1
|
Ali W, Khatyan U, Sun J, Alasmari A, Alshahrani MY, Qazi IH, Wang T, Liu Z, Zou H. Mitigating effect of pomegranate peel extract against the furan induced testicular injury by apoptosis, steroidogenic enzymes and oxidative stress. CHEMOSPHERE 2024; 358:142086. [PMID: 38670510 DOI: 10.1016/j.chemosphere.2024.142086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Furan is generated in a wide array of heat-treated foods through thermal degradation, leading to severe impairments in the male reproductive system. The main objective of this study was to investigate the potential of pomegranate peel extract (PGPE) in mitigating testicular dysfunctions induced by furan. Male rats were categorized into four groups: control/untreated, PGPE, furan, and PGPE + furan group. The study results revealed that furan-treated rats exhibited significantly elevated aminotransferase and phosphatase activity, and also generated increased oxidative stress, and reduced antioxidative stress protein activity. Additionally, protein content levels (ALT, AST, ALP, and ACP) and activities of steroidogenic Leydig cell hydroxysteroid dehydrogenase (3β-HSD and 17β-HSD) enzymes were significantly decreased. Significant variations in testicular parameters, apoptotic genes (Bcl-2, P53, and Caspase3), inflammatory and anti-inflammatory cytokines (IL1β, IL10), male sex hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, and sperm quality were also observed. Furthermore, testicular histological abnormalities were confirmed by biochemical and molecular modifications. Notably, PGPE pre-treated furan-intoxicated animals exhibited significant improvements in most of the assessed parameters compared to furan-treated groups. In conclusion, PGPE presents essential preventive measures and a novel pharmacological potential therapy against furan-induced testicular injury.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Sindh Agriculture University, Tandojam, Pakistan
| | - Uzma Khatyan
- Sindh Agriculture University, Tandojam, Pakistan
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | | | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Saudi Arabia
| | | | - Tao Wang
- College of Veterinary Medicine, Yangzhou University Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
2
|
Carter LE, Bugiel S, Nunnikhoven A, Verster AJ, Petronella N, Gill S, Curran IHA. Comparative genomic analysis of Fischer F344 rat livers exposed for 90 days to 3-methylfuran or its parental compound furan. Food Chem Toxicol 2024; 184:114426. [PMID: 38160780 DOI: 10.1016/j.fct.2023.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Furan is a naturally forming compound found in heat-processed foods such as coffee, canned meats, and jarred baby food. It is concurrently found with analogues including 2-methylfuran (2-MF) and 3-methylfuran (3-MF), and toxicity studies demonstrate all are potent liver toxins. Toxicity studies found 3-MF is more toxic than either furan, or 2-MF. The present analysis assesses the transcriptional response in liver samples taken from male Fischer (F344) rats exposed to furan or 3-MF from 0 to 2.0 and 0-1.0 mg/kg bw/day, respectively, for 90 days. Transcriptional analyses found decreased liver function and fatty acid metabolism are common responses to both furan and 3-MF exposure. Furan liver injury promotes a ductular reaction through Hippo and TGFB signalling, which combined with increased immune response results in ameliorating perturbed bile acid homeostasis in treated rats. Failure to activate these pathways in 3-MF exposed rats and decreased p53 activity leads to cholestasis, and increased toxicity. Finally, BMD analysis indicate many of the most sensitive pathways affected by furan and 3-MF exposure relate to metabolism - malate dehydrogenase and glucose metabolism with BMDLs of 0.03 and 0.01 mg/kg bw/day for furan and 3-MF exposure, respectively, which agrees with BMDLs previously reported for apical and microarray data.
Collapse
Affiliation(s)
- L E Carter
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | - S Bugiel
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - A Nunnikhoven
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - A J Verster
- Bureau of Food Surveillance and Science Integration, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - N Petronella
- Bureau of Food Surveillance and Science Integration, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - S Gill
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - I H A Curran
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| |
Collapse
|
3
|
Tang X, Miao Y, Cao L, Liu Y, Zhu X, Zhang J, Wang D, Li X, Zhang L, Huo J, Chen J. Adverse outcome pathway exploration of furan-induced liver fibrosis in rats: Genotoxicity pathway or oxidative stress pathway through CYP2E1 activation? CHEMOSPHERE 2023; 341:139998. [PMID: 37657698 DOI: 10.1016/j.chemosphere.2023.139998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Furan is a widespread endogenous contaminant in heat-processed foods that can accumulate rapidly in the food chain and has been widely detected in foods, such as wheat, bread, coffee, canned meat products, and baby food. Dietary exposure to this chemical may bring health risk. Furan is classified as a possible category 2B human carcinogen by the International Agency for Research on Cancer, with the liver as its primary target organ. Hepatic fibrosis is the most important nontumoral harmful effect of furan and also an important event in the carcinogenesis of furan. Although the specific mechanism of furan-induced liver fibrosis is still unclear, it may involve oxidative stress and genetic toxicity, in which the activation of cytochrome P450 2E1 (CYP2E1) may be the key event. Thus, we conducted a study using an integrating multi-endpoint genotoxicity platform in 120-day in vivo subchronic toxicity test in rats. Results showed that the rats with activated CYP2E1 exhibited DNA double-strand breaks in D4, gene mutations in D60, and increased expression of reactive oxygen species and nuclear factor erythroid 2-related factor 2 in D120. Necrosis, apoptosis, hepatic stellate cell activation, and fibrosis also occurred in the liver, suggesting that furan can independently affect liver fibrosis through oxidative stress and genotoxicity pathways. Point of Departure (PoD) was obtained by benchmark-dose (BMD) method to establish health-based guidance values. The human equivalent dose of PoD derived from BMDL05 was 2.26 μg/kg bw/d. The findings laid a foundation for the safety evaluation and risk assessment of furan and provided data for the further construction and improvement of the adverse outcome pathway network in liver fibrosis.
Collapse
Affiliation(s)
- Xinyao Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yeqiu Miao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Li Cao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yufei Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xia Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Dongxia Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Xiaomeng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jiao Huo
- Department of Nutrition and Food Safety, Chongqing Center for Disease Control and Prevention, Chongqing, China.
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Awogbindin IO, Ikeji CN, Adedara IA, Farombi EO. Neurotoxicity of furan in juvenile Wistar rats involves behavioral defects, microgliosis, astrogliosis and oxidative stress. Food Chem Toxicol 2023:113934. [PMID: 37423315 DOI: 10.1016/j.fct.2023.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Evidence suggests that furan, a widespread environmental and food contaminant, causes liver toxicity and cancer, but its implications in the brain are not well defined. We measured behavioral, glial, and biochemical responses in male juvenile rats exposed orally to 2.5, 5 and 10 mg/kg furan and vitamin E after 28 days. Furan-mediated hyperactivity peaked at 5 mg/kg and did not exacerbate at 10 mg/kg. Enhanced motor defect was also observed at 10 mg/kg. Furan-treated rats elicited inquisitive exploration but showed impaired working memory. Without compromising the blood-brain barrier, furan induced glial reactivity with enhanced phagocytic activity, characterized by parenchyma-wide microglial aggregation and proliferation, which switched from hyper-ramified to rod-like morphology with increasing doses. Furan altered the glutathione-S-transferase-driven enzymatic and non-enzymatic antioxidant defence systems differentially and dose-dependently across brain regions. Redox homeostasis was most perturbed in the striatum and least disrupted in hippocampus/cerebellum. Vitamin E supplementation attenuated exploratory hyperactivity and glial reactivity but did not affect impaired working memory and oxidative imbalance. Overall, sub-chronic exposure of juvenile rats to furan triggered glial reactivity and behavioral defects suggesting the brain's vulnerability during juvenile development to furan toxicity. It remains to be determined whether environmentally relevant furan concentrations interfere with critical brain developmental milestones.
