1
|
Ming X, Chen S, Li H, Wang Y, Zeng H, Lv Y. 6-methylcoumarin/miR-122 suppresses hepatic Sortilin-mediated ApoB-100 secretion to attenuate aortic atherosclerosis. Cell Signal 2024; 124:111384. [PMID: 39243919 DOI: 10.1016/j.cellsig.2024.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to investigate the effects of hepatic microRNA-122 (miR-122) on Sortilin-mediated apolipoprotein B100 (apoB-100) secretion, and on aortic lipid deposition and atherosclerosis (AS) lesions and to clarify the antiatherosclerotic mechanism of 6-methylcoumarin (6-MC) via the modulation of miR-122. Bioinformatics analysis revealed that miR-122 was putatively overexpressed in a liver-specific manner and was downregulated in steatotic livers. miR-122 was shown to suppress the expression of Sortilin by complementarily pairing to the 3'-untranslated region (3'-UTR) of Sortilin mRNA via bioinformatics and dual-luciferase reporter assays, impeding Sortilin-mediated apoB-100 secretion from HepG2 cells. Administration of 6-MC significantly upregulated hepatocellular miR-122 levels, reducing Sortilin expression and apoB-100 secretion in HepG2 cells. The miR-122 mimic vigorously enhanced 6-MC-depressed Sortilin expression, while miR-122 inhibitor repealed the inhibitory effect of 6-MC on Sortilin expression to some extent in HepG2 cells. After internal intervention with the miR-122 precursor, and 6-MC supplementation alone or in combination with the miR-122 sponge led to the reduction in blood triglyceride (TG) levels, low-density lipoprotein-cholesterol (LDL-C) and apoB-100 and a reduction in aortic lipid deposition and AS lesions in apolipoprotein E-deficient (ApoE-/-) mice fed a high fat diet (HFD). The hepatic levels of Sortilin and apoB-100 expression were also decreased in these treated mice. In conclusion, miR-122 suppresses Sortilin expression and Sortilin-mediated apoB-100 secretion to resist circulating LDL production and aortic AS development, which is enhanced by 6-MC-upregulated miR-122 in the liver.
Collapse
Affiliation(s)
- Xinyue Ming
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Shirui Chen
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Huijuan Li
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Yun Wang
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Haijun Zeng
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China.
| | - Yuncheng Lv
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
2
|
Chang C, Wang Y, Wang R, Bao X. Considering Context-Specific microRNAs in Ischemic Stroke with Three "W": Where, When, and What. Mol Neurobiol 2024; 61:7335-7353. [PMID: 38381296 DOI: 10.1007/s12035-024-04051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
MicroRNAs are short non-coding RNA molecules that function as critical regulators of various biological processes through negative regulation of gene expression post-transcriptionally. Recent studies have indicated that microRNAs are potential biomarkers for ischemic stroke. In this review, we first illustrate the pathogenesis of ischemic stroke and demonstrate the biogenesis and transportation of microRNAs from cells. We then discuss several promising microRNA biomarkers in ischemic stroke in a context-specific manner from three dimensions: biofluids selection for microRNA extraction (Where), the timing of sample collection after ischemic stroke onset (When), and the clinical application of the differential-expressed microRNAs during stroke pathophysiology (What). We show that microRNAs have the utilities in ischemic stroke diagnosis, risk stratification, subtype classification, prognosis prediction, and treatment response monitoring. However, there are also obstacles in microRNA biomarker research, and this review will discuss the possible ways to improve microRNA biomarkers. Overall, microRNAs have the potential to assist clinical treatment, and developing microRNA panels for clinical application is worthwhile.
Collapse
Affiliation(s)
- Chuheng Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- M.D. Program, Peking Union Medical College, Beijing, 100730, China
| | - Youyang Wang
- Department of General Practice (General Internal Medicine), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Yu Y, Li P, Chen M, Zhan W, Zhu T, Min L, Liu H, Lv B. MiR-122 overexpression alleviates oxygen-glucose deprivation-induced neuronal injury by targeting sPLA2-IIA. Front Neurol 2024; 15:1395833. [PMID: 38798705 PMCID: PMC11127566 DOI: 10.3389/fneur.2024.1395833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Background Ischemic stroke (IS) is a neurological disease with significant disability and mortality. MicroRNAs were proven to be associated with cerebral ischemia. Previous studies have demonstrated miR-122 downregulation in both animal models of IS and the blood of IS patients. Nonetheless, the role and mechanism of miR-122-5p in IS remain unclear. Methods We established primary human and mouse astrocytes, along with HT22 mouse hippocampal neuronal cells, through oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. To assess the impact of miR-122, we employed CCK8 assays, flow cytometry, RT-qPCR, western blotting, and ELISA to evaluate cell viability, apoptosis, reactive oxygen species (ROS) generation, and cytokine expression. A dual-luciferase reporter gene assay was employed to investigate the interaction between miR-122 and sPLA2-IIA. Results Overexpression of miR-122 resulted in decreased apoptosis, reduced cleaved caspase-3 expression, and increased cell viability in astrocytes and HT22 cells subjected to OGD/R. RT-qPCR and ELISA analyses demonstrated a decrease in mRNA and cytokine levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in both astrocytes and HT22 cells following miR-122 overexpression. Moreover, miR-122 overexpression reversed OGD/R-induced ROS levels and 8-OHdG formation in astrocytes. Additionally, miR-122 overexpression decreased the mRNA and protein expression of inducible nitric oxide synthase (iNOS). Furthermore, we found that miR-122 attaches to the 3'-UTR of sPLA2-IIA, thereby downregulate its expression. Conclusion Our study demonstrates that miR-122-mediated inhibition of sPLA2-IIA attenuates OGD/R-induced neuronal injury by suppressing apoptosis, alleviating post-ischemic inflammation, and reducing ROS production. Thus, the miR-122/sPLA2-IIA axis may represent a promising target for IS treatment.
