1
|
Klaunig JE, Cohen SM. Mode of action of dieldrin-induced liver tumors: application to human risk assessment. Crit Rev Toxicol 2024; 54:634-658. [PMID: 39077834 DOI: 10.1080/10408444.2024.2377208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024]
Abstract
Dieldrin is an organochlorine insecticide that was widely used until 1970 when its use was banned because of its liver carcinogenicity in mice. Several long-term rodent bioassays have reported dieldrin to induce liver tumors in in several strains of mice, but not in rats. This article reviews the available information on dieldrin liver effects and performs an analysis of mode of action (MOA) and human relevance of these liver findings. Scientific evidence strongly supports a MOA based on CAR activation, leading to alterations in gene expression, which result in increased hepatocellular proliferation, clonal expansion leading to altered hepatic foci, and ultimately the formation of hepatocellular adenomas and carcinomas. Associative events include increased liver weight, centrilobular hypertrophy, increased expression of Cyp2b10 and its resulting increased enzymatic activity. Other associative events include alterations of intercellular gap junction communication and oxidative stress. Alternative MOAs are evaluated and shown not to be related to dieldrin administration. Weight of evidence shows that dieldrin is not DNA reactive, it is not mutagenic, and it is not genotoxic in general. Furthermore, activation of other pertinent nuclear receptors, including PXR, PPARα, AhR, and estrogen are not related to dieldrin-induced liver tumors nor is there liver cytotoxicity. In previous studies, rats, dogs, and non-human primates did not show increased cell proliferation or production of pre-neoplastic or neoplastic lesions following dieldrin treatment. Thus, the evidence strongly indicates that dieldrin-induced mouse liver tumors are due to CAR activation and are specific to the mouse, which are qualitatively not relevant to human hepatocarcinogenesis. Thus, there is no carcinogenic risk to humans. This conclusion is also supported by a lack of positive epidemiologic findings for evidence of liver carcinogenicity. Based on current understanding of the mode of action of dieldrin-induced liver tumors in mice, the appropriate conclusion is that dieldrin is a mouse specific liver carcinogen and it does not pose a cancer risk to humans.
Collapse
Affiliation(s)
- James E Klaunig
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN, USA
| | - Samuel M Cohen
- Department of Pathology, Microbiology, and Immunology and the Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Gi M, Suzuki S, Kanki M, Yokohira M, Tsukamoto T, Fujioka M, Vachiraarunwong A, Qiu G, Guo R, Wanibuchi H. A novel support vector machine-based 1-day, single-dose prediction model of genotoxic hepatocarcinogenicity in rats. Arch Toxicol 2024; 98:2711-2730. [PMID: 38762666 DOI: 10.1007/s00204-024-03755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/27/2024] [Indexed: 05/20/2024]
Abstract
The development of a rapid and accurate model for determining the genotoxicity and carcinogenicity of chemicals is crucial for effective cancer risk assessment. This study aims to develop a 1-day, single-dose model for identifying genotoxic hepatocarcinogens (GHCs) in rats. Microarray gene expression data from the livers of rats administered a single dose of 58 compounds, including 5 GHCs, was obtained from the Open TG-GATEs database and used for the identification of marker genes and the construction of a predictive classifier to identify GHCs in rats. We identified 10 gene markers commonly responsive to all 5 GHCs and used them to construct a support vector machine-based predictive classifier. In the silico validation using the expression data of the Open TG-GATEs database indicates that this classifier distinguishes GHCs from other compounds with high accuracy. To further assess the model's effectiveness and reliability, we conducted multi-institutional 1-day single oral administration studies on rats. These studies examined 64 compounds, including 23 GHCs, with gene expression data of the marker genes obtained via quantitative PCR 24 h after a single oral administration. Our results demonstrate that qPCR analysis is an effective alternative to microarray analysis. The GHC predictive model showed high accuracy and reliability, achieving a sensitivity of 91% (21/23) and a specificity of 93% (38/41) across multiple validation studies in three institutions. In conclusion, the present 1-day single oral administration model proves to be a reliable and highly sensitive tool for identifying GHCs and is anticipated to be a valuable tool in identifying and screening potential GHCs.
Collapse
Affiliation(s)
- Min Gi
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Shugo Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Masayuki Kanki
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Masanao Yokohira
- Department of Medical Education, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
- Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Arpamas Vachiraarunwong
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Guiyu Qiu
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Runjie Guo
- Department of Environmental Risk Assessment, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan.
| |
Collapse
|
3
|
Goettel M, Werner C, Honarvar N, Gröters S, Fegert I, Haines C, Chatham LR, Vardy A, Lake BG. Mode of action analysis for fluxapyroxad-induced rat liver tumour formation: evidence for activation of the constitutive androstane receptor and assessment of human relevance. Toxicology 2024; 505:153828. [PMID: 38740169 DOI: 10.1016/j.tox.2024.153828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The fungicide fluxapyroxad (BAS 700 F) has been shown to significantly increase the incidence of liver tumours in male Wistar rats at dietary levels of 1500 and 3000 ppm and in female rats at a dietary level of 3000 ppm via a non-genotoxic mechanism. In order to elucidate the mode of action (MOA) for fluxapyroxad-induced rat liver tumour formation a series of in vivo and in vitro investigative studies were undertaken. The treatment of male and female Wistar rats with diets containing 0 (control), 50, 250, 1500 and 3000 ppm fluxapyroxad for 1, 3, 7 and 14 days resulted in a dose-dependent increases in relative weight at 1500 and 3000 ppm from day 3 onwards in both sexes, with an increase in relative liver weight being also observed in male rats given 250 ppm fluxapyroxad for 14 days. Examination of liver sections revealed a centrilobular hepatocyte hypertrophy in some fluxapyroxad treated male and female rats. Hepatocyte replicative DNA synthesis (RDS) was significantly increased in male rats given 1500 and 3000 ppm fluxapyroxad for 3 and 7 days and in female rats given 50-3000 ppm fluxapyroxad for 7 days and 250-3000 ppm fluxapyroxad for 3 and 14 days; the maximal increases in RDS in both sexes being observed after 7 days treatment. The treatment of male and female Wistar rats with 250-3000 ppm fluxapyroxad for 14 days resulted in significant increases in hepatic microsomal total cytochrome P450 (CYP) content and CYP2B subfamily-dependent enzyme activities. Male Wistar rat hepatocytes were treated with control medium and medium containing 1-100 μM fluxapyroxad or 500 μM sodium phenobarbital (NaPB) for 4 days. Treatment with fluxapyroxad and NaPB increased CYP2B and CYP3A enzyme activities and mRNA levels but had little effect on markers of CYP1A and CYP4A subfamily enzymes and of the peroxisomal fatty acid β-oxidation cycle. Hepatocyte RDS was significantly increased by treatment with fluxapyroxad, NaPB and 25 ng/ml epidermal growth factor (EGF). The treatment of hepatocytes from two male human donors with 1-100 μM fluxapyroxad or 500 μM NaPB for 4 days resulted in some increases in CYP2B and CYP3A enzyme activities and CYP mRNA levels but had no effect on hepatocyte RDS, whereas treatment with EGF resulted in significant increase in RDS in both human hepatocyte preparations. Hepatocytes from male Sprague-Dawley wild type (WT) and constitutive androstane receptor (CAR) knockout (CAR KO) rats were treated with control medium and medium containing 1-16 μM fluxapyroxad or 500 μM NaPB for 4 days. While both fluxapyroxad and NaPB increased CYP2B enzyme activities and mRNA levels in WT hepatocytes, only minor effects were observed in CAR KO rat hepatocytes. Treatment with both fluxapyroxad and NaPB only increased RDS in WT and not in CAR KO rat hepatocytes, whereas treatment with EGF increased RDS in both WT and CAR KO rat hepatocytes. In conclusion, a series of in vivo and in vitro investigative studies have demonstrated that fluxapyroxad is a CAR activator in rat liver, with similar properties to the prototypical CAR activator phenobarbital. A robust MOA for fluxapyroxad-induced rat liver tumour formation has been established. Based on the lack of effect of fluxapyroxad on RDS in human hepatocytes, it is considered that the MOA for fluxapyroxad-induced liver tumour formation is qualitatively not plausible for humans.
Collapse
MESH Headings
- Animals
- Male
- Female
- Rats, Wistar
- Rats
- Fungicides, Industrial/toxicity
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Constitutive Androstane Receptor
- Humans
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Dose-Response Relationship, Drug
- Organ Size/drug effects
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- DNA Replication/drug effects
- Cytochrome P-450 Enzyme System/metabolism
- Cytochrome P-450 Enzyme System/genetics
- Microsomes, Liver/drug effects
- Microsomes, Liver/metabolism
- Liver Neoplasms/chemically induced
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
Collapse
Affiliation(s)
- Manuela Goettel
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany.
| | - Christoph Werner
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany
| | - Naveed Honarvar
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Sibylle Gröters
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, Ludwigshafen am Rhein 67056, Germany
| | - Ivana Fegert
- BASF SE, Global Toxicology Agricultural Solutions, Speyerer Strasse 2, Limburgerhof 67117, Germany
| | - Corinne Haines
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Lynsey R Chatham
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Audrey Vardy
- Concept Life Sciences Ltd., 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Brian G Lake
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
4
|
Cohen SM. Cell proliferation and carcinogenesis: an approach to screening for potential human carcinogens. Front Oncol 2024; 14:1394584. [PMID: 38868530 PMCID: PMC11168196 DOI: 10.3389/fonc.2024.1394584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024] Open
Abstract
Cancer arises from multiple genetic errors occurring in a single stem cell (clonality). Every time DNA replicates, mistakes occur. Thus, agents can increase the risk of cancer either by directly damaging DNA (DNA-reactive carcinogens) or increasing the number of DNA replications (increased cell proliferation). Increased cell proliferation can be achieved either by direct mitogenesis or cytotoxicity with regenerative proliferation. Human carcinogens have a mode of action of DNA reactivity, immunomodulation (mostly immunosuppression), increased estrogenic activity (mitogenesis), or cytotoxicity and regeneration. By focusing on screening for these four effects utilizing in silico, in vitro, and short-term in vivo assays, a biologically based screening for human chemical carcinogens can be accomplished with greater predictivity than the traditional 2-year bioassay with considerably less cost, less time, and the use of fewer animals.