Collapse
Affiliation(s)
- Ifeoluwa O Awogbindin
- Molecular Drug Metabolism and Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Cynthia N Ikeji
- Molecular Drug Metabolism and Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Molecular Drug Metabolism and Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Ebenezer O Farombi
- Molecular Drug Metabolism and Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
5
|
Zhang Y, Zhang Y. A comprehensive review of furan in foods: From dietary exposures and in vivo metabolism to mitigation measures. Compr Rev Food Sci Food Saf 2023; 22:809-841. [PMID: 36541202 DOI: 10.1111/1541-4337.13092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Furan is a thermal food processing contaminant that is ubiquitous in various food products such as coffee, canned and jarred foods, and cereals. A comprehensive summary of research progress on furan is presented in this review, including discussion of (i) formation pathways, (ii) occurrence and dietary exposures, (iii) analytical techniques, (iv) toxicities, (v) metabolism and metabolites, (vi) risk assessment, (vii) potential biomarkers, and (viii) mitigation measures. Dietary exposure to furan varies among different countries and age groups. Furan acts through various toxicological pathways mediated by its primary metabolite, cis-2-butene-1,4-dial (BDA). BDA can readily react with glutathione, amino acids, biogenic amines, or nucleotides to form corresponding metabolites, some of which have been proposed as potential biomarkers of exposure to furan. Present risk assessment of furan mainly employed the margin of exposure approach. Given the widespread occurrence of furan in foods and its harmful health effects, mitigating furan levels in foods or exploring potential dietary supplements to protect against furan toxicity is necessary for the benefit of food safety and public health.
Collapse
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Gill S, Kavanagh M, Poirier C, Xie R, Koerner T. Proteomic Analysis of Subchronic Furan Exposure in the Liver of Male Fischer F344 Rats. Toxicol Pathol 2021; 50:47-59. [PMID: 34911408 DOI: 10.1177/01926233211056859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Furan is a volatile compound formed during the thermal processing of foods. Chronic exposure has been shown to cause cholangiocarcinoma and hepatocellular tumors in rodent models. We conducted a 90 day subchronic study in Fisher 344 rats exposed to various doses by gavage to determine the NOAEL. Previous reports have outlined changes in the liver using gross necropsy examination, histopathology, clinical biochemistry, hematology, immunohistochemistry, and toxicogenomics. The data revealed that males were more sensitive than females. The focus of this study was to evaluate the toxicoproteomic changes by 2-dimensional differential in gel electrophoresis followed by mass spectrometry analysis. To compliment previous studies, protein expression changes were evaluated of male animals after 90 days of exposure to doses of 0, 0.03, 0.5, and 8.0 mg/kg bw/d. Significant statistical treatment-related changes compared to the controls identified 45 protein spots containing 38 unique proteins. Proteins identified are implicated in metabolism, redox regulation, protein folding/proteolysis as well as structural and transport proteins. At lower doses, multiple cytoprotective pathways are activated to maintain a homeostasis but ultimately the loss of protein function and impairment of several pathways could lead to adverse health effects at higher doses of furan administration.
Collapse
Affiliation(s)
- Santokh Gill
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, 6348Health Canada, Ottawa, Ontario, Canada
| | - Meghan Kavanagh
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, 6348Health Canada, Ottawa, Ontario, Canada
| | - Christine Poirier
- Food Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Ontario, Canada
| | - Ruixi Xie
- Food Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Ontario, Canada
| | - Terry Koerner
- Food Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Xing Y, Xing H, Ma Y, Liu Q, Xu S. In Vitro and In Vivo Studies of Metabolic Activation of Marrubiin, a Bioactive Constituent from Marrubium Vulgare. Chem Res Toxicol 2021; 34:2157-2165. [PMID: 34431289 DOI: 10.1021/acs.chemrestox.1c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Marrubiin, a furanoid compound, is a well-known diterpenoid lactone isolated from Marrubium vulgare, which displays a wide spectrum of pharmacological effects and potential hepatotoxicity. Considering that marrubiin contains a structural alert, furan ring, metabolic activation may be one of the major metabolic pathways, and the reactive metabolite may be involved in the hepatotoxicity. The present study was carried out to investigate the bioactivation mechanism of marrubiin in rats and humans. Marrubiin was initially metabolized into cis-butene-1,4-dial intermediate, which was readily trapped by glutathione (GSH) and N-acetyl-lysine (NAL) in the microsomal incubations supplemented with NADPH. A total of nine conjugates were detected and identified by high-resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. M1-M3 and M6 and M7 were characterized as mono-GSH conjugates, and M4 and M5 were identified as bis-GSH conjugates. M8 and M9 were identified as NAL conjugates. In rat bile, five GSH conjugates (M1-M3; M6 and M7) were detected. M1, M8, and M9 were chemically synthesized, and their structures were characterized by 13C NMR. Sulfaphenazole, ticlopidine, and ketoconazole displayed significant inhibitory effect on the bioactivation of marrubiin. Further phenotyping revealed that CYP2C9, CYP2C19, and CYP3A4 were the primary enzymes catalyzing the bioactivation of marrubiin. The current study provides evidence for the CYP-dominated bioactivation of marrubiin to the corresponding cis-butene-1,4-dial intermediate, which enables us to better understand the potential side effects caused by marrubiin.
Collapse
Affiliation(s)
- Yongtian Xing
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Yongcheng Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Qingwang Liu
- Institute of Health & Medical Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui Province 230031, China
| | - Suyan Xu
- Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| |
Collapse
|
8
|
Fan L, Wang F, Yao Q, Wu H, Wen F, Wang J, Li H, Zheng N. Lactoferrin could alleviate liver injury caused by Maillard reaction products with furan ring through regulating necroptosis pathway. Food Sci Nutr 2021; 9:3449-3459. [PMID: 34262705 PMCID: PMC8269604 DOI: 10.1002/fsn3.2254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/07/2022] Open
Abstract
As classical MRPs, the toxic effects of furosine, pyralline, and 5-hydroxymethylfurfural (5-HMF) in liver tissue are evaluated and the related mechanism is investigated here, and the protective effects of lactoferrin on liver injury caused by Maillard reaction products (MRPs) with furan ring are proved in vitro and in vivo. First, we detect the concentrations of furosine, pyralline, and 5-HMF in several foods using ultrahigh-performance liquid chromatography (UHPLC). Then, the effects of the three MRPs on liver cells (HL-7702) viability, as well as liver tissue, are performed and evaluated. Furthermore, the regulations of three MRPs on necroptosis-related pathway in liver cells are investigated. Additionally, the effects of lactoferrin in alleviating liver injury, as well as regulating necroptosis pathway, were evaluated. Results elucidate that lactoferrin protects liver injury caused by MRPs with furan ring structure through activating RIPK1/RIPK3/p-MLKL necroptosis pathway and downstream inflammatory reaction.
Collapse
Affiliation(s)
- Linlin Fan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Fengen Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Qianqian Yao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Haoming Wu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Fang Wen
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Huiying Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural AffairsInstitute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Animal NutritionInstitute of Animal ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
9
|
Guo J, Zhao J, Nawaz A, Haq IU, Chang W, Xu Y. In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis. Appl Biochem Biotechnol 2021; 193:2602-2615. [PMID: 33797025 DOI: 10.1007/s12010-021-03550-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022]
Abstract
Xylo-oligosaccharides with high value could be obtained by acidolysis of lignocellulosic biomass with acetic acid, which was an urgent problem to solve for the separation of acetic acid from crude xylo-oligosaccharides solution. Four neutralizers, CaCO3, CaO, Na2CO3, and NaOH, were used for in situ chemically locking the acetic acid in the acidolyzed hydrolysate of corncob. The chemically locked hydrolysate was analyzed and compared using vacuum evaporation and spray drying. After CaCO3, CaO, Na2CO3, and NaOH treatment, the locking rates of acetic acid were 92.62%, 94.89%, 95.05%, and 95.58%, respectively, and 39.55 g, 41.13 g, 41.78 g, and 41.87 g of the compound of xylo-oligosaccharide and acetate were obtained. Sodium neutralizer had lesser effect on xylo-oligosaccharide content, and Na2CO3 was the best chemical for locking acetic acid among these four neutralizers. This process provides a novel method for effectively utilizing acetic acid during the industrial production of xylo-oligosaccharides via acetic acid.
Collapse
Affiliation(s)
- Jianming Guo
- Key Laboratory of Forestry Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, 210037, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Jianglin Zhao
- Key Laboratory of Forestry Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, 210037, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Ali Nawaz
- Institute of Industrial Biotechnology, GC University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore, 54000, Pakistan
| | - Wenhuan Chang
- The Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, 210037, People's Republic of China.
