated viral vectors (rAAV) gene therapies in all disease fields have been promising, but the translation to the clinic has been slow. The safety and efficacy profiles of rAAV are linked to the dose of applied vectors. DNA changes in the rAAV gene cassette affect potency, the expression pattern (cell-specificity), and the production yield. Here, we present a library of rAAV vectors and elements that provide a workflow to design novel vectors. We first performed a meta-analysis on recombinant rAAV elements in clinical trials (2007-2020) for ocular gene therapies. We analyzed 33 unique rAAV gene cassettes used in 57 ocular clinical trials. The rAAV gene therapy vectors used six unique capsid variants, 16 different promoters, and six unique polyadenylation sequences. Further, we compiled a list of promoters, enhancers, and other sequences used in current rAAV gene cassettes in preclinical studies. Then, we give an update on pro-viral plasmid backbones used to produce the gene therapy vectors, inverted terminal repeats, production yield, and rAAV safety considerations. Finally, we assess rAAV transgene and bioactivity assays applied to cells or organoids in vitro, explants ex vivo, and clinical studies.
Collapse
Affiliation(s)
- Thilo M. Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
15
|
Bouzia Z, Georgiou M, Hull S, Robson AG, Fujinami K, Rotsos T, Pontikos N, Arno G, Webster AR, Hardcastle AJ, Fiorentino A, Michaelides M. GUCY2D-Associated Leber Congenital Amaurosis: A Retrospective Natural History Study in Preparation for Trials of Novel Therapies. Am J Ophthalmol 2020; 210:59-70. [PMID: 31704230 PMCID: PMC7013380 DOI: 10.1016/j.ajo.2019.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE To describe the natural history of Leber congenital amaurosis (LCA) associated with GUCY2D variants (GUCY2D-LCA) in a cohort of children and adults, in preparation for trials of novel therapies. DESIGN Retrospective case series. METHODS Participants: Patients with GUCY2D-LCA at a single referral center. PROCEDURES Review of clinical notes, retinal imaging including fundus autofluorescence (FAF) and optical coherence tomography (OCT), electroretinography (ERG), and molecular genetic testing. MAIN OUTCOME MEASURES Demographic data, symptoms at presentation, visual acuity, evidence of progression, OCT and FAF findings, ERG assessment, and molecular genetics. RESULTS Twenty-one subjects with GUCY2D-LCA were included, with a mean follow-up ± standard deviation (SD) of 10 ± 11.85 years. Marked reduction in visual acuity (VA) and nystagmus was documented in all patients within the first 3 years of life. Fifty-seven percent (n = 12) exhibited photophobia and 38% (n = 8) had nyctalopia. VA was worse than hand motion in 71% of the patients (n = 15). Longitudinal assessment of VA showed stability in all patients, except 1 patient who experienced deterioration over a follow-up of 44 years. Hyperopia was reported in 13 of the 17 subjects (71%) with available refraction data. Eighteen subjects had either normal fundus appearance (n = 14) or a blond fundus (n = 3), while only 4 of the eldest subjects had mild retinal pigment epithelium (RPE) atrophy (mean, 49 years; range 40-54 years). OCT data were available for 11 subjects and 4 different grades of ellipsoid zone (EZ) integrity were identified: (1) continuous/intact EZ (n = 6), (2) focally disrupted EZ (n = 2), (3) focally disrupted with RPE changes (n = 2), and (4) diffuse EZ disruption with RPE changes (n = 1). All examined subjects had stable OCT findings over the long follow-up period. Full-field ERGs showed evidence of a severe cone-rod dystrophy in 5 of 6 patients and undetectable ERGs in 1 subject. Novel genotype-phenotype correlations are also reported. CONCLUSION GUCY2D-LCA is a severe early-onset retinal dystrophy associated with very poor VA from birth. Despite the severely affected photoreceptor function, the relatively preserved photoreceptor structure based on EZ integrity until late in the disease in the majority of subjects suggests a wide therapeutic window for gene therapy trials.
