1
|
Behrooz AB, Nasiri M, Adeli S, Jafarian M, Pestehei SK, Babaei JF. Pre-adolescence repeat exposure to sub-anesthetic doses of ketamine induces long-lasting behaviors and cognition impairment in male and female rat adults. IBRO Neurosci Rep 2024; 16:211-223. [PMID: 38352700 PMCID: PMC10862408 DOI: 10.1016/j.ibneur.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
In pre-adolescence, repeated anesthesia may be required for therapeutic interventions. Adult cognitive and neurobehavioral problems may result from preadolescent exposure to anesthetics. This study examined the long-term morphological and functional effects of repeated sub-anesthetic doses of ketamine exposure on male and female rat adults during pre-adolescence. Weaned 48 pre-adolescent rats from eight mothers and were randomly divided into four equal groups: control group and the ketamine group of males and females (20 mg/kg daily for 14 days); then animals received care for 20-30 days. Repeated exposure to sub-anesthetic doses of ketamine on cognitive functions was assayed using Social discrimination and novel object tests. Besides, an elevated plus maze and fear conditioning apparatus were utilized to determine exploratory and anxiety-like behavior in adults. Toluidine blue stain was used to evaluate the number of dead neurons in the hippocampus, and the effects of ketamine on synaptic plasticity were compared in the perforant pathway of the CA1 of the hippocampus. Our study indicates that repeated exposure to sub-anesthetic doses of ketamine during pre-adolescence can result in neurobehavioral impairment in male and female rat adulthood but does not affect anxiety-like behavior. We found a significant quantifiable increase in dark neurons. Recorded electrophysiologically, repeat sub-anesthetic doses of ketamine resulted in hampering long-term potentiation and pair pulse in male adult animals. Our results showed that repeated exposure to sub-anesthetic doses of ketamine during pre-adolescence can induce hippocampus and neuroplasticity changes later in adulthood. This study opens up a new line of inquiry into potential adverse outcomes of repeated anesthesia exposure in pre-adolescent rats.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Nasiri
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Adeli
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Khalil Pestehei
- Department of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran
- Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zhao X, Du Y, Yao Y, Dai W, Yin Y, Wang G, Li Y, Zhang L. Psilocybin promotes neuroplasticity and induces rapid and sustained antidepressant-like effects in mice. J Psychopharmacol 2024; 38:489-499. [PMID: 38680011 DOI: 10.1177/02698811241249436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
BACKGROUND Psilocybin offers new hope for treating mood disorders due to its rapid and sustained antidepressant effects, as standard medications require weeks or months to exert their effects. However, the mechanisms underlying this action of psilocybin have not been identified. AIMS To investigate whether psilocybin has rapid and sustained antidepressant-like effects in mice and investigate whether its potential mechanisms of action are related to promoted neuroplasticity. METHODS We first examined the antidepressant-like effects of psilocybin in normal mice by the forced swimming test and in chronic corticosterone (CORT)-exposed mice by the sucrose preference test and novelty-suppressed feeding test. Furthermore, to explore the role of neuroplasticity in mediating the antidepressant-like effects of psilocybin, we measured structural neuroplasticity and neuroplasticity-associated protein levels in the prefrontal cortex (PFC) and hippocampus. RESULTS We observed that a single dose of psilocybin had rapid and sustained antidepressant-like effects in both healthy mice and chronic CORT-exposed mice. Moreover, psilocybin ameliorated chronic CORT exposure-induced inhibition of neuroplasticity in the PFC and hippocampus, including by increasing neuroplasticity (total number of dendritic branches and dendritic spine density), synaptic protein (p-GluA1, PSD95 and synapsin-1) levels, BDNF-mTOR signalling pathway activation (BDNF, TrkB and mTOR levels), and promoting neurogenesis (number of DCX-positive cells). CONCLUSIONS Our results demonstrate that psilocybin elicits robust, rapid and sustained antidepressant-like effects which is accompanied by the promotion of neuroplasticity in the PFC and hippocampus.
Collapse
Affiliation(s)
- Xiangting Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| | - Yingjie Du
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yishan Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Dai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongyu Yin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guyan Wang
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yunfeng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Liming Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
3
|
Eyraud N, Bloch S, Brizard B, Pena L, Tharsis A, Surget A, El-Hage W, Belzung C. Influence of Stress Severity on Contextual Fear Extinction and Avoidance in a Posttraumatic-like Mouse Model. Brain Sci 2024; 14:311. [PMID: 38671963 PMCID: PMC11048507 DOI: 10.3390/brainsci14040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is a widespread fear-related psychiatric affection associated with fear extinction impairments and important avoidance behaviors. Trauma-related exposure therapy is the current first-hand treatment for PTSD, yet it needs to be improved to shorten the time necessary to reach remission and increase responsiveness. Additional studies to decipher the neurobiological bases of extinction and effects on PTSD-like symptoms could therefore be of use. However, a PTSD-like animal model exhibiting pronounced PTSD-related phenotypes even after an extinction training directly linked to the fearful event is necessary. Thus, using a contextual fear conditioning model of PTSD, we increased the severity of stress during conditioning to search for effects on extinction acquisition and on pre- and post-extinction behaviors. During conditioning, mice received either two or four electrical shocks while a control group was constituted of mice only exposed to the context. Stressed mice exhibited important fear generalization, high fear reaction to the context and selective avoidance of a contextual reminder even after the extinction protocol. Increasing the number of footshocks did not induce major changes on these behaviors.