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
10
|
Owumi SE, Bello SA, Idowu TB, Arunsi UO, Oyelere AK. Protocatechuic acid protects against hepatorenal toxicities in rats exposed to Furan. Drug Chem Toxicol 2021; 45:1840-1850. [PMID: 33645375 DOI: 10.1080/01480545.2021.1890109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Furan formed in processed food is hepatotoxic and likely carcinogenic in humans. We investigated protocatechuic acid (PCA) protective role in rats' hepatorenal function treated with furan. Rats were grouped and treated as follows: Control, PCA (50 mg/kg), furan alone (8 mg/kg), furan + PCA1 (25 + 8 mg/kg), and furan + PCA2 (50 + 8 mg/kg). Upon sacrifice, evaluation of hepatorenal function, oxidative stress status, reactive oxygen and nitrogen species (RONS), lipid peroxidation (LPO), myeloperoxidase (MPO) activity, among nitric oxide (NO) levels were performed. Cytokine levels (IL-10, IL-1ß, TNF-alpha), Caspase 3 and 9 activities, and histopathological examination were also assessed. We found that the final body and relative liver weights changed significantly (p < 0.05) in treated groups. Hepatic transaminases, urea, and creatinine increased (p < 0.05) in furan only treated group, and reduced in PCA co-treated groups. The furan-induced decrease in antioxidant status increased RONS, and LPO levels were alleviated (p < 0.05) by PCA co-treatment. Furthermore, furan-mediated increase in NO, IL-1ß, TNF-alpha levels, MPO, Cas-3, and 9 activities and suppressed IL-10 levels was reversed accordingly in rats' kidney and liver co-treated with PCA. The extent of furan-mediated hepatorenal lesions was lessened in PCA co-treated rats. Our findings suggest that PCA protects against oxido-inflammatory pathways, enhanced caspases 3 and 9 activations induced by furan in rat hepatorenal system.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Samuel A Bello
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Temitope B Idowu
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
11
|
Protocatechuic acid modulates reproductive dysfunction linked to furan exposure in rats. Toxicology 2020; 442:152556. [DOI: 10.1016/j.tox.2020.152556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
|
12
|
2-Methylfuran: Toxicity and genotoxicity in male Sprague-Dawley rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 854-855:503209. [DOI: 10.1016/j.mrgentox.2020.503209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/22/2022]
|
13
|
Rehman H, Jahan S, Ullah I, Winberg S. Toxicological effects of furan on the reproductive system of male rats: An "in vitro" and "in vivo"-based endocrinological and spermatogonial study. CHEMOSPHERE 2019; 230:327-336. [PMID: 31108444 DOI: 10.1016/j.chemosphere.2019.05.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Furan is a colorless toxic chemical produced in various food items during heat processing and in chemical industries. Both in vitro and in vivo studies have reported that it induces oxidative stress and endocrine disruption; however, limited data are available regarding the effects of furan on the reproduction of mammals. In the present study, an in vitro experiment was designed to investigate the direct effects of furan exposure on oxidative stress and testosterone concentration in rat testicular tissue. Furan not only generated high oxidative stress but also decreased antioxidant enzyme activity in the testicular tissue. On the basis of in vitro study results, an in vivo sub-chronic exposure study was performed. Male rats were orally exposed to different concentrations of furan (0, 5, 10, 20, and 40 mg kg-1). An increase (P < 0.05) of reactive oxygen species (ROS) and of the lipid profile (cholesterol, triglycerides, and LDL) in higher dose treatment groups of furan was observed, while total protein content and antioxidant enzyme activity were considerably decreased after furan exposure. Also, plasma and intratesticular testosterone concentrations were reduced in high-dose treatment groups. Sperm parameters such as sperm viability, sperm count, and sperm motility showed a decrease (P < 0.05) in a dose-dependent manner. Histopathological findings revealed significant alterations in testis and epididymis tissues. These results confirm that furan can induce toxic effects on the reproductive system of male rats.
Collapse
Affiliation(s)
- Humaira Rehman
- Reproductive Physiology Laboratory, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Sarwat Jahan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Imdad Ullah
- Department of Zoology, Abbottabad University of Science and Technology, Havalian, Abbottabad, Pakistan; Department of Neuroscience, Physiology, Uppsala Biomedical Centre (BMC), Uppsala University, PO Box NO 593, 751 24 Uppsala, Sweden.
| | - Svante Winberg
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre (BMC), Uppsala University, PO Box NO 593, 751 24 Uppsala, Sweden.
| |
Collapse
|
14
|
Seok YJ, Lee KG. Analysis of furan in semi-solid and paste type foods. Food Sci Biotechnol 2019; 29:293-301. [PMID: 32064138 DOI: 10.1007/s10068-019-00654-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022] Open
Abstract
An analytical method for furan in semi-solid and paste-type food products that have been widely used consumed in Korea was presented using headspace solid-phase microextraction by gas chromatography-mass spectrometry. Total 131 food samples were analyzed and categorized into 11 groups. The validation parameters such as linearity, limit of detection (LOD), limit of quantitation (LOQ), precision (RSD) and accuracy were verified. The linearity with regression coefficients was obtained from 0.9962 to 0.9996 and the values of LOD and LOQ were 0.18 ng/g and 0.54 ng/g, respectively. The recoveries were obtained from 88.03 to 105.06%. The analysis of furan in such matrix was qualified and quantified by using the developed validation method. Dry cereals, pickled cucumbers, and oyster sauces contained high furan contents with average values 8.60, 6.45, and 4.40 ng/g, respectively.
Collapse
Affiliation(s)
- Yun-Jeong Seok
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| |
Collapse
|
15
|
Kettlitz B, Scholz G, Theurillat V, Cselovszky J, Buck NR, O’ Hagan S, Mavromichali E, Ahrens K, Kraehenbuehl K, Scozzi G, Weck M, Vinci C, Sobieraj M, Stadler RH. Furan and Methylfurans in Foods: An Update on Occurrence, Mitigation, and Risk Assessment. Compr Rev Food Sci Food Saf 2019; 18:738-752. [DOI: 10.1111/1541-4337.12433] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Beate Kettlitz
- FoodDrinkEurope (FDE) Ave. des Nerviens 9–31 1040 Brussels Belgium
| | - Gabriele Scholz
- Nestlé ResearchVers‐chez‐les‐Blanc 1000 Lausanne 26 Switzerland
| | - Viviane Theurillat
- Nestlé Research & Development Rte de Chavornay 3 CH‐1350 Orbe Switzerland
| | - Jörg Cselovszky
- Cereal Partners Worldwide S.A. Rte de Chavornay 7 CH‐1350 Orbe Switzerland
| | - Neil R. Buck
- General Mills Inc. Ave. Reverdil 12–14 CH‐1260 Nyon Switzerland
| | - Sue O’ Hagan
- Pepsico Beaumont Park, 4 Leycroft Rd., Leiecster LE4 1ET United Kingdom
| | - Eva Mavromichali
- Specialised Nutrition Europe (SNE) Ave. des Nerviens 9–31 1040 Brussels Belgium
| | - Katja Ahrens
- German Federation for Food Law and Food Science Claire‐Waldoff‐Str. 7 10117 Berlin Germany
| | - Karin Kraehenbuehl
- Société des Produits Nestlé S.A. Entre‐deux‐Villes 10–12 1814 La Tour‐de‐Peilz Switzerland
| | - Gabriella Scozzi
- European Breakfast Cereal Assn. Ave. des Nerviens 9–31 B‐1040 Brussels Belgium
| | - Markus Weck
- CULINARIA Europe Reuterstraße 151 D‐53113 Bonn Germany
| | - Claudia Vinci
- European Assn. of Fruit and Vegetable Processors (Profel) Av. De Tervueren 188A B‐1150 Brussels Belgium
| | - Marta Sobieraj
- European Fruit Juice Assn. (AIJN) Rue de la Loi 221 box 5 B‐1040 Brussels Belgium
| | | |
Collapse
|
16
|
Abd El-Hakim YM, Mohamed WA, El-Metwally AE. Spirulina platensis attenuates furan reprotoxicity by regulating oxidative stress, inflammation, and apoptosis in testis of rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:25-33. [PMID: 29857230 DOI: 10.1016/j.ecoenv.2018.05.073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Furan is a common food contaminant and environmental pollutant. Spirulina platensis (SP) is a blue-green algae extensively used as therapeutic and health supplements. This study aimed to explore the probable beneficial role of SP against the influence of furan on reproductive system of male rats. Adult male rats were divided into control, vehicle control, SP (300 mg/kg bwt/ day, 7 days), furan (16 mg/kg bwt/ day,30 day), SP/furan, furan/SP and furan+SP groups. Hematology, sperm count, sperm morphology, serum testosterone (TES), luteinizing hormone (LH), follicle-stimulating hormone (FSH) and estradiol (E2) levels, reduced glutathione (GSH), malondialdehyde (MDA), testicular enzymes, and pro inflammatory cytokines were estimated. In addition, histopathology of testis and seminal vesicles and apoptosis were evaluated. Anaemia, leukocytosis, and reduced gonadosomatic index were observed in the furan treated group. TES, LH, FSH, E2, and GSH were significantly decreased following furan treatment. MDA, testicular enzymes, and pro inflammatory cytokines were significantly incremented in testis of furan treated rats. Furan induced apoptic changes in testis. SP significantly counteracted furan reprotoxic impacts, particularly at co-exposure. Conclusively, these findings verified that SP could be candidate therapy against furan reprotoxic impacts.