Collapse
|
16
|
Jaffal L, Joumaa WH, Assi A, Helou C, Cherfan G, Zibara K, Audo I, Zeitz C, El Shamieh S. Next Generation Sequencing Identifies Five Novel Mutations in Lebanese Patients with Bardet-Biedl and Usher Syndromes. Genes (Basel) 2019; 10:genes10121047. [PMID: 31888296 PMCID: PMC6947157 DOI: 10.3390/genes10121047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 01/15/2023] Open
Abstract
AIM To identify disease-causing mutations in four Lebanese families: three families with Bardet-Biedl and one family with Usher syndrome (BBS and USH respectively), using next generation sequencing (NGS). METHODS We applied targeted NGS in two families and whole exome sequencing (WES) in two other families. Pathogenicity of candidate mutations was evaluated according to frequency, conservation, in silico prediction tools, segregation with disease, and compatibility with inheritance pattern. The presence of pathogenic variants was confirmed via Sanger sequencing followed by segregation analysis. RESULTS Most likely disease-causing mutations were identified in all included patients. In BBS patients, we found (M1): c.2258A > T, p. (Glu753Val) in BBS9, (M2): c.68T > C; p. (Leu23Pro) in ARL6, (M3): c.265_266delTT; p. (Leu89Valfs*11) and (M4): c.880T > G; p. (Tyr294Asp) in BBS12. A previously known variant (M5): c.551A > G; p. (Asp184Ser) was also detected in BBS5. In the USH patient, we found (M6): c.188A > C, p. (Tyr63Ser) in CLRN1. M2, M3, M4, and M6 were novel. All of the candidate mutations were shown to be likely disease-causing through our bioinformatic analysis. They also segregated with the corresponding phenotype in available family members. CONCLUSION This study expanded the mutational spectrum and showed the genetic diversity of BBS and USH. It also spotlighted the efficiency of NGS techniques in revealing mutations underlying clinically and genetically heterogeneous disorders.
Collapse
Affiliation(s)
- Lama Jaffal
- Department of Biological and Environmental Sciences, Faculty of Science, Beirut Arab University, Debbieh 1107 2809, Lebanon;
| | - Wissam H Joumaa
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh 1700, Lebanon;
| | - Alexandre Assi
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut 1106, Lebanon; (A.A.); (C.H.); (G.C.)
| | - Charles Helou
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut 1106, Lebanon; (A.A.); (C.H.); (G.C.)
| | - George Cherfan
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut 1106, Lebanon; (A.A.); (C.H.); (G.C.)
| | - Kazem Zibara
- ER045, PRASE, DSST, Lebanese University, Beirut 1700, Lebanon;
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut 1700, Lebanon
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (I.A.); (C.Z.)
- CHNO des Quinze-Vingts, INSERM-DGOS CIC1423, 75012 Paris, France
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France; (I.A.); (C.Z.)
| | - Said El Shamieh
- Rammal Hassan Rammal Research Laboratory, Physiotoxicity (PhyTox), Faculty of Sciences, Lebanese University, Nabatieh 1700, Lebanon;
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut 1107 2809, Lebanon
- Correspondence:
| |
Collapse
|
17
|
Zenteno JC, García-Montaño LA, Cruz-Aguilar M, Ronquillo J, Rodas-Serrano A, Aguilar-Castul L, Matsui R, Vencedor-Meraz CI, Arce-González R, Graue-Wiechers F, Gutiérrez-Paz M, Urrea-Victoria T, de Dios Cuadras U, Chacón-Camacho OF. Extensive genic and allelic heterogeneity underlying inherited retinal dystrophies in Mexican patients molecularly analyzed by next-generation sequencing. Mol Genet Genomic Med 2019; 8. [PMID: 31736247 PMCID: PMC6978239 DOI: 10.1002/mgg3.1044] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/23/2019] [Indexed: 12/27/2022] Open
Abstract
Background Retinal dystrophies (RDs) are one of the most genetically heterogeneous monogenic disorders with ~270 associated loci identified by early 2019. The recent application of next‐generation sequencing (NGS) has greatly improved the molecular diagnosis of RD patients. Genetic characterization of RD cohorts from different ethnic groups is justified, as it would improve the knowledge of molecular basis of the disease. Here, we present the results of genetic analysis in a large cohort of 143 unrelated Mexican subjects with a variety of RDs. Methods A targeted NGS approach covering 199 RD genes was employed for molecular screening of 143 unrelated patients. In addition to probands, 258 relatives were genotyped by Sanger sequencing for familial segregation of pathogenic variants. Results A solving rate of 66% (95/143) was achieved, with evidence of extensive loci (44 genes) and allelic (110 pathogenic variants) heterogeneity. Forty‐eight percent of the identified pathogenic variants were novel while ABCA4, CRB1, USH2A, and RPE65 carried the greatest number of alterations. Novel deleterious variants in IDH3B and ARL6 were identified, supporting their involvement in RD. Familial segregation of causal variants allowed the recognition of 124 autosomal or X‐linked carriers. Conclusion Our results illustrate the utility of NGS for genetic diagnosis of RDs of different populations for a better knowledge of the mutational landscape associated with the disease.