Collapse
Affiliation(s)
- Noémie Eyraud
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Solal Bloch
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Bruno Brizard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Laurane Pena
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Antoine Tharsis
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Alexandre Surget
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| | - Wissam El-Hage
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
- Pôle de Psychiatrie et d’Addictologie, Centre Hospitalier Régional Universitaire de Tours, 37000 Tours, France
| | - Catherine Belzung
- Institut National de la Santé et de la Recherche Médicale (INSERM), Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032 Tours, France
| |
Collapse
|
4
|
Agüera ADR, Cándido C, Donaire R, Papini MR, Torres C. Ketamine retards recovery from reward downshift and supports conditioned taste aversion. Pharmacol Biochem Behav 2023; 233:173671. [PMID: 39492495 DOI: 10.1016/j.pbb.2023.173671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Ketamine is a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist with antidepressant, anxiolytic, and memory effects in clinical and preclinical studies. The present studies investigated the behavioral effects of ketamine in animals exposed to a consummatory successive negative contrast (cSNC) task involving unexpected reward downshift, negative emotion (frustration), and aversive memory. Food-restricted male rats had 5-min access to 32 % sucrose in each of 10 preshift sessions followed by 4 % sucrose in 4 postshift sessions. Unshifted controls had access to 4 % sucrose during all 14 sessions. Ketamine (10 mg/kg, ip) was injected 30 min before sessions 11 and 12 (Experiment 1) or immediately after session 11 (Experiment 3). The results showed that both pre- and postdownshift session injection of ketamine increased consummatory suppression, as Group 32/Ket exhibited lower sucrose intake than Groups 32/Sal, 4/Ket, and 4/Sal. These effects extended beyond the day(s) of injection. Experiments 2 and 4 showed that the same dose, route of administration, and time of injection induced significant conditioned taste aversion to 4 % sucrose, in the absence of reward downshift. These data suggest that ketamine induces an aversive state that may summate with frustration induced by reward downshift in the cSNC task and also support a conditioned taste aversion to 4 % sucrose in the absence of reward downshift. Implications for these and other experiments involving pre- and postsession administration of ketamine are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Carmen Torres
- Department of Psychology, University of Jaén, Spain.
| |
Collapse
|
5
|
Singewald N, Sartori SB, Reif A, Holmes A. Alleviating anxiety and taming trauma: Novel pharmacotherapeutics for anxiety disorders and posttraumatic stress disorder. Neuropharmacology 2023; 226:109418. [PMID: 36623804 PMCID: PMC10372846 DOI: 10.1016/j.neuropharm.2023.109418] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Psychiatric disorders associated with psychological trauma, stress and anxiety are a highly prevalent and increasing cause of morbidity worldwide. Current therapeutic approaches, including medication, are effective in alleviating symptoms of anxiety disorders and posttraumatic stress disorder (PTSD), at least in some individuals, but have unwanted side-effects and do not resolve underlying pathophysiology. After a period of stagnation, there is renewed enthusiasm from public, academic and commercial parties in designing and developing drug treatments for these disorders. Here, we aim to provide a snapshot of the current state of this field that is written for neuropharmacologists, but also practicing clinicians and the interested lay-reader. After introducing currently available drug treatments, we summarize recent/ongoing clinical assessment of novel medicines for anxiety and PTSD, grouped according to primary neurochemical targets and their potential to produce acute and/or enduring therapeutic effects. The evaluation of putative treatments targeting monoamine (including psychedelics), GABA, glutamate, cannabinoid, cholinergic and neuropeptide systems, amongst others, are discussed. We emphasize the importance of designing and clinically assessing new medications based on a firm understanding of the underlying neurobiology stemming from the rapid advances being made in neuroscience. This includes harnessing neuroplasticity to bring about lasting beneficial changes in the brain rather than - as many current medications do - produce a transient attenuation of symptoms, as exemplified by combining psychotropic/cognitive enhancing drugs with psychotherapeutic approaches. We conclude by noting some of the other emerging trends in this promising new phase of drug development.
Collapse
Affiliation(s)
- Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| | - Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
6
|
Paredes D, Knippenberg AR, Bulin SE, Keppler LJ, Morilak DA. Adjunct treatment with ketamine enhances the therapeutic effects of extinction learning after chronic unpredictable stress. Neurobiol Stress 2022; 19:100468. [PMID: 35865972 PMCID: PMC9293662 DOI: 10.1016/j.ynstr.2022.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating illness characterized by dysfunction in the medial prefrontal cortex (mPFC). Although both pharmacological and cognitive behavioral interventions have shown some promise at alleviating symptoms, high attrition and persistence of treatment-resistant symptoms pose significant challenges that remain unresolved. Specifically, prolonged exposure therapy, a gold standard intervention to treat PTSD, has high dropout rates resulting in many patients receiving less than a fully effective course of treatment. Administering pharmacological treatments together with behavioral psychotherapies like prolonged exposure may offer an important avenue for enhancing therapeutic efficacy sooner, thus reducing the duration of treatment and mitigating the impact of attrition. In this study, using extinction learning as a rat model of exposure therapy, we hypothesized that administering ketamine as an adjunct treatment together with extinction will enhance the efficacy of extinction in reversing stress-induced deficits in set shifting, a measure of cognitive flexibility. Results showed that combining a sub-effective dose of ketamine with a shortened, sub-effective extinction protocol fully reversed stress-induced cognitive set-shifting deficits in both male and female rats. These effects may be due to shared molecular mechanisms between extinction and ketamine, such as increased neuronal plasticity in common circuitry (e.g., hippocampus-mPFC), or increased BDNF signaling. This work suggests that fast-acting drugs, such as ketamine, can be effectively used in combination with behavioral interventions to reduce treatment duration and potentially mitigate the impact of attrition. Future work is needed to delineate other pharmacotherapies that may complement the effects of extinction via shared or independent mechanisms.
