1
|
Hashem MA, Alotaibi BS, Elsayed MMA, Alosaimi ME, Hussein AK, Abduljabbar MH, Lee KT, Abdelkader H, El-Mokhtar MA, Hassan AH, Abdel-Rheem AA, Belal A, Saddik MS. Characterization and Bio-Evaluation of the Synergistic Effect of Simvastatin and Folic Acid as Wound Dressings on the Healing Process. Pharmaceutics 2023; 15:2423. [PMID: 37896183 PMCID: PMC10610475 DOI: 10.3390/pharmaceutics15102423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Wound healing is a significant healthcare problem that decreases the patient's quality of life. Hence, several agents and approaches have been widely used to help accelerate wound healing. The challenge is to search for a topical delivery system that could supply long-acting effects, accurate doses, and rapid healing activity. Topical forms of simvastatin (SMV) are beneficial in wound care. This study aimed to develop a novel topical chitosan-based platform of SMV with folic acid (FA) for wound healing. Moreover, the synergistic effect of combinations was determined in an excisional wound model in rats. The prepared SMV-FA-loaded films (SMV-FAPFs) were examined for their physicochemical characterizations and morphology. Box-Behnken Design and response surface methodology were used to evaluate the tensile strength and release characteristics of the prepared SMV-FAPFs. Additionally, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction pattern (XRD), and animal studies were also investigated. The developed SMV-FAPFs showed a contraction of up to 80% decrease in the wound size after ten days. The results of the quantitative real-time polymerase chain reaction (RT-PCR) analysis demonstrated a significant upregulation of dermal collagen type I (CoTI) expression and downregulation of the inflammatory JAK3 expression in wounds treated with SMV-FAPFs when compared to control samples and individual drug treatments. In summary, it can be concluded that the utilization of SMV-FAPFs holds great potential for facilitating efficient and expeditious wound healing, hence presenting a feasible substitute for conventional topical administration methods.
Collapse
Affiliation(s)
- Mahmoud A. Hashem
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| | - Manal E. Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amal K. Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (A.K.H.); (H.A.)
| | - Maram H. Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Life and Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Hamdy Abdelkader
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (A.K.H.); (H.A.)
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 1882, Abha 61441, Saudi Arabia
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Ahmed H.E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Amany A. Abdel-Rheem
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammed S. Saddik
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| |
Collapse
|
2
|
El-Nagar MMF, Elsisi AE. Exposure to bromoxynil octanoate herbicide induces oxidative stress, inflammation, and apoptosis in testicular tissue via modulating NF-кB pathway. Food Chem Toxicol 2023; 180:114008. [PMID: 37660944 DOI: 10.1016/j.fct.2023.114008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Bromoxynil octanoate (BO) is a herbicide necessary for plant growth and production. However, it may cause damage to environment and humans. This study aimed to investigate the potential testicular toxicity of BO and its possible underlying mechanisms. Male Albino (Sprague Dawley) rats were administered BO in different doses (5, 10, 20, and 40 mg/kg/BW; P.O.) daily for 21 days. Testicular function was evaluated by determining count and viability of epididymal sperm, and testosterone. In addition, the following parameters were assessed; MDA, NO, and H2O2 as oxidative stress markers; SOD, CAT, GPx, GST, and GSH as antioxidant markers; NF-ĸB-P65 and IL-18 as inflammatory markers; caspase-9 and caspase-3 as apoptotic markers; gene expression of NF-ĸB-P65, TNF-α, BAX, Bcl-2, and caspase-3; and histopathological examination of epididymis and testis sections. The results showed a significant (P < 0.05) increase in MDA, NO, H2O2, IL-18, and caspase-9 content, NF-ĸB-P65, TNF-α, Bax, and Caspase-3 expression as compared to control. Furthermore, the count and viability of epididymal sperm, testosterone level, SOD, CAT, GPx, GST, and GSH content, and Bcl-2 expression showed a significant (P < 0.05) decrease as compared to control. In conclusion BO-induced testicular damage by altering oxidation, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Maysa M F El-Nagar
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Alaa E Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
3
|
Bortolussi G, Shi X, ten Bloemendaal L, Banerjee B, De Waart DR, Baj G, Chen W, Oude Elferink RP, Beuers U, Paulusma CC, Stocker R, Muro AF, Bosma PJ. Long-Term Effects of Biliverdin Reductase a Deficiency in Ugt1-/- Mice: Impact on Redox Status and Metabolism. Antioxidants (Basel) 2021; 10:antiox10122029. [PMID: 34943131 PMCID: PMC8698966 DOI: 10.3390/antiox10122029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of neurotoxic bilirubin due to a transient neonatal or persistent inherited deficiency of bilirubin glucuronidation activity can cause irreversible brain damage and death. Strategies to inhibit bilirubin production and prevent neurotoxicity in neonatal and adult settings seem promising. We evaluated the impact of Bvra deficiency in neonatal and aged mice, in a background of unconjugated hyperbilirubinemia, by abolishing bilirubin production. We also investigated the disposal of biliverdin during fetal development. In Ugt1−/− mice, Bvra deficiency appeared sufficient to prevent lethality and to normalize bilirubin level in adults. Although biliverdin accumulated in Bvra-deficient fetuses, both Bvra−/− and Bvra−/−Ugt1−/− pups were healthy and reached adulthood having normal liver, brain, and spleen histology, albeit with increased iron levels in the latter. During aging, both Bvra−/− and Bvra−/−Ugt1−/− mice presented normal levels of relevant hematological and metabolic parameters. Interestingly, the oxidative status in erythrocytes from 9-months-old Bvra−/− and Bvra−/−Ugt1−/− mice was significantly reduced. In addition, triglycerides levels in these 9-months-old Bvra−/− mice were significantly higher than WT controls, while Bvra−/−Ugt1−/− tested normal. The normal parameters observed in Bvra−/−Ugt1−/− mice fed chow diet indicate that Bvra inhibition to treat unconjugated hyperbilirubinemia seems safe and effective.
Collapse
Affiliation(s)
- Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (G.B.); (B.B.)
| | - Xiaoxia Shi
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
- Key Laboratory of Protein Modification and Disease, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lysbeth ten Bloemendaal
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Bhaswati Banerjee
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (G.B.); (B.B.)
| | - Dirk R. De Waart
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Gabriele Baj
- Light Microscopy Imaging Center, Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Weiyu Chen
- Heart Research Institute, Sydney, NSW 2042, Australia; (W.C.); (R.S.)
| | - Ronald P. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Roland Stocker
- Heart Research Institute, Sydney, NSW 2042, Australia; (W.C.); (R.S.)
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (G.B.); (B.B.)
- Correspondence: (A.F.M.); (P.J.B.); Tel.: +39-040-3757369 (A.F.M.); +31-20-566-8850 (P.J.B.)
| | - Piter J. Bosma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
- Correspondence: (A.F.M.); (P.J.B.); Tel.: +39-040-3757369 (A.F.M.); +31-20-566-8850 (P.J.B.)
| |
Collapse
|
4
|
Fayed ND, Goda AE, Essa EA, El Maghraby GM. Chitosan-encapsulated niosomes for enhanced oral delivery of atorvastatin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Awaad A, Abdel Aziz HO. Iron biodistribution profile changes in the rat spleen after administration of high-fat diet or iron supplementation and the role of curcumin. J Mol Histol 2021; 52:751-766. [PMID: 34050395 DOI: 10.1007/s10735-021-09986-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022]
Abstract
Curcumin as active metal chelating and antioxidant agent has a potential role in metal reduction and free radicals' neutralization in tissues. Of note, long-term administration of high fat diet (HFD) is considered as a main factor of blood serum iron deficiency. This study aimed to investigate the biodistribution profiles of iron in the spleen after long-term administration of HFD along with iron supplementation. Furthermore, the ameliorative role of curcumin to reduce iron accumulation level and improve the histological abnormalities produced by iron in spleen will be evaluated in the rats. Treated albino rats of this experiment were divided into six groups. Group I was a control group where group II was treated with HFD. Group III and group IV were treated with combination of HFD and curcumin or HFD and iron supplement respectively. Additionally, group V and group VI were treated with combination of HFD, iron supplement and curcumin or curcumin only respectively. Mainly histological analysis was used to investigate iron biodistribution and induced abnormalities in spleen under light microscope. The histochemical specific staining of iron in the spleen showed different biodistribution profiles of iron in the spleen. Administration of the HFD or HFD and iron supplementation increased the iron accumulation in the spleen. Where, curcumin administration with HFD (Group III) or with HFD and iron supplementation (Group V) significantly reduced the iron levels in the spleen. The splenic tissue inflammation, cellular apoptosis and fibrosis produced by higher iron accumulation was ameliorated after administration of curcumin supplementation as shown in the animals treated with HFD/curcumin (Group III) or HFD/iron supplement/curcumin (Group V). This study recommended that, it is preferable to use iron supplementation along with curcumin supplement for less than 4 months to avoid additional iron accumulation in the healthy organs.
