2
|
Ekhtiari H, Zare-Bidoky M, Sangchooli A, Janes AC, Kaufman MJ, Oliver JA, Prisciandaro JJ, Wüstenberg T, Anton RF, Bach P, Baldacchino A, Beck A, Bjork JM, Brewer J, Childress AR, Claus ED, Courtney KE, Ebrahimi M, Filbey FM, Ghahremani DG, Azbari PG, Goldstein RZ, Goudriaan AE, Grodin EN, Hamilton JP, Hanlon CA, Hassani-Abharian P, Heinz A, Joseph JE, Kiefer F, Zonoozi AK, Kober H, Kuplicki R, Li Q, London ED, McClernon J, Noori HR, Owens MM, Paulus MP, Perini I, Potenza M, Potvin S, Ray L, Schacht JP, Seo D, Sinha R, Smolka MN, Spanagel R, Steele VR, Stein EA, Steins-Loeber S, Tapert SF, Verdejo-Garcia A, Vollstädt-Klein S, Wetherill RR, Wilson SJ, Witkiewitz K, Yuan K, Zhang X, Zilverstand A. A methodological checklist for fMRI drug cue reactivity studies: development and expert consensus. Nat Protoc 2022; 17:567-595. [PMID: 35121856 PMCID: PMC9063851 DOI: 10.1038/s41596-021-00649-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/21/2021] [Indexed: 12/23/2022]
Abstract
Cue reactivity is one of the most frequently used paradigms in functional magnetic resonance imaging (fMRI) studies of substance use disorders (SUDs). Although there have been promising results elucidating the neurocognitive mechanisms of SUDs and SUD treatments, the interpretability and reproducibility of these studies is limited by incomplete reporting of participants' characteristics, task design, craving assessment, scanning preparation and analysis decisions in fMRI drug cue reactivity (FDCR) experiments. This hampers clinical translation, not least because systematic review and meta-analysis of published work are difficult. This consensus paper and Delphi study aims to outline the important methodological aspects of FDCR research, present structured recommendations for more comprehensive methods reporting and review the FDCR literature to assess the reporting of items that are deemed important. Forty-five FDCR scientists from around the world participated in this study. First, an initial checklist of items deemed important in FDCR studies was developed by several members of the Enhanced NeuroImaging Genetics through Meta-Analyses (ENIGMA) Addiction working group on the basis of a systematic review. Using a modified Delphi consensus method, all experts were asked to comment on, revise or add items to the initial checklist, and then to rate the importance of each item in subsequent rounds. The reporting status of the items in the final checklist was investigated in 108 recently published FDCR studies identified through a systematic review. By the final round, 38 items reached the consensus threshold and were classified under seven major categories: 'Participants' Characteristics', 'General fMRI Information', 'General Task Information', 'Cue Information', 'Craving Assessment Inside Scanner', 'Craving Assessment Outside Scanner' and 'Pre- and Post-Scanning Considerations'. The review of the 108 FDCR papers revealed significant gaps in the reporting of the items considered important by the experts. For instance, whereas items in the 'General fMRI Information' category were reported in 90.5% of the reviewed papers, items in the 'Pre- and Post-Scanning Considerations' category were reported by only 44.7% of reviewed FDCR studies. Considering the notable and sometimes unexpected gaps in the reporting of items deemed to be important by experts in any FDCR study, the protocols could benefit from the adoption of reporting standards. This checklist, a living document to be updated as the field and its methods advance, can help improve experimental design, reporting and the widespread understanding of the FDCR protocols. This checklist can also provide a sample for developing consensus statements for protocols in other areas of task-based fMRI.
Collapse
Affiliation(s)
- Hamed Ekhtiari
- Laureate Institute for Brain Research, Tulsa, OK, USA.
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Mehran Zare-Bidoky
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
- Shahid-Sadoughi University of Medical Sciences, Yazd, Iran
| | - Arshiya Sangchooli
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amy C Janes
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Marc J Kaufman
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Jason A Oliver
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- TSET Health Promotion Research Center, Stephenson Cancer Center, Oklahoma City, OK, USA
- Department of Psychiatry & Behavioral Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - James J Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Torsten Wüstenberg
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Raymond F Anton
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick Bach
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Heidelberg University, Mannheim, Germany
| | - Alex Baldacchino
- Division of Population Studies and Behavioural Sciences, St Andrews University Medical School, University of St Andrews, Scotland, UK
| | - Anne Beck
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Faculty of Health, Health and Medical University, Campus Potsdam, Potsdam, Germany
| | - James M Bjork
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Judson Brewer
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, RI, USA
| | - Anna Rose Childress
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Kelly E Courtney
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mohsen Ebrahimi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Dara G Ghahremani
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peyman Ghobadi Azbari
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Biomedical Engineering, Shahed University, Tehran, Iran
| | - Rita Z Goldstein
- Departments of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna E Goudriaan
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Erica N Grodin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Paul Hamilton
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jane E Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Heidelberg University, Mannheim, Germany
| | - Arash Khojasteh Zonoozi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
- Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedy Kober
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Qiang Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph McClernon
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Hamid R Noori
- International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT)/Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Max M Owens
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | | | - Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marc Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Department of Neuroscience, Child Study Center and Wu Tsai Institute, Yale School of Medicine, New Haven, CT, USA
| | - Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, University of Montreal, Montreal, Canada
| | - Lara Ray
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Dongju Seo