Collapse
Affiliation(s)
- Denisse Paredes
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Anna R. Knippenberg
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Lydia J. Keppler
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - David A. Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Corresponding author. Department of Pharmacology, Mail Code 7764 University of Texas Health Science Center, San Antonio 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| |
Collapse
|
7
|
Glavonic E, Mitic M, Adzic M. Hallucinogenic drugs and their potential for treating fear-related disorders: Through the lens of fear extinction. J Neurosci Res 2022; 100:947-969. [PMID: 35165930 DOI: 10.1002/jnr.25017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Fear-related disorders, mainly phobias and post-traumatic stress disorder, are highly prevalent, debilitating disorders that pose a significant public health problem. They are characterized by aberrant processing of aversive experiences and dysregulated fear extinction, leading to excessive expression of fear and diminished quality of life. The gold standard for treating fear-related disorders is extinction-based exposure therapy (ET), shown to be ineffective for up to 35% of subjects. Moreover, ET combined with traditional pharmacological treatments for fear-related disorders, such as selective serotonin reuptake inhibitors, offers no further advantage to patients. This prompted the search for ways to improve ET outcomes, with current research focused on pharmacological agents that can augment ET by strengthening fear extinction learning. Hallucinogenic drugs promote reprocessing of fear-imbued memories and induce positive mood and openness, relieving anxiety and enabling the necessary emotional engagement during psychotherapeutic interventions. Mechanistically, hallucinogens induce dynamic structural and functional neuroplastic changes across the fear extinction circuitry and temper amygdala's hyperreactivity to threat-related stimuli, effectively mitigating one of the hallmarks of fear-related disorders. This paper provides the first comprehensive review of hallucinogens' potential to alleviate symptoms of fear-related disorders by focusing on their effects on fear extinction and the underlying molecular mechanisms. We overview both preclinical and clinical studies and emphasize the advantages of hallucinogenic drugs over current first-line treatments. We highlight 3,4-methylenedioxymethamphetamine and ketamine as the most effective therapeutics for fear-related disorders and discuss the potential molecular mechanisms responsible for their potency with implications for improving hallucinogen-assisted psychotherapy.
Collapse
Affiliation(s)
- Emilija Glavonic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Radford KD, Berman RY, Jaiswal S, Kim SY, Zhang M, Spencer HF, Choi KH. Enhanced Fear Memories and Altered Brain Glucose Metabolism ( 18F-FDG-PET) following Subanesthetic Intravenous Ketamine Infusion in Female Sprague-Dawley Rats. Int J Mol Sci 2022; 23:ijms23031922. [PMID: 35163844 PMCID: PMC8836808 DOI: 10.3390/ijms23031922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
Although women and men are equally likely to receive ketamine following traumatic injury, little is known regarding sex-related differences in the impact of ketamine on traumatic memory. We previously reported that subanesthetic doses of an intravenous (IV) ketamine infusion following fear conditioning impaired fear extinction and altered regional brain glucose metabolism (BGluM) in male rats. Here, we investigated the effects of IV ketamine infusion on fear memory, stress hormone levels, and BGluM in female rats. Adult female Sprague–Dawley rats received a single IV ketamine infusion (0, 2, 10, or 20 mg/kg, over a 2-h period) following auditory fear conditioning (three pairings of tone and footshock). Levels of plasma stress hormones, corticosterone (CORT) and progesterone, were measured after the ketamine infusion. Two days after ketamine infusion, fear memory retrieval, extinction, and renewal were tested over a three-day period. The effects of IV ketamine infusion on BGluM were determined using 18F-fluoro-deoxyglucose positron emission tomography (18F-FDG-PET) and computed tomography (CT). The 2 and 10 mg/kg ketamine infusions reduced locomotor activity, while 20 mg/kg infusion produced reduction (first hour) followed by stimulation (second hour) of activity. The 10 and 20 mg/kg ketamine infusions significantly elevated plasma CORT and progesterone levels. All three doses enhanced fear memory retrieval, impaired fear extinction, and enhanced cued fear renewal in female rats. Ketamine infusion produced dose-dependent effects on BGluM in fear- and stress-sensitive brain regions of female rats. The current findings indicate that subanesthetic doses of IV ketamine produce robust effects on the hypothalamic–pituitary–adrenal (HPA) axis and brain energy utilization that may contribute to enhanced fear memory observed in female rats.