Collapse
Affiliation(s)
- Samuel M. Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology, Microbiology, and Immunology and the Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
5
|
Sanz-Serrano J, Callewaert E, De Boever S, Drees A, Verhoeven A, Vinken M. Chemical-induced liver cancer: an adverse outcome pathway perspective. Expert Opin Drug Saf 2024; 23:425-438. [PMID: 38430529 DOI: 10.1080/14740338.2024.2326479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/29/2024] [Indexed: 03/04/2024]
Abstract
INTRODUCTION The evaluation of the potential carcinogenicity is a key consideration in the risk assessment of chemicals. Predictive toxicology is currently switching toward non-animal approaches that rely on the mechanistic understanding of toxicity. AREAS COVERED Adverse outcome pathways (AOPs) present toxicological processes, including chemical-induced carcinogenicity, in a visual and comprehensive manner, which serve as the conceptual backbone for the development of non-animal approaches eligible for hazard identification. The current review provides an overview of the available AOPs leading to liver cancer and discusses their use in advanced testing of liver carcinogenic chemicals. Moreover, the challenges related to their use in risk assessment are outlined, including the exploitation of available data, the need for semantic ontologies, and the development of quantitative AOPs. EXPERT OPINION To exploit the potential of liver cancer AOPs in the field of risk assessment, 3 immediate prerequisites need to be fulfilled. These include developing human relevant AOPs for chemical-induced liver cancer, increasing the number of AOPs integrating quantitative toxicodynamic and toxicokinetic data, and developing a liver cancer AOP network. As AOPs and other areas in the field continue to evolve, liver cancer AOPs will progress into a reliable and robust tool serving future risk assessment and management.
Collapse
Affiliation(s)
- Julen Sanz-Serrano
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen Callewaert
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sybren De Boever
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Annika Drees
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anouk Verhoeven
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- In Vitro Toxicology and Dermato-Cosmetology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Cohen SM, Bevan C, Gollapudi B, Klaunig JE. Evaluation of the carcinogenicity of carbon tetrachloride. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:342-370. [PMID: 37282619 DOI: 10.1080/10937404.2023.2220147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbon tetrachloride (CCl4) has been extensively used and reported to produce toxicity, most notably involving the liver. Carbon tetrachloride metabolism involves CYP450-mediated bioactivation to trichloromethyl and trichloromethyl peroxy radicals, which are capable of macromolecular interaction with cell components including lipids and proteins. Radical interaction with lipids produces lipid peroxidation which can mediate cellular damage leading to cell death. Chronic exposure with CCl4 a rodent hepatic carcinogen with a mode of action (MOA) exhibits the following key events: 1) metabolic activation; 2) hepatocellular toxicity and cell death; 3) consequent regenerative increased cell proliferation; and 4) hepatocellular proliferative lesions (foci, adenomas, carcinomas). The induction of rodent hepatic tumors is dependent upon the dose (concentration and exposure duration) of CCl4, with tumors only occurring at cytotoxic exposure levels. Adrenal benign pheochromocytomas were also increased in mice at high CCl4 exposures; however, these tumors are not of relevant importance to human cancer risk. Few epidemiology studies that have been performed on CCl4, do not provide credible evidence of enhanced risk of occurrence of liver or adrenal cancers, but these studies have serious flaws limiting their usefulness for risk assessment. This manuscript summarizes the toxicity and carcinogenicity attributed to CCl4, specifically addressing MOA, dose-response, and human relevance.
Collapse
Affiliation(s)
- Samuel M Cohen
- Department of Pathology and Microbiology and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, US
| | | | | | - James E Klaunig
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN, US
| |
Collapse
|
7
|
Lafranconi M, Anderson J, Budinsky R, Corey L, Forsberg N, Klapacz J, LeBaron MJ. An integrated assessment of the 1,4-dioxane cancer mode of action and threshold response in rodents. Regul Toxicol Pharmacol 2023:105428. [PMID: 37277058 DOI: 10.1016/j.yrtph.2023.105428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
1,4-Dioxane is an environmental contaminant that has been shown to cause cancer in rodents after chronic high dose exposures. We reviewed and integrated information from recently published studies to update our understanding of the cancer mode of action of 1,4-dioxane. Tumor development in rodents from exposure to high doses of 1,4-dioxane is preceded by pre-neoplastic events including increased hepatic genomic signaling activity related to mitogenesis, elevation of Cyp2E1 activity and oxidative stress leading to genotoxicity and cytotoxicity. These events are followed by regenerative repair and proliferation and eventual development of tumors. Importantly, these events occur at doses that exceed the metabolic clearance of absorbed 1,4-dioxane in rats and mice resulting in elevated systemic levels of parent 1,4-dioxane. Consistent with previous reviews, we found no evidence of direct mutagenicity from exposure to 1,4-dioxane. We also found no evidence of CAR/PXR, AhR or PPARα activation resulting from exposure to 1,4-dioxane. This integrated assessment supports a cancer mode of action that is dependent on exceeding the metabolic clearance of absorbed 1,4-dioxane, direct mitogenesis, elevation of Cyp2E1 activity and oxidative stress leading to genotoxicity and cytotoxicity followed by sustained proliferation driven by regenerative repair and progression of heritable lesions to tumor development.
Collapse
|
8
|
Zhang X, Felter SP, Api AM, Joshi K, Selechnik D. A Cautionary tale for using read-across for cancer hazard classification: Case study of isoeugenol and methyl eugenol. Regul Toxicol Pharmacol 2022; 136:105280. [DOI: 10.1016/j.yrtph.2022.105280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
9
|
Fukunaga S, Ogata K, Eguchi A, Matsunaga K, Sakurai K, Abe J, Cohen SM, Asano H. Evaluation of the mode of action and human relevance of liver tumors in male mice treated with epyrifenacil. Regul Toxicol Pharmacol 2022; 136:105268. [DOI: 10.1016/j.yrtph.2022.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/13/2022]
|
10
|
Murphy L, LeBaron MJ, Johnson K, Rasoulpour RJ, Wang X, LaRocca J. Bridging Sex-Specific Differences in the CAR-Mediated Hepatocarcinogenesis of Nitrapyrin Using Molecular and Apical Endpoints. FRONTIERS IN TOXICOLOGY 2022; 3:766196. [PMID: 35295143 PMCID: PMC8915892 DOI: 10.3389/ftox.2021.766196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Nitrapyrin, a nitrification inhibitor, produces liver tumors in B6C3F1 mice. In a 2-year oncogenicity study, increased incidence of mice with hepatocellular tumors was observed following exposure to 125 (females only) or 250 mg/kg/day (males and females) nitrapyrin in the diet. Previous data was generated in male mice to support a mode-of-action (MoA) characterized by constitutive androstane receptor (CAR) nuclear receptor (NR) activation, increased hepatocellular proliferation, and subsequent hepatocellular foci and tumor formation. Uncertainty as to the relevance of this MoA for females remained given the increased sensitivity to tumor formation in female mice. A targeted MoA study was conducted to evaluate CAR activation and hepatic responses in female mice treated with the female carcinogenic dose of nitrapyrin for 4 days. Nitrapyrin induced a treatment-related increase in hepatocellular hypertrophy and hepatocellular proliferation. Nitrapyrin also induced a dose-related increase in the Cyp2b10/CAR-associated transcript and liver weights. Nitrapyrin-induced liver weights and Cyp2b10 gene expression for both males and females were compared to data generated from three other established CAR activators; methyl isobutyl ketone, phenobarbital, and sulfoxaflor. The response observed in female mice following exposure to nitrapyrin was within range of the degree of change observed in mice following exposure to tumorigenic doses of other CAR activators. Consistent with the liver MoA in male mice, these data support a CAR-mediated mode of action for nitrapyrin-induced liver tumors in female mice, with the understanding that a focused approach minimizing animal use can bridge male and female datasets when sex-specific carcinogenic differences are observed.
Collapse
Affiliation(s)
- Lynea Murphy
- Corteva Agriscience, Indianapolis, IN, United States
| | - Matthew J LeBaron
- The Dow Chemical Company, Toxicology and Environmental Research and Consulting, Midland, MI, United States
| | - Kamin Johnson
- Corteva Agriscience, Indianapolis, IN, United States
| | | | - Xiujuan Wang
- Corteva Agriscience, Indianapolis, IN, United States
| | | |
Collapse
|
11
|
Xiang Y, Luettich K, Martin F, Battey JND, Trivedi K, Neau L, Wong ET, Guedj E, Dulize R, Peric D, Bornand D, Ouadi S, Sierro N, Büttner A, Ivanov NV, Vanscheeuwijck P, Hoeng J, Peitsch MC. Discriminating Spontaneous From Cigarette Smoke and THS 2.2 Aerosol Exposure-Related Proliferative Lung Lesions in A/J Mice by Using Gene Expression and Mutation Spectrum Data. FRONTIERS IN TOXICOLOGY 2022; 3:634035. [PMID: 35295134 PMCID: PMC8915865 DOI: 10.3389/ftox.2021.634035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
Mice, especially A/J mice, have been widely employed to elucidate the underlying mechanisms of lung tumor formation and progression and to derive human-relevant modes of action. Cigarette smoke (CS) exposure induces tumors in the lungs; but, non-exposed A/J mice will also develop lung tumors spontaneously with age, which raises the question of discriminating CS-related lung tumors from spontaneous ones. However, the challenge is that spontaneous tumors are histologically indistinguishable from the tumors occurring in CS-exposed mice. We conducted an 18-month inhalation study in A/J mice to assess the impact of lifetime exposure to Tobacco Heating System (THS) 2.2 aerosol relative to exposure to 3R4F cigarette smoke (CS) on toxicity and carcinogenicity endpoints. To tackle the above challenge, a 13-gene gene signature was developed based on an independent A/J mouse CS exposure study, following by a one-class classifier development based on the current study. Identifying gene signature in one data set and building classifier in another data set addresses the feature/gene selection bias which is a well-known problem in literature. Applied to data from this study, this gene signature classifier distinguished tumors in CS-exposed animals from spontaneous tumors. Lung tumors from THS 2.2 aerosol-exposed mice were significantly different from those of CS-exposed mice but not from spontaneous tumors. The signature was also applied to human lung adenocarcinoma gene expression data (from The Cancer Genome Atlas) and discriminated cancers in never-smokers from those in ever-smokers, suggesting translatability of our signature genes from mice to humans. A possible application of this gene signature is to discriminate lung cancer patients who may benefit from specific treatments (i.e., EGFR tyrosine kinase inhibitors). Mutational spectra from a subset of samples were also utilized for tumor classification, yielding similar results. “Landscaping” the molecular features of A/J mouse lung tumors highlighted, for the first time, a number of events that are also known to play a role in human lung tumorigenesis, such as Lrp1b mutation and Ros1 overexpression. This study shows that omics and computational tools provide useful means of tumor classification where histopathological evaluation alone may be unsatisfactory to distinguish between age- and exposure-related lung tumors.