Collapse
Affiliation(s)
- Juan C Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico.,Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| | | | - Marisa Cruz-Aguilar
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Josué Ronquillo
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Agustín Rodas-Serrano
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Rodrigo Matsui
- Department of Retina, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Rocío Arce-González
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Mario Gutiérrez-Paz
- Department of Retina, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Tatiana Urrea-Victoria
- Department of Retina, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Ulises de Dios Cuadras
- Department of Retina, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Oscar F Chacón-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| |
Collapse
|
18
|
Takita S, Miyamoto-Matsui K, Seko Y. Intra- and interspecies comparison of EYS transcripts highlights its characteristics in the eye. FASEB J 2019; 33:9422-9433. [PMID: 31120796 DOI: 10.1096/fj.201900056rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inherited mutations in the eyes shut homolog (EYS) gene cause retinitis pigmentosa. Although knock out of eys in zebrafish is pathogenic, the molecular function of EYS in vertebrate photoreceptors is poorly understood. Here, we show that the 5' portion of EYS is eye-specific across vertebrates. We previously determined that a 3' fragment of EYS with an unknown transcription start site is expressed in human dermal fibroblasts (HDF). To obtain insights into the molecular function of EYS in vertebrate photoreceptors, we extensively analyzed EYS (eys) expression in the human fibroblast cell line HDF-adult (HDF-a), the Y79 retinoblastoma cell line, and in zebrafish eyes using rapid amplification of cDNA end, cap analysis of gene expression, RNA sequencing, and RT-PCR. In HDF-a cells, we identified a novel transcript variant (tv), tv5, transcribed from exon 37. In Y79 cells and zebrafish eyes, EYS (eys) was predominantly transcribed from exon 1 or 2, whereas it was transcribed exclusively from exon 37 in HDF-a cells. In the zebrafish eye, there were splice variants that introduced stop codons, resulting in complete loss of the 3' portion of the RNA. These comparative approaches indicate that the 5' portion of the EYS (eys) mRNA appears to be photoreceptor-specific and that the compositions of the deduced EYS proteins in the eye are well-conserved across vertebrates.-Takita, S., Miyamoto-Matsui, K., Seko, Y. Intra- and interspecies comparison of EYS transcripts highlights its characteristics in the eye.
Collapse
Affiliation(s)
- Shimpei Takita
- Visual Functions Section, Department of Rehabilitation for Sensory Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Kiyoko Miyamoto-Matsui
- Visual Functions Section, Department of Rehabilitation for Sensory Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Yuko Seko
- Visual Functions Section, Department of Rehabilitation for Sensory Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
19
|
Gallego I, Villate-Beitia I, Martínez-Navarrete G, Menéndez M, López-Méndez T, Soto-Sánchez C, Zárate J, Puras G, Fernández E, Pedraz JL. Non-viral vectors based on cationic niosomes and minicircle DNA technology enhance gene delivery efficiency for biomedical applications in retinal disorders. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:308-318. [PMID: 30790710 DOI: 10.1016/j.nano.2018.12.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/09/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023]
Abstract
Low transfection efficiency is a major challenge to overcome in non-viral approaches to reach clinical practice. Our aim was to explore new strategies to achieve more efficient non-viral gene therapies for clinical applications and in particular, for retinal diseases. Cationic niosomes and three GFP-encoding genetic materials consisting on minicircle (2.3 kb), its parental plasmid (3.5 kb) and a larger plasmid (5.5 kb) were combined to form nioplexes. Once fully physicochemically characterized, in vitro experiments in ARPE-19 retina epithelial cells showed that transfection efficiency of minicircle nioplexes doubled that of plasmids ones, maintaining good cell viability in all cases. Transfections in retinal primary cells and injections of nioplexes in rat retinas confirmed the higher capacity of cationic niosomes vectoring minicircle to deliver the genetic material into retina cells. Therefore, nioplexes based on cationic niosomes vectoring minicircle DNA represent a potential tool for the treatment of inherited retinal diseases.