Collapse
Affiliation(s)
- Aziz Awaad
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | | |
Collapse
|
6
|
Akyuz E, Doganyigit Z, Eroglu E, Moscovicz F, Merelli A, Lazarowski A, Auzmendi J. Myocardial Iron Overload in an Experimental Model of Sudden Unexpected Death in Epilepsy. Front Neurol 2021; 12:609236. [PMID: 33643194 PMCID: PMC7905080 DOI: 10.3389/fneur.2021.609236] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Uncontrolled repetitive generalized tonic-clonic seizures (GTCS) are the main risk factor for sudden unexpected death in epilepsy (SUDEP). GTCS can be observed in models such as Pentylenetetrazole kindling (PTZ-K) or pilocarpine-induced Status Epilepticus (SE-P), which share similar alterations in cardiac function, with a high risk of SUDEP. Terminal cardiac arrhythmia in SUDEP can develop as a result of a high rate of hypoxic stress-induced by convulsions with excessive sympathetic overstimulation that triggers a neurocardiogenic injury, recently defined as "Epileptic Heart" and characterized by heart rhythm disturbances, such as bradycardia and lengthening of the QT interval. Recently, an iron overload-dependent form of non-apoptotic cell death called ferroptosis was described at the brain level in both the PTZ-K and SE-P experimental models. However, seizure-related cardiac ferroptosis has not yet been reported. Iron overload cardiomyopathy (IOC) results from the accumulation of iron in the myocardium, with high production of reactive oxygen species (ROS), lipid peroxidation, and accumulation of hemosiderin as the final biomarker related to cardiomyocyte ferroptosis. Iron overload cardiomyopathy is the leading cause of death in patients with iron overload secondary to chronic blood transfusion therapy; it is also described in hereditary hemochromatosis. GTCS, through repeated hypoxic stress, can increase ROS production in the heart and cause cardiomyocyte ferroptosis. We hypothesized that iron accumulation in the "Epileptic Heart" could be associated with a terminal cardiac arrhythmia described in the IOC and the development of state-potentially in the development of SUDEP. Using the aforementioned PTZ-K and SE-P experimental models, after SUDEP-related repetitive GTCS, we observed an increase in the cardiac expression of hypoxic inducible factor 1α, indicating hypoxic-ischemic damage, and both necrotic cells and hemorrhagic areas were related to the possible hemosiderin production in the PTZ-K model. Furthermore, we demonstrated for the first time an accumulation of hemosiderin in the heart in the SE-P model. These results suggest that uncontrolled recurrent seizures, as described in refractory epilepsy, can give rise to high hypoxic stress in the heart, thus inducing hemosiderin accumulation as in IOC, and can act as an underlying hidden mechanism contributing to the development of a terminal cardiac arrhythmia in SUDEP. Because iron accumulation in tissues can be detected by non-invasive imaging methods, cardiac iron overload in refractory epilepsy patients could be treated with chelation therapy to reduce the risk of SUDEP.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, Medical School, Yozgat Bozok University, Yozgat, Turkey
| | - Zuleyha Doganyigit
- Department of Histology and Embryology, Medical School, Yozgat Bozok University, Yozgat, Turkey
| | - Ece Eroglu
- Medical School, Yozgat Bozok University, Yozgat, Turkey
| | - Franco Moscovicz
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, Pathophysiology and Clinical Biochemistry Institute (INFIBIOC), University of Buenos Aires, Buenos Aires, Argentina
| | - Amalia Merelli
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, Pathophysiology and Clinical Biochemistry Institute (INFIBIOC), University of Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, Pathophysiology and Clinical Biochemistry Institute (INFIBIOC), University of Buenos Aires, Buenos Aires, Argentina
| | - Jerónimo Auzmendi
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, Pathophysiology and Clinical Biochemistry Institute (INFIBIOC), University of Buenos Aires, Buenos Aires, Argentina.,National Council of Science and Technology (CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Arafa MF, Alshaikh RA, Abdelquader MM, El Maghraby GM. Co-processing of Atorvastatin and Ezetimibe for Enhanced Dissolution Rate: In Vitro and In Vivo Correlation. AAPS PharmSciTech 2021; 22:59. [PMID: 33517486 DOI: 10.1208/s12249-021-01925-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Development of fixed dose combinations is growing and many of these drug combinations are being legally marketed. However, the development of these requires careful investigation of possible physicochemical changes during co-processing. This requires investigation of the effect of co-processing of drug combination in absence of excipients to maximize the chance of interaction (if any). Accordingly, the aim was to investigate the effect of co-processing of ezetimibe and atorvastatin on drugs dissolution rate. The objective was extended to in vitro in vivo correlation. Drugs were subjected to wet co-processing in presence of ethanol after being mixed at different ratios. The prepared formulations were characterized using FTIR spectroscopy, X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and in vitro dissolution testing. These investigations proved the possibility of eutectic system formation after drugs co-processing. This was reflected on drugs dissolution rate which was significantly enhanced at dose ratio and 2:1 atorvastatin:ezetimibe molar ratio compared to the corresponding pure drugs. In vivo antihyperlipidemic effects of the co-processed drugs were monitored in albino mice which were subjected to hyperlipidemia induction using poloxamer 407. The results showed significant enhancement in pharmacological activity as revealed from pronounced reduction in cholesterol level in mice administering the co-processed form of both drugs. Besides, histopathological examinations of the liver showed marked decrease in hepatic vacuolation. In conclusion, co-processing of atorvastatin with ezetimibe resulted in beneficial eutexia which hastened the dissolution rate and pharmacological effects of both drugs.Graphical abstract.
Collapse
|
8
|
Kimita W, Petrov MS. Iron metabolism and the exocrine pancreas. Clin Chim Acta 2020; 511:167-176. [PMID: 33058846 DOI: 10.1016/j.cca.2020.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022]
Abstract
Although the pathophysiological mechanisms and consequences of gross derangements in iron metabolism are well known, little is known about the pathophysiological mechanisms underlying mild-to-moderate alterations in iron metabolism and their consequences. Growing evidence indicates that the exocrine pancreas has a bidirectional relationship with iron metabolism. Studies have shown alterations in circulating markers of iron metabolism, iron absorption, and intra-pancreatic iron deposition in pancreatitis. At the same time, exocrine pancreatic dysfunction has been shown in iron overload disorders. These observations reveal a compelling connection between the exocrine pancreas and iron metabolism, which are further elucidated by observations of therapeutic benefits of iron chelating agents and pancreatic enzyme replacement therapy. While the pancreas is not a major reservoir of iron in the body, better understanding of its relationship with iron metabolism may yield unexpected insights.
Collapse
Affiliation(s)
- Wandia Kimita
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
9
|
Edwards TM, Mosie IJ, Moore BC, Lobjoit G, Schiavone K, Bachman RE, Murray-Hudson M. Low oxygen: A (tough) way of life for Okavango fishes. PLoS One 2020; 15:e0235667. [PMID: 32730271 PMCID: PMC7392303 DOI: 10.1371/journal.pone.0235667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Botswana's Okavango Delta is a World Heritage Site and biodiverse wilderness. In 2016-2018, following arrival of the annual flood of rainwater from Angola's highlands, and using continuous oxygen logging, we documented profound aquatic hypoxia that persisted for 3.5 to 5 months in the river channel. Within these periods, dissolved oxygen rarely exceeded 3 mg/L and dropped below 0.5 mg/L for up to two weeks at a time. Although these dissolved oxygen levels are low enough to qualify parts of the Delta as a dead zone, the region is a biodiversity hotspot, raising the question of how fish survive. In association with the hypoxia, histological samples, collected from native Oreochromis andersonii (threespot tilapia), Coptodon rendalli (redbreast tilapia), and Oreochromis macrochir (greenhead tilapia), exhibited widespread hepatic and splenic inflammation with marked granulocyte infiltration, melanomacrophage aggregates, and ceroid and hemosiderin accumulations. It is likely that direct tissue hypoxia and polycythemia-related iron deposition caused this pathology. We propose that Okavango cichlids respond to extended natural hypoxia by increasing erythrocyte production, but with significant health costs. Our findings highlight seasonal hypoxia as an important recurring stressor, which may limit fishery resilience in the Okavango as concurrent human impacts rise. Moreover, they illustrate how fish might respond to hypoxia elsewhere in the world, where dead zones are becoming more common.
Collapse
Affiliation(s)
- Thea M. Edwards
- Department of Biology, University of the South, Sewanee, Tennessee, United States of America
| | - Ineelo J. Mosie
- Okavango Research Institute, University of Botswana, Maun, Botswana
| | - Brandon C. Moore
- Department of Biology, University of the South, Sewanee, Tennessee, United States of America
| | | | - Kelsie Schiavone
- Department of Biology, University of the South, Sewanee, Tennessee, United States of America
| | - Robert E. Bachman
- Department of Chemistry, University of the South, Sewanee, Tennessee, United States of America
| | | |
Collapse
|
10
|
El-Sisi AE, Sokkar SS, Ibrahim HA, Hamed MF, Abu-Risha SE. Targeting MDR-1 gene expression, BAX/BCL2, caspase-3, and Ki-67 by nanoencapsulated imatinib and hesperidin to enhance anticancer activity and ameliorate cardiotoxicity. Fundam Clin Pharmacol 2020; 34:458-475. [PMID: 32080901 DOI: 10.1111/fcp.12549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/08/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
Abstract
There is a great demand to introduce new approaches into cancer treatment field due to incidence of increased breast cancer all over the world. The current study was designed to evaluate the role of imatinib mesylate (IM) and/or hesperidin (HES) nanoparticles alone or in combination in enhancing the anticancer activity and to investigate the ability of nanoencapsulation to reduce cardiotoxicity of IM in solid Ehrlich carcinoma (SEC)-bearing mice. IM and HES were loaded into PLGA (poly(lactic-co-glycolic acid) polymer. SEC was induced in female albino mice as a model for experimentally induced breast cancer. Mice were randomly divided into eight groups (n = 10). On day 28 from tumor inoculation, mice were sacrificed and blood samples were collected in heparinized tubes for hematological studies, biochemical determination of lactate dehydrogenase (LDH), and glutamic oxaloacetic transaminase (SGOT) levels. In addition, tumor and cardiac tissues were utilized for histopathological examination as well as determination of MDR-1 gene expression. Immunohistochemical staining of BAX and BCL-2 was done. Nano IM- and/or Nano HES-treated groups showed a significant reduction in tumor volume, weight, hematological, cardiac markers, and tumor MDR-1 gene downregulation compared to free conventional treated groups. In conclusion, the use of HES as an adjuvant therapy with IM could improve its cytotoxic effects and limit its cardiac toxicity. Furthermore, nanoencapsulation of IM and/or HES with PLGA polymer showed a remarkable anticancer activity.