Collapse
Affiliation(s)
- Yuanfang Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Practice, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Pan Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Mengyuan Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Practice, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wenfeng Zhan
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Practice, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Ling Min
- Department of Laboratory Medicine, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Hao Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Bo Lv
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of General Practice, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Lui A, Do T, Alzayat O, Yu N, Phyu S, Santuya HJ, Liang B, Kailash V, Liu D, Inslicht SS, Shahlaie K, Liu D. Tumor Suppressor MicroRNAs in Clinical and Preclinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2024; 17:426. [PMID: 38675388 PMCID: PMC11054060 DOI: 10.3390/ph17040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Cancers and neurological disorders are two major types of diseases in humans. We developed the concept called the "Aberrant Cell Cycle Disease (ACCD)" due to the accumulating evidence that shows that two different diseases share the common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncoprotein activation and tumor suppressor (TS) inactivation, which are associated with both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase/oncogene inhibition and TS elevation) can be leveraged for neurological treatments. MicroRNA (miR/miRNA) provides a new style of drug-target binding. For example, a single tumor suppressor miRNA (TS-miR/miRNA) can bind to and decrease tens of target kinases/oncogenes, producing much more robust efficacy to block cell cycle re-entry than inhibiting a single kinase/oncogene. In this review, we summarize the miRNAs that are altered in both cancers and neurological disorders, with an emphasis on miRNA drugs that have entered into clinical trials for neurological treatment.
Collapse
Affiliation(s)
- Austin Lui
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Timothy Do
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Omar Alzayat
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Nina Yu
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Su Phyu
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Hillary Joy Santuya
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Benjamin Liang
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Vidur Kailash
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Dewey Liu
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
| | - Sabra S. Inslicht
- Department of Psychiatry and Behavioral Sciences, University of California at San Francisco, San Francisco, CA 94143, USA
- San Francisco VA Health Care System, San Francisco, CA 94121, USA
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California at Davis, Davis, CA 95616, USA
| | - DaZhi Liu
- Department of Neurology, University of California at Davis, Davis, CA 95616, USA; (A.L.); (V.K.)
- Mirnova Therapeutics Inc., Davis, CA 95618, USA
| |
Collapse
|
5
|
MicroRNA miR-188-5p enhances SUMO2/3 conjugation by targeting SENP3 and alleviates focal cerebral ischemia/reperfusion injury in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1260-1267. [PMID: 39229582 PMCID: PMC11366937 DOI: 10.22038/ijbms.2024.76165.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 09/05/2024]
Abstract
Objectives Expression of miR-188-5p changes upon experiencing cerebral I/R injury. SENP3 is a predicted target of miR-188-5p. The study aimed to examine the potential mechanism underlying the miR-188-5p mediated enhancement of SUMO2/3 conjugation via targeting SENP3 and alleviation against cerebral I/R injury. Materials and Methods Focal cerebral I/R was established in Sprague-Dawley rats using the MCAO model. The expression of miR-188-5p was modulated through intracerebroventricular (ICV) administration of its mimics or inhibitors. The expression of miR-188-5p, SENP3, and SUMO2/3 was detected using RT-qPCR or western blot analysis. Dual luciferase reporter assays were conducted to demonstrate the targeting effect of miR-188-5p on SENP3 in N2a cells. HE staining and TUNEL staining were performed to evaluate neurocellular morphological changes and detect neurocellular apoptosis, respectively. The extent of neurological deficits was evaluated using mNSS. TTC staining was used to evaluate the infarct area. Results In the cerebral ischemic penumbra, the expression of miR-188-5p declined and SENP3 levels increased following I/R. Dual luciferase reporter assays confirmed that miR-188-5p directly acted on SENP3 in N2a cells. As a self-protective mechanism, SUMO2/3 conjugation increased after reperfusion. After ICV administration of miR-188-5p inhibitor, the expression of miR-188-5p was down-regulated, the expression of SENP3 was up-regulated, the SUMO2/3 conjugation decreased, and cerebral I/R injury was exacerbated. However, ICV administration of small hairpin RNA targeting SENP3 partially reversed the effects of the miR-188-5p inhibitor. Conclusion MiR-188-5p mitigated cerebral I/R injury by down-regulating SENP3 expression and consequently enhancing SUMO2/3 conjugation in rats.