Collapse
Affiliation(s)
- Kennett D. Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Rina Y. Berman
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA; (R.Y.B.); (M.Z.)
| | - Shalini Jaiswal
- Biomedical Research Imaging Core (BRIC), Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Sharon Y. Kim
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; (S.Y.K.); (H.F.S.)
| | - Michael Zhang
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA; (R.Y.B.); (M.Z.)
| | - Haley F. Spencer
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; (S.Y.K.); (H.F.S.)
| | - Kwang H. Choi
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA;
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA; (R.Y.B.); (M.Z.)
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; (S.Y.K.); (H.F.S.)
- Department of Psychiatry, F. E. Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-2682
| |
Collapse
|
9
|
Varga TG, de Toledo Simões JG, Siena A, Henrique E, da Silva RCB, Dos Santos Bioni V, Ramos AC, Rosenstock TR. Haloperidol rescues the schizophrenia-like phenotype in adulthood after rotenone administration in neonatal rats. Psychopharmacology (Berl) 2021; 238:2569-2585. [PMID: 34089344 DOI: 10.1007/s00213-021-05880-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Neuropsychiatric disorders are multifactorial disturbances that encompass several hypotheses, including changes in neurodevelopment. It is known that brain development disturbances during early life can predict psychosis in adulthood. As we have previously demonstrated, rotenone, a mitochondrial complex I inhibitor, could induce psychiatric-like behavior in 60-day-old rats after intraperitoneal injections from the 5th to the 11th postnatal day. Because mitochondrial deregulation is related to psychiatric disorders and the establishment of animal models is a high-value preclinical tool, we investigated the responsiveness of the rotenone (Rot)-treated newborn rats to pharmacological agents used in clinical practice, haloperidol (Hal), and methylphenidate (MPD). Taken together, our data show that Rot-treated animals exhibit hyperlocomotion, decreased social interaction, and diminished contextual fear conditioning response at P60, consistent with positive, negative, and cognitive deficits of schizophrenia (SZ), respectively, that were reverted by Hal, but not MPD. Rot-treated rodents also display a prodromal-related phenotype at P35. Overall, our results seem to present a new SZ animal model as a consequence of mitochondrial inhibition during a critical neurodevelopmental period. Therefore, our study is crucial not only to elucidate the relevance of mitochondrial function in the etiology of SZ but also to fulfill the need for new and trustworthy experimentation models and, likewise, provide possibilities to new therapeutic avenues for this burdensome disorder.
Collapse
Affiliation(s)
- Thiago Garcia Varga
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | - Amanda Siena
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil
| | - Elisandra Henrique
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | | | - Aline Camargo Ramos
- Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Tatiana Rosado Rosenstock
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil. .,Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
10
|
Chírico MTT, Guedes MR, Vieira LG, Reis TO, Dos Santos AM, Souza ABF, Ribeiro IML, Noronha SISR, Nogueira KO, Oliveira LAM, Gomes FAR, Silva FC, Chianca-Jr DA, Bezerra FS, de Menezes RCA. Lasting effects of ketamine and isoflurane administration on anxiety- and panic-like behavioral responses in Wistar rats. Life Sci 2021; 276:119423. [PMID: 33785344 DOI: 10.1016/j.lfs.2021.119423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
In clinical and laboratory practice, the use of anesthetics is essential in order to perform surgeries. Anesthetics, besides causing sedation and muscle relaxation, promote several physiological outcomes, such as psychotomimetic alterations, increased heart rate, and blood pressure. However, studies depicting the behavioral effect induced by ketamine and isoflurane are conflicting. In the present study, we assessed the behavioral effects precipitated by ketamine and isoflurane administration. We have also evaluated the ketamine effect on cell cytotoxicity and viability in an amygdalar neuronal primary cell culture. Ketamine (80 mg/kg) caused an anxiogenic effect in rats exposed to the elevated T-maze test (ETM) 2 and 7 days after ketamine administration. Ketamine (40 and 80 mg/kg) administration also decreased panic-like behavior in the ETM. In the light/dark test, ketamine had an anxiogenic effect. Isoflurane did not change animal behavior on the ETM. Neither ketamine nor isoflurane changed the spontaneous locomotor activity in the open field test. However, isoflurane-treated animals explored less frequently the OF central area seven days after treatment. Neither anesthetic caused oxidative damage in the liver. Ketamine also reduced cellular metabolism and led to neuronal death in amygdalar primary cell cultures. Thus, our work provides evidence that ketamine and isoflurane induce pronounced long lasting anxiety-related behaviors in male rats.