Collapse
Affiliation(s)
- Yasmina M Abd El-Hakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Wafaa A Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer E El-Metwally
- Pathology Department, Animal Reproduction Research Institute (A.R.R.I.), Giza, Egypt
| |
Collapse
|
17
|
Alizadeh M, Barati M, Saleh-Ghadimi S, Roshanravan N, Zeinalian R, Jabbari M. Industrial furan and its biological effects on the body systems. J Food Biochem 2018. [DOI: 10.1111/jfbc.12597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mohammad Alizadeh
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | - Meisam Barati
- Faculty of Nutrition and Food Sciences, Student Research Committee, Cellular and Molecular Nutrition Department; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Sevda Saleh-Ghadimi
- Student Research Committee, Talented Student Office; Tabriz University of Medical Sciences; Tabriz Iran
| | - Neda Roshanravan
- Cardiovascular Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Reihaneh Zeinalian
- Student Research Committee, Talented Student Office; Tabriz University of Medical Sciences; Tabriz Iran
| | - Masoumeh Jabbari
- Student Research Committee, Talented Student Office; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
18
|
Gill S, Kavanagh M, Cherry W, Bourque C, Caldwell D, Wang G, Bondy G. A 90-day subchronic gavage toxicity study in Fischer 344 rats with 3-methylfuran. Food Chem Toxicol 2018; 111:341-355. [DOI: 10.1016/j.fct.2017.10.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022]
|
19
|
de Conti A, Beland FA, Pogribny IP. The role of epigenomic alterations in furan-induced hepatobiliary pathologies. Food Chem Toxicol 2017; 109:677-682. [DOI: 10.1016/j.fct.2017.07.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023]
|
20
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Chipman K, De Meulenaer B, Dinovi M, Mennes W, Schlatter J, Schrenk D, Baert K, Dujardin B, Wallace H. Risks for public health related to the presence of furan and methylfurans in food. EFSA J 2017; 15:e05005. [PMID: 32625300 PMCID: PMC7009982 DOI: 10.2903/j.efsa.2017.5005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risk to human health of the presence of furan and methylfurans (2-methylfuran, 3-methylfuran and 2,5-dimethylfuran) in food. They are formed in foods during thermal processing and can co-occur. Furans are produced from several precursors such as ascorbic acid, amino acids, carbohydrates, unsaturated fatty acids and carotenoids, and are found in a variety of foods including coffee and canned and jarred foods. Regarding furan occurrence, 17,056 analytical results were used in the evaluation. No occurrence data were received on methylfurans. The highest exposures to furan were estimated for infants, mainly from ready-to-eat meals. Grains and grain-based products contribute most for toddlers, other children and adolescents. In adults, elderly and very elderly, coffee is the main contributor to dietary exposure. Furan is absorbed from the gastrointestinal tract and is found in highest amounts in the liver. It has a short half-life and is metabolised by cytochrome P450 2E1 (CYP2E1) to the reactive metabolite, cis-but-2-ene-1,4-dialdehyde (BDA). BDA can bind covalently to amino acids, proteins and DNA. Furan is hepatotoxic in rats and mice with cholangiofibrosis in rats and hepatocellular adenomas/carcinomas in mice being the most prominent effects. There is limited evidence of chromosomal damage in vivo and a lack of understanding of the underlying mechanism. Clear evidence for indirect mechanisms involved in carcinogenesis include oxidative stress, gene expression alterations, epigenetic changes, inflammation and increased cell proliferation. The CONTAM Panel used a margin of exposure (MOE) approach for the risk characterisation using as a reference point a benchmark dose lower confidence limit for a benchmark response of 10% of 0.064 mg/kg body weight (bw) per day for the incidence of cholangiofibrosis in the rat. The calculated MOEs indicate a health concern. This conclusion was supported by the calculated MOEs for the neoplastic effects.
Collapse
|
21
|
Silano V, Bolognesi C, Castle L, Chipman K, Cravedi JP, Engel KH, Fowler P, Franz R, Grob K, Gürtler R, Husøy T, Kärenlampi S, Milana MR, Pfaff K, Riviere G, Srinivasan J, Tavares Poças MDF, Tlustos C, Wölfle D, Zorn H, Beckman Sundh U, Benigni R, Binderup ML, Brimer L, Marcon F, Marzin D, Mosesso P, Mulder G, Oskarsson A, Svendsen C, Carfì M, Martino C, Mennes W. Scientific opinion of Flavouring Group Evaluation 502 (FGE.502): grill flavour 'Grillin' 5078'. EFSA J 2017; 15:e04973. [PMID: 32625639 PMCID: PMC7009981 DOI: 10.2903/j.efsa.2017.4973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF Panel) was requested to deliver a scientific opinion on the implication for human health of the product Grillin' 5078 [FL-no: 21.003] in the Flavouring Group Evaluation 502, according to Regulation (EC) No 1331/2008 and Regulation (EC) No 1334/2008 of the European Parliament and of the Council. The product is derived from heat-treated high oleic sunflower oil and intended to be used as a food flavouring with charbroiled or grilled aroma in a wide variety of food categories either in liquid or powder form. Information on manufacturing and compositional data was considered adequate to show the reproducibility of the production process. However, the Panel noted that a considerable amount of the non-volatile fraction of the product could not be identified. The chronic dietary exposure to the substance estimated using the Added Portions Exposure Technique (APET) was calculated to be 60 mg/person per day for a 60-kg adult and 37.8 mg/person per day for a 15-kg child. The data submitted for evaluating the genotoxic potential of the flavouring was considered insufficient. There are still 12 substances in the flavouring for which the evaluation of genotoxic potential is pending. No toxicity studies have been provided on the final product itself. Only information on a number of constituents of the flavouring and data on toxicity of several thermally treated fats and oils were provided by the applicant. However, the Panel considered the time-temperature conditions that were applied in the preparation of the substances tested as not comparable to those applied in the course of the production of the flavouring. The Panel concluded that on the basis of the data provided by the applicant the safety of Grillin' 5078 cannot be established.
Collapse
|
22
|
Silano V, Bolognesi C, Castle L, Cravedi JP, Engel KH, Fowler P, Franz R, Grob K, Gürtler R, Husøy T, Kärenlampi S, Milana MR, Penninks A, Tavares Poças MDF, Smith A, Tlustos C, Wölfle D, Zorn H, Zugravu CA, Beckman Sundh U, Benigni R, Brimer L, Mulder G, Oskarsson A, Svendsen C, Martino C, Mennes W. Scientific Opinion of Flavouring Group Evaluation 500 (FGE.500): rum ether. EFSA J 2017; 15:e04897. [PMID: 32625610 PMCID: PMC7010020 DOI: 10.2903/j.efsa.2017.4897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to deliver a scientific opinion on the implications for human health of the flavouring rum ether [FL-no: 21.001] in the Flavouring Group Evaluation 500 (FGE.500), according to Regulation (EC) No 1331/2008 and Regulation (EC) No 1334/2008 of the European Parliament and of the Council. Rum ether is a complex mixture of volatile substances obtained by distillation of the reaction products of pyroligneous acid and ethyl alcohol under oxidative conditions in the presence of manganese dioxide and sulfuric acid. A total of 84 volatile constituents have been reported by the applicant. It is a colourless liquid with a rum-like odour and flavour. Its major uses are in the food categories beverages, confectionery and baked goods. The Panel decided to apply a congeneric group-based approach. The 84 reported constituents were allocated to 12 congeneric groups, based on structural and metabolic similarity. For eight of the congeneric groups, the Panel concluded that there is no safety concern at the intended conditions of use. However, the Panel concluded that substances in congeneric group 1 (ethanol and acetaldehyde) and congeneric group 12 (furan) are carcinogenic and genotoxic. The Panel also identified genotoxicity concerns for substances in congeneric group 3 (3-pentene-2-one). The exposure for congeneric group 10 (ethers of various structures) was above the Threshold of Toxicological Concern (TTC) applicable for this group, but a point of departure or health based guidance value that covers all the substances in this group could not be identified. The Panel concluded that according to the overall strategy for the risk assessment of flavouring substances, the presence of genotoxic substances as process-derived constituents of rum ether is of safety concern.