Collapse
Affiliation(s)
- Yang Xiang
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - James N D Battey
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Keyur Trivedi
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Laurent Neau
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Ee Tsin Wong
- Philip Morris International R&D, Philip Morris International Research Laboratories Pte. Ltd., Singapore, Singapore
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Remi Dulize
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Dariusz Peric
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - David Bornand
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Sonia Ouadi
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
12
|
Yamada T, Lake BG, Cohen SM. Evaluation of the human hazard of the liver and lung tumors in mice treated with permethrin based on mode of action. Crit Rev Toxicol 2022; 52:1-31. [PMID: 35275035 DOI: 10.1080/10408444.2022.2035316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The non-genotoxic synthetic pyrethroid insecticide permethrin produced hepatocellular adenomas and bronchiolo-alveolar adenomas in female CD-1 mice, but not in male CD-1 mice or in female or male Wistar rats. Studies were performed to evaluate possible modes of action (MOAs) for permethrin-induced female CD-1 mouse liver and lung tumor formation. The MOA for liver tumor formation by permethrin involves activation of the peroxisome proliferator-activated receptor alpha (PPARα), increased hepatocellular proliferation, development of altered hepatic foci, and ultimately liver tumors. This MOA is similar to that established for other PPARα activators and is considered to be qualitatively not plausible for humans. The MOA for lung tumor formation by permethrin involves interaction with Club cells, followed by a mitogenic effect resulting in Club cell proliferation, with prolonged administration producing Club cell hyperplasia and subsequently formation of bronchiolo-alveolar adenomas. Although the possibility that permethrin exposure may potentially result in enhancement of Club cell proliferation in humans cannot be completely excluded, there is sufficient information on differences in basic lung anatomy, physiology, metabolism, and biologic behavior of tumors in the general literature to conclude that humans are quantitatively less sensitive to agents that increase Club cell proliferation and lead to tumor formation in mice. The evidence strongly indicates that Club cell mitogens are not likely to lead to increased susceptibility to lung tumor development in humans. Overall, based on MOA evaluation it is concluded that permethrin does not pose a tumorigenic hazard for humans, this conclusion being supported by negative data from permethrin epidemiological studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Brian G Lake
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
13
|
Rooney J, Wehmas LC, Ryan N, Chorley BN, Hester SD, Kenyon EM, Schmid JE, George BJ, Hughes MF, Sey YM, Tennant AH, Simmons JE, Wood CE, Corton JC. Genomic comparisons between hepatocarcinogenic and non-hepatocarcinogenic organophosphate insecticides in the mouse liver. Toxicology 2022; 465:153046. [PMID: 34813904 DOI: 10.1016/j.tox.2021.153046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022]
Abstract
Short-term biomarkers of toxicity have an increasingly important role in the screening and prioritization of new chemicals. In this study, we examined early indicators of liver toxicity for three reference organophosphate (OP) chemicals, which are among the most widely used insecticides in the world. The OP methidathion was previously shown to increase the incidence of liver toxicity, including hepatocellular tumors, in male mice. To provide insights into the adverse outcome pathway (AOP) that underlies these tumors, effects of methidathion in the male mouse liver were examined after 7 and 28 day exposures and compared to those of two other OPs that either do not increase (fenthion) or possibly suppress liver cancer (parathion) in mice. None of the chemicals caused increases in liver weight/body weight or histopathological changes in the liver. Parathion decreased liver cell proliferation after 7 and 28 days while the other chemicals had no effects. There was no evidence for hepatotoxicity in any of the treatment groups. Full-genome microarray analysis of the livers from the 7 and 28 day treatments demonstrated that methidathion and fenthion regulated a large number of overlapping genes, while parathion regulated a unique set of genes. Examination of cytochrome P450 enzyme activities and use of predictive gene expression biomarkers found no consistent evidence for activation of AhR, CAR, PXR, or PPARα. Parathion suppressed the male-specific gene expression pattern through STAT5b, similar to genetic and dietary conditions that decrease liver tumor incidence in mice. Overall, these findings indicate that methidathion causes liver cancer by a mechanism that does not involve common mechanisms of liver cancer induction.
Collapse
Affiliation(s)
- John Rooney
- Oak Ridge Institute for Science and Education (ORISE) Research Participant at US EPA, Office of Research and Development, Center for Computational Toxicology and Exposure (formerly NHEERL), Research Triangle Park, NC, 27711, United States; National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States(3).
| | - Leah C Wehmas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Natalia Ryan
- Oak Ridge Institute for Science and Education (ORISE) Research Participant at US EPA, Office of Research and Development, Center for Computational Toxicology and Exposure (formerly NHEERL), Research Triangle Park, NC, 27711, United States; National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States(3).
| | - Brian N Chorley
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Susan D Hester
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Elaina M Kenyon
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Judith E Schmid
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States(3).
| | - Barbara Jane George
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Michael F Hughes
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Yusupha M Sey
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Alan H Tennant
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Jane Ellen Simmons
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| | - Charles E Wood
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States(3).
| | - J Christopher Corton
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
14
|
Llewellyn GC, Rihner MO, Hanlon PR. An evolution of risk assessment for potential carcinogens in food: Scientific session proceedings. Regul Toxicol Pharmacol 2021; 126:105047. [PMID: 34506878 DOI: 10.1016/j.yrtph.2021.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022]
Abstract
Modern perspectives on the risk assessment of carcinogenic potential of chemicals have taken shape within the last two decades. This has been due to both developments in the understanding of the biology and etiology of cancer and by advances in in silico and in vitro assays. Moving away from a conventional binary carcinogen/non-carcinogen model, modern frameworks offer more nuanced classification structures based on the understanding of mechanisms involved or potentially involved in rodent carcinogenicity. Given these developments, a scientific session at the 2020 Winter Meeting of the Toxicology Forum was organized to explore the impact these innovative approaches will have on food safety assessments and what considerations should be addressed in developing a new carcinogenic risk assessment approach for substances in foods. The session reviewed challenges faced by food toxicologists and risk assessors, current standard approaches for evaluating carcinogenic risk of food substances, limitations of these standard approaches, and potential methods to implement next generation assays and modern carcinogenic frameworks into food safety assessments. Current perspectives of US regulatory, industry, and academic stakeholders were represented during speaker presentations and a moderated Panel Discussion. This Workshop Report provides an overview of key themes and information presented during the session. Summary statements were prepared by the authors and reviewed by the presenters but do not necessarily represent the position or policy of the FDA, the EPA, or other affiliations.
Collapse
Affiliation(s)
- G Craig Llewellyn
- SafeBridge® Regulatory and Life Sciences Group, A Trinity Consultants Inc. Company, USA.
| | - Marisa O Rihner
- SafeBridge® Regulatory and Life Sciences Group, A Trinity Consultants Inc. Company, USA
| | | |
Collapse
|
15
|
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. Int J Mol Sci 2021; 22:ijms22168977. [PMID: 34445682 PMCID: PMC8396440 DOI: 10.3390/ijms22168977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Collapse
|
16
|
Eguchi A, Fukunaga S, Ogata K, Kushida M, Asano H, Cohen SM, Sukata T. Chimeric Mouse With Humanized Liver Is an Appropriate Animal Model to Investigate Mode of Action for Porphyria-Mediated Hepatocytotoxicity. Toxicol Pathol 2021; 49:1243-1254. [PMID: 34238059 PMCID: PMC8521358 DOI: 10.1177/01926233211027474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Porphyrinogenic compounds are known to induce porphyria-mediated hepatocellular injury and subsequent regenerative proliferation in rodents, ultimately leading to hepatocellular tumor induction. However, an appropriate in vivo experimental model to evaluate an effect of porphyrinogenic compounds on human liver has not been fully established. Recently, the chimeric mouse with humanized liver (PXB mice) became widely used as a humanized model in which human hepatocytes are transplanted. In the present study, we examined the utility of PXB mice as an in vivo experimental model to evaluate the key events of the porphyria-mediated cytotoxicity mode of action (MOA) in humans. The treatment of PXB mice with 5-aminolevulinic acid, a representative porphyrinogenic compound, for 28 days caused protoporphyrin IX accumulation, followed by hepatocyte necrosis, increased mitosis, and an increase in replicative DNA synthesis in human hepatocytes, indicative of cellular injury and regenerative proliferation, similar to findings in patients with porphyria or experimental porphyria models and corresponding to the key events of the MOA for porphyria-mediated hepatocellular carcinogenesis. We conclude that the PXB mouse is a useful model to evaluate the key events of the porphyria-mediated cytotoxicity MOA in humans and suggest the utility of PXB mice for clarifying the human relevancy of findings in mice.
Collapse
Affiliation(s)
- Ayumi Eguchi
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Satoki Fukunaga
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Masahiko Kushida
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Hiroyuki Asano
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tokuo Sukata
- Environmental Health Science Laboratory, Sumitomo Chemical Co, Ltd, Osaka, Japan
| |
Collapse
|
17
|
Categorizing the characteristics of human carcinogens: a need for specificity. Arch Toxicol 2021; 95:2883-2889. [PMID: 34148101 DOI: 10.1007/s00204-021-03109-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The International Agency for Research on Cancer (IARC) has recently proposed employing "ten key characteristics of human carcinogens" (TKCs) to determine the potential of agents for harmful effects. The TKCs seem likely to confuse the unsatisfactory correlation from testing regimes that have ignored the differences evident when cellular changes are compared in short and long-lived species, with their very different stem cell and somatic cell phylogenies. The proposed characteristics are so broad that their use will lead to an increase in the current unacceptably high rate of false positives. It could be an informative experiment to take well-established approved therapeutics with well-known human safety profiles and test them against this new TKC paradigm. Cancers are initiated and driven by heritable and transient changes in gene expression, expand clonally, and progress via additional associated acquired mutations and epigenetic alterations that provide cells with an evolutionary advantage. The genotoxicity testing protocols currently employed and required by regulation, emphasize testing for the mutational potential of the test agent. Two-year, chronic rodent cancer bioassays are intended to test for the entire spectrum of carcinogenic transformation. The use of cytotoxic doses causing increased, sustained cell proliferation that facilitates accumulated genetic damage leads to a high false-positive rate of tumor induction. Current cancer hazard assessment protocols and weight-of-the-evidence analysis of agent-specific cancer risk align poorly with the pathogenesis of human carcinoma and so need modernization and improvement in ways suggested here.