Collapse
|
6
|
Elballal MS, Mohammed OA, Zaki MB, Abulsoud AI, Tabaa MME, Elazazy O, Abd-Elmawla MA, El-Dakroury WA, Abdel Mageed SS, Rashad AA, Abdelmaksoud NM, Elrebehy MA, Nomier Y, Abdel-Reheim MA, Oraby MA, Doghish AS. miRNAs as modulators of neuroinflammation and excitotoxicity: Implications for stroke therapeutics. Pathol Res Pract 2024; 253:155093. [PMID: 38184962 DOI: 10.1016/j.prp.2024.155093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Stroke is a widespread neurological disorder associated with physical disabilities, mortality, and economic burden. In recent decades, substantial progress has been achieved in reducing the impact of this public health problem. However, further understanding of the pathophysiology of stroke and the underlying genetic pathways is required. The pathological mechanisms of stroke comprise multifaceted molecular cascades regulated by various microRNAs (miRNAs). An increasing number of studies have highlighted the role of miRNAs, which have received much attention during the last decades as an important class of post-transcriptional regulators. It was shown that miRNAs exert their role in the etiology of stroke via mediating excitotoxicity and neuroinflammation. Additionally, miRNAs could be helpful as non-invasive or minimally invasive biomarkers and therapeutic agents. Thus, the current review focused on the interplay of these miRNAs in stroke pathology to upgrade the existing therapeutic strategies.
Collapse
Affiliation(s)
- Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and health sciences, Sultan Qaboos University, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Mamdouh A Oraby
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
7
|
Shelash Al-Hawary SI, Yahya Ali A, Mustafa YF, Margiana R, Maksuda Ilyasovna S, Ramadan MF, Almalki SG, Alwave M, Alkhayyat S, Alsalamy A. The microRNAs (miRs) overexpressing mesenchymal stem cells (MSCs) therapy in neurological disorders; hope or hype. Biotechnol Prog 2023; 39:e3383. [PMID: 37642165 DOI: 10.1002/btpr.3383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer's disease, Parkinson's disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. One of the biggest concerns within gene-based therapy is the delivery of the therapeutic microRNAs to the intended place, which is obligated to surpass the biological barriers without undergoing degradation in the bloodstream or renal excretion. Hence, the delivery of modified and unmodified miRNA molecules using excellent vehicles is required. In this light, mesenchymal stem cells (MSCs) have attracted increasing attention. The MSCs can be genetically modified to express or overexpress a particular microRNA aimed with promote neurogenesis and neuroprotection. The current review has focused on the therapeutic capabilities of microRNAs-overexpressing MSCs to ameliorate functional deficits in neurological conditions.
Collapse
Affiliation(s)
| | - Anas Yahya Ali
- Department of Nursing, Al-maarif University College, Ramadi, Al-Anbar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | | | | | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Marim Alwave
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Safa Alkhayyat
- College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
8
|
Wang JX, Xiao X, He XC, He BD, Liu CM, Teng ZQ. Agomir-331 Suppresses Reactive Gliosis and Neuroinflammation after Traumatic Brain Injury. Cells 2023; 12:2429. [PMID: 37887272 PMCID: PMC10605079 DOI: 10.3390/cells12202429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Traumatic brain injury usually triggers glial scar formation, neuroinflammation, and neurodegeneration. However, the molecular mechanisms underlying these pathological features are largely unknown. Using a mouse model of hippocampal stab injury (HSI), we observed that miR-331, a brain-enriched microRNA, was significantly downregulated in the early stage (0-7 days) of HSI. Intranasal administration of agomir-331, an upgraded product of miR-331 mimics, suppressed reactive gliosis and neuronal apoptosis and improved cognitive function in HSI mice. Finally, we identified IL-1β as a direct downstream target of miR-331, and agomir-331 treatment significantly reduced IL-1β levels in the hippocampus after acute injury. Our findings highlight, for the first time, agomir-331 as a pivotal neuroprotective agent for early rehabilitation of HSI.
Collapse
Affiliation(s)
- Jin-Xing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (X.-C.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Xiao Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (X.-C.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Xuan-Cheng He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (X.-C.H.)