Collapse
|
23
|
Alam RT, Zeid EHA, Imam TS. Protective role of quercetin against hematotoxic and immunotoxic effects of furan in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3780-3789. [PMID: 27889890 DOI: 10.1007/s11356-016-8108-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Furan (Fu) is a liver carcinogen produced during heating process of food and concerns a public health problem. The current study was undertaken to evaluate the protective role of quercetin (Que) on Fu-induced hematological, immunological, and histopathological alterations in rats. Fifty male Sprague Dawley rats were divided into five equal groups. Group I (Cont) received distilled water, group II (CO) received corn oil, group III (Que) received Que at 50 mg/kg BW, group IV (Fu) received Fu at 16 mg/kg BW, and group V received Que + Fu simultaneously; all groups gavaged daily for 30 days. Our results revealed that Fu administration significantly elevated RBCs, Hb, PCV, WBCs, lymphocytes, and granulocytes and reduced phagocytic percent (Ph%) and index (PhI). Fu decreased the serum total protein, albumin, globulin, IgM, IgG, and IL4, with a significant increase in the TNFα and 8-OHdG. Moreover, it decreased the GSH content and GST activity and increased the MDA levels in the splenic tissue. Histopathologically, Fu led to a moderate depletion in the lymphoid cells and weak immunostaining of CD20 antigen of few lymphocytes appeared in the spleen. Meanwhile, Que co-administration ameliorated the altered hematological parameters and improved the Ph% and PhI. It modulated the serum biochemical parameters and immunoglobulins. Moreover, it decreased lipid peroxidation and enhanced antioxidant status in the spleen. The results indicated that Que possesses antioxidant protective activity against Fu-induced oxidative damage and stimulates the immune function.
Collapse
Affiliation(s)
- Rasha T Alam
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511, Egypt.
| | - Ehsan H Abu Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511, Egypt
| | - Tamer S Imam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511, Egypt
| |
Collapse
|
24
|
Von Tungeln LS, Walker NJ, Olson GR, Mendoza MCB, Felton RP, Thorn BT, Marques MM, Pogribny IP, Doerge DR, Beland FA. Low dose assessment of the carcinogenicity of furan in male F344/N Nctr rats in a 2-year gavage study. Food Chem Toxicol 2017; 99:170-181. [PMID: 27871980 PMCID: PMC5375162 DOI: 10.1016/j.fct.2016.11.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 01/11/2023]
Abstract
Furan is a volatile organic chemical that is a contaminant in many common foods. Furan is hepatocarcinogenic in mice and rats; however, the risk to humans from dietary exposure to furan cannot be estimated accurately because the lowest tested dose of furan in a 2-year bioassay in rats gave nearly a 100% incidence of cholangiocarcinoma. To provide bioassay data that can be used in preparing risk assessments, the carcinogenicity of furan was determined in male F344/N Nctr rats administered 0, 0.02, 0.044, 0.092, 0.2, 0.44, 0.92, and 2 mg furan/kg body weight (BW) by gavage 5 days/week for 2 years. Exposure to furan was associated with the development of malignant mesothelioma on membranes surrounding the epididymis and on the testicular tunics, with the increase being significant at 2 mg furan/kg BW. There was also a dose-related increase in the incidence of mononuclear cell leukemia, with the increase in incidence being significant at 0.092, 0.2, 0.92, and 2 mg furan/kg BW. Dose-related non-neoplastic liver lesions included cholangiofibrosis, mixed cell foci, basophilic foci, biliary tract hyperplasia, oval cell hyperplasia, regenerative hyperplasia, and cytoplasmic vacuolization. The most sensitive non-neoplastic lesion was cholangiofibrosis, the frequency of which increased significantly at 0.2 mg furan/kg BW.
Collapse
Affiliation(s)
- Linda S Von Tungeln
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Nigel J Walker
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Greg R Olson
- Toxicologic Pathology Associates, Jefferson, AR 72079, United States
| | - Maria C B Mendoza
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Robert P Felton
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Brett T Thorn
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - M Matilde Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States.
| |
Collapse
|
25
|
Kara Ö, Baş H, Pandır D. Furan toxicity on testes and protective role of lycopene in diabetic rats. J Turk Ger Gynecol Assoc 2016; 17:191-196. [PMID: 27990087 DOI: 10.5152/jtgga.2016.16144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/15/2016] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Furan (C4H4O) is a heat-induced food contaminant that is utilized as an industrial chemical agent. Lycopene is a natural substance that is produced by plants and tomatoes. We aimed to evaluate the toxicity of furan on testes and the protective effect of lycopene in diabetic rats. MATERIAL AND METHODS Male Wistar albino rats were divided into five groups: Group 1 (control group) received 1 mL/kg corn oil. Group 2 (diabetic control group) received 55 mg/kg STZ and 1 mL/kg corn oil. Group 3 (diabetic lycopene group) received 55 mg/kg STZ and 4 mg/kg lycopene. Group 4 (diabetic furan group) received 55 mg/kg STZ and 40 mg/kg furan. Group 5 (diabetic furan + lycopene group) received 55 mg/kg STZ, 40 mg/kg furan, and 4 mg/kg lycopene. After 28 days, the testes were extirpated in all groups. In the testicular tissue samples, the level of malondialdehyde (MDA) and the activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), and reducted glutathione (GST) were studied. Serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone levels were measured. Histopathologic examination was performed by light microscope. RESULTS The MDA level and the activities of CAT, GPx, SOD, and GST were found to be higher in the furan group than in the control and diabetic control groups (p<0.05). The MDA level and the activities of CAT, GPx, SOD, and GST were significantly lower in the furan + lycopene group than in the furan group (p<0.05). CONCLUSION The low blood testosterone level in the rats who received furan suggested the presence of endocrinological defects and cellular degenerative changes. Lycopene may be effective to reverse furan toxicity in diabetic rat testes.
Collapse
Affiliation(s)
- Özlem Kara
- Department of Biology, Bozok University School of Arts and Science, Yozgat, Turkey
| | - Hatice Baş
- Department of Biology, Bozok University School of Arts and Science, Yozgat, Turkey
| | - Dilek Pandır
- Department of Biology, Bozok University School of Arts and Science, Yozgat, Turkey
| |
Collapse
|
26
|
Ramm S, Limbeck E, Mally A. Functional and cellular consequences of covalent target protein modification by furan in rat liver. Toxicology 2016; 361-362:49-61. [PMID: 27402187 DOI: 10.1016/j.tox.2016.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022]
Abstract
Furan hepatotoxicity is thought to be linked to covalent binding of its reactive metabolite, cis-2-butene-1,4-dial, to hepatic proteins critical for cell homeostasis and survival. We previously identified 61 putative furan target proteins, which participate in various cellular processes including carbohydrate metabolism, fatty acid β-oxidation, adenosine triphosphate (ATP) synthesis, protein folding and maintenance of redox homeostasis. To further investigate the biological significance of target protein modification, this study was designed to determine the impact of furan on the activity of key target enzymes involved in glycolysis, β-oxidation, ATP synthesis, and redox regulation in rat liver, and to link these functional changes to alterations in cellular processes. While cis-2-butene-1,4-dial inhibited thioredoxin 1 (Txn1) in a cell-free assay, in livers of rats treated with a single high dose of furan Txn1 activity was markedly increased due to rapid up-regulation of Txn1 mRNA expression. Significant inhibition of glyceraldehyde-3-phosphate dehydrogenase and metabolic changes consistent with blocked glycolytic breakdown of glucose were observed in rat liver in response to a single high dose of furan. In contrast, furan treatment resulted in increased activity of enoyl-CoA hydratase and enhanced production of ketone bodies, indicative of increased utilization of fatty acids as energy source. Consistent with changes in TCA cycle metabolites, furan treatment resulted in a reduction of succinate dehydrogenase activity, supporting mitochondrial dysfunction as a critical event in furan toxicity. No significant changes in target protein function were observed following repeated administration of furan at lower dose (0.1 and 0.5mg/kg bw for 4 weeks) closer to estimated human exposure to furan via food. Although the relative contribution of furan mediated alterations in metabolic pathways and antioxidant defense to the overall toxic response to furan, including considerations of dose and time, remains to be established, our work contributes to mapping biological processes and toxicity pathways modulated by reactive electrophiles.