Collapse
|
18
|
Yamada T, Cohen SM, Lake BG. Critical evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). Crit Rev Toxicol 2021; 51:373-394. [PMID: 34264181 DOI: 10.1080/10408444.2021.1939654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many nongenotoxic chemicals have been shown to produce liver tumors in mice and/or rats by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with phenobarbital (PB) and other compounds have identified the key events for this MOA: CAR activation; increased hepatocellular proliferation; altered foci formation; and ultimately the development of adenomas/carcinomas. In terms of human relevance, the pivotal species difference is that CAR activators are mitogenic agents in mouse and rat hepatocytes, but they do not stimulate increased hepatocellular proliferation in humans. This conclusion is supported by substantial in vitro studies with cultured rodent and human hepatocytes and also by in vivo studies with chimeric mice with human hepatocytes. Examination of the literature reveals many similarities in the hepatic effects and species differences between activators of rodent CAR and the peroxisome proliferator-activated receptor alpha (PPARα), with PPARα activators also not being mitogenic agents in human hepatocytes. Overall, a critical analysis of the available data demonstrates that the established MOA for rodent liver tumor formation by PB and other CAR activators is qualitatively not plausible for humans. This conclusion is supported by data from several human epidemiology studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
19
|
Corton JC, Korunes KL, Abedini J, El-Masri H, Brown J, Paul-Friedman K, Liu Y, Martini C, He S, Rooney J. Thresholds Derived From Common Measures in Rat Studies Are Predictive of Liver Tumorigenic Chemicals. Toxicol Pathol 2020; 48:857-874. [DOI: 10.1177/0192623320960412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We hypothesized that typical tissue and clinical chemistry (ClinChem) end points measured in rat toxicity studies exhibit chemical-independent biological thresholds beyond which cancer occurs. Using the rat in vivo TG-GATES study, 75 chemicals were examined across chemical-dose-time comparisons that could be linked to liver tumor outcomes. Thresholds for liver weight to body weight (LW/BW) and 21 serum ClinChem end points were defined as the maximum and minimum values for those exposures that did not lead to liver tumors in rats. Upper thresholds were identified for LW/BW (117%), aspartate aminotransferase (195%), alanine aminotransferase (141%), alkaline phosphatase (152%), and total bilirubin (115%), and lower thresholds were identified for phospholipids (82%), relative albumin (93%), total cholesterol (82%), and total protein (94%). Thresholds derived from the TG-GATES data set were consistent across other acute and subchronic rat studies. A training set of ClinChem and LW/BW thresholds derived from a 38 chemical training set from TG-GATES was predictive of liver tumor outcomes for a test set of 37 independent TG-GATES chemicals (91%). The thresholds were most predictive when applied to 7d treatments (98%). These findings provide support that biological thresholds for common end points in rodent studies can be used to predict chemical tumorigenic potential.
Collapse
Affiliation(s)
- J. Christopher Corton
- Center for Computational Toxicology and Exposure, U.S. EPA, Research Triangle Park, NC, USA
| | - Katharine L. Korunes
- Center for Computational Toxicology and Exposure, U.S. EPA, Research Triangle Park, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Jaleh Abedini
- Center for Computational Toxicology and Exposure, U.S. EPA, Research Triangle Park, NC, USA
| | - Hisham El-Masri
- Center for Computational Toxicology and Exposure, U.S. EPA, Research Triangle Park, NC, USA
| | - Jason Brown
- Center for Computational Toxicology and Exposure, U.S. EPA, Research Triangle Park, NC, USA
| | - Katie Paul-Friedman
- Center for Computational Toxicology and Exposure, U.S. EPA, Research Triangle Park, NC, USA
| | - Ying Liu
- ASRC Federal, Research Triangle Park, NC, USA
| | | | - Shihan He
- ASRC Federal, Research Triangle Park, NC, USA
| | - John Rooney
- Center for Computational Toxicology and Exposure, U.S. EPA, Research Triangle Park, NC, USA
- Oak Ridge Institute for Science and Education (ORISE), National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC, USA
| |
Collapse
|
20
|
Lewis RW, Hill T, Corton JC. A set of six Gene expression biomarkers and their thresholds identify rat liver tumorigens in short-term assays. Toxicology 2020; 443:152547. [PMID: 32755643 PMCID: PMC10439517 DOI: 10.1016/j.tox.2020.152547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/01/2023]
Abstract
Traditional methods for cancer risk assessment are retrospective, resource-intensive, and not feasible for the vast majority of environmental chemicals. In earlier studies, we used a set of six biomarkers to accurately identify liver tumorigens in transcript profiles derived from chemically-treated rats using either a Toxicological Priority Index (ToxPi) approach or using derived biomarker thresholds for cancer. The biomarkers consisting of 7-113 genes are used to predict the most common liver cancer molecular initiating events: genotoxicity, cytotoxicity and activation of the xenobiotic receptors AhR, CAR, ER, and PPARα. In the present study, we apply and evaluate the performance of these methods for cancer prediction in an independent rat liver study of 44 chemicals (6 h-7d exposures) examined by Affymetrix arrays. In the first approach, ToxPi ranking of biomarker scores consistently gave the highest scores to tumorigenic chemical-dose pairs; balanced accuracies for identification of liver tumorigenic chemicals were up to 89 %. The second approach used tumorigenic thresholds derived in the present study or from our earlier study that were set at the maximum value for chemical-dose exposures without detectable liver tumor outcomes. Using these thresholds, balanced accuracies were up to 90 %. Both approaches identified all tumorigenic chemicals. Almost all of the tumorigenic chemicals activated more than one MIE. We also compared biomarker responses between two types of profiling platforms (Affymetrix full-genome array, TempO-Seq 1500+ array containing ∼2600 genes) and found that the lack of the full set of biomarker genes on the 1500+ array resulted in decreased ability to identify chemicals that activate the MIEs. Overall, these results demonstrate that predictive approaches based on the 6 biomarkers could be used in short-term assays to identify chemicals and their doses that induce liver tumors, the most common endpoint in rodent bioassays.
Collapse
Affiliation(s)
- Robert W Lewis
- Center for Computational Toxicology and Exposure, U.S. EPA, Research Triangle Park, NC, United States.
| | - Thomas Hill
- Center for Computational Toxicology and Exposure, U.S. EPA, Research Triangle Park, NC, United States; Oak Ridge Institute for Science and Education (ORISE) fellow Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC, United States.
| | - J Christopher Corton
- Center for Computational Toxicology and Exposure, U.S. EPA, Research Triangle Park, NC, United States.
| |
Collapse
|
21
|
Corton JC, Hill T, Sutherland JJ, Stevens JL, Rooney J. A Set of Six Gene Expression Biomarkers Identify Rat Liver Tumorigens in Short-term Assays. Toxicol Sci 2020; 177:11-26. [PMID: 32603430 PMCID: PMC8026143 DOI: 10.1093/toxsci/kfaa101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chemical-induced liver cancer occurs in rodents through well-characterized adverse outcome pathways. We hypothesized that measurement of the 6 most common molecular initiating events (MIEs) in liver cancer adverse outcome pathways in short-term assays using only gene expression will allow early identification of chemicals and their associated doses that are likely to be tumorigenic in the liver in 2-year bioassays. We tested this hypothesis using transcript data from a rat liver microarray compendium consisting of 2013 comparisons of 146 chemicals administered at doses with previously established effects on rat liver tumor induction. Five MIEs were measured using previously characterized gene expression biomarkers composed of gene sets predictive for genotoxicity and activation of 1 or more xenobiotic receptors (aryl hydrocarbon receptor, constitutive activated receptor, estrogen receptor, and peroxisome proliferator-activated receptor α). Because chronic injury can be important in tumorigenesis, we also developed a biomarker for cytotoxicity that had a 96% balanced accuracy. Characterization of the genes in each biomarker set using the unsupervised TXG-MAP network model demonstrated that the genes were associated with distinct functional coexpression modules. Using the Toxicological Priority Index to rank chemicals based on their ability to activate the MIEs showed that chemicals administered at tumorigenic doses clearly gave the highest ranked scores. Balanced accuracies using thresholds derived from either TG-GATES or DrugMatrix data sets to predict tumorigenicity in independent sets of chemicals were up to 93%. These results show that a MIE-directed approach using only gene expression biomarkers could be used in short-term assays to identify chemicals and their doses that cause tumors.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina
| | - Thomas Hill
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina
- Oak Ridge Institute for Science and Education (ORISE)
| | | | - James L Stevens
- Indiana Biosciences Research Institute, Indianapolis, Indiana
- Paradox Found LLC, Apex, North Carolina
| | - John Rooney
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina
- Oak Ridge Institute for Science and Education (ORISE)
- Integrated Lab Services, Research Triangle Park, NC 27560
| |
Collapse
|
22
|
Jacobs MN, Colacci A, Corvi R, Vaccari M, Aguila MC, Corvaro M, Delrue N, Desaulniers D, Ertych N, Jacobs A, Luijten M, Madia F, Nishikawa A, Ogawa K, Ohmori K, Paparella M, Sharma AK, Vasseur P. Chemical carcinogen safety testing: OECD expert group international consensus on the development of an integrated approach for the testing and assessment of chemical non-genotoxic carcinogens. Arch Toxicol 2020; 94:2899-2923. [PMID: 32594184 PMCID: PMC7395040 DOI: 10.1007/s00204-020-02784-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
Abstract
While regulatory requirements for carcinogenicity testing of chemicals vary according to product sector and regulatory jurisdiction, the standard approach starts with a battery of genotoxicity tests (which include mutagenicity assays). If any of the in vivo genotoxicity tests are positive, a lifetime rodent cancer bioassay may be requested, but under most chemical regulations (except plant protection, biocides, pharmaceuticals), this is rare. The decision to conduct further testing based on genotoxicity test outcomes creates a regulatory gap for the identification of non-genotoxic carcinogens (NGTxC). With the objective of addressing this gap, in 2016, the Organization of Economic Cooperation and Development (OECD) established an expert group to develop an integrated approach to the testing and assessment (IATA) of NGTxC. Through that work, a definition of NGTxC in a regulatory context was agreed. Using the adverse outcome pathway (AOP) concept, various cancer models were developed, and overarching mechanisms and modes of action were identified. After further refining and structuring with respect to the common hallmarks of cancer and knowing that NGTxC act through a large variety of specific mechanisms, with cell proliferation commonly being a unifying element, it became evident that a panel of tests covering multiple biological traits will be needed to populate the IATA. Consequently, in addition to literature and database investigation, the OECD opened a call for relevant assays in 2018 to receive suggestions. Here, we report on the definition of NGTxC, on the development of the overarching NGTxC IATA, and on the development of ranking parameters to evaluate the assays. Ultimately the intent is to select the best scoring assays for integration in an NGTxC IATA to better identify carcinogens and reduce public health hazards.