Collapse
Affiliation(s)
- Máira Tereza Talma Chírico
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Mariana Reis Guedes
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Lucas Gabriel Vieira
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Thayane Oliveira Reis
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Aline Maria Dos Santos
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Ana Beatriz Farias Souza
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Iara Mariana Léllis Ribeiro
- Department of Biological Sciences, Laboratory of Biomaterials and Experimental Pathology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Sylvana I S R Noronha
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Katiane O Nogueira
- Department of Biological Sciences, Laboratory of Biomaterials and Experimental Pathology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | - Laser Antonio Machado Oliveira
- Department of Biological Sciences, Laboratory of Biomaterials and Experimental Pathology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | - Fabiana Aparecida Rodrigues Gomes
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Fernanda Cacilda Silva
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | - Deoclécio Alves Chianca-Jr
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | - Frank Silva Bezerra
- Department of Biological Sciences, Laboratory of Experimental Pathophysiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| | - Rodrigo Cunha Alvim de Menezes
- Department of Biological Sciences, Laboratory of Cardiovascular Physiology, Federal University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil.
| |
Collapse
|
11
|
Morena M, Colucci P, Mancini GF, De Castro V, Peloso A, Schelling G, Campolongo P. Ketamine anesthesia enhances fear memory consolidation via noradrenergic activation in the basolateral amygdala. Neurobiol Learn Mem 2020; 178:107362. [PMID: 33333316 DOI: 10.1016/j.nlm.2020.107362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022]
Abstract
Trauma patients treated with ketamine during emergency care present aggravated early post- traumatic stress reaction which is highly predictive of post-traumatic stress disorder (PTSD) development and severity. The use of ketamine in the acute trauma phase may directly or indirectly interfere with neural processes of memory consolidation of the traumatic event, thus leading to the formation of maladaptive memories, a hallmark symptom of PTSD. We have recently shown that ketamine anesthesia, immediately after a traumatic event, enhances memory consolidation and leads to long-lasting alterations of social behavior in rats. Based on the evidence that ketamine induces a robust central and peripheral adrenergic/noradrenergic potentiation and that activation of this system is essential for the formation of memory for stressful events, we explored the possibility that the strong sympathomimetic action of ketamine might underlie its memory enhancing effects. We found that rats given immediate, but not delayed, post-training ketamine anesthesia (125 mg/kg) presented enhanced 48-h memory retention in an inhibitory avoidance task and that these effects were blocked by adrenal medullectomy, lesions of the locus coeruleus, systemic or intra-basolateral amygdala ß-adrenergic receptor antagonism. Thus, the memory enhancing effects of ketamine anesthesia are time-dependent and mediated by a combined peripheral-central sympathomimetic action. We elucidated a mechanism by which ketamine exacerbates acute post-traumatic reaction, possibly leading to development of PTSD symptomatology later in life. These findings will help guide for a better management of sedation/anesthesia in emergency care to promote the prophylaxis and reduce the risk of developing trauma-related disorders in trauma victims.
Collapse
Affiliation(s)
- Maria Morena
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Paola Colucci
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
| | - Giulia F Mancini
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
| | - Valentina De Castro
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Peloso
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Gustav Schelling
- Dept. of Anaesthesiology, Ludwig-Maximilians University of Munich, 81377 Munich, Germany
| | - Patrizia Campolongo
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy.
| |
Collapse
|
12
|
Tunset ME, Haslene-Hox H, Van Den Bossche T, Vaaler AE, Sulheim E, Kondziella D. Extracellular vesicles in patients in the acute phase of psychosis and after clinical improvement: an explorative study. PeerJ 2020; 8:e9714. [PMID: 32995075 PMCID: PMC7501784 DOI: 10.7717/peerj.9714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived structures that transport proteins, lipids and nucleic acids between cells, thereby affecting the phenotype of the recipient cell. As the content of EVs reflects the status of the originating cell, EVs can have potential as biomarkers. Identifying EVs, including their cells of origin and their cargo, may provide insights in the pathophysiology of psychosis. Here, we present an in-depth analysis and proteomics of EVs from peripheral blood in patients (n = 25) during and after the acute phase of psychosis. Concentration and protein content of EVs in psychotic patients were twofold higher than in 25 age- and sex-matched healthy controls (p < 0.001 for both concentration and protein content), and the diameter of EVs was larger in patients (p = 0.02). Properties of EVs did not differ significantly in blood sampled during and after the acute psychotic episode. Proteomic analyses on isolated EVs from individual patients revealed 1,853 proteins, whereof 45 were brain-elevated proteins. Of these, five proteins involved in regulation of plasticity of glutamatergic synapses were significantly different in psychotic patients compared to controls; neurogranin (NRGN), neuron-specific calcium-binding protein hippocalcin (HPCA), kalirin (KALRN), beta-adducin (ADD2) and ankyrin-2 (ANK2). To summarize, our results show that peripheral EVs in psychotic patients are different from those in healthy controls and point at alterations on the glutamatergic system. We suggest that EVs allow investigation of blood-borne brain-originating biological material and that their role as biomarkers in patients with psychotic disorders is worthy of further exploration.