Collapse
Affiliation(s)
- Susanne Ramm
- Department of Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Elisabeth Limbeck
- Department of Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
27
|
El-Akabawy G, El-Sherif NM. Protective role of garlic oil against oxidative damage induced by furan exposure from weaning through adulthood in adult rat testis. Acta Histochem 2016; 118:456-63. [PMID: 27130490 DOI: 10.1016/j.acthis.2016.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/22/2022]
Abstract
Furan is produced in a wide variety of heat-treated foods via thermal degradation. Furan contamination is found to be relatively high in processed baby foods, cereal products, fruits juices, and canned vegetables. Several studies have demonstrated that furan is a potent hepatotoxin and hepatocarcinogen in rodents. However, few studies have investigated the toxic effects of furan in the testis. In addition, the exact mechanism(s) by which furan exerts toxicity in the testis has not been fully elucidated. In this study, we investigated the potential of furan exposure from weaning through adulthood to induce oxidative stress in adult rat testis, as well as the potential of garlic oil (GO) to ameliorate the induced toxicity. Our results reveal that furan administration significantly reduced serum testosterone levels and increased the levels of malondialdehyde (MDA); furthermore, furan administration decreased significantly the enzymatic activity of testicular antioxidants, including glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) and induced histopathological alterations in the testis. GO co-administration ameliorated the reduction in testosterone levels and dramatically attenuated the furan-induced oxidative and histopathological changes. In addition, Go significantly down-regulated the increased caspase-3 and cytochrome P450 2E1 (CYP2E1) expression in the furan-treated testis. To the best of our knowledge, this study is the first to demonstrate the furan-induced oxidative changes in the adult rat testis and the protective role of GO to ameliorate these changes through its antioxidant effects and its ability to inhibit CYP2E1 production.
Collapse
|
28
|
Hibi D, Yokoo Y, Suzuki Y, Ishii Y, Jin M, Kijima A, Nohmi T, Nishikawa A, Umemura T. Lack of genotoxic mechanisms in early-stage furan-induced hepatocellular tumorigenesis in gpt delta rats. J Appl Toxicol 2016; 37:142-149. [PMID: 27143483 DOI: 10.1002/jat.3331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/05/2016] [Accepted: 03/11/2016] [Indexed: 01/16/2023]
Abstract
Furan has been used as an intermediate in the chemical-manufacturing industry and has been shown to contaminate various foods. Although furan induces hepatocellular tumors in rodents, equivocal results from in vitro and in vivo mutagenicity tests have caused controversy regarding the involvement of genotoxic mechanisms in furan-induced carcinogenesis. In the present study, to elucidate the possible mechanisms underlying furan-induced hepatocarcinogenesis, a comprehensive medium-term analysis was conducted using gpt delta rats treated with furan at carcinogenic doses for 13 weeks. In the liver, the frequencies of gpt and Spi- mutants derived mainly from point and deletion mutations, respectively, were not changed, and there were no furan-specific gpt mutations in furan-treated rats. In contrast, the number and area of glutathione S-transferase placental form (GST-P)- positive foci were significantly increased in the high-dose group. Also, the ratio of PCNA-positive hepatocytes was significantly elevated in the same group, as supported by significant increases in cyclin d1 and cyclin e1 mRNA levels. Thus, it is highly probable that cell proliferation, but not genotoxic mechanisms, contribute to the development of GST-P foci in furan-treated rats. Based on the close relationship between GST-P and neoplastic hepatocytes, these data allowed us to hypothesize that cell proliferation following signal transduction other than the mitogen-activated protein kinase (MAPK)/ERK pathway may play a crucial role in early-stage furan-induced hepatocarcinogenesis. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daisuke Hibi
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Yu Yokoo
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Yuta Suzuki
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Yuji Ishii
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Meilan Jin
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Aki Kijima
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Akiyoshi Nishikawa
- Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Takashi Umemura
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| |
Collapse
|
29
|
Seok YJ, Her JY, Kim YG, Kim MY, Jeong SY, Kim MK, Lee JY, Kim CI, Yoon HJ, Lee KG. [Not Available]. Toxicol Res 2015; 31:241-53. [PMID: 26483883 PMCID: PMC4609971 DOI: 10.5487/tr.2015.31.3.241] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Furan (C4H4O) is a volatile compound formed mostly during the thermal processing of foods. The toxicity of furan has been well documented previously, and it was classified as “possible human carcinogen (Group 2B)” by the International Agency for Research on Cancer. Various pathways have been reported for the formation of furan, that is, thermal degradation and/or thermal rearrangement of carbohydrates in the presence of amino acids, thermal degradation of certain amino acids, including aspartic acid, threonine, α-alanine, serine, and cysteine, oxidation of ascorbic acid at higher temperatures, and oxidation of polyunsaturated fatty acids and carotenoids. Owing to the complexity of the formation mechanism, a vast number of studies have been published on monitoring furan in commercial food products and on the potential strategies for reducing furan. Thus, we present a comprehensive review on the current status of commercial food monitoring databases and the possible furan reduction methods. Additionally, we review analytical methods for furan detection and the toxicity of furan.
Collapse
Affiliation(s)
- Yun-Jeong Seok
- Department of Food Science and Biotechnology, Dongguk University, Goyang-si, Korea
| | - Jae-Young Her
- Department of Food Science and Biotechnology, Dongguk University, Goyang-si, Korea
| | - Yong-Gun Kim
- Department of Food Science and Biotechnology, Dongguk University, Goyang-si, Korea
| | - Min Yeop Kim
- Department of Food Science and Biotechnology, Dongguk University, Goyang-si, Korea
| | - Soo Young Jeong
- Department of Food Science and Biotechnology, Dongguk University, Goyang-si, Korea
| | - Mina K Kim
- Department of Food Science and Biotechnology, Dongguk University, Goyang-si, Korea
| | - Jee-Yeon Lee
- Nutrition Policy & Promotion Team, Korea Health Industry Development Institute, Chungcheongbuk-do, Korea
| | - Cho-Il Kim
- Bureau of Health Industry Promotion, Korea Health Industry Development Institute, Chungcheongbuk-do, Korea
| | - Hae-Jung Yoon
- Department of Food Safety Evaluation, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungcheongbuk-do, Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University, Goyang-si, Korea
| |
Collapse
|
30
|
London BK, Claville MOF, Babu S, Fronczek FR, Uppu RM. A co-crystal of nona-hydrated disodium(II) with mixed anions from m-chloro-benzoic acid and furosemide. Acta Crystallogr E Crystallogr Commun 2015; 71:1266-9. [PMID: 26594422 PMCID: PMC4647361 DOI: 10.1107/s2056989015017430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/17/2015] [Indexed: 11/11/2022]
Abstract
In the title compound, [Na2(H2O)9](C7H4ClO2)(C12H10ClN2O5S) {systematic name: catena-poly[[[triaquasodium(I)]-di-μ-aqua-[triaquasodium(I)]-μ-aqua] 3-chlorobenzoate 4-chloro-2-[(furan-2-ylmethyl)amino]-5-sulfamoylbenzoate]}, both the original m-chloro-benzoic acid and furosemide exist with deprotonated carboxyl-ates, and the sodium cations and water mol-ecules exist in chains with stoichiometry [Na2(OH2)9](2+) that propagate in the [-110] direction. Each of the two independent Na(+) ions is coordinated by three monodentate water mol-ecules, two double-water bridges, and one single-water bridge. There is considerable cross-linking between the [Na2(OH2)9](2+) chains and to furosemide sulfonamide and carboxyl-ate by inter-molecular O-H⋯O hydrogen bonds. All hydrogen-bond donors participate in a complex two-dimensional array parallel to the ab plane. The furosemide NH group donates an intra-molecular hydrogen bond to the carboxyl-ate group, and the furosemide NH2 group donates an intra-molecular hydrogen bond to the Cl atom and an inter-molecular one to the m-chloro-benzoate O atom. The plethora of hydrogen-bond donors on the cation/water chain leads to many large rings, up to graph set R 4 (4)(24), involving two chains and two furosemide anions. The chloro-benzoate is involved in only one R 2 (2)(8) ring, with two water mol-ecules cis-coordinated to Na. The furan O atom is not hydrogen bonded.