Collapse
Affiliation(s)
- Miriam N Jacobs
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England, Chilton, UK.
| | - Annamaria Colacci
- Center for Environment, Prevention and Health, Regional Agency for Prevention, Environment and Energy Emilia Romagna Region (Arpae), Bologna, Italy
| | - Raffaella Corvi
- European Commission Joint Research Centre (EC JRC), Ispra, Italy
| | - Monica Vaccari
- Center for Environment, Prevention and Health, Regional Agency for Prevention, Environment and Energy Emilia Romagna Region (Arpae), Bologna, Italy
| | | | | | - Nathalie Delrue
- Organisation for Economic Cooperation and Development (OECD), Paris, France
| | | | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Abigail Jacobs
- US Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Federica Madia
- European Commission Joint Research Centre (EC JRC), Ispra, Italy
| | | | - Kumiko Ogawa
- National Institute of Health Sciences, Kawasaki, Japan
| | - Kiyomi Ohmori
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Japan
| | - Martin Paparella
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
23
|
An FDA/CDER perspective on nonclinical testing strategies: Classical toxicology approaches and new approach methodologies (NAMs). Regul Toxicol Pharmacol 2020; 114:104662. [DOI: 10.1016/j.yrtph.2020.104662] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
|
24
|
Felter SP, Llewelyn C, Navarro L, Zhang X. How the 62-year old Delaney Clause continues to thwart science: Case study of the flavor substance β-myrcene. Regul Toxicol Pharmacol 2020; 115:104708. [PMID: 32522581 DOI: 10.1016/j.yrtph.2020.104708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
The Delaney Clause is a provision of the 1958 Food Additive Amendment to the Food, Drug and Cosmetic Act of 1938 which stipulates that if a substance is found by the Food and Drug Administration to be carcinogenic in any species of animal or in humans, then it cannot be used as a food additive. This paper presents a case study of β-myrcene, one of seven synthetic substances that was challenged under the Delaney Clause, ultimately resulting in revocation of its regulatory approval as a food additive despite a lack of safety concern. While it is listed as a synthetic flavor in 21 CFR 172.515, β-myrcene is also a substance naturally occurring in a number of dietary plants. The exposure level to naturally-occurring β-myrcene is orders of magnitude higher (estimated to be 16,500 times greater) than the exposure via β-myrcene added to food as a flavoring substance. The National Toxicology Program conducted genotoxicity testing (negative), a 13-week range-finding study, and a two-year cancer bioassay in B6C3F1 mice and F344/N rats. An increase in liver tumors was seen in male mice and kidney tumors in male rats, ultimately resulting in β-myrcene being classified by IARC as a Class 2B carcinogen and being listed on California Proposition 65; in contrast, β-myrcene is not classified as a carcinogen by any other regulatory authority. The doses administered in the NTP bioassay were five-six orders of magnitude higher than human exposures, and the FDA concluded after a thorough evaluation that there was no safety concern associated with the use of β-myrcene as a flavor substance at the current use level. The Delaney Clause, however, does not consider the exposure potential or the human health relevance of effects observed in animals. The lack of options available to the US FDA led to the 2018 decision to remove β-myrcene from the list of approved food additives. This revocation has contributed to the ongoing erosion of trust in regulatory agencies (and industry), which has both economic implications for food manufacturers and consumers alike, and implications for consumer perception of safety of the US food supply. It is time for us to reconsider the rationale behind any legislation that relies on classification alone, and whether there is, in fact, a reason to still classify nongenotoxic carcinogens at all.
Collapse
Affiliation(s)
- Susan P Felter
- Procter & Gamble, Central Product Safety, Mason, OH, USA.
| | - Craig Llewelyn
- Toxicology Regulatory Services, Charlottesville, VA, USA
| | | | - Xiaoling Zhang
- Procter & Gamble, Central Product Safety, Mason, OH, USA
| |
Collapse
|
25
|
Nicolaidou V, Koufaris C. Application of transcriptomic and microRNA profiling in the evaluation of potential liver carcinogens. Toxicol Ind Health 2020; 36:386-397. [PMID: 32419640 DOI: 10.1177/0748233720922710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocarcinogens are agents that increase the incidence of liver cancer in exposed animals or humans. It is now established that carcinogenic exposures have a widespread impact on the transcriptome, inducing both adaptive and adverse changes in the activities of genes and pathways. Chemical hepatocarcinogens have also been shown to affect expression of microRNA (miRNA), the evolutionarily conserved noncoding RNA that regulates gene expression posttranscriptionally. Considerable effort has been invested into examining the involvement of mRNA in chemical hepatocarcinogenesis and their potential usage for the classification and prediction of new chemical entities. For miRNA, there has been an increasing number of studies reported over the past decade, although not to the same degree as for transcriptomic studies. Current data suggest that it is unlikely that any gene or miRNA signature associated with short-term carcinogen exposure can replace the rodent bioassay. In this review, we discuss the application of transcriptomic and miRNA profiles to increase mechanistic understanding of chemical carcinogens and to aid in their classification.
Collapse
Affiliation(s)
- Vicky Nicolaidou
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Costas Koufaris
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
26
|
Piperonyl butoxide: Mode of action analysis for mouse liver tumour formation and human relevance. Toxicology 2020; 439:152465. [PMID: 32320717 DOI: 10.1016/j.tox.2020.152465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/31/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022]
Abstract
In a 79 week bioassay the pesticide synergist piperonyl butoxide (PBO) was shown to significantly increase the incidence of hepatocellular adenoma (but not hepatocellular carcinoma) in male CD-1 mice at dietary levels of 100 and 300 mg/kg/day PBO and in female mice at a dietary level of 300 mg/kg/day. As PBO is not a genotoxic agent, a series of investigative studies were undertaken to elucidate the mode of action (MOA) for PBO-induced mouse liver tumour formation. Male CD-1 mice were fed diets to provide intakes of 0 (control), 30, 100 and 300 mg/kg/day PBO and for purposes of comparison 500 ppm sodium phenobarbital (NaPB), a known constitutive androstane receptor (CAR) activator, for 7 and 14 days. Treatment with 100 and 300 mg/kg/day PBO and 500 ppm NaPB increased relative liver weight which was associated with hepatocyte hypertrophy, with hepatocyte replicative DNA synthesis (RDS) being increased after 7 days treatment. The treatment of CD-1 mice with 30-300 mg/kg/day PBO for 14 days resulted in significant dose-dependent increases in hepatic microsomal cytochrome P450 (CYP) content and 7-pentoxyresorufin O-depentylase (PROD) activity and in hepatic Cyp2b10 mRNA levels. In contrast, PBO produced a biphasic effect on markers of activation of the peroxisome proliferator-activated receptor alpha (PPARα), with small increases in microsomal lauric acid 12-hydroxylase activity and hepatic Cyp4a10 mRNA levels being observed in mice given 100 mg/kg/day with PBO, with either no increase or a significant inhibition being observed in mice given 300 mg/kg/day PBO. The hepatic effects of PBO in male CD-1 mice were generally similar to those produced by NaPB and were reversible after the cessation of treatment for 28 days. Studies were also performed in male C57BL/6J (wild type) mice and in hepatic CAR and pregnane X receptor (PXR) knockout mice (CAR KO/PXR KO mice), where in the CAR KO/PXR KO mice PBO had little effect on markers of CAR activation, but produced some increases in markers of PPARα activation. The treatment of male CD-1 mouse hepatocytes for 4 days with 5-50 μM PBO, 10-1000 μM NaPB and 25 ng/mL epidermal growth factor (EGF) resulted in significant increases in hepatocyte RDS. While treatment of hepatocytes from one male and one female human donor with 5-500 μM PBO and 10-1000 μM NaPB for 4 days had no effect on hepatocyte RDS, treatment with EGF resulted in significant increases in RDS in both human hepatocyte preparations. In summary, PBO is predominantly a hepatic CAR activator at carcinogenic dose levels in CD-1 mice, with activation of hepatic CAR resulting in a suppression of the effect of PBO on hepatic PPARα. A robust MOA for PBO-induced mouse liver tumour formation has been established, this MOA being similar to that previously identified for NaPB and some other rodent liver CAR activators. Based on the lack of effect of PBO on RDS in human hepatocytes, it is considered that the MOA for PBO-induced mouse liver tumour formation is qualitatively not plausible for humans.
Collapse
|
27
|
Kawamoto K, Ogata K, Asano H, Miyata K, Sukata T, Utsumi T, Cohen SM, Yamada T. Cell proliferation analysis is a reliable predictor of lack of carcinogenicity: Case study using the pyrethroid imiprothrin on lung tumorigenesis in mice. Regul Toxicol Pharmacol 2020; 113:104646. [PMID: 32229244 DOI: 10.1016/j.yrtph.2020.104646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Accepted: 03/19/2020] [Indexed: 11/25/2022]
Abstract
In the mouse carcinogenicity study, an apparent increase in lung adenocarcinoma was observed in male mice at 7000 ppm. Based on the overall evaluation of toxicology, oncology, pathology and statistics, we concluded that the apparent increase in lung tumors is not relevant for evaluation of carcinogenicity of imiprothrin (Regul Toxicol Pharmacol, 105, 1-14, 2019). To investigate whether imiprothrin has any mitogenic effect on mouse Club cells, the present study examined its effects on replicative DNA synthesis of Club cells and lung histopathology in male mice treated with imiprothrin for 7 days at 3500 and 7000 ppm in the diet. Isoniazid, a known mouse lung mitogen and tumor inducer, was also examined at 1000 ppm in the diet as a positive control of Club cell mitogenesis and morphological changes. Neither imiprothrin nor isoniazid caused any necrotic changes in lung by light or electron microscopy. There were no increases observed in the bromodeoxyuridine (BrdU) labeling index in the imiprothrin groups, while there was a statistically significant increase in the BrdU labeling index in the isoniazid group. These findings demonstrate that imiprothrin does not induce mouse Club cell proliferation or morphologic changes, supporting our previous conclusion described above. Thus, imiprothrin should not be classified as a carcinogen. Furthermore, this study indicates that short-term studies focusing on cell proliferation can be reliable for predicting a lack of carcinogenic potential of test chemicals.