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, Germany
| | - Vaughn R Steele
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Elliot A Stein
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Sabine Steins-Loeber
- Department of Clinical Psychology and Psychotherapy, Otto-Friedrich-University of Bamberg, Bamberg, Germany
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), Heidelberg University, Mannheim, Germany
| | - Reagan R Wetherill
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Wilson
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xiaochu Zhang
- Department of Psychology, School of Humanities and Social Science, University of Science and Technology of China, Anhui, China
- Department of Radiology, First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Science at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Anhui, China
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Franklin TR, Jagannathan K, Spilka NH, Keyser H, Rao H, Ely AV, Janes AC, Wetherill RR. Smoking-induced craving relief relates to increased DLPFC-striatal coupling in nicotine-dependent women. Drug Alcohol Depend 2021; 221:108593. [PMID: 33611027 PMCID: PMC8026729 DOI: 10.1016/j.drugalcdep.2021.108593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Craving is a major contributor to drug-seeking and relapse. Although the ventral striatum (VS) is a primary neural correlate of craving, strategies aimed at manipulating VS function have not resulted in efficacious treatments. This incongruity may be because the VS does not influence craving in isolation. Instead, craving is likely mediated by communication between the VS and other neural substrates. Thus, we examined how striatal functional connectivity (FC) with key nodes of networks involved in addiction affects relief of craving, which is an important step in identifying viable treatment targets. METHODS Twenty-four nicotine-dependent non-abstinent women completed two resting-state (rs) fMRI scans, one before and one following smoking a cigarette in the scanner, and provided craving ratings before and after smoking the cigarette. A seed-based approach was used to examine rsFC between the VS, putamen and germane craving-related brain regions; the dorsolateral prefrontal cortex (dlPFC), the posterior cingulate cortex, and the anterior ventral insula. RESULTS Smoking a cigarette was associated with a decrease in craving. Relief of craving correlated with increases in right dlPFC- bilateral VS (r = 0.57, p = 0.003, corrected) as did increased right dlPFC-left putamen coupling (r = 0.62, p = 0.001, corrected). CONCLUSIONS Smoking-induced relief of craving is associated with enhanced rsFC between the dlPFC, a region that plays a pivotal role in decision making, and the striatum, the neural structure underlying motivated behavior. These findings are highly consistent with a burgeoning literature implicating dlPFC-striatal interactions as a neurobiological substrate of craving.
Collapse
Affiliation(s)
- Teresa R Franklin
- Center for Studies of Addiction, Department of Psychiatry, The University of Pennsylvania Perelman School of Medicine, 3535 Market Street Suite 500, Philadelphia, PA, 19104, USA.
| | - Kanchana Jagannathan
- Center for Studies of Addiction, Department of Psychiatry, The University of Pennsylvania Perelman School of Medicine, 3535 Market Street Suite 500, Philadelphia, PA, 19104, USA
| | - Nathaniel H Spilka
- Center for Studies of Addiction, Department of Psychiatry, The University of Pennsylvania Perelman School of Medicine, 3535 Market Street Suite 500, Philadelphia, PA, 19104, USA
| | - Heather Keyser
- Center for Studies of Addiction, Department of Psychiatry, The University of Pennsylvania Perelman School of Medicine, 3535 Market Street Suite 500, Philadelphia, PA, 19104, USA
| | - Hengy Rao
- Center for Functional Neuroimaging, Department of Neurology, The University of Pennsylvania Perelman School of Medicine, 3700 Hamilton Walk, Philadelphia, PA, USA
| | - Alice V Ely
- Center for Studies of Addiction, Department of Psychiatry, The University of Pennsylvania Perelman School of Medicine, 3535 Market Street Suite 500, Philadelphia, PA, 19104, USA
| | - Amy C Janes
- Functional Integration of Addiction Research Lab, Department of Psychiatry, Harvard Medical School/McLean Hospital, 115 Mill St. Belmont, MA, 02478, USA
| | - Reagan R Wetherill
- Center for Studies of Addiction, Department of Psychiatry, The University of Pennsylvania Perelman School of Medicine, 3535 Market Street Suite 500, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
Faria V, Han P, Joshi A, Enck P, Hummel T. Verbal suggestions of nicotine content modulate ventral tegmental neural activity during the presentation of a nicotine-free odor in cigarette smokers. Eur Neuropsychopharmacol 2020; 31:100-108. [PMID: 31812330 DOI: 10.1016/j.euroneuro.2019.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023]
Abstract
Expectancies of nicotine content have been shown to impact smokers' subjective responses and smoking behaviors. However, little is known about the neural substrates modulated by verbally induced expectancies in smokers. In this study we used functional magnetic resonance imaging (fMRI) to investigate how verbally induced expectations, regarding the presence or absence of nicotine, modulated smokers' neural response to a nicotine-free odor. While laying in the scanner, all participants (N = 24) were given a nicotine-free odor, but whereas one group was correctly informed about the absence of nicotine (control group n = 12), the other group was led to believe that the presented odor contained nicotine (expectancy group n = 12). Smokers in the expectancy group had significantly increased blood-oxygen-level-dependent (BOLD) responses during the presentation of the nicotine-free odor in the left ventral tegmental area (VTA), and in the right insula, as compared to smokers in the control group (Regions of interest analysis with pFWE-corrected p ≤ 0.05). At a more liberal uncorrected statistical level (p-unc ≤ 0.001), increased bilateral reactivity in the dorsolateral prefrontal cortex (dlPFC) was also observed in the expectancy group as compared with the control group. Our findings suggest that nicotine-expectancies induced through verbal instructions can modulate nicotine relevant brain regions, without nicotine administration, and provide further neural support for the key role that cognitive expectancies play in the cause and treatment of nicotine dependence.
Collapse
Affiliation(s)
- Vanda Faria
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany; Department of Psychology, Uppsala University, Uppsala, Sweden; Center for Pain and the Brain, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Pengfei Han
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Akshita Joshi
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Paul Enck
- Department of Internal Medicine VI: Psychosomatic Medicine and Psychotherapy, Tuebingen, Germany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|