Collapse
Affiliation(s)
- Bianca King London
- Environmental Toxicology PhD Program and the Health Research Center, Southern University and A&M College, Baton Rouge, LA 70813, USA
| | | | - Sainath Babu
- School of Science, Hampton University, Hampton, VA 23668, USA
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
| | - Rao M. Uppu
- Environmental Toxicology PhD Program and the Health Research Center, Southern University and A&M College, Baton Rouge, LA 70813, USA
| |
Collapse
|
31
|
Churchwell MI, Scheri RC, Von Tungeln LS, Gamboa da Costa G, Beland FA, Doerge DR. Evaluation of serum and liver toxicokinetics for furan and liver DNA adduct formation in male Fischer 344 rats. Food Chem Toxicol 2015; 86:1-8. [PMID: 26364877 DOI: 10.1016/j.fct.2015.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 11/26/2022]
Abstract
Furan is a food processing contaminant found in many common cooked foods that induces liver toxicity and liver cancer in animal models treated with sufficient doses. The metabolism of furan occurs primarily in the liver where CYP 2E1 produces a highly reactive bis-electrophile, cis-2-butene-1,4-dial (BDA). BDA reacts with nucleophilic groups in amino acids and DNA in vitro to form covalent adducts. Evidence for BDA-nucleoside adduct formation in vivo is limited but important for assessing the carcinogenic hazard of dietary furan. This study used controlled dosing with furan in Fischer 344 rats to measure serum and liver toxicokinetics and the possible formation of BDA-nucleoside adducts in vivo. After gavage exposure, furan concentrations in the liver were consistently higher than those in whole blood (∼6-fold), which is consistent with portal vein delivery of a lipophilic compound into the liver. Formation of BDA-2'-deoxycytidine in furan-treated rat liver DNA was not observed using LC/MS/MS after single doses as high as 9.2 mg/kg bw or repeated dosing for up to 360 days above a consistent background level (1-2 adducts per 10(8) nucleotides). This absence of BDA-nucleoside adduct formation is consistent with the general lack of evidence for genotoxicity of furan in vivo.
Collapse
Affiliation(s)
- M I Churchwell
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - R C Scheri
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - L S Von Tungeln
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - G Gamboa da Costa
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - F A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - D R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
32
|
Dong H, Gill S, Curran IH, Williams A, Kuo B, Wade MG, Yauk CL. Toxicogenomic assessment of liver responses following subchronic exposure to furan in Fischer F344 rats. Arch Toxicol 2015; 90:1351-67. [PMID: 26194646 PMCID: PMC4873526 DOI: 10.1007/s00204-015-1561-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/22/2015] [Indexed: 01/11/2023]
Abstract
Furan is a widely used industrial chemical and a contaminant in heated foods. Chronic furan exposure causes cholangiocarcinoma and hepatocellular tumors in rats at doses of 2 mg/kg bw/day or greater, with gender differences in frequency and severity. The hepatic transcriptional alterations induced by low doses of furan (doses below those previously tested for induction of liver tumors) and the potential mechanisms underlying gender differences are largely unexplored. We used DNA microarrays to examine the global hepatic mRNA and microRNA transcriptional profiles of male and female rats exposed to 0, 0.03, 0.12, 0.5 or 2 mg/kg bw/day furan over 90 days. Marked gender differences in gene expression responses to furan were observed, with many more altered genes in exposed males than females, confirming the increased sensitivity of males even at the low doses. Pathway analysis supported that key events in furan-induced liver tumors in males include gene expression changes related to oxidative stress, apoptosis and inflammatory response, while pathway changes in females were consistent with primarily adaptive responses. Pathway benchmark doses (BMDs) were estimated and compared to relevant apical endpoints. Transcriptional pathway BMDs could only be examined in males. These median BMDs ranged from 0.08 to 1.43 mg/kg bw/day and approximated those derived from traditional histopathology. MiR-34a (a P53 target) was the only microRNA significantly increased at the 2 mg/kg bw/day, providing evidence to support the importance of apoptosis and cell proliferation in furan hepatotoxicity. Overall, this study demonstrates the use of transcriptional profiling to discern mode of action and mechanisms involved in gender differences.
Collapse
Affiliation(s)
- Hongyan Dong
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Santokh Gill
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Ivan H Curran
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
33
|
Scientific Opinion on Flavouring Group Evaluation 67 Revision 2 (FGE.67Rev2): Consideration of 28 furan‐substituted compounds evaluated by JECFA at the 55th, 65th and 69th meetings (JECFA, 2001, 2006a, 2009b). EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
34
|
Gill S, Kavanagh M, Cherry W, Barker M, Weld M, Cooke GM. A 28-day Gavage Toxicity Study in Fischer 344 Rats with 3-methylfuran. Toxicol Pathol 2015; 43:221-232. [DOI: 10.1177/0192623314534537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
3-Methylfuran is produced in foods during food processing and preservation techniques that involve heat treatment such as cooking, jarring, canning, and pasteurization. Currently, there are no studies available on the toxicity of 3-methylfuran. We conducted a 28-day gavage toxicity study (7 days per week) using doses of 0.0, 0.1, 0.3, 1.5, 3.0, 6.0, 12.0, and 25.0 mg/kg bw/day in order to determine the dose range needed to establish a no observed adverse effect level and to better characterize nonneoplastic effects including those affecting hematology, clinical biochemistry, gross morphology, and histopathology. Histological changes of the liver were noted in all treated animals and gross changes were noted beginning at 3.0 mg/kg bw/kg. Alterations in the activity of serum enzymes indicative of effects on the liver were observed, including increases in levels of alanine transaminase and alkaline phosphatase at the highest dose. There was a significant increase in serum thyroxine (T4) and triiodothyronine (T3), which was not accompanied by histological changes in the thyroid. For the most part, statistically significant changes were seen only at the highest dose for hematology and at the 2 highest doses for clinical chemistry parameters. In contrast, mild histological lesions in the liver were observed even at the lowest dose of 0.1 mg/kg bw/day.
Collapse
Affiliation(s)
- Santokh Gill
- Toxicology Research Division, Health Products and Food Branch, Ottawa, Ontario, Canada
| | - Meghan Kavanagh
- Toxicology Research Division, Health Products and Food Branch, Ottawa, Ontario, Canada
| | - Wendy Cherry
- Toxicology Research Division, Health Products and Food Branch, Ottawa, Ontario, Canada
| | - Michael Barker
- Toxicology Research Division, Health Products and Food Branch, Ottawa, Ontario, Canada
| | - Madeline Weld
- Chemical Health Hazard Assessment Division, Bureau of Chemical Safety, Health Canada, Ottawa, Canada
| | - Gerard M. Cooke
- Toxicology Research Division, Health Products and Food Branch, Ottawa, Ontario, Canada
| |
Collapse
|
35
|
Raju J, Roberts J, Taylor M, Patry D, Chomyshyn E, Caldwell D, Cooke G, Mehta R. Toxicological effects of short-term dietary acrylamide exposure in male F344 rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:85-92. [PMID: 25473820 DOI: 10.1016/j.etap.2014.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/16/2014] [Indexed: 06/04/2023]
Abstract
We recently reported that acrylamide, a known rodent and probable human carcinogen, does not increase the risk of azoxymethane (AOM)-induced rat colon precancerous lesions when administered through the diet. Here, we present toxicological data from non-AOM-injected rats. Briefly, male F344 rats were randomized into four dietary groups and received experimental diets based on AIN-93G formulation and containing acrylamide at 0 (control), 5, 10 or 50mg/kg diet (wt/wt) ad libitum for 10 weeks, after which they were killed and their blood collected for hematological and biochemical markers. Acrylamide at the higher doses (10 and 50mg/kg diet) significantly lowered (p<0.05) serum total high density lipoprotein and total testosterone and increased serum lipase in comparison to the control. Blood hematocrit values and lymphocyte counts were significantly lower (p<0.05) in the high dose acrylamide (50mg/kg diet) group compared to control, with a concomitant decrease in hemoglobin level, mean corpuscular volume and mean corpuscular hemoglobin. These results provide additional hazard characterization data and strengthen the notion that at high doses, acrylamide may involve systemic toxicity potentiating tumorigenesis in experimental animals. Further studies are required to understand the health effects of food-borne acrylamide, especially at the lower exposures typified by human diets.