Collapse
Affiliation(s)
- Kensuke Kawamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Hiroyuki Asano
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Kaori Miyata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Tokuo Sukata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Tooru Utsumi
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Samuel M Cohen
- Havlik-Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Omaha, Nebraska, 68198-3135, USA
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-8558, Japan.
| |
Collapse
|
28
|
Goettel M, Fegert I, Honarvar N, Vardy A, Haines C, Chatham LR, Lake BG. Comparative studies on the effects of sodium phenobarbital and two other constitutive androstane receptor (CAR) activators on induction of cytochrome P450 enzymes and replicative DNA synthesis in cultured hepatocytes from wild type and CAR knockout rats. Toxicology 2020; 433-434:152394. [PMID: 32027962 DOI: 10.1016/j.tox.2020.152394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 10/25/2022]
Abstract
Nongenotoxic chemicals can produce liver tumours in rats and mice by a mitogenic mode of action involving activation of the constitutive androstane receptor (CAR). The aim of this study was to evaluate the usefulness of cultured hepatocytes from normal (wild type; WT) and CAR knockout (KO) rats to screen compounds as potential activators of rat CAR and to validate this test system. Cultured hepatocytes from male Sprague-Dawley WT and CAR KO rats were treated with either 100 and 1000 μM sodium phenobarbital (NaPB), 3-100 μM fluquinconazole (FQZ), or 3-300 μM 3-(difluoromethyl)-1-methyl-N-(3´,4´,6-trifluoro[1,1´-biphenyl]-2-yl)-1H-pyrazole-4-carboxamide (TI1) for 96 h. Induction of cytochrome P450 (CYP) enzymes was monitored by measurement of 7-pentoxyresorufin O-depentylase (PROD), 7-benzyloxyresorufin O-debenzylase (BROD) and 7-benzyloxyquinoline O-debenzylase (BQ) activities. Hepatocytes undergoing replicative DNA synthesis (RDS) were labelled by adding 10 μM 5-bromo-2´-deoxyuridine to the culture medium for determination of the hepatocyte labelling index. The treatment of WT, but not of CAR KO, rat hepatocytes with NaPB, FQZ and TI1 increased hepatocyte RDS and induced CYP2B-dependent PROD activity. In contrast, all three compounds increased CYP2B/3A-dependent BROD and CYP3A-dependent BQ activities in both WT and CAR KO rat hepatocytes. Hepatocyte RDS was increased in both WT and CAR KO rat hepatocytes by treatment with 25 ng/ml epidermal growth factor as a positive control. Overall, these results demonstrate that the effects of three CAR activators on RDS and CYP2B enzyme induction are abolished in cultured CAR KO rat hepatocytes. As demonstrated by this validation study, the CAR KO hepatocyte model is a useful in vitro mechanistic tool for the rapid screening of chemicals as potential activators of rat CAR.
Collapse
Affiliation(s)
- Manuela Goettel
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany.
| | - Ivana Fegert
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | | | - Audrey Vardy
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Corinne Haines
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Lynsey R Chatham
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom
| | - Brian G Lake
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee DD1 5JJ, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
29
|
Nault R, Bals B, Teymouri F, Black MB, Andersen ME, McMullen PD, Krishnan S, Kuravadi N, Paul N, Kumar S, Kannan K, Jayachandra KC, Alagappan L, Patel BD, Bogen KT, Gollapudi BB, Klaunig JE, Zacharewski TR, Bringi V. A toxicogenomic approach for the risk assessment of the food contaminant acetamide. Toxicol Appl Pharmacol 2020; 388:114872. [PMID: 31881176 PMCID: PMC7014822 DOI: 10.1016/j.taap.2019.114872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022]
Abstract
Acetamide (CAS 60-35-5) is detected in common foods. Chronic rodent bioassays led to its classification as a group 2B possible human carcinogen due to the induction of liver tumors in rats. We used a toxicogenomics approach in Wistar rats gavaged daily for 7 or 28 days at doses of 300 to 1500 mg/kg/day (mkd) to determine a point of departure (POD) and investigate its mode of action (MoA). Ki67 labeling was increased at doses ≥750 mkd up to 3.3-fold representing the most sensitive apical endpoint. Differential gene expression analysis by RNA-Seq identified 1110 and 1814 differentially expressed genes in male and female rats, respectively, following 28 days of treatment. Down-regulated genes were associated with lipid metabolism while up-regulated genes included cell signaling, immune response, and cell cycle functions. Benchmark dose (BMD) modeling of the Ki67 labeling index determined the BMD10 lower confidence limit (BMDL10) as 190 mkd. Transcriptional BMD modeling revealed excellent concordance between transcriptional POD and apical endpoints. Collectively, these results indicate that acetamide is most likely acting through a mitogenic MoA, though specific key initiating molecular events could not be elucidated. A POD value of 190 mkd determined for cell proliferation is suggested for risk assessment purposes.
Collapse
Affiliation(s)
- Rance Nault
- Institute for Integrative Toxicology, Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States of America
| | - Bryan Bals
- Michigan Biotechnology Institute, Lansing, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tim R Zacharewski
- Institute for Integrative Toxicology, Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States of America
| | - Venkataraman Bringi
- Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
30
|
Analysis of β-catenin gene mutations and gene expression in liver tumours of C57BL/10J mice produced by chronic administration of sodium phenobarbital. Toxicology 2019; 430:152343. [PMID: 31836555 DOI: 10.1016/j.tox.2019.152343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 11/22/2022]
Abstract
In this study liver tumours produced in male and female mice of the low spontaneous liver tumour incidence C57BL/10J strain treated for 99 weeks with 1000 ppm in the diet with the model constitutive androstane receptor (CAR) activator sodium phenobarbital (NaPB) were analysed for β-catenin mutations by Western immunoblotting and DNA/RNA analysis. Some gene array analysis was also performed to identify genes involved in CAR activation and in β-catenin and Hras gene mutations. Analysis of 8 male and 2 female NaPB-induced liver tumour samples (comprising 2 adenomas, 6 carcinomas and 2 samples containing separate adenomas and carcinomas) revealed truncated β-catenin forms in just 4 male liver tumour samples, with the presence of the truncated β-catenin forms being confirmed by β-catenin exon 1-3 mutation analysis. Microarray gene expression analysis was performed with three of the NaPB-induced male mouse liver tumour samples where β-catenin mutations had not been identified by Western immunoblotting and DNA/RNA analysis and with three liver samples from both NaPB-induced non-tumour tissue and control animals. Treatment with NaPB resulted in induction of Cyp2b subfamily gene expression in both NaPB-induced mouse liver tumours and in NaPB-treated non-tumour tissue. In addition, the gene expression analysis demonstrated that the β-catenin and Hras pathways were not modified in NaPB-induced mouse liver tumours not exhibiting truncated β-catenin forms. Overall, while chronic administration of the model CAR activator NaPB results in both hepatocellular adenoma and carcinoma in the low spontaneous liver tumour incidence C57BL/10J mouse strain, only 40 % of the liver tumours evaluated in this study had β-catenin mutations. These results are in agreement with previous studies with the CAR activator oxazepam and demonstrate that mouse liver tumours induced by nongenotoxic CAR activators in the absence of initiation with a genotoxic agent are due to a number of mechanisms, including those largely independent of either the Wnt/β-catenin signalling pathway or Hras oncogene mutations.
Collapse
|
31
|
Christopher Corton J. Integrating gene expression biomarker predictions into networks of adverse outcome pathways. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Dekant W. Tetrahydrofuran-induced tumors in rodents are not relevant to humans: Quantitative weight of evidence analysis of mode of action information does not support classification of tetrahydrofuran as a possible human carcinogen. Regul Toxicol Pharmacol 2019; 109:104499. [DOI: 10.1016/j.yrtph.2019.104499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 02/05/2023]
|
33
|
Wiemann C, Goettel M, Vardy A, Elcombe BM, Elcombe CR, Chatham LR, Wang H, Li L, Buesen R, Honarvar N, Treumann S, Marxfeld H, Groeters S, Lake BG. Metazachlor: Mode of action analysis for rat liver tumour formation and human relevance. Toxicology 2019; 426:152282. [DOI: 10.1016/j.tox.2019.152282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 12/19/2022]
|
34
|
Cohen SM, Boobis AR, Dellarco VL, Doe JE, Fenner-Crisp PA, Moretto A, Pastoor TP, Schoeny RS, Seed JG, Wolf DC. Chemical carcinogenicity revisited 3: Risk assessment of carcinogenic potential based on the current state of knowledge of carcinogenesis in humans. Regul Toxicol Pharmacol 2019; 103:100-105. [DOI: 10.1016/j.yrtph.2019.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/27/2023]
|
35
|
Peffer RC, Cowie DE, Currie RA, Minnema DJ. Sedaxane-Use of Nuclear Receptor Transactivation Assays, Toxicogenomics, and Toxicokinetics as Part of a Mode of Action Framework for Rodent Liver Tumors. Toxicol Sci 2019; 162:582-598. [PMID: 29244179 DOI: 10.1093/toxsci/kfx281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Experimental data demonstrate a mode of action (MOA) for liver tumors in male rats and mice treated with sedaxane that starts with activation of CAR, followed by altered expression of CAR-responsive genes, increased cell proliferation, and eventually clonal expansion of preneoplastic cells, leading to the development of altered foci and tumors. This MOA is nonrelevant to human risk assessments. Methods and results in the MOA work for sedaxane illustrate promising directions that future MOA studies may be able to employ, in the spirit of "Tox21" and reduction of in vivo animal use: (1) currently available in vitro CAR and PXR reporter assays demonstrated that sedaxane is a direct CAR activator in mice and rats, and a weak PXR activator in rats; (2) mouse liver microarray results compared with a published CAR biomarker signature (based on 83 genes) showed a clear, statistical match, and a lack of correlation to similar biomarker signatures for AhR, PPARα, and STAT5B; (3) Ki67 immunohistochemistry and zonal image analysis showed significant increases in this marker of cell proliferation in mouse liver, without the need to dose a DNA labeling agent; and (4) toxicokinetic analysis of Cmax levels of sedaxane in blood showed a marked species difference between mice and rats that helps to explain differences in sensitivity to sedaxane. Incorporating these tools into the study plan for a new agrochemical or drug during development offers a promising alternative to the traditional need to conduct later, specialized MOA studies after the results of chronic bioassays are known.