Collapse
Affiliation(s)
- Idoia Gallego
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ilia Villate-Beitia
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Gema Martínez-Navarrete
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Elche, Spain
| | - Margarita Menéndez
- Rocasolano Physical Chemistry Institute, Superior Council of Scientific Investigations (IQFR-CSIC), Madrid, Spain; Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Spain
| | - Tania López-Méndez
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Cristina Soto-Sánchez
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Elche, Spain
| | - Jon Zárate
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Gustavo Puras
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| | - Eduardo Fernández
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, Elche, Spain
| | - José Luis Pedraz
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
20
|
Mowat FM. Naturally Occurring Inherited Forms of Retinal Degeneration in Vertebrate Animal Species: A Comparative and Evolutionary Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:239-243. [PMID: 31884618 DOI: 10.1007/978-3-030-27378-1_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The ability to noninvasively monitor retinal abnormalities using imaging and cognitive and electrophysiological assessment has made it possible to carefully characterize genetic influences on retinal health. Because genetic retinal traits in animal species are not commonly detrimental to survival beyond birth, it is possible to document the natural history of retinal disease. Human quality of life is greatly impacted by retinal disease, and blindness carries a significant financial burden to society. Because of these compelling reasons, there is an ongoing medical need to study the effect of genetic mutations on retinal health and to develop therapies to address them. Transgenic animal models have aided in these missions, but there are opportunities for novel gene discovery and a development of greater understanding of retinal physiology using animal models that develop naturally occurring heritable retinal disorders. In this chapter, the advantages and disadvantages of transgenic and spontaneous vertebrate animal models of human inherited retinal disease are debated, in particular those of carnivore species, and the potential resource of spontaneous heritable retinal disorders in inbred nondomestic carnivore species is discussed.
Collapse
Affiliation(s)
- Freya M Mowat
- North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA.
| |
Collapse
|
21
|
Camino A, Wang Z, Wang J, Pennesi ME, Yang P, Huang D, Li D, Jia Y. Deep learning for the segmentation of preserved photoreceptors on en face optical coherence tomography in two inherited retinal diseases. BIOMEDICAL OPTICS EXPRESS 2018; 9:3092-3105. [PMID: 29984085 PMCID: PMC6033582 DOI: 10.1364/boe.9.003092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 05/06/2023]
Abstract
The objective quantification of photoreceptor loss in inherited retinal degenerations (IRD) is essential for measuring disease progression, and is now especially important with the growing number of clinical trials. Optical coherence tomography (OCT) is a non-invasive imaging technology widely used to recognize and quantify such anomalies. Here, we implement a versatile method based on a convolutional neural network to segment the regions of preserved photoreceptors in two different IRDs (choroideremia and retinitis pigmentosa) from OCT images. An excellent segmentation accuracy (~90%) was achieved for both IRDs. Due to the flexibility of this technique, it has potential to be extended to additional IRDs in the future.
Collapse
Affiliation(s)
- Acner Camino
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, 27239, USA
- These authors contributed equally to this manuscript
| | - Zhuo Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
- These authors contributed equally to this manuscript
| | - Jie Wang
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, 27239, USA
| | - Mark E. Pennesi
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, 27239, USA
| | - Paul Yang
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, 27239, USA
| | - David Huang
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, 27239, USA
| | - Dengwang Li
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Yali Jia
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, 27239, USA
| |
Collapse
|
22
|
Astuti GDN, van den Born LI, Khan MI, Hamel CP, Bocquet B, Manes G, Quinodoz M, Ali M, Toomes C, McKibbin M, El-Asrag ME, Haer-Wigman L, Inglehearn CF, Black GCM, Hoyng CB, Cremers FPM, Roosing S. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes. Genes (Basel) 2018; 9:genes9010021. [PMID: 29320387 PMCID: PMC5793174 DOI: 10.3390/genes9010021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023] Open
Abstract
Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 (SNRNP200) and Zinc Finger Protein 513 (ZNF513), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 (DHX32) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.