Collapse
Affiliation(s)
- Mette Elise Tunset
- Department of Østmarka- Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway.,Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Hanne Haslene-Hox
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Tim Van Den Bossche
- VIB - UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Arne Einar Vaaler
- Department of Østmarka- Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway.,Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Einar Sulheim
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway.,Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Choi KH, Berman RY, Zhang M, Spencer HF, Radford KD. Effects of Ketamine on Rodent Fear Memory. Int J Mol Sci 2020; 21:ijms21197173. [PMID: 32998470 PMCID: PMC7582895 DOI: 10.3390/ijms21197173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/25/2022] Open
Abstract
Ketamine, a multimodal anesthetic drug, has become increasingly popular in the treatment of pain following traumatic injury as well as treatment-resistant major depressive disorders. However, the psychological impact of this dissociative medication on the development of stress-related disorders such as post-traumatic stress disorder (PTSD) remains controversial. To address these concerns, preclinical studies have investigated the effects of ketamine administration on fear memory and stress-related behaviors in laboratory animals. Despite a well-documented line of research examining the effects of ketamine on fear memory, there is a lack of literature reviews on this important topic. Therefore, this review article summarizes the current preclinical literature on ketamine and fear memory with a particular emphasis on the route, dose, and timing of ketamine administration in rodent fear conditioning studies. Additionally, this review describes the molecular mechanisms by which ketamine may impact fear memory and stress-related behaviors. Overall, findings from previous studies are inconsistent in that fear memory may be increased, decreased, or unaltered following ketamine administration in rodents. These conflicting results can be explained by factors such as the route, dose, and timing of ketamine administration; the interaction between ketamine and stress; and individual variability in the rodent response to ketamine. This review also recommends that future preclinical studies utilize a clinically relevant route of administration and account for biological sex differences to improve translation between preclinical and clinical investigations.
Collapse
Affiliation(s)
- Kwang H. Choi
- Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA; (K.H.C.); (R.Y.B.); (M.Z.)
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA;
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
| | - Rina Y. Berman
- Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA; (K.H.C.); (R.Y.B.); (M.Z.)
| | - Michael Zhang
- Department of Psychiatry, Uniformed Services University, Bethesda, MD 20814, USA; (K.H.C.); (R.Y.B.); (M.Z.)
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD 20814, USA
| | - Haley F. Spencer
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Kennett D. Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD 20814, USA
- Correspondence:
| |
Collapse
|
14
|
Martínez-Pinteño A, García-Cerro S, Mas S, Torres T, Boloc D, Rodríguez N, Lafuente A, Gassó P, Arnaiz JA, Parellada E. The positive allosteric modulator of the mGlu2 receptor JNJ-46356479 partially improves neuropathological deficits and schizophrenia-like behaviors in a postnatal ketamine mice model. J Psychiatr Res 2020; 126:8-18. [PMID: 32407891 DOI: 10.1016/j.jpsychires.2020.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/30/2022]
Abstract
Current antipsychotics have limited efficacy in controlling cognitive and negative symptoms of schizophrenia (SZ). Glutamatergic dysregulation has been implicated in the pathophysiology of SZ, based on the capacity of N-methyl-D-aspartate receptor (NMDAR) antagonists such as ketamine (KET) to induce SZ-like behaviors. This could be related to their putative neuropathological effect on gamma-aminobutyric (GABAergic) interneurons expressing parvalbumin (PV), which would lead to a hyperglutamatergic condition. Metabotropic glutamate receptor 2 (mGluR2) negatively modulates glutamate release and has been considered a potential clinical target for novel antipsychotics drugs. Our aim was to evaluate the efficacy of JNJ-46356479 (JNJ), a positive allosteric modulator (PAM) of the mGluR2, in reversing neuropathological and behavioral deficits induced in a postnatal KET mice model of SZ. These animals presented impaired spontaneous alternation in the Y-maze test, suggesting deficits in spatial working memory, and a decrease in social motivation and memory, assessed in both the Three-Chamber and the Five Trial Social Memory tests. Interestingly, JNJ treatment of adult mice partially reversed these deficits. Mice treated with KET also showed a reduction in PV+ in the mPFC and dentate gyrus together with an increase in c-Fos expression in this hippocampal area. Compared to the control group, mice treated with KET + JNJ showed a similar PV density and c-Fos activity pattern. Our results suggest that pharmacological treatment with a PAM of the mGluR2 such as JNJ could help improve cognitive and negative symptoms related to SZ.
Collapse
Affiliation(s)
| | - Susana García-Cerro
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Sergi Mas
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Teresa Torres
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Daniel Boloc
- Department of Medicine, University of Barcelona, Spain
| | - Natalia Rodríguez
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain
| | - Amalia Lafuente
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Patricia Gassó
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Joan Albert Arnaiz
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Spain; The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Clinical Pharmacology Department, Hospital Clínic de Barcelona, Spain.
| | - Eduard Parellada
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Department of Medicine, University of Barcelona, Spain; Barcelona Clinic Schizophrenia Unit (BCSU), Institute of Neuroscience, Hospital Clinic of Barcelona, University of Barcelona, Spain.
| |
Collapse
|
15
|
Silote GP, de Oliveira SFS, Ribeiro DE, Machado MS, Andreatini R, Joca SRL, Beijamini V. Ketamine effects on anxiety and fear-related behaviors: Current literature evidence and new findings. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109878. [PMID: 31982463 DOI: 10.1016/j.pnpbp.2020.109878] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/19/2022]
Abstract
Ketamine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, presents a rapid and sustained antidepressant effect in clinical and preclinical studies. Regarding ketamine effects on anxiety, there is a widespread discordance among pre-clinical studies. To address this issue, the present study reviewed the literature (electronic database MEDLINE) to summarize the profile of ketamine effects in animal tests of anxiety/fear. We found that ketamine anxiety/fear-related effects may depend on the anxiety paradigm, schedule of ketamine administration and tested species. Moreover, there was no report of ketamine effects in animal tests of fear related to panic disorder (PD). Based on that finding, we evaluated if treatment with ketamine and another NMDA antagonist, MK-801, would induce acute and sustained (24 hours later) anxiolytic and/or panicolytic-like effects in animals exposed to the elevated T-maze (ETM). The ETM evaluates, in the same animal, conflict-evoked and fear behaviors, which are related, respectively, to generalized anxiety disorder and PD. Male Wistar rats were systemically treated with racemic ketamine (10, 30 and 80 mg/kg) or MK-801 (0.05 and 0.1 mg/kg) and tested in the ETM in the same day or 24 hours after their administration. Ketamine did not affect the behavioral tasks performed in the ETM acutely or 24 h later. MK-801 impaired inhibitory avoidance in the ETM only at 45 min post-injection, suggesting a rapid but not sustained anxiolytic-like effect. Altogether our results suggest that ketamine might have mixed effects in anxiety tests while it does not affect panic-related behaviors.