Collapse
Affiliation(s)
- Richard C Peffer
- Syngenta Crop Protection, LLC, Greensboro, North Carolina 27419-8300
| | - David E Cowie
- Syngenta Ltd., Jealott's Hill International Research Center, Bracknell, Berkshire RG42 6EY, UK
| | - Richard A Currie
- Syngenta Ltd., Jealott's Hill International Research Center, Bracknell, Berkshire RG42 6EY, UK
| | - Daniel J Minnema
- Syngenta Crop Protection, LLC, Greensboro, North Carolina 27419-8300
| |
Collapse
|
36
|
Kondo M, Miyata K, Nagahori H, Sumida K, Osimitz TG, Cohen SM, Lake BG, Yamada T. Involvement of Peroxisome Proliferator-Activated Receptor-Alpha in Liver Tumor Production by Permethrin in the Female Mouse. Toxicol Sci 2019; 168:572-596. [DOI: 10.1093/toxsci/kfz012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | | | - Kayo Sumida
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | | | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135
| | - Brian G Lake
- Centre for Toxicology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | | |
Collapse
|
37
|
FEMA GRAS assessment of natural flavor complexes: Citrus-derived flavoring ingredients. Food Chem Toxicol 2018; 124:192-218. [PMID: 30481573 DOI: 10.1016/j.fct.2018.11.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 01/06/2023]
Abstract
In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients. This publication is the first in a series and summarizes the evaluation of 54 Citrus-derived NFCs using the procedure outlined in Smith et al. (2005) and updated in Cohen et al. (2018) to evaluate the safety of naturally-occurring mixtures for their intended use as flavoring ingredients. The procedure relies on a complete chemical characterization of each NFC intended for commerce and organization of each NFC's chemical constituents into well-defined congeneric groups. The safety of the NFC is evaluated using the well-established and conservative threshold of toxicological concern (TTC) concept in addition to data on absorption, metabolism and toxicology of members of the congeneric groups and the NFC under evaluation. As a result of the application of the procedure, 54 natural flavor complexes derived from botanicals of the Citrus genus were affirmed as generally recognized as safe (GRAS) under their conditions of intended use as flavoring ingredients based on an evaluation of each NFC and the constituents and congeneric groups therein.
Collapse
|
38
|
Highlight report the food additive dammar resin is a rat hepatocarcinogen. Arch Toxicol 2018; 92:3611-3612. [PMID: 30467585 DOI: 10.1007/s00204-018-2362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
39
|
Rooney J, Hill T, Qin C, Sistare FD, Corton JC. Adverse outcome pathway-driven identification of rat liver tumorigens in short-term assays. Toxicol Appl Pharmacol 2018; 356:99-113. [DOI: 10.1016/j.taap.2018.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023]
|
40
|
Gi M, Fujioka M, Yamano S, Kakehashi A, Oishi Y, Okuno T, Yukimatsu N, Yamaguchi T, Tago Y, Kitano M, Hayashi SM, Wanibuchi H. Chronic dietary toxicity and carcinogenicity studies of dammar resin in F344 rats. Arch Toxicol 2018; 92:3565-3583. [PMID: 30251054 DOI: 10.1007/s00204-018-2316-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/19/2018] [Indexed: 01/09/2023]
Abstract
Dammar resin is a natural food additive and flavoring substance present in many foods and drinks. The present study evaluates the chronic toxicity and carcinogenicity of dietary dammar resin in F344 rats. Dietary concentrations in the 52-week chronic toxicity study were 0, 0.03, 0.125, 0.5, or 2%. The major treatment-related deleterious effects were body weight suppression, increased relative liver weight, and low hemoglobin levels in males and females. Foci of cellular alteration in the liver were observed in the male 2% group, but not in any other group. The no-observed-adverse-effect level for chronic toxicity was 0.125% for males (200.4 mg/kg b.w./day) and females (241.9 mg/kg b.w./day). Dietary concentrations in the 104-week carcinogenicity study were 0, 0.03, 0.5, or 2%. Dammar resin induced hemorrhagic diathesis in males and females, possibly via the inhibition of extrinsic and intrinsic coagulation pathways. Incidences of hepatocellular adenomas and carcinomas were significantly increased in the male 2% group, but not in any other group. In the 4-week subacute toxicity study, the livers of male rat-fed diet-containing 2% dammar resin had increased levels of protein oxidation and increased the expression of two anti-apoptotic and seven cytochrome P450 (CYP) genes. There was also an increased tendency of oxidative DNA damage. These findings demonstrate that dammar resin is hepatocarcinogenic in male F344 rats and underlines the roles of inhibition of apoptosis, induction of CYP enzymes, and oxidative stress in dammar resin-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Min Gi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shotaro Yamano
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, 257-0015, Kanagawa, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuji Oishi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Takahiro Okuno
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Nao Yukimatsu
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Takashi Yamaguchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yoshiyuki Tago
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Mistuaki Kitano
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, 561-8588, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
41
|
Gi M, Fujioka M, Kakehashi A, Okuno T, Masumura K, Nohmi T, Matsumoto M, Omori M, Wanibuchi H, Fukushima S. In vivo positive mutagenicity of 1,4-dioxane and quantitative analysis of its mutagenicity and carcinogenicity in rats. Arch Toxicol 2018; 92:3207-3221. [PMID: 30155721 DOI: 10.1007/s00204-018-2282-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/02/2018] [Indexed: 12/17/2022]
Abstract
1,4-Dioxane is a widely used synthetic industrial chemical and its contamination of drinking water and food is a potential health concern. It induces liver tumors when administered in the drinking water to rats and mice. However, the mode of action (MOA) of the hepatocarcinogenicity of 1,4-dioxane remains unclear. Importantly, it is unknown if 1,4-dioxane is genotoxic, a key consideration for risk assessment. To determine the in vivo mutagenicity of 1,4-dioxane, gpt delta transgenic F344 rats were administered 1,4-dioxane at various doses in the drinking water for 16 weeks. The overall mutation frequency (MF) and A:T- to -G:C transitions and A:T- to -T:A transversions in the gpt transgene were significantly increased by administration of 5000 ppm 1,4-dioxane. A:T- to -T:A transversions were also significantly increased by administration of 1000 ppm 1,4-dioxane. Furthermore, the DNA repair enzyme MGMT was significantly induced at 5000 ppm 1,4-dioxane, implying that extensive genetic damage exceeded the repair capacity of the cells in the liver and consequently led to liver carcinogenesis. No evidence supporting other MOAs, including induction of oxidative stress, cytotoxicity, or nuclear receptor activation, that could contribute to the carcinogenic effects of 1,4-dioxane were found. These findings demonstrate that 1,4-dioxane is a genotoxic hepatocarcinogen and induces hepatocarcinogenesis through a mutagenic MOA in rats. Because our data indicate that 1,4-dioxane is a genotoxic carcinogen, we estimated the point of departure of the mutagenicity and carcinogenicity of 1,4-dioxane using the no-observed effect-level approach and the Benchmark dose approach to characterize its dose-response relationship at low doses.
Collapse
Affiliation(s)
- Min Gi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Takahiro Okuno
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Michiharu Matsumoto
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan
| | - Masako Omori
- Association for Promotion of Research on Risk Assessment, Nakagawa-ku, Nagoya, 454-0869, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shoji Fukushima
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Hadano, Kanagawa, 257-0015, Japan.
- Association for Promotion of Research on Risk Assessment, Nakagawa-ku, Nagoya, 454-0869, Japan.
| |
Collapse
|
42
|
Cohen SM. Screening for human urinary bladder carcinogens: two-year bioassay is unnecessary. Toxicol Res (Camb) 2018; 7:565-575. [PMID: 30090607 PMCID: PMC6061447 DOI: 10.1039/c7tx00294g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/22/2018] [Indexed: 11/21/2022] Open
Abstract
Screening for carcinogens in general, and for the urinary bladder specifically, traditionally involves a two-year bioassay in rodents, the results of which often do not have direct relevance to humans with respect to mode of action (MOA) and/or dose response. My proposal describes a multi-step short-term (90 day) screening process that characterizes known human urinary bladder carcinogens, and identifies those reported in rodent two-year bioassays. The initial step is screening for urothelial proliferation, by microscopy or by increased Ki-67 labeling index. If these are negative, the agent is not a urinary bladder carcinogen. If either of these is positive, an MOA and dose response analysis are performed. DNA reactivity is evaluated. If the chemical is non-DNA reactive, evaluation for cytotoxicity is performed. This involves examination of the urothelium and urine, the latter to identify the generation of urinary solids (e.g. calculi). If urinary solids are the cause of cytotoxicity, the MOA is not relevant to human cancer, but dose response becomes essential for evaluating potential toxicity to humans. If cytotoxicity occurs but no urinary solids are detected, urinary concentrations of the chemical and its metabolites are evaluated, and compared to in vitro cytotoxicity against rodent and human immortalized urothelial cell lines. Based on this process, a screen for urinary bladder carcinogenicity is reliable, and more importantly, can be based on MOA and dose response analyses useful in the overall risk assessment for possible human bladder cancer. The proposed procedure is shorter, less expensive and more relevant than the two-year bioassay.
Collapse
Affiliation(s)
- Samuel M Cohen
- Havlik-Wall Professor of Oncology , Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , NE 68198-3135 , USA .
| |
Collapse
|
43
|
Yamada T. Case examples of an evaluation of the human relevance of the pyrethroids/pyrethrins-induced liver tumours in rodents based on the mode of action. Toxicol Res (Camb) 2018; 7:681-696. [PMID: 30090614 PMCID: PMC6062351 DOI: 10.1039/c7tx00288b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Rodent carcinogenicity studies are useful for screening for human carcinogens but they are not perfect. Some modes of action (MOAs) lead to cancers in both experimental rodents and humans, but others that lead to cancers in rodents do not do so in humans. Therefore, analysing the MOAs by which chemicals produce tumours in rodents and determining the relevance of such tumour data for human risk are critical. Recently, experimental data were obtained as case examples of an evaluation of the human relevance of pyrethroid (metofluthrin and momfluorothrin)- and pyrethrins-induced liver tumours in rats based on MOA. The MOA analysis, based on the International Programme on Chemical Safety (IPCS) framework, concluded that experimental data strongly support that the postulated MOA for metofluthrin-, momfluorothrin- and pyrethrins-produced rat hepatocellular tumours is mediated by constitutive androstane receptor (CAR) activation. Since metofluthrin and momfluorothrin are close structural analogues, reproducible outcomes for both chemicals provide confidence in the MOA findings. Furthermore, cultured human hepatocyte studies and humanized chimeric mouse liver studies demonstrated species difference between human hepatocytes (refractory to the mitogenic effects of these compounds) and rat hepatocytes (sensitive to their mitogenic effects). These data strongly support the hypothesis that the CAR-mediated MOA for liver tumorigenesis is of low carcinogenic risk for humans. In this research, in addition to cultured human hepatocyte studies, the usefulness of the humanized chimeric liver mouse models was clearly demonstrated. These data substantially influenced decisions in regulatory toxicology. In this review I comprehensively discuss the human relevance of the CAR-mediated MOA for rodent liver tumorigenesis based on published information, including our recent molecular research on CAR-mediated MOA.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| |
Collapse
|
44
|
Goodman JI. Goodbye to the bioassay. Toxicol Res (Camb) 2018; 7:558-564. [PMID: 30090606 PMCID: PMC6062362 DOI: 10.1039/c8tx00004b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/31/2018] [Indexed: 12/30/2022] Open
Abstract
It is time to say goodbye to the standard two-year rodent bioassay. While a few, primarily genotoxic, compounds which are clearly associated with human cancer test positive in the bioassay, there is no science-based, sound foundation for presuming it provides either a valid broad (across different chemicals) capability for discerning potential human carcinogens or a valid starting point for making human risk assessment decisions. The two basic assumptions underlying the bioassay are: (1) rodent carcinogens are human carcinogens; and (2) results obtained at high doses are indicative of results that will occur at lower, environmentally relevant, doses. Both of these assumptions are not correct. Furthermore, a reevaluation of National Toxicology Program bioassay data has revealed that if the dose group size were increased from 50 to 200 rodents per group the number of bioassays deemed to be positive would increase from approximately 50% to very close to 100%. Thus, under the extreme conditions of the bioassay (e.g., high doses, lifetime exposure and, at times, a non-physiological route of administration) virtually all chemicals tested could be made into rodent carcinogens. In recent years there have been a number of proposals to move away from the standard bioassay. In particular, a recently formulated decision tree (Cohen, 2017), which places an emphasis on dose-response relationships and invites the use of MOA information, provides a sound basis for moving on from the bioassay and towards a rational approach to both identify chemicals which appear to have the potential to cause cancer in humans and take dose-response relationships into consideration in order to place the extent, if any, of the risk they might pose into proper perspective.