Collapse
Affiliation(s)
- Alaa E El-Sisi
- Pharmacology and Toxicology department, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Samia S Sokkar
- Pharmacology and Toxicology department, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Hanaa A Ibrahim
- Pharmacology and Toxicology department, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Mohamed F Hamed
- Department of Pathology, College of Veterinary Medicine, University of El-Mansoura, Mansoura, Egypt
| | - Sally E Abu-Risha
- Pharmacology and Toxicology department, College of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
11
|
Koonyosying P, Kongkarnka S, Uthaipibull C, Svasti S, Fucharoen S, Srichairatanakool S. Green tea extract modulates oxidative tissue injury in beta-thalassemic mice by chelation of redox iron and inhibition of lipid peroxidation. Biomed Pharmacother 2018; 108:1694-1702. [PMID: 30372872 DOI: 10.1016/j.biopha.2018.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 02/08/2023] Open
Abstract
Iron overload in patients with β-thalassemia can cause oxidative organ dysfunction. Iron chelation along with antioxidant supplementation can ameliorate such complications and prolong lives. Green tea extract (GTE) rich in epigallocatechin-3-gallate (EGCG) exhibits anti-oxidation and iron chelation properties in β-knockout thalassemic (BKO) mice diagnosed with iron overload. We investigated the effects of GTE and deferiprone (DFP) alone in combination with one another, and upon the levels of redox-active iron, lipid-peroxidation product, insulin and hepcidin in BKO mice. A state of iron overload was induced in the mice via a trimethylhexanoyl-ferrocene supplemented (Fe) diet for 3 months, and the mice were treated daily with either: DFP (50 mg/kg), DFP (50 mg/kg) plus GTE (50 mg EGCG equivalent/kg), or GTE alone for 2 months. Plasma non-transferrin bound iron (NTBI), malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), hepcidin and insulin; tissue iron and MDA were measured. DFP, GTE and GTE + DFP effectively decreased plasma MDA (p < 0.05), NTBI and ALT, and increased plasma hepcidin and insulin. All the treatments also reduced iron accumulation and MDA production in both the pancreas and liver in the mice. However, the combination therapy demonstrated no advantages over monotherapy. The findings suggest GTE improved liver and pancreatic β-cell functions in iron-overloaded β-thalassemia mice by diminishing redox iron and free radicals, while inhibiting lipid peroxidation. Consequently, there are indications that GTE holds significant potential for clinical use.
Collapse
Affiliation(s)
- Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sarawut Kongkarnka
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chairat Uthaipibull
- Protein-Ligand Engineering and Molecular Biology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Bioscience, Mahidol University Salaya Campus, Nakornpathom, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Bioscience, Mahidol University Salaya Campus, Nakornpathom, Thailand
| | | |
Collapse
|
12
|
More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases. Clin Sci (Lond) 2018; 132:909-923. [PMID: 29739822 DOI: 10.1042/cs20171592] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/05/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a small circulating protein that is highly modulated in a wide variety of pathological situations, making it a useful biomarker of various disease states. It is one of the best markers of acute kidney injury, as it is rapidly released after tubular damage. However, a growing body of evidence highlights an important role for NGAL beyond that of a biomarker of renal dysfunction. Indeed, numerous studies have demonstrated a role for NGAL in both cardiovascular and renal diseases. In the present review, we summarize current knowledge concerning the involvement of NGAL in cardiovascular and renal diseases and discuss the various mechanisms underlying its pathological implications.
Collapse
|
13
|
Chang TY, Liu KL, Chang CS, Su CT, Chen SH, Lee YC, Chang JS. Ferric Citrate Supplementation Reduces Red-Blood-Cell Aggregation and Improves CD163+ Macrophage-Mediated Hemoglobin Metabolism in a Rat Model of High-Fat-Diet-Induced Obesity. Mol Nutr Food Res 2017; 62. [PMID: 29064631 DOI: 10.1002/mnfr.201700442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/09/2017] [Indexed: 12/13/2022]
Abstract
SCOPE In adults, >90% of the daily iron requirement is derived from macrophage-mediated heme iron, recycling from senescent red blood cells (RBCs) or free hemoglobin (Hb). Currently, the effects of pharmacological doses of iron supplementation on RBCs and heme iron recycling in obesity are unclear. METHODS AND RESULTS Sprague Dawley rats are fed a standard diet or a 50% high-fat diet (HFD) with (0.25, 1, and 2 g of ferric iron per kg diet) or without ferric citrate supplementation for 12 weeks. Ferric iron increases hepatic iron accumulation in macrophages and hepatocyte-like cells. Compared with rats that received the standard diet, HFD-fed rats exhibit higher RBC aggregation and serum-free Hb levels but lower LVV-hemorphin-7 levels. These effects are reversed by ferric citrate supplementation. Immunofluorescent staining reveals that ferric iron increases the expression of hepatic CD163+ macrophages and heme oxygenase (HO)-1. A further analysis reveals the dose-related effects of ferric iron on hepatic globin degradation proteins (cathepsin D and glyoxalase 1), cytochrome p450 reductase expression, and HO-1 enzyme activity. CONCLUSIONS Ferric citrate supplementation reduces RBC aggregation and improves CD163+ macrophage-mediated Hb metabolism in HFD-induced obese rats. These findings suggest that ferric citrate may be explored as an alternative treatment method for RBC dysfunction.
Collapse
Affiliation(s)
- Ting-Yun Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.,Department of Dietitian, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng Sheng Chang
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Tien Su
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chieh Lee
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Sukumaran A, Chang J, Han M, Mintri S, Khaw BA, Kim J. Iron overload exacerbates age-associated cardiac hypertrophy in a mouse model of hemochromatosis. Sci Rep 2017; 7:5756. [PMID: 28720890 PMCID: PMC5516030 DOI: 10.1038/s41598-017-05810-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Cardiac damage associated with iron overload is the most common cause of morbidity and mortality in patients with hereditary hemochromatosis, but the precise mechanisms leading to disease progression are largely unexplored. Here we investigated the effects of iron overload and age on cardiac hypertrophy using 1-, 5- and 12-month old Hfe-deficient mice, an animal model of hemochromatosis in humans. Cardiac iron levels increased progressively with age, which was exacerbated in Hfe-deficient mice. The heart/body weight ratios were greater in Hfe-deficient mice at 5- and 12-month old, compared with their age-matched wild-type controls. Cardiac hypertrophy in 12-month old Hfe-deficient mice was consistent with decreased alpha myosin and increased beta myosin heavy chains, suggesting an alpha-to-beta conversion with age. This was accompanied by cardiac fibrosis and up-regulation of NFAT-c2, reflecting increased calcineurin/NFAT signaling in myocyte hypertrophy. Moreover, there was an age-dependent increase in the cardiac isoprostane levels in Hfe-deficient mice, indicating elevated oxidative stress. Also, rats fed high-iron diet demonstrated increased heart-to-body weight ratios, alpha myosin heavy chain and cardiac isoprostane levels, suggesting that iron overload promotes oxidative stress and cardiac hypertrophy. Our findings provide a molecular basis for the progression of age-dependent cardiac stress exacerbated by iron overload hemochromatosis.
Collapse
Affiliation(s)
- Abitha Sukumaran
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Murui Han
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Shrutika Mintri
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ban-An Khaw
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
15
|
Zou C, Liu X, Xie R, Bao Y, Jin Q, Jia X, Li L, Liu R. Deferiprone attenuates inflammation and myocardial fibrosis in diabetic cardiomyopathy rats. Biochem Biophys Res Commun 2017; 486:930-936. [PMID: 28347819 DOI: 10.1016/j.bbrc.2017.03.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/14/2023]
Abstract
We attempted to investigate the therapeutic effects of deferiprone on DC rats and explore the underlying mechanism. Total 24 6-week-old male Wistar rats (weighing from 180 g to 220 g) were subjected to DC model construction and then randomly divided to three groups (8 rats per group): DC group, DC + 50 mg, and DC + 100 mg deferiprone treatment group. The 8 normal rats were considered as controls. After deferiprone treatment for 20 weeks, the blood samples were collected for the biochemical parameters test, including fasting glucose, HOMA-IR (homeostasis model assessment of the insulin resistance), serum iron, ferritin and transferrin saturation (TS). The oxidative stress was assessed by detecting the level of malondialdehyde (MDA) and superoxide dismutase (SOD). Histopathologic changes were determined by Masson's trichrome staining and electron microscopy imaging. The expression levels of NF-κB (nuclear factor kappa B), COX2 (cytochrome c oxidase), tenascin C, collagen IV were measured by RT-PCR and western blotting. The expression of nitrotyrosine and MCP-1 (monocyte chemotactic protein 1) were determined by immunohistochemistry. Deferiprone treatment reduced iron deposition and IR in DC rats except for blood glucose. After deferiprone treatment, MDA level was significantly decreased and SOD level was increased significantly. The level of NF-κB, cyclooxygenase-2, tenascin C, collagen IV MCP-1 and nitrotyrosine were significantly reduced. There was no significant difference in the effect of deferiprone at 50 and 100 mg doses. Deferiprone showed therapeutic effects on DC by regulating the pro-inflammatory and pro-fibrotic factors.
Collapse
Affiliation(s)
- Chunbo Zou
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Xiaogang Liu
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China.
| | - Rujuan Xie
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yushi Bao
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Qing Jin
- Department of Nephrology, Heilongjiang Provincial Hospital, Harbin 150036, People's Republic of China
| | - Xibei Jia
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Li Li
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Ruichan Liu
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
16
|
Berridge BR, Mowat V, Nagai H, Nyska A, Okazaki Y, Clements PJ, Rinke M, Snyder PW, Boyle MC, Wells MY. Non-proliferative and Proliferative Lesions of the Cardiovascular System of the Rat and Mouse. J Toxicol Pathol 2016; 29:1S-47S. [PMID: 27621537 PMCID: PMC5013710 DOI: 10.1293/tox.29.3s-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria
for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic
Pathology from Japan (JSTP), Europe (ESTP), Great Britain (BSTP) and North America (STP)
to develop an internationally-accepted nomenclature for proliferative and
non-proliferative lesions in laboratory animals. The primary purpose of this publication
is to provide a standardized nomenclature for characterizing lesions observed in the
cardiovascular (CV) system of rats and mice commonly used in drug or chemical safety
assessment. The standardized nomenclature presented in this document is also available
electronically for society members on the internet (http://goreni.org). Accurate and
precise morphologic descriptions of changes in the CV system are important for
understanding the mechanisms and pathogenesis of those changes, differentiation of natural
and induced injuries and their ultimate functional consequence. Challenges in nomenclature
are associated with lesions or pathologic processes that may present as a temporal or
pathogenic spectrum or when natural and induced injuries share indistinguishable features.