Collapse
Affiliation(s)
- Gabriela P Silote
- Biochemistry and Pharmacology Graduate Program, Federal University of Espirito Santo, Vitoria, ES, Brazil; Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil; Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sabrina F S de Oliveira
- Department of Pharmaceutical Sciences, Health Science Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Deidiane E Ribeiro
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mayara S Machado
- Department of Pharmaceutical Sciences, Health Science Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Roberto Andreatini
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Sâmia R L Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, SP, Brazil; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Vanessa Beijamini
- Biochemistry and Pharmacology Graduate Program, Federal University of Espirito Santo, Vitoria, ES, Brazil; Department of Pharmaceutical Sciences, Health Science Center, Federal University of Espirito Santo, Vitoria, ES, Brazil; Pharmaceutical Sciences Graduate Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
16
|
Wei MD, Wang YH, Lu K, Lv BJ, Wang Y, Chen WY. Ketamine reverses the impaired fear memory extinction and accompanied depressive-like behaviors in adolescent mice. Behav Brain Res 2020; 379:112342. [DOI: 10.1016/j.bbr.2019.112342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
|
17
|
Hao X, Ou M, Zhang D, Zhao W, Yang Y, Liu J, Yang H, Zhu T, Li Y, Zhou C. The Effects of General Anesthetics on Synaptic Transmission. Curr Neuropharmacol 2020; 18:936-965. [PMID: 32106800 PMCID: PMC7709148 DOI: 10.2174/1570159x18666200227125854] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
General anesthetics are a class of drugs that target the central nervous system and are widely used for various medical procedures. General anesthetics produce many behavioral changes required for clinical intervention, including amnesia, hypnosis, analgesia, and immobility; while they may also induce side effects like respiration and cardiovascular depressions. Understanding the mechanism of general anesthesia is essential for the development of selective general anesthetics which can preserve wanted pharmacological actions and exclude the side effects and underlying neural toxicities. However, the exact mechanism of how general anesthetics work is still elusive. Various molecular targets have been identified as specific targets for general anesthetics. Among these molecular targets, ion channels are the most principal category, including ligand-gated ionotropic receptors like γ-aminobutyric acid, glutamate and acetylcholine receptors, voltage-gated ion channels like voltage-gated sodium channel, calcium channel and potassium channels, and some second massager coupled channels. For neural functions of the central nervous system, synaptic transmission is the main procedure for which information is transmitted between neurons through brain regions, and intact synaptic function is fundamentally important for almost all the nervous functions, including consciousness, memory, and cognition. Therefore, it is important to understand the effects of general anesthetics on synaptic transmission via modulations of specific ion channels and relevant molecular targets, which can lead to the development of safer general anesthetics with selective actions. The present review will summarize the effects of various general anesthetics on synaptic transmissions and plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Li
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| | - Cheng Zhou
- Address correspondence to these authors at the Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, P.R. China; E-mail: and Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China; E-mail:
| |
Collapse
|
18
|
Radford KD, Spencer HF, Zhang M, Berman RY, Girasek QL, Choi KH. Association between intravenous ketamine-induced stress hormone levels and long-term fear memory renewal in Sprague-Dawley rats. Behav Brain Res 2019; 378:112259. [PMID: 31560919 DOI: 10.1016/j.bbr.2019.112259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023]
Abstract
Ketamine is a multimodal dissociative anesthetic and analgesic that is widely used after traumatic injury. We previously reported that an analgesic dose of intravenous (IV) ketamine infusion (10 mg/kg, 2-h) after fear conditioning enhanced short-term fear memory in rats. Here, we investigated the effects of the same dose of an IV ketamine infusion on plasma stress hormone levels and long-term fear memory in rats. Adult male Sprague-Dawley rats (9-week-old with an average weight of 308 g upon arrival) received a ketamine infusion (0 or 10 mg/kg, 2-h) immediately after auditory fear conditioning (three auditory tone and footshock [0.6 mA, 1-s] pairings) on Day 0. After the infusion, a blood sample was collected from a jugular vein catheter for corticosterone and progesterone assays, and each animal was tested on tail flick to measure thermal antinociception. One week later, animals were tested on fear extinction acquisition (Day 7), fear extinction retrieval (Day 8), and fear renewal (Day 9). The IV ketamine infusion, compared to the saline infusion, reduced locomotor activity (sedation), increased tail flick latency (antinociception), and elevated plasma corticosterone and progesterone levels. The ketamine infusion did not alter long-term fear memory extinction or fear renewal. However, elevated corticosterone and progesterone levels resulting from the ketamine infusion were correlated with sedation, antinociception, and long-term fear memory renewal. These results suggest that individual differences in sensitivity to acute ketamine may predict vulnerability to develop fear-related disorders.