Collapse
Affiliation(s)
- Jay I Goodman
- Department of Pharmacology and Toxicology , Michigan State University , East Lansing , MI 48824 , USA . ; Tel: +1-517-353-9346
| |
Collapse
|
45
|
Lake BG. Human relevance of rodent liver tumour formation by constitutive androstane receptor (CAR) activators. Toxicol Res (Camb) 2018; 7:697-717. [PMID: 30090615 PMCID: PMC6060665 DOI: 10.1039/c8tx00008e] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/09/2018] [Indexed: 01/01/2023] Open
Abstract
A large number of nongenotoxic chemicals have been shown to increase the incidence of liver tumours in rats and/or mice by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with the model CAR activator phenobarbital (PB) and its sodium salt (sodium phenobarbital; NaPB) have demonstrated that the key and associative events for rat and mouse liver tumour formation include CAR activation, increased hepatocyte replicative DNA synthesis (RDS), induction of cytochrome P450 CYP2B subfamily enzymes, liver hypertrophy, increased altered hepatic foci and hepatocellular adenomas/carcinomas. The key species difference between the rat and mouse compared to humans, is that human hepatocytes are refractory to the mitogenic effects of PB/NaPB and other CAR activators. While PB/NaPB and other CAR activators stimulate RDS in rat and mouse hepatocytes in both in vitro and in vivo studies, such compounds do not stimulate RDS in cultured human hepatocytes and in in vivo studies performed in chimeric mice with humanised livers. In terms of species differences in RDS, unlike the rat and mouse, humans are similar to other species such as the Syrian hamster and guinea pig in being nonresponsive to the mitogenic effects of CAR activators. Overall, the MOA for rat and mouse liver tumour formation by PB/NaPB and other CAR activators is considered qualitatively not plausible for humans. This conclusion is supported by data from a number of epidemiological studies, which demonstrate that chronic treatment with PB does not increase the incidence of liver cancer in humans.
Collapse
Affiliation(s)
- Brian G Lake
- Centre for Toxicology , Faculty of Health and Medical Sciences , University of Surrey , Guildford , Surrey GU2 7XH , UK .
| |
Collapse
|
46
|
Minimum datasets to establish a CAR-mediated mode of action for rodent liver tumors. Regul Toxicol Pharmacol 2018; 96:106-120. [DOI: 10.1016/j.yrtph.2018.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
|
47
|
Haines C, Chatham LR, Vardy A, Elcombe CR, Foster JR, Lake BG. Comparison of the hepatic and thyroid gland effects of sodium phenobarbital in wild type and constitutive androstane receptor (CAR) knockout rats and pregnenolone-16α-carbonitrile in wild type and pregnane X receptor (PXR) knockout rats. Toxicology 2018; 400-401:20-27. [DOI: 10.1016/j.tox.2018.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/21/2022]
|
48
|
Haines C, Chatham LR, Vardy A, Elcombe CR, Foster JR, Lake BG. Comparison of the hepatic and thyroid gland effects of sodium phenobarbital and pregnenolone-16α-carbonitrile in wild-type and constitutive androstane receptor (CAR)/pregnane X receptor (PXR) knockout rats. Xenobiotica 2018; 49:227-238. [DOI: 10.1080/00498254.2018.1437300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Corinne Haines
- Concept Life Sciences (formerly CXR Biosciences Ltd.), Dundee, UK
| | | | - Audrey Vardy
- Concept Life Sciences (formerly CXR Biosciences Ltd.), Dundee, UK
| | | | | | - Brian G. Lake
- Concept Life Sciences (formerly CXR Biosciences Ltd.), Dundee, UK
- Centre for Toxicology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
49
|
Chowdhury A, Arnold LL, Wang Z, Pennington KL, Dodmane P, Farragut-Cardoso AP, Klaunig JE, Cros D, Creppy EE, Cohen SM. Effect of polyhexamethylene biguanide on rat liver. Toxicol Lett 2018; 285:94-103. [PMID: 29305328 DOI: 10.1016/j.toxlet.2017.12.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/12/2017] [Accepted: 12/31/2017] [Indexed: 12/27/2022]
Abstract
Polyhexamethylene biguanide (PHMB), an amphiphilic polymeric biocide, increased liver tumor incidence in male and female rats at 1000 and 1500 mg/L in drinking water, but not at 500 mg/L in previous studies. In another study, PHMB administered in diet at 4000 mg/kg was negative for hepatocellular tumors. The present studies evaluated bioavailability and distribution of PHMB administered in drinking water and diet and possible modes of action (MOA). PHMB in drinking water was unpalatable during the first 3 days, resulting in markedly decreased food consumption and decreased body weight. Ki-67 labeling index was increased in hepatocytes and endothelial cells dose responsively with PHMB administered in drinking water but not diet. Vitamin E had no effect on this. There was no cytotoxicity by histopathology or serum enzymes, and no increase in cytokines TNFα, IL-1α or NF-κB. Focal iron deposition in sinusoidal lining cells was detected. Microarray analyses were non-contributory. No effect on CAR or PPARα activation was detected. 14C-PHMB administered at 500, 1000, or 1500 mg/L in the drinking water or 4000 mg/kg in the diet was nearly completely absorbed and excreted in urine, with some fecal excretion. The hypothesized MOA for liver tumors induced by PHMB in drinking water is: 1) severe dehydration and starvation because of unpalatability, followed by ingestion with rapid absorption and urinary excretion; 2) increased hepatocyte proliferation; and 3) induction of hepatocellular foci and tumors. The PHMB-induced rat hepatocellular tumors are unlikely to pose a human cancer risk. However, the actual MOA has not been determined.
Collapse
Affiliation(s)
- Aparajita Chowdhury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-3135, United States
| | - Lora L Arnold
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-3135, United States
| | - Zemin Wang
- Department of Environmental Health, Indiana University, Bloomington, IN 47408, United States
| | - Karen L Pennington
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-3135, United States
| | - Puttappa Dodmane
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-3135, United States
| | - Ana Paula Farragut-Cardoso
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-3135, United States
| | - James E Klaunig
- Department of Environmental Health, Indiana University, Bloomington, IN 47408, United States
| | - Daniel Cros
- Laboratoire Paréva, 13310 Saint-Martin de Crau, France
| | | | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-3135, United States; Havlik-Wall Professor of Oncology, United States.
| |
Collapse
|
50
|
Haines C, Elcombe BM, Chatham LR, Vardy A, Higgins LG, Elcombe CR, Lake BG. Comparison of the effects of sodium phenobarbital in wild type and humanized constitutive androstane receptor (CAR)/pregnane X receptor (PXR) mice and in cultured mouse, rat and human hepatocytes. Toxicology 2018; 396-397:23-32. [PMID: 29425889 DOI: 10.1016/j.tox.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
Phenobarbital (PB), a constitutive androstane receptor (CAR) activator, produces liver tumours in rodents by a mitogenic mode of action involving CAR activation. In this study, the hepatic effects of sodium phenobarbital (NaPB) were compared in male C57BL/6J wild type (WT) mice and in humanized mice, where both the mouse CAR and pregnane X receptor (PXR) have been replaced by their human counterparts (hCAR/hPXR mice). Investigations were also performed in cultured male C57BL/6J and CD-1 mouse, male Sprague-Dawley rat and male and female human hepatocytes. The treatment of WT and hCAR/hPXR mice with 186-984 ppm NaPB in the diet for 7 days resulted in increased relative liver weight, hypertrophy and induction of cytochrome P450 (CYP) enzyme activities. Treatment with NaPB also produced dose-dependent increases in hepatocyte replicative DNA synthesis (RDS), with the effect being more marked in WT than in hCAR/hPXR mice. While the treatment of cultured C57BL/6J and CD-1 mouse, Sprague-Dawley rat and human hepatocytes with 100 and/or 1000 μM NaPB for 4 days induced CYP enzyme activities, increased RDS was only observed in mouse and rat hepatocytes. However, as a positive control, epidermal growth factor increased RDS in hepatocytes from all three species. In summary, although human hepatocytes are refractory to the mitogenic effects of NaPB, treatment with NaPB induced RDS in vivo in hCAR/hPXR mice, which is presumably due to the human CAR and PXR receptors operating in a mouse hepatocyte regulatory environment. As the response of the hCAR/hPXR mouse to the CAR activator NaPB differs markedly from that of human hepatocytes, the hCAR/hPXR mouse is thus not a suitable animal model for studies on the hepatic effects of nongenotoxic rodent CAR activators.
Collapse
Affiliation(s)
- Corinne Haines
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, United Kingdom
| | - Barbara M Elcombe
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, United Kingdom
| | - Lynsey R Chatham
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, United Kingdom
| | - Audrey Vardy
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, United Kingdom.
| | - Larry G Higgins
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, United Kingdom
| | - Clifford R Elcombe
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, United Kingdom
| | - Brian G Lake
- Concept Life Sciences (formerly CXR Biosciences Ltd.), 2, James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, United Kingdom; Centre for Toxicology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| |
Collapse
|