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Bao-Dong He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (X.-C.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (X.-C.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China (X.-C.H.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
9
|
Targeting Non-Coding RNA for CNS Injuries: Regulation of Blood-Brain Barrier Functions. Neurochem Res 2023; 48:1997-2016. [PMID: 36786944 DOI: 10.1007/s11064-023-03892-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Central nervous system (CNS) injuries are the most common cause of death and disability around the world. The blood-brain barrier (BBB) is located at the interface between the CNS and the surrounding environment, which protects the CNS from exogenous molecules, harmful agents or microorganisms in the blood. The disruption of BBB is a common feature of CNS injuries and participates in the pathological processes of secondary brain damage. Recently, a growing number of studies have indicated that non-coding RNAs (ncRNAs) play an important role in brain development and are involved in CNS injuries. In this review, we summarize the mechanisms of BBB breakdown after CNS injuries. We also discuss the effects of ncRNAs including long noncoding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) on BBB damage in CNS injuries such as ischemic stroke, traumatic brain injury (TBI), intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). In addition, we clarify the pharmacotherapies that could regulate BBB function via ncRNAs in CNS injuries, as well as the challenges and perspectives of ncRNAs on modulation of BBB function. Hence, on the basis of these effects, ncRNAs may be developed as therapeutic agents to protect the BBB for CNS injury patients.
Collapse
|
10
|
Zhang Y, Yuan X, Xu J, Gu H. CircRBM33 induces endothelial dysfunction by targeting the miR-6838-5p/PDCD4 axis affecting blood-brain barrier in mice with cerebral ischemia-reperfusion injury. Clin Hemorheol Microcirc 2023; 85:355-370. [PMID: 37927249 DOI: 10.3233/ch-231776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
BACKGROUND circRNAs (circRNAs) are involved in the process of cerebral ischemia-reperfusion injury (CI/RI). Our study aims to explore circRBM33 in the endothelial function of the blood-brain barrier (BBB). METHODS The mouse middle cerebral artery occlusion model (MCAO) was established and restored to perfusion, and OGD/R-induced endothelial cells were used to simulate CI/RI. circRBM33, miR-6838-5p and PDCD4, as well as Occludin, ZO-1 and Claudin-5 TJs were evaluated by quantitative PCR and Western blot. The ring structure of circRBM33 was verified by RNAse R and actinomycin D experiments. MTT and LDH Cytotoxicity assay determined viability and toxicity, and flow cytometry determined apoptosis rate. Inflammatory cytokines and the number of microglia in brain tissue were measured by ELISA and IHC. The interaction between genes was verified by RIP and dual luciferase reporter assay. RESULTS circRBM33 was a circrRNA present in the cytoplasm and up-regulated in the brain tissue of MCAO mice and OGD/R-induced endothelial cells. Silenced circRBM33 promoted Occludin, ZO-1, and Claudin-5 expression and cell proliferation, and inhibited cytotoxicity, inflammatory response, and apoptosis. Functionally, circRBM33-absorbed miR-6838-5p was involved in regulating PDCD4, leading to endothelial cell dysfunction, and thus affecting the function of the BBB. CONCLUSIONS circRBM33 by mediating miR-6838-5p/PDCD4 axis induces endothelial dysfunction, thereby affecting the BBB in mice with CI/RI.
Collapse
Affiliation(s)
- Yanbin Zhang
- Department of Neurology, First People's Hospital of Linping District, Hangzhou City, ZheJiang, China
| | - Xiaodong Yuan
- Department of Neurology, First People's Hospital of Linping District, Hangzhou City, ZheJiang, China
| | - Jie Xu
- Department of Neurology, First People's Hospital of Linping District, Hangzhou City, ZheJiang, China
| | - Huafen Gu
- Department of Neurology, First People's Hospital of Linping District, Hangzhou City, ZheJiang, China
| |
Collapse
|
11
|
Li X, Qi H, Cui W, Wang Z, Fu X, Li T, Ma H, Yang Y, Yu T. Recent advances in targeted delivery of non-coding RNA-based therapeutics for atherosclerosis. Mol Ther 2022; 30:3118-3132. [PMID: 35918894 PMCID: PMC9552813 DOI: 10.1016/j.ymthe.2022.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022] Open
Abstract
Cardiovascular disease (CVD) has overtaken infectious illnesses as the leading cause of mortality and disability worldwide. The pathology that underpins CVD is atherosclerosis, characterized by chronic inflammation caused by the accumulation of plaques in the arteries. As our knowledge about the microenvironment of blood vessel walls deepens, there is an opportunity to fine-tune treatments to target the mechanisms driving atherosclerosis more directly. The application of non-coding RNAs (ncRNAs) as biomarkers or intervention targets is increasing. Although these ncRNAs play an important role in driving atherosclerosis and vascular dysfunction, the cellular and extracellular environments pose a challenge for targeted transmission and therapeutic regulation of ncRNAs. Specificity, delivery, and tolerance have hampered the clinical translation of ncRNA-based therapeutics. Nanomedicine is an emerging field that uses nanotechnology for targeted drug delivery and advanced imaging. Recently, nanoscale carriers have shown promising results and have introduced new possibilities for nucleic acid targeted drug delivery, particularly for atherosclerosis. In this review, we discuss the latest developments in nanoparticles to aid ncRNA-based drug development, particularly miRNA, and we analyze the current challenges in ncRNA targeted delivery. In particular, we highlight the emergence of various kinds of nanotherapeutic approaches based on ncRNAs, which can improve treatment options for atherosclerosis.