Specific nomenclature recommendations are offered to provide a consistent approach.
Collapse
Affiliation(s)
| | | | - Hirofumi Nagai
- Takeda Pharmaceutical Co, Ltd, Fujisawa, Kanagawa, Japan
| | - Abraham Nyska
- Consultant in Toxicologic Pathology and Sackler School of Medicine, Tel Aviv University, Timrat, Israel
| | | | | | | | | | | | | |
Collapse
|
17
|
Aranda N, Fernandez-Cao JC, Tous M, Arija V. Increased iron levels and lipid peroxidation in a Mediterranean population of Spain. Eur J Clin Invest 2016; 46:520-6. [PMID: 26999720 DOI: 10.1111/eci.12625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/16/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Many chronic diseases are adversely affected by elevated iron levels. It has been speculated that this relationship is mediated by increased oxidative stress, due to the ability of iron to generate reactive oxygen species. The aim of this study was to assess the relationship between elevated iron levels and lipid peroxidation in Caucasian adults residing in the north-eastern Mediterranean region of Spain. MATERIALS AND METHODS This cross-sectional case-control study included 300 subjects: 150 adults displaying elevated iron levels (cases) selected from a representative sample of our general population and 150 age- and sex-matched adults exhibiting normal iron levels (controls). Dietary assessment (3-day food records), iron biomarkers (serum iron, ferritin and transferrin saturation) and lipid profile were determined. Elevated iron levels were defined by high serum ferritin (SF>110 μg/L in women and>200 μg/L in men) and/or transferrin saturation (TS)>45%. Oxidized low-density lipoprotein (oxLDL) plasma levels were measured, and oxLDL/LDL-cholesterol ratio was calculated to estimate lipid peroxidation. Multiple linear regression (MLR) models were applied. RESULTS Individuals with elevated serum iron levels showed increased oxLDL/LDL ratio, but not oxLDL levels, compared to control subjects (20·92 ± 4·89 U/mmol vs. 19·72 ± 3·573 U/mmol, P = 0·028). These results were further confirmed by the regression models adjusted for demographic characteristics, diet, lipid profile and inflammation. Importantly, higher serum levels of triglycerides, LDL-cholesterol and lower intake of Vitamin E increased lipid peroxidation. CONCLUSIONS In our general population, we have observed that higher circulating levels of iron, measured by serum ferritin and/or TS, increased lipid peroxidation (measured by oxLDL/LDL ratio).
Collapse
Affiliation(s)
- Nuria Aranda
- Faculty of Medicine and Health Sciences, Nutrition and Public Health Unit, Research Group in Nutrition and Mental Health (NUTRISAM), Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Jose Candido Fernandez-Cao
- Faculty of Medicine and Health Sciences, Nutrition and Public Health Unit, Research Group in Nutrition and Mental Health (NUTRISAM), Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Monica Tous
- Faculty of Medicine and Health Sciences, Nutrition and Public Health Unit, Research Group in Nutrition and Mental Health (NUTRISAM), Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Victoria Arija
- Faculty of Medicine and Health Sciences, Nutrition and Public Health Unit, Research Group in Nutrition and Mental Health (NUTRISAM), Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain.,Unitat de Suport a la Recerca Tarragona-Reus, Institut Universitari d'Investigació en Atenció Primària Jordi Gol, Tarragona, Spain
| |
Collapse
|
18
|
Iron toxicity mediated by oxidative stress enhances tissue damage in an animal model of diabetes. Biometals 2014; 27:349-61. [PMID: 24549594 DOI: 10.1007/s10534-014-9717-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/10/2014] [Indexed: 12/28/2022]
Abstract
Although iron is a first-line pro-oxidant that modulates clinical manifestations of various systemic diseases, including diabetes, the individual tissue damage generated by active oxidant insults has not been demonstrated in current animal models of diabetes. We tested the hypothesis that oxidative stress is involved in the severity of the tissues injury when iron supplementation is administered in a model of type 1 diabetes. Streptozotocin (Stz)-induced diabetic and non-diabetic Fischer rats were maintained with or without a treatment consisting of iron dextran ip at 0.1 mL day(-1) doses administered for 4 days at intervals of 5 days. After 3 weeks, an extensive increase (p < 0.001) in the production of reactive oxygen species (ROS) in neutrophils of the diabetic animals on iron overload was observed. Histological analysis revealed that this treatment also resulted in higher (p < 0.05) tissue iron deposits, a higher (p < 0.001) number of inflammatory cells in the pancreas, and apparent cardiac fibrosis, as shown by an increase (p < 0.05) in type III collagen levels, which result in dysfunctional myocardial. Carbonyl protein modification, a marker of oxidative stress, was consistently higher (p < 0.01) in the tissues of the iron-treated rats with diabetes. Moreover, a significant positive correlation was found between ROS production and iron pancreas stores (r = 0.42, p < 0.04), iron heart stores (r = 0.54, p < 0.04), and change of the carbonyl protein content in pancreas (r = 0.49, p < 0.009), and heart (r = 0.48, p < 0.02). A negative correlation was still found between ROS production and total glutathione content in pancreas (r = -0.50, p < 0.03) and heart (r = -0.45, p < 0.04). In conclusion, our results suggest that amplified toxicity in pancreatic and cardiac tissues in rats with diabetes on iron overload might be attributed to increased oxidative stress.
Collapse
|
19
|
Abstract
Many genes are likely involved in the control of iron metabolism in brain and in peripheral tissues, and genetically-defined murine strains present the opportunity to investigate genetic variations in iron metabolism. Weanling C57BL/6 (B6) and DBA/2 (D2) mice were divided into two treatment groups receiving distilled water with or without 5000 ppm ferric chloride ad libitum as their sole fluid source for 100 days. Iron overload increased liver, spleen and plasma iron levels in male and female B6 and female D2 mice. In D2 males, liver iron was increased relative to control, but spleen and plasma iron remained unaffected. Brain iron content was not different between control and iron-treated mice in ventral midbrain, caudate, pons or hippocampus, but D2 iron overloaded mice displayed lower iron levels in nucleus accumbens and prefrontal cortex. We conclude that genetic background influences the accumulation of excess iron in the periphery and iron regulation in the central nervous system.
Collapse
Affiliation(s)
- Erica L Unger
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
20
|
Volkovova K, Handy RD, Staruchova M, Tulinska J, Kebis A, Pribojova J, Ulicna O, Kucharská J, Dusinska M. Health effects of selected nanoparticlesin vivo: liver function and hepatotoxicity following intravenous injection of titanium dioxide and Na-oleate-coated iron oxide nanoparticles in rodents. Nanotoxicology 2013; 9 Suppl 1:95-105. [DOI: 10.3109/17435390.2013.815285] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Esmaeil N, Moayedi B, Gharagozloo M, Maracy MR. Elevated serum levels of cell death circulating biomarkers, M30 and M65, in patients with β-thalassemia major. Hemoglobin 2013; 37:404-10. [PMID: 23600495 DOI: 10.3109/03630269.2013.790828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Deposition of iron in visceral organs, mainly in the liver, causes tissue damage in β-thalassemia major (β-TM) patients. Keratin 18 (K18) represents one of the major caspase substrates during apoptosis of hepatocytes. To better characterize the hepatic apoptosis and/or necrosis in β-thal patients, the circulating levels of M65 (soluble intact K18) and M30 (the caspases-generated K18 fragment) were measured in 40 β-TM patients and compared with 40 healthy controls. The ratio of M30/M65 (caspase-cleaved to total K18) was also determined in thalassemic and normal subjects. Results of the ELISA assays revealed that the serum levels of hepatocyte death markers, M65 and M30, were significantly increased in β-thal patients compared to healthy controls (p <0.0001). M30 serum levels were also positively correlated with the serum levels of liver transaminases including aspartate aminotransferase (AST) (r = 0.337, p = 0.047) and alanine aminotransferase (ALT) (r =0.391, p = 0.02).
Collapse
Affiliation(s)
- Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | |
Collapse
|
22
|
Xu G, Ahn J, Chang S, Eguchi M, Ogier A, Han S, Park Y, Shim C, Jang Y, Yang B, Xu A, Wang Y, Sweeney G. Lipocalin-2 induces cardiomyocyte apoptosis by increasing intracellular iron accumulation. J Biol Chem 2011; 287:4808-17. [PMID: 22117066 DOI: 10.1074/jbc.m111.275719] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our objective was to determine whether lipocalin-2 (Lcn2) regulates cardiomyocyte apoptosis, the mechanisms involved, and the functional significance. Emerging evidence suggests that Lcn2 is a proinflammatory adipokine associated with insulin resistance and obesity-related complications, such as heart failure. Here, we used both primary neonatal rat cardiomyocytes and H9c2 cells and demonstrated for the first time that Lcn2 directly induced cardiomyocyte apoptosis, an important component of cardiac remodeling leading to heart failure. This was shown by detection of DNA fragmentation using TUNEL assay, phosphatidylserine exposure using flow cytometry to detect annexin V-positive cells, caspase-3 activity using enzymatic assay and immunofluorescence, and Western blotting for the detection of cleaved caspase-3. We also observed that Lcn2 caused translocation of the proapoptotic protein Bax to mitochondria and disruption of mitochondrial membrane potential. Using transient transfection of GFP-Bax, we confirmed that Lcn2 induced co-localization of Bax with MitoTracker® dye. Importantly, we used the fluorescent probe Phen Green SK to demonstrate an increase in intracellular iron in response to Lcn2, and depleting intracellular iron using an iron chelator prevented Lcn2-induced cardiomyocyte apoptosis. Administration of recombinant Lcn2 to mice for 14 days increased cardiomyocyte apoptosis as well as an acute inflammatory response with compensatory changes in cardiac functional parameters. In conclusion, Lcn2-induced cardiomyocyte apoptosis is of physiological significance and occurs via a mechanism involving elevated intracellular iron levels and Bax translocation.