Collapse
Affiliation(s)
- Kennett D Radford
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Haley F Spencer
- Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA
| | - Michael Zhang
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA; Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Rina Y Berman
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD, 20814, USA; Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Quinn L Girasek
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Kwang H Choi
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University, Bethesda, MD, 20814, USA; Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA; Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|
19
|
N-Methyl D-aspartate receptor subunit signaling in fear extinction. Psychopharmacology (Berl) 2019; 236:239-250. [PMID: 30238131 PMCID: PMC6374191 DOI: 10.1007/s00213-018-5022-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/03/2018] [Indexed: 01/13/2023]
Abstract
N-Methyl D-aspartate receptors (NMDAR) are central mediators of glutamate actions underlying learning and memory processes including those required for extinction of fear and fear-related behaviors. Consistent with this view, in animal models, antagonists of NMDAR typically impair fear extinction, whereas partial agonists have facilitating effects. Promoting NMDAR function has thus been recognized as a promising strategy towards reduction of fear symptoms in patients suffering from anxiety disorders and post-traumatic disorder (PTSD). Nevertheless, application of these drugs in clinical trials has proved of limited utility. Here we summarize recent advances in our knowledge of NMDAR pharmacology relevant for fear extinction, focusing on molecular, cellular, and circuit aspects of NMDAR function as they relate to fear extinction at the level of behavior and cognition. We also discuss how these advances from animal models might help to understand and overcome the limitations of existing approaches in human anxiety disorders and how novel, more specific, and personalized approaches might help advance future therapeutic strategies.
Collapse
|
20
|
Radford KD, Park TY, Jaiswal S, Pan H, Knutsen A, Zhang M, Driscoll M, Osborne-Smith LA, Dardzinski BJ, Choi KH. Enhanced fear memories and brain glucose metabolism ( 18F-FDG-PET) following sub-anesthetic intravenous ketamine infusion in Sprague-Dawley rats. Transl Psychiatry 2018; 8:263. [PMID: 30504810 PMCID: PMC6269482 DOI: 10.1038/s41398-018-0310-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 09/25/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
Ketamine is a multimodal dissociative anesthetic, which provides powerful analgesia for victims with traumatic injury. However, the impact of ketamine administration in the peri-trauma period on the development of post-traumatic stress disorder (PTSD) remains controversial. Moreover, there is a major gap between preclinical and clinical studies because they utilize different doses and routes of ketamine administration. Here, we investigated the effects of sub-anesthetic doses of intravenous (IV) ketamine infusion on fear memory and brain glucose metabolism (BGluM) in rats. Male Sprague-Dawley rats received an IV ketamine infusion (0, 2, 10, and 20 mg/kg, 2 h) or an intraperitoneal (IP) injection (0 and 10 mg/kg) following an auditory fear conditioning (3 pairings of tone and foot shock [0.6 mA, 1 s]) on day 0. Fear memory retrieval, fear extinction, and fear recall were tested on days 2, 3, and 4, respectively. The effects of IV ketamine infusion (0 and 10 mg/kg) on BGluM were measured using 18F-fluoro-deoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT). The IV ketamine infusion dose-dependently enhanced fear memory retrieval, delayed fear extinction, and increased fear recall in rats. The IV ketamine (10 mg/kg) increased BGluM in the hippocampus, amygdala, and hypothalamus, while decreasing it in the cerebellum. On the contrary, a single ketamine injection (10 mg/kg, IP) after fear conditioning facilitated fear memory extinction in rats. The current findings suggest that ketamine may produce differential effects on fear memory depending on the route and duration of ketamine administration.
Collapse
Affiliation(s)
- Kennett D. Radford
- 0000 0001 0421 5525grid.265436.0Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Thomas Y. Park
- 0000 0001 0421 5525grid.265436.0Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA ,0000 0001 0421 5525grid.265436.0Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Shalini Jaiswal
- 0000 0001 0421 5525grid.265436.0Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Hongna Pan
- 0000 0001 0421 5525grid.265436.0Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Andrew Knutsen
- 0000 0001 0421 5525grid.265436.0Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Michael Zhang
- 0000 0001 0421 5525grid.265436.0Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA ,0000 0001 0421 5525grid.265436.0Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Mercedes Driscoll
- 0000 0001 0560 6544grid.414467.4National Capital Consortium Psychiatry Residency Program, Walter Reed National Military Medical Center, Bethesda, MD 20814 USA
| | - Lisa A. Osborne-Smith
- 0000 0000 9758 5690grid.5288.7Nurse Anesthesia Program, Oregon Health and Science University, Portland, OR 97239 USA
| | - Bernard J. Dardzinski
- 0000 0001 0421 5525grid.265436.0Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA ,0000 0001 0421 5525grid.265436.0Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Kwang H. Choi
- 0000 0001 0421 5525grid.265436.0Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA ,0000 0001 0421 5525grid.265436.0Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA ,0000 0001 0421 5525grid.265436.0Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| |
Collapse
|