Collapse
Affiliation(s)
- Xiaoxin Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Hongzhao Qi
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, No. 126 Taian Road, Rizhao 276827, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China
| | - Tianxiang Li
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao 266021, People's Republic of China.
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China; Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266000, China.
| |
Collapse
|
12
|
LncRNA Meg3 promotes oxygen and glucose deprivation injury by decreasing angiogenesis in hBMECs by targeting the miR‑122‑5p/NDRG3 axis. Exp Ther Med 2022; 24:622. [PMID: 36160904 PMCID: PMC9468836 DOI: 10.3892/etm.2022.11559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022] Open
Abstract
Oxygen-glucose deprivation (OGD) is widely used as an in vitro model for stroke. The present study aimed to explore the mechanisms of action of long non-coding RNA (lncRNA) maternally expressed gene 3 (Meg3) in angiogenesis following OGD. The human brain microvascular endothelial cell line, hCMEC/D3, was used to establish the OGD model. lncRNA Meg3 was highly expressed in hCMEC/D3 cells subjected to OGD. Furthermore, it was found that the overexpression of lncRNA Meg3 decreased the proliferation, migration and angiogenesis of hCMEC/D3 cells subjected to OGD, and increased cell apoptosis. Meg3 silencing exerted the opposite effects. Subsequently, lncRNA Meg3 increased the expression of NDRG family member 3 (NDRG3) by directly binding to miR-122-5p. The overexpression of miR-122-5p and the knockdown of NDRG3 reversed the inhibitory effects of Meg3 overexpression on the proliferation, migration and angiogenesis of hCMEC/D3 cells subjected to OGD, as well as the promoting effects of Meg3 overexpression on cell apoptosis. The present study demonstrated that lncRNA Meg3 functions as a competing endogenous RNA by targeting the miR-122-5p/NDRG3 axis in regulating OGD injury.
Collapse
|
13
|
Can U, Marzioglu E, Akdu S. Some miRNA expressions and their targets in ischemic stroke. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1224-1262. [PMID: 35876186 DOI: 10.1080/15257770.2022.2098974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Ischemic stroke (IS) is a global health challenge leading to life-long disabilities or the deaths of patients. IS is a complex disease where genetic and environmental factors are both concerned with the pathophysiology of the condition. Here, we aimed to investigate various microRNA (miRNA) expressions and their targets in IS. A rapid and accurate diagnosis of acute IS is important to perform appropriate treatment. Therefore, there is a need for a more rapid and simple tool to carry out an acute diagnosis of IS. miRNAs are small RNA molecules serving as precious biomarkers due to their easy detection and stability in blood samples. The present systematic review aimed to summarize previous studies investigating several miRNA expressions and their targets in IS.
Collapse
Affiliation(s)
- Ummugulsum Can
- Department of Biochemistry, Konya City Hospital, Konya, Türkiye
| | - Ebru Marzioglu
- Department of Genetics, Konya Training and Research Hospital, Konya, Türkiye
| | - Sadinaz Akdu
- Department of Biochemistry, Fethiye State Hospital, Muğla, Turkey
| |
Collapse
|
14
|
Branyan TE, Selvamani A, Park MJ, Korula KE, Kosel KF, Srinivasan R, Sohrabji F. Functional Assessment of Stroke-Induced Regulation of miR-20a-3p and Its Role as a Neuroprotectant. Transl Stroke Res 2022; 13:432-448. [PMID: 34570349 PMCID: PMC9046320 DOI: 10.1007/s12975-021-00945-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
MicroRNAs have gained popularity as a potential treatment for many diseases, including stroke. This study identifies and characterizes a specific member of the miR-17-92 cluster, miR-20a-3p, as a possible stroke therapeutic. A comprehensive microRNA screening showed that miR-20a-3p was significantly upregulated in astrocytes of adult female rats, which typically have better stroke outcomes, while it was profoundly downregulated in astrocytes of middle-aged females and adult and middle-aged males, groups that typically have more severe stroke outcomes. Assays using primary human astrocytes and neurons show that miR-20a-3p treatment alters mitochondrial dynamics in both cell types. To assess whether stroke outcomes could be improved by elevating astrocytic miR-20a-3p, we created a tetracycline (Tet)-induced recombinant adeno-associated virus (rAAV) construct where miR-20a-3p was located downstream a glial fibrillary acidic protein promoter. Treatment with doxycycline induced miR-20-3p expression in astrocytes, reducing mortality and modestly improving sensory motor behavior. A second Tet-induced rAAV construct was created in which miR-20a-3p was located downstream of a neuron-specific enolase (NSE) promoter. These experiments demonstrate that neuronal expression of miR-20a-3p is vastly more neuroprotective than astrocytic expression, with animals receiving the miR-20a-3p vector showing reduced infarction and sensory motor improvement. Intravenous injections, which are a therapeutically tractable treatment route, with miR-20a-3p mimic 4 h after middle cerebral artery occlusion (MCAo) significantly improved stroke outcomes including infarct volume and sensory motor performance. Improvement was not observed when miR-20a-3p was given immediately or 24 h after MCAo, identifying a unique delayed therapeutic window. Overall, this study identifies a novel neuroprotective microRNA and characterizes several key pathways by which it can improve stroke outcomes.