Collapse
Affiliation(s)
- Guoxiong Xu
- Toxicity Group, and Drug Biology Group, Institut Pasteur Korea, Seongnam, Gyeonggi 463-400, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu YE, Yao BY, Yang DH, Wang J. Spontaneous islet cell carcinoma with multiple liver metastases in a Sprague-Dawley rat. Shijie Huaren Xiaohua Zazhi 2011; 19:3237-3241. [DOI: 10.11569/wcjd.v19.i31.3237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the biochemical and morphological characteristics of spontaneous islet cell carcinoma with multiple liver metastases in a Sprague-Dawley rat to provide a theoretical basis for the study of the disease.
METHODS: The animal was anesthetized with ether at the end of a carcinogenicity study. Blood samples were collected via the abdominal aorta and used for hematology and serum biochemistry. Meanwhile, the animal was subjected to detailed gross observation, and all abnormal tissue samples were taken for histopathology examination.
RESULTS: A pancreatic neoplasm measuring 4.0*5.0 cm was noted in a 104-wk-old male Sprague-Dawley rat which was used as a control in a carcinogenicity study. The tumor cells were similar to normal islet cells, but showed a highly variable pattern. The tumor compressed and invaded into the vessels and adjacent tissues. There were multiple foci of metastasis in portal areas and sinusoid of the liver. Neutrophil count (3.63×109/L) and neutrophil percentage (42.00%) were significantly higher than the normal reference ranges. Blood glycogen (2.07 mmol/L) was significantly lower than the normal reference range.
CONCLUSION: A spontaneous islet cell carcinoma with multiple liver metastases was diagnosed in a Sprague-Dawley rat.
Collapse
|
24
|
Wang Y, Wu M, Al-Rousan R, Liu H, Fannin J, Paturi S, Arvapalli RK, Katta A, Kakarla SK, Rice KM, Triest WE, Blough ER. Iron-Induced Cardiac Damage: Role of Apoptosis and Deferasirox Intervention. J Pharmacol Exp Ther 2010; 336:56-63. [DOI: 10.1124/jpet.110.172668] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
25
|
Najafzadeh H, Jalali MR, Morovvati H, Taravati F. Comparison of the prophylactic effect of silymarin and deferoxamine on iron overload-induced hepatotoxicity in rat. J Med Toxicol 2010; 6:22-6. [PMID: 20182837 DOI: 10.1007/s13181-010-0030-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In pathologic conditions or poisoning states, iron overload can affect different tissues including liver. In this study, the prophylactic effect of deferoxamine and silymarin was compared in decreasing experimental iron-overload-induced hepatotoxicity in rats. The study was done in six groups of rats, which received drugs q2 days for 2 weeks. The rats in groups 1 to 6 received drugs, respectively: normal saline, iron dextran, iron dextran + deferoxamine (intraperitoneally), iron dextran + silymarin (orally), iron dextran + silymarin (intraperitoneally), and iron dextran + deferoxamine (intraperitoneally) + silymarin (intraperitoneally). At the end of the study, blood was collected, and serum was separated for laboratory tests. The liver of rats was separated for iron measuring and tissue processing. The serum iron concentration and the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity were determined. The numbers of necrotic hepatocytes were counted as quantity index tissue injury in light microscopic examination. The mean of serum and liver iron in group 2 was significantly greater than group 1. Liver iron was significantly decreased in other groups except group 4. Also serum iron was decreased in groups 3 to 6 compared to group 2 (nearly 400%). ALT activity in group 3 and AST activity in group 5 were significantly lesser than in other groups. The mean of necrotic hepatocytes in group 2 was significantly increased in comparison to group 1. This elevation was significantly prevented by deferoxamine and silymarin. The result of the present study shows that silymarin has a protective effect similar to deferoxamine on iron overload-induced hepatotoxicity.
Collapse
|
26
|
Messer JG, Kilbarger AK, Erikson KM, Kipp DE. Iron overload alters iron-regulatory genes and proteins, down-regulates osteoblastic phenotype, and is associated with apoptosis in fetal rat calvaria cultures. Bone 2009; 45:972-9. [PMID: 19643212 DOI: 10.1016/j.bone.2009.07.073] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 07/17/2009] [Accepted: 07/21/2009] [Indexed: 12/28/2022]
Abstract
Iron overload has been implicated in decreased bone mineral density. However, the effect of iron overload on osteoblast lineage cells remains poorly understood. The purpose of this study was to examine osteoblast differentiation, function, and apoptosis in iron-loaded cells from fetal rat calvaria. Cells were incubated with media supplemented with 0-10 microM ferrous sulfate (FeSO(4)) during differentiation (days 6-20). Intracellular iron status was assessed by measuring iron content in cell layers and changes in transferrin receptor (TrfR) and ferritin gene and protein expression. Osteoblast differentiation and function were evaluated by measuring osteoblast phenotypic gene markers and capacity of cultures to form mineralized bone nodules. Apoptotic hallmarks were evaluated by microscopy. A 2.3-fold increase in media iron concentration resulted in saturable accumulation of iron in the cell layer 20-fold higher than control (p<0.05) by mid-differentiation (day 15, D15). Iron accumulation resulted in rapid and sustained down-regulation of TrfR gene and protein levels (within 24 h) and up-regulation of light and heavy chain ferritin protein levels at late differentiation (day 20, D20). Concurrently, osteoblast phenotype gene markers were suppressed by D15 and a decreased number of mineralized nodules at D20 were observed. Apoptotic events were observed within 24 h of iron loading. These results provide evidence that iron overload alters iron metabolism and suppresses differentiation and function of cells in the osteoblast lineage associated with increased apoptosis.
Collapse
Affiliation(s)
- Jonathan G Messer
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | | | | | | |
Collapse
|
27
|
Miyata K, Sukata T, Kushida M, Ogata K, Suzuki M, Ozaki M, Ozaki K, Uwagawa S. Spontaneous iron accumulation in hepatocytes of a 7-week-old female rat. J Toxicol Pathol 2009; 22:199-203. [PMID: 22271995 PMCID: PMC3252042 DOI: 10.1293/tox.22.199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 06/08/2009] [Indexed: 11/19/2022] Open
Abstract
Spontaneous iron accumulation in hepatocytes was observed in a 7-week-old female Han Wistar GALAS rat. Very fine yellowish brown pigments, which showed a positive reaction with Berlin Blue stain, were apparent in the cytoplasm close to the bile canaliculi, with a diminishing periportal-to-centrilobular gradient. There were also differences in distribution between and within lobes. Transmission electron microscopy revealed cytosolic ferritin and pericanalicular siderosomes in hepatocytes. No degeneration or necrotic changes were observed, and non-hepatocyte cells did not demonstrate any obvious accumulation of iron. There were no abnormalities in the animal other than this finding in the liver.
Collapse
Affiliation(s)
- Kaori Miyata
- Environmental Health Science Lab., Sumitomo Chemical Co., Ltd., 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Tokuo Sukata
- Environmental Health Science Lab., Sumitomo Chemical Co., Ltd., 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Masahiko Kushida
- Environmental Health Science Lab., Sumitomo Chemical Co., Ltd., 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Keiko Ogata
- Environmental Health Science Lab., Sumitomo Chemical Co., Ltd., 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Manabu Suzuki
- Animal Clinic Support Center, Sumika Technoservice Corporation, 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka, 554-8558 Japan
| | - Masakazu Ozaki
- Animal Clinic Support Center, Sumika Technoservice Corporation, 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka, 554-8558 Japan
| | - Keisuke Ozaki
- Environmental Health Science Lab., Sumitomo Chemical Co., Ltd., 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Satoshi Uwagawa
- Environmental Health Science Lab., Sumitomo Chemical Co., Ltd., 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
28
|
Does ascorbic acid supplementation affect iron bioavailability in rats fed micronized dispersible ferric pyrophosphate fortified fruit juice? Eur J Nutr 2008; 47:470-8. [DOI: 10.1007/s00394-008-0750-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 10/07/2008] [Indexed: 11/25/2022]
|
29
|
Calcium-enriched goats' milk aids recovery of iron status better than calcium-enriched cows' milk, in rats with nutritional ferropenic anaemia. J DAIRY RES 2008; 75:153-9. [DOI: 10.1017/s0022029908003178] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ca-Fe interactions are known, but no studies are available about the effects of Ca-enriched goat or cow milk on Fe status in nutritional ferropenic anaemia (NFA). To examine this matter, control and Fe-deficient rats were fed for 14 d with goat or cow milk diets containing either normal or high Ca content (5000 or 10 000 mg/kg diet), and different indices and parameters related to iron status were measured. The apparent digestibility coefficient (ADC) and the Fe retention/intake (R/I) ratio were higher in control and anaemic rats fed goat milk diet (G diet), despite high-Ca content. Ca enrichment decreased Fe stores in liver and sternum in anaemic rats fed cow milk diet (C diet), however G diet did not modify Fe content in the organs studied in control and anaemic rats. In anaemic rats, Ca-supplementation decreased haematocrit, but platelets and serum Fe were not affected, however, in control rats platelets increased except for Ca-enriched G diet, this fact reveals that Ca-Fe interaction is minimized with G diet. Serum ferritin was always higher in rats fed Gvs. C diet, both in control and anaemic rats fed either normal or Ca-enriched diets. Ca-supplementation decreased ferritin levels in control and anaemic rats fed C diet and also, though to a lesser extent, in those given the G diet. This indicates that with this G diet there is a better recovery of body Fe stores in anaemic rats, despite Ca-supplementation. In this study it is noteworthy that despite high Ca content, a goat milk diet resulted in minimal Ca-Fe interactions and did not adversely affect Fe status in rats with NFA.