Collapse
Affiliation(s)
- Galuh D. N. Astuti
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | | | - M. Imran Khan
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
| | - Christian P. Hamel
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
- CHRU, Genetics of Sensory Diseases, 34295 Montpellier, France
| | - Béatrice Bocquet
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
- CHRU, Genetics of Sensory Diseases, 34295 Montpellier, France
| | - Gaël Manes
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
| | - Mathieu Quinodoz
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Manir Ali
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Carmel Toomes
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Martin McKibbin
- Department of Ophthalmology, St. James’s University Hospital, LS9 7TF Leeds, UK;
| | - Mohammed E. El-Asrag
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
- Department of Zoology, Faculty of Science, Benha University, 13511 Benha, Egypt
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
| | - Chris F. Inglehearn
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Graeme C. M. Black
- Centre for Genomic Medicine, St. Mary’s Hospital, Manchester Academic Health Science Centre, University of Manchester, M13 9PL Manchester, UK;
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands;
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
- Correspondence: ; Tel.: +31-(0)24-365-5266
| |
Collapse
|
23
|
Hanna J, Yücel YH, Zhou X, Mathieu E, Paczka-Giorgi LA, Gupta N. Progressive loss of retinal blood vessels in a live model of retinitis pigmentosa. CANADIAN JOURNAL OF OPHTHALMOLOGY 2017; 53:391-401. [PMID: 30119795 DOI: 10.1016/j.jcjo.2017.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To assess retinal blood vessels in a live retinitis pigmentosa (RP) model with rd1 mutation and green fluorescent protein (GFP) expressed in vascular endothelium. METHODS Homozygous (hm) Tie2-GFP mice with rd1 mutation and known retinal degeneration were crossed with wild-type CD1 mice to generate control heterozygous (ht) Tie2-GFP mice. The retinas of 16 live hm mice were evaluated at 2 weeks and 3, 5, and 8 months of age, and compared with age-matched control ht and CD1 mice by optical coherence tomography (OCT) and confocal scanning laser ophthalmoscopy (cSLO). Fluorescence intensity was measured and compared between strains at 3, 5, and 8 months. In vivo findings were validated by immunostaining with collagen IV and isolectin histopathology. RESULTS All hm Tie2-GFP mice showed progressive outer retinal degeneration by OCT. Loss of small branches of blood vessels and then larger main vessels was seen by cSLO. Retinal tissue and vessels were preserved in control ht mice. At all ages, measurements of fluorescence intensity were reduced in hm compared with ht mice (p < 0.001). In all strains, intensity at 8 months was reduced compared with 3 months (p < 0.001) and 5 months (p = 0.021). Histopathological studies confirmed in vivo findings and revealed a pattern of blood vessel regression in the deep plexus, followed by intermediate and superficial retinal plexuses. CONCLUSIONS This is the first evidence of progressive loss of retinal blood vessels in a live mouse model of RP. These findings may be highly relevant to understanding retinal degeneration in RP to prevent blindness.
Collapse
Affiliation(s)
- Joseph Hanna
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ont; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ont
| | - Yeni H Yücel
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ont; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ont; Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ont; Ophthalmic Pathology Laboratory, University of Toronto, Toronto, Ont
| | - Xun Zhou
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ont
| | - Emily Mathieu
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ont; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ont
| | - Luz A Paczka-Giorgi
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ont
| | - Neeru Gupta
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ont; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ont; Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ont; Dalla Lana School of Public Health, University of Toronto, Toronto, Ont.
| |
Collapse
|
24
|
Complement factor H in AMD: Bridging genetic associations and pathobiology. Prog Retin Eye Res 2017; 62:38-57. [PMID: 28928087 DOI: 10.1016/j.preteyeres.2017.09.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 01/28/2023]
Abstract
Age-Related Macular Degeneration (AMD) is a complex multifactorial disease characterized in its early stages by lipoprotein accumulations in Bruch's Membrane (BrM), seen on fundoscopic exam as drusen, and in its late forms by neovascularization ("wet") or geographic atrophy of the Retinal Pigmented Epithelial (RPE) cell layer ("dry"). Genetic studies have strongly supported a relationship between the alternative complement cascade, in particular the common H402 variant in Complement Factor H (CFH) and development of AMD. However, the functional significance of the CFH Y402H polymorphism remains elusive. In this article, we critically review the literature surrounding the functional significance of this polymorphism. Furthermore, based on our group's studies we propose a model in which CFH H402 affects CFH binding to heparan sulfate proteoglycans leading to accelerated lipoprotein accumulation in BrM and drusen progression. We also review the literature on the role of other complement components in AMD pathobiologies, including C3a, C5a and the membrane attack complex (MAC), and on transgenic mouse models developed to interrogate in vivo the effects of the CFH Y402H polymorphism.
Collapse
|