Collapse
Affiliation(s)
- Taylor E Branyan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Amutha Selvamani
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Min Jung Park
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Kriti E Korula
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Kelby F Kosel
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Rahul Srinivasan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA.
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA.
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
15
|
Zhang L, Zhou H, Wang S, Guan Y, Zhang C, Fang D. Changes in microglia during drug treatment of stroke. IBRAIN 2022; 8:227-240. [PMID: 37786889 PMCID: PMC10528798 DOI: 10.1002/ibra.12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 10/04/2023]
Abstract
Microglia are the main immune cells in the brain and the first defense barrier of the nervous system. Microglia play a complex role in the process of stroke. A growing number of studies focus on the mechanism of action of drugs functions and how to regulate microglia. Therefore, we talk about the pathophysiological mechanisms of stroke and elaborate on the microglia signaling pathways of drug action in stroke models and how these drugs play a role in stroke treatment in this review. Understanding how drugs modulate proinflammatory and anti-inflammatory responses of microglia may be critical to implementing therapeutic strategies using immune interventions in stroke.
Collapse
Affiliation(s)
- Ling‐Jing Zhang
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Hong‐Su Zhou
- Department of AnesthesiaGraduate School of Zunyi Medical UniversityZunyiGuizhouChina
| | - Shi‐Ya Wang
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Yi‐Huan Guan
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Chao Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - De‐Rong Fang
- Department of Family PlanningAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
16
|
Noncoding RNA as Diagnostic and Prognostic Biomarkers in Cerebrovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8149701. [PMID: 35498129 PMCID: PMC9042605 DOI: 10.1155/2022/8149701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Noncoding RNAs (ncRNAs), such as microRNAs, long noncoding RNAs, and circular RNAs, play an important role in the pathophysiology of cerebrovascular diseases (CVDs). They are effectively detectable in body fluids, potentially suggesting new biomarkers for the early detection and prognosis of CVDs. In this review, the physiological functions of circulating ncRNAs and their potential role as diagnostic and prognostic markers in patients with cerebrovascular diseases are discussed, especially in acute ischemic stroke, subarachnoid hemorrhage, and moyamoya disease.
Collapse
|
17
|
Sun P, Hamblin MH, Yin KJ. Non-coding RNAs in the regulation of blood–brain barrier functions in central nervous system disorders. Fluids Barriers CNS 2022; 19:27. [PMID: 35346266 PMCID: PMC8959280 DOI: 10.1186/s12987-022-00317-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential component of the neurovascular unit that controls the exchanges of various biological substances between the blood and the brain. BBB damage is a common feature of different central nervous systems (CNS) disorders and plays a vital role in the pathogenesis of the diseases. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs), are important regulatory RNA molecules that are involved in almost all cellular processes in normal development and various diseases, including CNS diseases. Cumulative evidences have demonstrated ncRNA regulation of BBB functions in different CNS diseases. In this review, we have summarized the miRNAs, lncRNAs, and circRNAs that can be served as diagnostic and prognostic biomarkers for BBB injuries, and demonstrated the involvement and underlying mechanisms of ncRNAs in modulating BBB structure and function in various CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), spinal cord injury (SCI), multiple sclerosis (MS), Alzheimer's disease (AD), vascular cognitive impairment and dementia (VCID), brain tumors, brain infections, diabetes, sepsis-associated encephalopathy (SAE), and others. We have also discussed the pharmaceutical drugs that can regulate BBB functions via ncRNAs-related signaling cascades in CNS disorders, along with the challenges, perspective, and therapeutic potential of ncRNA regulation of BBB functions in CNS diseases.
Collapse
|
18
|
Kristinsson S, Fridriksson J. Genetics in aphasia recovery. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:283-296. [PMID: 35078606 DOI: 10.1016/b978-0-12-823384-9.00015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Considerable research efforts have been exerted toward understanding the mechanisms underlying recovery in aphasia. However, predictive models of spontaneous and treatment-induced recovery remain imprecise. Some of the hitherto unexplained variability in recovery may be accounted for with genetic data. A few studies have examined the effects of the BDNF val66met polymorphism on aphasia recovery, yielding mixed results. Advances in the study of stroke genetics and genetics of stroke recovery, including identification of several susceptibility genes through candidate-gene or genome-wide association studies, may have implications for the recovery of language function. The current chapter discusses both the direct and indirect evidence for a genetic basis of aphasia recovery, the implications of recent findings within the field, and potential future directions to advance understanding of the genetics-recovery associations.