Collapse
|
30
|
Welch KD, Hall JO, Davis TZ, Aust SD. The effect of copper deficiency on the formation of hemosiderin in sprague-dawley rats. Biometals 2007; 20:829-39. [PMID: 17235666 DOI: 10.1007/s10534-006-9046-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 11/22/2006] [Indexed: 12/26/2022]
Abstract
We demonstrated previously that loading iron into ferritin via its own ferroxidase activity resulted in damage to the ferritin while ferritin loaded by ceruloplasmin, a copper-containing ferroxidase, was not damaged and had similar characteristics to native ferritin (Welch et al. (2001) Free Radic Biol Med 31:999-1006). Interestingly, it has been suggested that the formation of hemosiderin, a proposed degradation product of ferritin, is increased in animals deficient in copper. In this study, groups of rats were fed normal diets, copper deficient diets, iron supplemented diets, or copper deficient-iron supplemented diets for 60 days. Rats fed copper-deficient diets had no detectable active serum ceruloplasmin, which indicates that they were functionally copper deficient. There was a significant increase in the amount of iron in isolated hemosiderin fractions from the livers of copper-deficient rats, even more than that found in rats fed only an iron-supplemented diet. Histological analysis showed that copper-deficient rats had iron deposits (which are indicative of hemosiderin) in their hepatocytes and Kupffer cells, whereas rats fed diets sufficient in copper only had iron deposits in their Kupffer cells. Histologic evidence of iron deposition was more pronounced in rats fed diets that were deficient in copper. Additionally, sucrose density-gradient sedimentation profiles of ferritin loaded with iron in vitro via its own ferroxidase activity was found to have similarities to that of the sedimentation profile of the hemosiderin fraction from rat livers. The implications of these data for the possible mechanism of hemosiderin formation are discussed.
Collapse
Affiliation(s)
- Kevin D Welch
- Biotechnology Center, Utah State University, Logan, UT 84322-4705, USA
| | | | | | | |
Collapse
|
31
|
Merle U, Theilig F, Fein E, Gehrke S, Kallinowski B, Riedel HD, Bachmann S, Stremmel W, Kulaksiz H. Localization of the iron-regulatory proteins hemojuvelin and transferrin receptor 2 to the basolateral membrane domain of hepatocytes. Histochem Cell Biol 2006; 127:221-6. [PMID: 16932966 DOI: 10.1007/s00418-006-0229-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2006] [Indexed: 02/07/2023]
Abstract
The newly discovered proteins hemojuvelin (Hjv) and transferrin receptor type 2 (TfR2) are involved in iron metabolism. Mutations in the Hjv and TfR2 gene cause hemochromatosis. We investigated the expression and cellular localization of Hjv and TfR2 in rat and human liver. The expression of Hjv and TfR2 was shown on mRNA and protein level by RT-PCR and immunoblot experiments. Their cellular localization was studied by immunofluorescence with antibodies raised against Hjv and TfR2. Hjv and TfR2 are present in human and rat liver and in primary human hepatocytes. Antisera raised against Hjv identified immunoreactive proteins with an apparent size of 44 and 46 kDa in immunoblot experiments of rat and human liver extracts, which are in accordance with the putative membrane-bound and cleaved soluble forms of this protein, respectively. TfR2 was detected as a 105 kDa protein corresponding to the predicted size of glycosylated TfR2 monomers. In immunofluorescence experiments, Hjv and TfR2 were found in rat liver only in hepatocytes. At the subcellular level, both proteins were predominantly localized to the basolateral membrane domain of hepatocytes. The localization of Hjv and TfR2 at the same membrane domain renders a functional interaction of these two proteins in iron homeostasis possible.
Collapse
Affiliation(s)
- Uta Merle
- Department of Gastroenterology, University Hospital, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kramer JH, Murthi SB, Wise RM, Mak IT, Weglicki WB. Antioxidant and lysosomotropic properties of acute D-propranolol underlies its cardioprotection of postischemic hearts from moderate iron-overloaded rats. Exp Biol Med (Maywood) 2006; 231:473-84. [PMID: 16565443 DOI: 10.1177/153537020623100413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The benefits of acute D-propranolol (D-Pro, non-beta-adrenergic receptor blocker) pretreatment against enhanced ischemia/reperfusion (I/R) injury of hearts from moderate iron-overloaded rats were examined. Perfused hearts from iron-dextran-treated rats (450 mg/kg/week for 3 weeks, intraperitoneal administration) exhibited normal control function, despite iron treatment that elevated plasma iron and conjugated diene levels by 8.1-and 2.5-fold, respectively. However, these hearts were more susceptible to 25 mins of global I/R stress compared with non-loaded hearts; the coronary flow rate, aortic output, cardiac work, left ventricular systolic pressure, positive differential left ventricular pressure (dP/dt), and left ventricular developed pressure displayed 38%, 60%, 55%, 13%, 41%, and 15% lower recoveries, respectively, and a 6.5-fold increase in left ventricular end-diastolic pressure. Postischemic hearts from iron-loaded rats also exhibited 5.6-, 3.48-, 2.43-, and 3.45-fold increases in total effluent iron content, conjugated diene levels, lactate dehydrogenase (LDH) activity, and lysosomal N-acetyl-beta-glucosaminidase (NAGA) activity, respectively, compared with similarly stressed non-loaded hearts. A comparison of detection time profiles during reperfusion suggests that most of the oxidative injury (conjugated diene) in hearts from iron-loaded rats occurred at later times of reperfusion (8.5-15 mins), and this corresponded with heightened tissue iron and NAGA release. D-Pro (2 microM infused for 30 mins) pretreatment before ischemia protected all parameters compared with the untreated iron-loaded group; pressure indices improved 1.2- to 1.6-fold, flow parameters improved 1.70- to 2.96-fold, cardiac work improved 2.87-fold, and end-diastolic pressure was reduced 56%. D-Pro lowered total release of tissue iron, conjugated diene content, LDH activity, and NAGA activity 4.59-, 2.55-, 3.04-, and 4.14-fold, respectively, in the effluent of I/R hearts from the iron-loaded group. These findings suggest that the enhanced postischemic dysfunction and tissue injury of hearts from iron-loaded rats was caused by excessive iron-catalyzed free radical stress, and that the membrane antioxidant properties of D-Pro and its stabilization of sequestered lysosomal iron by D-Pro may contribute to the cardioprotective actions of D-Pro.
Collapse
Affiliation(s)
- Jay H Kramer
- Department of Biochemistry, Division of Experimental Medicine, The George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | | | | | |
Collapse
|
33
|
Das D, Mukherjee S, Das AS, Mukherjee M, Mitra C. Aqueous extract of black tea (Camellia sinensis) prevents ethanol+cholecystokinin-induced pancreatitis in a rat model. Life Sci 2006; 78:2194-203. [PMID: 16289561 DOI: 10.1016/j.lfs.2005.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 09/07/2005] [Indexed: 12/22/2022]
Abstract
Black Tea Extract (BTE), a phytocompound has been attributed with a plethora of health-promoting actions. We have previously demonstrated that BTE inhibits chronic hepatitis in a rat model induced with high-fat and ethanol (EtOH). This study reports that BTE prevents altered pancreatic acinar cell functions, oxidative stress, inflammatory changes and DNA damage in the EtOH+cholecystokinin (CCK)-induced model of pancreatitis. The EtOH+CCK model rats were administered with BTE, and were examined the activity of pancreatic digestive enzymes (amylase and lipase), proinflammatory cytokines (IL-6 and TNF-alpha), oxidative and antioxidative enzymes (nitric oxide, NO; malondialdehyde, MDA; superoxide dismutase, SOD; catalase, CAT), antioxidant level (glutathione, GSH), histopathological changes and the integrity of genomic DNA. Results show that because of chronic EtOH treatment, serum level of amylase and lipase (two biomarkers for pancreatitis) and pancreatic levels of MDA and NO (two biomarkers of oxidative stress) increased significantly, which could be effectively blunted by BTE. BTE could normalize EtOH+CCK-induced suppressed activities of SOD and CAT, and GSH content of pancreatic tissue. Also, histopathological and inflammatory changes during EtOH+CCK-induced pancreatitis could be blunted by BTE. Furthermore, BTE could effectively reduce EtOH+CCK-induced increase in DNA fragmentation and damage. These findings suggest that BTE prevents pancreatitis caused by chronic EtOH+CCK toxicity presumably by enhancing antioxidant, anti-inflammatory and antiapoptotic activity in rats.
Collapse
Affiliation(s)
- Dolan Das
- Department of Physiology, Presidency College, Calcutta, India
| | | | | | | | | |
Collapse
|
34
|
Yeung CK, Zhu L, Glahn RP, Miller DD. Tissue iron distribution and adaptation of iron absorption in rats exposed to a high dietary level of NaFeEDTA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:8087-91. [PMID: 16190675 DOI: 10.1021/jf051242r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Although it has been shown that iron absorption from NaFeEDTA, a promising iron fortificant, is effectively down-regulated in iron-loaded rats, effects of prolonged exposure to high dietary levels of NaFeEDTA are not well understood. The objectives of this study were to determine whether rats can adapt to a high dietary level of NaFeEDTA by down-regulating iron absorption, and to determine effects on tissue iron distribution, with or without an iron absorption inhibitor. Male Sprague-Dawley rats were exposed to diets supplemented with FeSO4 or NaFeEDTA at 1200 mg of Fe/kg of diet, with or without tea, for 27 days. Iron absorption measured by whole-body counting before and after exposure showed that rats adapted to the high dietary level of FeSO4 or NaFeEDTA by down-regulating iron absorption to a similar extent. However, nonheme iron concentrations in liver and spleen were about 35-50% lower, whereas the concentration in kidney was about 300% higher in rats fed NaFeEDTA, compared to rats fed FeSO4. Tea had no major impact on iron absorption or iron status, regardless of iron source. Our results showed that although iron absorption was down-regulated similarly, body iron distribution was markedly different between rats exposed to FeSO4 and those exposed to NaFeEDTA. Further studies are warranted to determine the effects of prolonged exposure to dietary NaFeEDTA on kidney iron accumulation and kidney function.