Collapse
Affiliation(s)
- Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada.
| | - Jennifer Roberts
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| | - Marnie Taylor
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| | - Dominique Patry
- Scientific Services Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| | - Emily Chomyshyn
- Scientific Services Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| | - Don Caldwell
- Scientific Services Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| | - Gerard Cooke
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
36
|
Li C, Lin D, Gao H, Hua H, Peng Y, Zheng J. N-Acetyl Lysine/Glutathione-Derived Pyrroles as Potential Ex Vivo Biomarkers of Bioactivated Furan-Containing Compounds. Chem Res Toxicol 2014; 28:384-93. [DOI: 10.1021/tx500334m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - Jiang Zheng
- Center for Developmental Therapeutics,
Seattle Children’s Research Institute, Division of Gastroenterology
and Hepatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington 98101, United States
| |
Collapse
|
37
|
Cooke GM, Taylor M, Bourque C, Curran I, Gurofsky S, Gill S. Effects of furan on male rat reproduction parameters in a 90-day gavage study. Reprod Toxicol 2014; 46:85-90. [DOI: 10.1016/j.reprotox.2014.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 01/30/2014] [Accepted: 02/15/2014] [Indexed: 11/29/2022]
|
38
|
Case study on the utility of hepatic global gene expression profiling in the risk assessment of the carcinogen furan. Toxicol Appl Pharmacol 2014; 274:63-77. [DOI: 10.1016/j.taap.2013.10.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 12/26/2022]
|
39
|
Manicam C, Teng Khoo L, Ong Abdull J, Rahayu Moh E, Seman Z, Chin Sieo C, Hamid M. Subacute Toxic Effects of Melastoma malabathricum Linn. Aqueous Leaf Extract
on Liver and Kidney Histopathology of Rats. INT J PHARMACOL 2013. [DOI: 10.3923/ijp.2013.358.365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Abstract
In most thermally treated products, a series of alkylated furan derivatives have been found, in particular 2-substituted alkylfurans such as 2-methylfuran. These methyl analogs are metabolically activated in a similar fashion as the parent furan, yielding highly reactive unsaturated dialdehydes. There is currently limited toxicological data available for 2-methyl furan exposure by any route that makes conducting a risk assessment difficult. In this pilot study, we report the general toxicology findings affecting tissue morphology, histopathology, clinical biochemistry, and hematology in a 28-day gavage study. The liver was the primary target organ that developed dose-dependent toxicity. Relative liver weights were increased by 42% at 25.0 mg/kg/body weight (bw)/day. Histological changes in the liver were observed at 0.4, 1.5, 3.0, 6.0, 12.0, and 25.0 mg/kg bw/day. These changes were not accompanied by clinical changes in the serum enzyme markers such as alanine transaminase, alkaline phosphatase, and aspartate transaminase. Clinical biochemistry markers for kidney were altered, but these were not accompanied by histological changes. The prostate was significantly decreased in size at the 25.0 mg/kg bw/day dose of 2-methyfuran. Some hematological parameters were also altered.
Collapse
|
41
|
Abstract
Many xenobiotics containing a furan ring are toxic and/or carcinogenic. The harmful effects of these compounds require furan ring oxidation. This reaction generates an electrophilic intermediate. Depending on the furan ring substituents, the intermediate is either an epoxide or a cis-enedione with more ring substitution favoring epoxide formation. Either intermediate reacts with cellular nucleophiles such as protein or DNA to trigger toxicities. The reactivity of the metabolite determines which cellular nucleophiles are targeted. The toxicity of a particular furan is also influenced by the presence of competing metabolic pathways or efficient detoxification routes. GSH plays an important role in modulating the harmful effects of this class of compound by reacting with the reactive metabolite. However, this may not represent a detoxification step in all cases.
Collapse
Affiliation(s)
- Lisa A Peterson
- Division of Environmental Health Sciences, and Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
42
|
Moro S, Chipman JK, Wegener JW, Hamberger C, Dekant W, Mally A. Furan in heat-treated foods: formation, exposure, toxicity, and aspects of risk assessment. Mol Nutr Food Res 2012; 56:1197-211. [PMID: 22641279 DOI: 10.1002/mnfr.201200093] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/26/2012] [Accepted: 04/04/2012] [Indexed: 12/24/2022]
Abstract
Furan is formed in a variety of heat-treated foods through thermal degradation of natural food constituents. Relatively high levels of furan contamination are found in ground roasted coffee, instant coffee, and processed baby foods. European exposure estimates suggest that mean dietary exposure to furan may be as high as 1.23 and 1.01 μg/kg bw/day for adults and 3- to 12-month-old infants, respectively. Furan is a potent hepatotoxin and hepatocarcinogen in rodents, causing hepatocellular adenomas and carcinomas in rats and mice, and high incidences of cholangiocarcinomas in rats at doses ≥ 2 mg/kg bw. There is therefore a relatively low margin of exposure between estimated human exposure and doses that cause a high tumor incidence in rodents. Since a genotoxic mode of action cannot be excluded for furan-induced tumor formation, the present exposures may indicate a risk to human health and need for mitigation. This review summarizes the current knowledge on mechanisms of furan formation in food, human dietary exposure to furan, and furan toxicity, and highlights the need to establish the risk resulting from the genotoxic and carcinogenic properties of furan at doses lower than 2 mg/kg bw.
Collapse
Affiliation(s)
- Sabrina Moro
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Koçkaya EA, Kılıç A, Karacaoğlu E, Selmanoğlu G. Does furan affect the thymus in growing male rats? Drug Chem Toxicol 2012; 35:316-23. [PMID: 22289615 DOI: 10.3109/01480545.2011.619191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Furan has been identified in foods such as heat-treated foods, including coffee, canned meat, hazelnuts, and infant foods and formulas. Children may be exposed to furan via either consumption of these foods or their derivatives. We evaluated the effects of furan on the thymus of weaning male rats in the present study. Five separate groups containing male rats were used: control, oil control, and three furan-treated groups. Furan was given orally to rats in the treatment groups at doses of 2, 4, and 8 mg/kg/day for 90 days. At the end of the experiment, thymus of the rats were examined morphologically, histopathologically, and immunohistochemically. We observed that absolute and relative weights of thymus were decreased significantly in rats treated with 4- and 8-mg/kg/day doses of furan. In histopathological examination, enlargement of interstitial connective tissue between the thymic lobules, lymphocyte depletion, and hemorrhage were observed. We detected an increase in apoptotic cell counts in thymus of the treatment groups. In addition, we found significant differences in the distribution of fibronectin and transforming growth factor-beta in the thymus of the treatment groups. In conclusion, we suggest that furan has affected the thymus in growing male rats.
Collapse
Affiliation(s)
- E Arzu Koçkaya
- The Higher Vocational School of Health Services, Gazi University, Ankara, Turkey.
| | | | | | | |
Collapse
|
44
|
Moro S, Chipman JK, Antczak P, Turan N, Dekant W, Falciani F, Mally A. Identification and Pathway Mapping of Furan Target Proteins Reveal Mitochondrial Energy Production and Redox Regulation as Critical Targets of Furan Toxicity. Toxicol Sci 2012; 126:336-52. [DOI: 10.1093/toxsci/kfs005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
45
|
Gill S, Kavanagh M, Barker M, Weld M, Vavasour E, Hou Y, Cooke GM. Subchronic Oral Toxicity Study of Furan in B6C3F1 Mice. Toxicol Pathol 2011; 39:787-794. [DOI: 10.1177/0192623311412980] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Furan is a heterocyclic organic compound formed during heat treatment for processing and preservation of various types of food. Rodent studies have previously shown that furan is a hepatocarcinogen. Those studies were conducted over a high dose range, which induced tumors at nearly 100% incidence at all doses. This ninety-day gavage study in mice was conducted to extend the dose to a lower range (0.0, 0.03, 0.12, 0.5, 2.0, and 8.0 mg/kg body weight [bw] per day) to identify a no-observed adverse effect level for hepatotoxicity and to characterize non-neoplastic effects, including those affecting clinical biochemistry, hematology, tissue morphology, and histopathology. The liver was the primary target organ with dose-dependent toxicity. Liver weights were increased at the 8.0 mg/kg bw dose in females only. Levels of the serum enzyme alanine transaminase, representative of liver damage, were increased three-fold at the highest dose. Histological changes in the liver were observed at 2.0 and 8.0 mg/kg bw in both sexes. Although clinical parameters were also altered for the kidney, these differences were not accompanied by histological changes. Based on these clinical biochemical and histological changes, a no-observed adverse effect level of 0.12 mg/kg bw per day of furan in mice is suggested.
Collapse
Affiliation(s)
- S. Gill
- Toxicology Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Canada
| | - M. Kavanagh
- Toxicology Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Canada
| | - M. Barker
- Scientific Services Division, Bureau of Chemical Safety, Health Canada, Ottawa, Canada
| | - M. Weld
- Premarket Toxicology Assessment Section, Bureau of Chemical Safety, Health Canada, Ottawa, Canada
| | - E. Vavasour
- Premarket Toxicology Assessment Section, Bureau of Chemical Safety, Health Canada, Ottawa, Canada
| | - Y. Hou
- Toxicology Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Canada
| | - G. M. Cooke
- Toxicology Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Canada
| |
Collapse
|