Collapse
Affiliation(s)
- Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
19
|
Ghafouri-Fard S, Shirvani-Farsani Z, Hussen BM, Taheri M, Arefian N. Emerging Impact of Non-coding RNAs in the Pathology of Stroke. Front Aging Neurosci 2021; 13:780489. [PMID: 34867304 PMCID: PMC8640345 DOI: 10.3389/fnagi.2021.780489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Ischemic stroke (IS) is an acute cerebral vascular event with high mortality and morbidity. Though the precise pathophysiologic routes leading to this condition are not entirely clarified, growing evidence from animal and human experiments has exhibited the impact of non-coding RNAs in the pathogenesis of IS. Various lncRNAs namely MALAT1, linc-SLC22A2, linc-OBP2B-1, linc_luo_1172, linc-DHFRL1-4, SNHG15, linc-FAM98A-3, H19, MEG3, ANRIL, MIAT, and GAS5 are possibly involved in the pathogenesis of IS. Meanwhile, lots of miRNAs contribute in this process. Differential expression of lncRNAs and miRNAs in the sera of IS patients versus unaffected individuals has endowed these transcripts the aptitude to distinguish at risk patients. Despite conduction of comprehensive assays for evaluation of the influence of lncRNAs/miRNAs in the pathogenesis of IS, therapeutic impacts of these transcripts in IS have not been clarified. In the present paper, we review the impact of lncRNAs/miRNAs in the pathobiology of IS through assessment of evidence provided by human and animal studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Noormohammad Arefian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University Hospital, Tehra, Iran
| |
Collapse
|
20
|
Qi X, Lin H, Hou Y, Su X, Gao Y. Comprehensive Analysis of Potential miRNA-Target mRNA-Immunocyte Subtype Network in Cerebral Infarction. Eur Neurol 2021; 85:148-161. [PMID: 34544080 DOI: 10.1159/000518893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Cerebral infarction (CI) is one of the leading causes of serious long-term disability and mortality. OBJECTIVE We aimed to identify potential miRNAs and target mRNAs and assess the involvement of immunocyte infiltration in the process of CI. METHODS First, miRNA and mRNA data were downloaded from the Gene Expression Omnibus database, followed by differential expression analysis. Second, correlation analysis between differentially expressed mRNAs and differential immunocyte subtypes was performed through the CIBERSORT algorithm. Third, the regulatory network between miRNAs and immunocyte subtype-related mRNAs was constructed followed by the functional analysis of these target mRNAs. Fourth, correlation validation between differentially expressed mRNAs and differential immunocyte subtypes was performed in the GSE37587 dataset. Finally, the diagnostic ability of immunocyte subtype-related mRNAs was tested. RESULTS Up to 17 differentially expressed miRNAs and 3,267 differentially expressed mRNAs were identified, among which 310 differentially expressed mRNAs were significantly associated with immunocyte subtypes. Several miRNA-target mRNA-immunocyte subtype networks including hsa-miR-671-3p-ZC3HC1-neutrophils, hsa-miR-625-CD5-monocytes, hsa-miR-122-ACOX1/DUSP1/NEDD9-neutrophils, hsa-miR-455-5p-SLC24A4-monocytes, and hsa-miR-455-5p-SORL1-neutrophils were identified. LAT, ACOX1, DUSP1, NEDD9, ZC3HC1, BIN1, AKT1, DNMT1, SLC24A4, and SORL1 had a potential diagnostic value for CI. CONCLUSIONS The network including miRNA, target mRNA, and immunocyte subtype may be novel regulators and diagnostic and therapeutic targets in CI.