Collapse
Affiliation(s)
- Chi Kong Yeung
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
35
|
Fujimori H, Ozaki K, Matsuura T, Matsushima S, Narama I, Pan-Hou H. Effect of iron lactate overloading on adenine nucleotide levels and adenosine 3'-monophosphate forming enzyme in rat liver and spleen. Biol Pharm Bull 2005; 27:1371-5. [PMID: 15340221 DOI: 10.1248/bpb.27.1371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the pathophysiological significance of adenosine 3'-monophosphate (3'-AMP) forming enzyme in rats, the effect of iron lactate overloading on the enzyme activities and adenine nucleotide levels in the liver and spleen was examined. Sprague-Dawley rats were fed a diet supplemented with 0%, 0.625% or 5.0% of iron lactate for 4 weeks. Iron deposition was found in periportal hepatocytes, Kupffer cells and macrophages of red pulp of the spleen. No significant changes in hematological parameters were detected. Although serum alkaline phosphatase and inorganic phosphorus levels elevated slightly in the 5.0% group, activities of alanine aminotransferase and aspartate aminotransferase, and levels of serum urea nitrogen and creatinine were not changed significantly. The ATP levels in the liver and spleen of iron fed groups were significantly decreased, but adenosine 5'-diphosphate (ADP) and adenosine 5'-monophosphate (AMP) levels were within control levels. On the other hand, the levels of ATP, ADP and AMP in the erythrocytes without mitochondria were not suppressed by the iron lactate overloading. Free activity of 3'-AMP forming enzyme, one of ribonucleases (RNase), was not changed in the liver of iron-overloaded rat, and total amount of 3'-AMP and adenosine formed after the treatment of the crude enzyme(s) with p-chloromercuribenzensulfonic acid, a SH blocker of RNase inhibitors, was decreased dose-dependently. On the contrary, free activity of 3'-AMP forming enzyme was enhanced dose-dependently in the spleen of iron-overloaded rat but the total activity was not changed. However, the free and total 3'-AMP forming enzyme activities in the liver and spleen of iron-overloaded rats became equal at the dosage of 5.0% of iron lactate. The results obtained suggested that iron loading might induce significant decrease in hepatic and splenic ATP levels via malfunction of their mitochondria and might lead dissociation of RNase-RNase inhibitor complex to activate 3'-AMP forming enzyme in both tissues.
Collapse
Affiliation(s)
- Hiroyuki Fujimori
- Department of Analytical Chemistry in Hygiene, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Yeung CK, Zhu L, Glahn RP, Miller DD. Iron absorption from NaFeEDTA is downregulated in iron-loaded rats. J Nutr 2004; 134:2270-4. [PMID: 15333715 DOI: 10.1093/jn/134.9.2270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
NaFeEDTA is a promising fortificant for use in plant foods, because it is less susceptible to iron absorption inhibitors and has fewer undesirable impacts on sensory quality than ferrous sulfate. However, the hypothesis that iron absorption from NaFeEDTA is effectively downregulated in iron-overload conditions has not been thoroughly tested. Therefore, the objective of this study was to compare downregulation of iron absorption from ferrous sulfate and NaFeEDTA in intact iron-loaded rats. Male Sprague-Dawley rats were fed diets containing either ferrous sulfate (35 mg Fe per 1 kg diet) or elemental iron (30,000 mg Fe per 1 kg diet) for 29 d to achieve basal or iron-loaded status. While body weights and hemoglobin concentrations were the same for basal and iron-loaded rats, nonheme-iron concentrations in liver, spleen, and kidney were all significantly higher in iron-loaded rats, indicating elevated iron status. Percentage of iron absorption from (59)Fe-labeled ferrous sulfate and NaFeEDTA, determined from whole-body retention of (59)Fe activity, was 64.7 and 49.4% in basal rats but decreased to 12.8 and 10.2% in iron-loaded rats, respectively. The reductions in percentage of iron absorption from both iron sources in rats as a result of iron loading were comparable (about -80% for both iron sources). Our results suggest that iron absorption from NaFeEDTA and ferrous sulfate is downregulated to a similar extent in iron-loaded rats. Hence, NaFeEDTA is no more likely than ferrous sulfate to exacerbate iron overload in subjects with adequate body iron stores.
Collapse
Affiliation(s)
- Chi Kong Yeung
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
37
|
Whittaker P, Chanderbhan RF. Effect of increasing iron supplementation on blood lipids in rats. Br J Nutr 2001; 86:587-92. [PMID: 11737956 DOI: 10.1079/bjn2001439] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effects of increasing levels of Fe on serum fatty acids, cholesterol, triacylglycerol, liver and heart were examined in male Sprague-Dawley rats fed either Fe-deficient or carbonyl Fe-supplemented diets with 35 (control), 350, 3500 and 20 000 microg Fe/g for 12 weeks. As intake of Fe increased, serum total cholesterol increased from 2.0 mmol/l in controls to 5.2 mmol/l at the highest level of Fe. Also, the total serum phospholipid fatty acids increased from 609 mg/dl in controls to 1292 mg/l at the highest level of Fe. Except for the highest dose of Fe, the ratio of saturated to unsaturated phospholipid fatty acids increased from 1.2 to 1.7. The serum total free fatty acid levels remained constant among all groups with a range from 162 to 228 mg/l, while a ratio of 0.6 to 0.8 for saturated to unsaturated fatty acids was maintained. A dose-related increase in liver non-haem Fe from 18 to 3500 microg/g correlated with increases in lipid peroxidation (r 0.87), measured by the lipid-conjugated diene assay. Oxidative changes in the liver may have resulted in alterations in sterol synthesis, leading to increased serum cholesterol levels with increases in serum phospholipids and changes in the ratios of their saturated to unsaturated fatty acids. Animals with heart damage showed myocardial degeneration and cardiomyopathy with haemosiderin in interstitial macrophages or myocardial fibres and, when these were coupled with the findings of increased non-haem Fe in the heart and lipid peroxidation in the liver, suggested that oxidative stress is involved in the pathogenesis of the lesions.
Collapse
Affiliation(s)
- P Whittaker
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, 200 C Street S.W., HFS-236, Washington, DC 20204, USA.
| | | |
Collapse
|
38
|
Appel MJ, Kuper CF, Woutersen RA. Disposition, accumulation and toxicity of iron fed as iron (II) sulfate or as sodium iron EDTA in rats. Food Chem Toxicol 2001; 39:261-9. [PMID: 11278058 DOI: 10.1016/s0278-6915(00)00137-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A study was performed to provide data on the disposition, accumulation and toxicity of sodium iron EDTA in comparison with iron (II) sulfate in rats on administration via the diet for 31 and 61 days. Clinical signs, body weights, food consumption, food conversion efficiency, hematology, clinical chemistry and pathology of selected organs were used as criteria for disclosing possible harmful effects. Determination of iron and total iron binding capacity in blood plasma and non-heme iron analysis in liver, spleen and kidneys were used to assess the disposition and accumulation of iron originating from sodium iron EDTA or iron (II) sulfate. It was concluded that, under the conditions of the present study, iron is accumulated from the diet in liver, spleen and kidneys in a dose-dependent manner, and iron derived from FeEDTA is taken up and/or accumulated less efficiently in liver and spleen than iron from FeSO(4). Moreover, feeding iron up to 11.5 and 11.2 mg/kg body weight/day, derived from FeSO(4) and FeEDTA, respectively, did not result in tissue iron excess nor in any other toxicologically significant effects.
Collapse
Affiliation(s)
- M J Appel
- Department of General Toxicology, TNO Nutrition and Food Research, PO Box 360, 3700, AJ Zeist, The Netherlands
| | | | | |
Collapse
|
39
|
Whittaker P, Seifried HE, San RH, Clarke JJ, Dunkel VC. Genotoxicity of iron chelators in L5178Y mouse lymphoma cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:347-356. [PMID: 11774367 DOI: 10.1002/em.10033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To further study the mechanism of observed iron mutagenicity and cellular toxicity, a number of different iron chelators were evaluated to select a compound that was not mutagenic and had limited toxicity to mouse lymphoma cells. A series of iron chelators including those used clinically, those under development for clinical applications, and those used in nonclinical applications were evaluated. The mutagenic activity of the iron chelators was assessed in L5178Y mouse lymphoma cells. Eight of the 12 iron chelators that were tested induced mutagenic responses both with and without the addition of S9. Among those chelators used clinically or developed for clinical use, the only compound that did not induce a mutagenic response was the starch deferoxamine conjugate. In contrast, deferoxamine mesylate showed the highest toxicity in this group of chemicals and the concentrations leading to toxicity and mutagenicity between the activated and nonactivated assays were not significantly different. The other three chelators that were not mutagenic were Na2EDTA, phytic acid, and ferrozine.
Collapse
Affiliation(s)
- P Whittaker
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Washington, DC 20204, USA.
| | | | | | | | | |
Collapse
|
40
|
Narama I, Ozaki K, Matsushima S, Matsuura T. Eosinophilic gastroenterocolitis in iron lactate-overloaded rats. Toxicol Pathol 1999; 27:318-24. [PMID: 10356708 DOI: 10.1177/019262339902700307] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Eosinophilic gastroenterocolitis with peripheral eosinophilia was induced in rats fed a diet containing 2.5% or 5.0% iron lactate for 3 mo. Additional findings consistent with iron overload were also observed. Microscopically, the lesions consisted of eosinophilic infiltrations in the mucosa and submucosa along the whole length of the gastrointestinal tracts, increased surface area of the gastric mucosal propria covered with mucous cells, and increased apoptotic bodies in the gastric glandular neck of rats in the 2.5% and 5.0% groups. An increased number of intraepithelial globule leukocytes in the gastric and intestinal lamina propria was also observed in the 5.0% group. Globule leukocytes in the gastric mucosa contained obviously enlarged granules in their cytoplasm in these rats. The granules of the globule leukocytes were positive for rat mast cell protease II, suggesting the mastocyte origin of these cells. Although severe infiltration of eosinophils and globule leukocytes suggested a type-1 hypersensitivity reaction, other features such as an increasing vascular permeability were not detected. Serum IgE levels in the 5.0% and control groups were < 3 ng/ml. Final body weights of male and female rats of the 5.0% group were suppressed to 70% and 90%, respectively, of those of the control rats, whereas food consumption was comparable to that of the control group. The morphologic characteristics of the gastrointestinal lesions and peripheral eosinophilia induced in rats fed iron lactate were very similar to those in some cases of eosinophilic gastroenterocolitis in humans and other animals.
Collapse
Affiliation(s)
- I Narama
- Research Institute of Drug Safety, Setsunan University, Osaka, Japan
| | | | | | | |
Collapse
|
41
|
Pigeon C, Turlin B, Iancu TC, Leroyer P, Le Lan J, Deugnier Y, Brissot P, Loréal O. Carbonyl-iron supplementation induces hepatocyte nuclear changes in BALB/CJ male mice. J Hepatol 1999; 30:926-34. [PMID: 10365822 DOI: 10.1016/s0168-8278(99)80149-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS In humans, chronic iron excess may induce hepatic fibrosis and/or hepatocellular carcinoma. This work was undertaken to investigate hepatic iron overload outcome in iron-overloaded mice. METHODS BALB/cJ male mice received supplements of 0, 0.5, 1.5 and 3% carbonyl-iron for 2, 4, 8 and 12 months. Histological staining, immunohistochemistry using ferritin antibodies and electron microscopic studies were performed on liver. Liver iron concentration was measured biochemically. Mitotic index and hepatocyte nuclear size were evaluated on Feulgen-stained slides. RESULTS Liver iron concentration was increased, reaching 13 times control value after 12 months in 3% iron-overloaded mice, and iron was found predominantly in hepatocytes, with a porto-centrolobular decreasing gradient. Neither hepatic fibrosis nor hepatocellular carcinoma was found. Perls' stain positive inclusions containing ferritin were found within hepatocyte nuclei in 3%-overloaded mice. Electron microscopy disclosed that inclusions consisted of ferritin particle aggregates without a limiting membrane. Mice overloaded with 3% iron for 12 months showed larger hepatocyte nuclei than control mice and a mitotic index increase with presence of abnormal tripolar mitotic figures. In addition, some iron-free hepatocytes were observed. CONCLUSIONS Carbonyl-iron supplementation produces significant iron overload in mice but does not result in liver fibrosis or hepatocellular carcinoma after 12 months. However, nuclear changes were produced in hepatocytes, and occasional iron-free hepatocytes were observed: these may represent preneoplastic changes caused by iron overload.
Collapse
Affiliation(s)
- C Pigeon
- Unité de Recherches Hépatologiques, INSERM U522, Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Aleynik SI, Leo MA, Aleynik MK, Lieber CS. Alcohol-induced pancreatic oxidative stress: protection by phospholipid repletion. Free Radic Biol Med 1999; 26:609-19. [PMID: 10218649 DOI: 10.1016/s0891-5849(98)00246-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxidative stress is considered to be a forerunner of pancreatitis. Since we had found polyenylphosphatidylcholine, a mixture of polyunsaturated phosphatidylcholines extracted from soybeans, to protect against hepatic oxidative stress, we now tested its effects on the pancreas. Sprague-Dawley rats were pair-fed for two months nutritionally adequate liquid diet containing ethanol (36% of energy) or isocaloric carbohydrate, with either polyenylphosphatidylcholine (3 g/1000 kcal) or safflower oil, with or without 5 g/1000 kcal carbonyl iron. Parameters of oxidative stress (F2-isoprostanes, 4-hydroxynonenal, reduced glutathione), ubiquinol-10, ubiquinol-9 and vitamin E, as well as phosphatidylcholine species, were assessed by GC/MS and/or HPLC. Alcohol feeding increased pancreatic 4-hydroxynonenal three-fold, F2-isoprostanes and ubiquinol-9 by more than 70%, whereas it decreased total phospholipids, several phosphatidylcholine species, ubiquinol-10 and glutathione, especially in iron fed rats. Polyenylphosphatidylcholine prevented the rise in 4-hydroxynonenal and F2-isoprostanes, the decrease in dilinoleoylphosphatidylcholine and oleoyllinoleoylphosphatidylcholine and opposed the alcohol-induced decrease of glutathione; alpha-tocopherol remained unchanged. Iron had no significant effect except for decreasing ubiquinol-10 in the pancreas and increasing aminotransferases in the plasma. Thus, the alcohol-induced oxidative stress in the pancreas was shown to be prevented by polyenylphosphatidylcholine which may act, in part, by correcting the depletion of several phosphatidylcholine species.
Collapse
Affiliation(s)
- S I Aleynik
- Section of Liver Disease & Nutrition and Alcohol Research Center, Bronx VA Medical Center and Mt. Sinai School of Medicine, New York, NY 10468, USA
| | | | | | | |
Collapse
|
43
|
Narama I, Ozaki K, Matsuura T, Maruyama H. Topographic Relation Between Iron-Deposition and Cytotoxic Changes in Iron Lactate-Overloaded Rats. J Toxicol Pathol 1999. [DOI: 10.1293/tox.12.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Isao Narama
- Research Institute of Drug Safety, Setsunan University
| | | | | | | |
Collapse
|
44
|
Pelot D, Zhou XJ, Carpenter P, Vaziri ND. Effects of experimental hemosiderosis on pancreatic tissue iron content and structure. Dig Dis Sci 1998; 43:2411-4. [PMID: 9824127 DOI: 10.1023/a:1026669829121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The effects of iron overload on pancreatic iron content and morphology were investigated. Sprague-Dawley rats were randomized into an iron-overloaded group, which received a single subcutaneous injection of 1.2 g/kg elemental iron as iron-dextran complex, and placebo-treated pair-fed controls. Animals were studied after a 10-month observation period. Tissue nonheme iron content was measured, and histologic examination was carried out. Chronic iron-overloaded animals showed significant increases in tissue iron content. There was a statistically significant increase in stainable iron in perivascular, parenchymal, and lymphoid tissue in the iron-overloaded group. Although pancreatic fibrosis was present in the iron-overload group, it was not statistically significant. The iron-overloaded animals showed some islet cell destruction. In contrast, no significant islet cell destruction was seen in the control group. However, the difference was not statistically significant. Moreover, the serum glucose levels were the same in both groups, suggesting that there was no significant impairment of pancreatic endocrine function. Thus, chronic experimental iron overload in rats leads to significant increases in tissue iron content, but no significant morphologic alterations of the pancreas with the dose and route of iron administered in this animal model.
Collapse
Affiliation(s)
- D Pelot
- Department of Medicine, University of California Irvine, USA
| | | | | | | |
Collapse
|
45
|
Breider MA, Ulloa HM, Pegg DG, Gough AW. Nitro-imidazole radiosensitizer-induced toxicity in cynomolgus monkeys. Toxicol Pathol 1998; 26:651-6. [PMID: 9789952 DOI: 10.1177/019262339802600509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intravenously administered nitro-imidazole radiosensitizer and alkylating anticancer compound CI-1010, designated as (R)-alpha-[[(2-bromoethyl)amino]methyl]-2-nitro-1H-imidazole-1-ethanol monohydrobromide, causes multiorgan toxicity in rodents, including retinal degeneration. This study determined the potential of CI-1010 to induce similar effects in nonhuman primates. One male and 1 female cynomolgus monkey were given single daily doses of CI-1010 intravenously for 5 consecutive days each week for 3 wk. Doses were escalated from 5 mg per kilogram of body weight in week 1 to 40 and 60 mg/kg in week 3. Postdosing emesis occurred in both monkeys at 5 mg/kg, and clinical signs at 40 and 60 mg/kg included more pronounced emesis, reduced food consumption, pallor, weakness, and body weight loss. At study termination, both monkeys had markedly reduced peripheral blood lymphocytes and moderately lowered erythrocyte, hemoglobin, and hematocrit levels, which correlate with a decreased total nucleated bone marrow cell count. At necropsy, the monkeys had pancytic bone marrow hypocellularity, multiorgan lymphoid depletion, pancreatic acinar cell apoptosis, testicular seminiferous tubular degeneration, and bilateral multifocal retinal degeneration involving the photoreceptor and outer nuclear layers. Ultrastructurally, selected inner and outer retinal rod segments were swollen and fragmented, a state associated with cytoplasmic condensation and pyknosis of the outer nuclear cell layer. Thus, CI-1010 induced toxicity of hematopoietic/lymphoid organs, retina, testes, and pancreas in monkeys, findings similar to those of previous studies in rodents.
Collapse
Affiliation(s)
- M A Breider
- Department of Pathology and Experimental Toxicology, Parke-Davis Pharmaceutical Research Division of Warner-Lambert Co., Ann Arbor, Michigan 48105, USA.
| | | | | | | |
Collapse
|
46
|
Whittaker P, Dunkel VC, Bucci TJ, Kusewitt DF, Thurman JD, Warbritton A, Wolff GL. Genome-linked toxic responses to dietary iron overload. Toxicol Pathol 1997; 25:556-64. [PMID: 9437799 DOI: 10.1177/019262339702500604] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genome-related differences to Fe overload between and within rodent species were evaluated in the present study. Male B6C3F1 mice, yellow and black C5YSF1 mice, and Fischer 344 (F344) rats were fed AIN-76A diets containing 35 (control), 1,500, 3,500, 5,000, or 10,000 micrograms carbonyl Fe/g for 12 wk. No effects on body weight gain were observed in the B6C3F1 and black C5YSF1 mice, whereas at all doses of Fe above the control, weight gain was reduced in yellow C5YSF1 mice and F344 rats. At the 10,000 micrograms Fe/g dose, 9 of 12 rats died, but there was no mortality among the mice. In all animals, there was a dose-related increase in liver nonheme Fe, and the Fe was stored in hepatocytes predominantly in the periportal region. There was significant hypertrophy of the hepatocytes in both B6C3F1 mice and F344 rats fed the 10,000 micrograms Fe/g diet. PCNA assays showed significant stimulatory effects of the high dose of Fe on hepatocyte proliferation in the F344 rats and the C5YSF1 mice but not in the B6C3F1 mice. In the rat, there was pancreatic atrophy with loss of both endocrine and exocrine tissue. Morphometric evaluation of pancreas showed fewer beta cells in B6C3F1 and yellow C5YSF1 mice but not in the black C5YSF1 mice. There were fewer islets in the yellow C5YSF1 mice, and total and mean islet areas were smaller than in the control mice. Rats in the 10,000 micrograms Fe/g dose group had markedly exacerbated dose-dependent nephropathy and changes in glomerular and tubular epithelium associated with Fe accumulation. The rats also showed degeneration of the germinal epithelium of the testis, formation of multinucleated giant cells, and lack of mature sperm.
Collapse
Affiliation(s)
- P Whittaker
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Washington, D.C. 20204.
| | | | | | | | | | | | | |
Collapse
|