Collapse
Affiliation(s)
- Xiuyan Qi
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Huiqian Lin
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yongge Hou
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xiaohui Su
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yanfang Gao
- Clinical Laboratory, Hebei Red Cross Boai Hospital, Shijiazhuang, China
| |
Collapse
|
21
|
Wang M, Liu X, Wu Y, Wang Y, Cui J, Sun J, Bai Y, Lang MF. ΜicroRNA-122 protects against ischemic stroke by targeting Maf1. Exp Ther Med 2021; 21:616. [PMID: 33936273 DOI: 10.3892/etm.2021.10048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 09/11/2020] [Indexed: 11/06/2022] Open
Abstract
The protection of brain tissue against damage and the reduction of infarct size is crucial for improving patient prognosis following ischemic stroke. Therefore, the present study aimed to investigate the regulatory effect of microRNA (miR)-122 and its target gene repressor of RNA polymerase III transcription MAF1 homolog (Maf1) on the infarct area in ischemic stroke. Reverse transcription-quantitative PCR (RT-qPCR) was performed to determine miR-122 expression levels in an ischemic stroke [middle cerebral artery occlusion (MCAO)] mouse model. Nissl staining was conducted to measure the infarct area of the MCAO mouse model. Moreover, RT-qPCR was performed to investigate the relationship between the expression of Maf1 and miR-122 in the MCAO mouse model. Dual-luciferase reporter assay in vitro and miR-122 mimic or inhibitor treatment in vivo were conducted to verify that miR-122 targeted and inhibited Maf1 expression. The results suggested that miR-122 was upregulated in the brain tissue of MCAO model mice. miR-122 overexpression effectively reduced the size of the infarct area in comparison with a control and miR-122 knockdown in brain tissue resulted in the opposite effect. Moreover, Maf1 was confirmed to be a direct target of miR-122. The results of a dual-luciferase reporter assay indicated that miR-122 bound to the 3'-untranslated region of Maf1. Maf1 expression decreased after stroke model induction in comparison with that in sham animals, and Maf1 expression was negatively associated with the expression of miR-122. In addition, miR-122 knockdown increased Maf1 expression levels, whereas miR-122 overexpression decreased Maf1 expression levels in comparison with a control. In conclusion, the results suggested that miR-122 improved the outcome of acute ischemic stroke by reducing the expression of Maf1.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Xiaoman Liu
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Yu Wu
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Yi Wang
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Jiahui Cui
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Jing Sun
- College of Environmental and Chemical Engineering, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Ying Bai
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning 116021, P.R. China
| | - Ming-Fei Lang
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, P.R. China
| |
Collapse
|
22
|
Hussein M, Magdy R. MicroRNAs in central nervous system disorders: current advances in pathogenesis and treatment. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00289-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractMicroRNAs (miRNAs) are a class of short, non-coding, regulatory RNA molecules that function as post transcriptional regulators of gene expression. Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer’s disease, Parkinson’s disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington’s disease. miRNAs are implicated in the pathogenesis of excitotoxicity, apoptosis, oxidative stress, inflammation, neurogenesis, angiogenesis, and blood–brain barrier protection. Consequently, miRNAs can serve as biomarkers for different neurological disorders. In recent years, advances in the miRNA field led to identification of potentially novel prospects in the development of new therapies for incurable CNS disorders. MiRNA-based therapeutics include miRNA mimics and inhibitors that can decrease or increase the expression of target genes. Better understanding of the mechanisms by which miRNAs are implicated in the pathogenesis of neurological disorders may provide novel targets to researchers for innovative therapeutic strategies.
Collapse
|
23
|
Dutkowska A, Szmyd B, Kaszkowiak M, Domańska-Senderowska D, Pastuszak-Lewandoska D, Brzeziańska-Lasota E, Kordiak J, Antczak A. Expression of inflammatory interleukins and selected miRNAs in non-small cell lung cancer. Sci Rep 2021; 11:5092. [PMID: 33658555 PMCID: PMC7930048 DOI: 10.1038/s41598-021-84408-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
Tumours are characterised by an ability to avoid immune destruction and the presence of cancer-associated inflammation. Better understanding of the link between lung cancer and such inflammation is vital for early detection and personalized treatment. Thus, we examined the mRNA expression of interleukins IL-1β, IL-6, IL-17 and miR-9, miR-122 as potential useful biomarkers of NSCLC. Tumour tissues, non-cancerous tissue and blood samples were collected from 39 patients with primary NSCLC undergoing surgical treatment. The selected RNA was isolated from tissue samples and selected miRNAs from peripheral blood exosomes. This RNA was transcribed to cDNA and quantified using RT-qPCR. Significantly higher expression of the selected interleukins was observed in non-cancerous than tumour tissue, and IL-6 was significantly higher in the tumour tissue of patients with a history of ≤ 40 pack-years (PYs) (2.197, IQR: 0.821-4.415) than in those with > 40 PYs (0.461, IQR: 0.372-0.741; p = 0.037). It is clear that inflammatory processes play a role in NSCLC, as indicated by the upregulation of IL-1β and IL-6 in tumour and adjacent tissue, and that smoking has a strong influence on inflammation in tumourigenesis, demonstrated by the upregulation of IL-6 in tumour samples among patients with ≤ 40 PYs compared to > 40 PYs.
Collapse
Affiliation(s)
- Agata Dutkowska
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland.
| | - Bartosz Szmyd
- Department of Biomedicine and Genetics, Medical University of Lodz, Lodz, Poland
| | - Marcin Kaszkowiak
- Department of Biomedicine and Genetics, Medical University of Lodz, Lodz, Poland
| | | | | | | | - Jacek Kordiak
- Department of Chest Surgery, General and Oncological Surgery, University Teaching Hospital No. 2, Medical University of Lodz, Lodz, Poland
| | - Adam Antczak
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
24
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
25
|
Zhang J, Sun P, Zhou C, Zhang X, Ma F, Xu Y, Hamblin MH, Yin K. Regulatory microRNAs and vascular cognitive impairment and dementia. CNS Neurosci Ther 2020; 26:1207-1218. [PMID: 33459504 PMCID: PMC7702235 DOI: 10.1111/cns.13472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is defined as a progressive dementia disease related to cerebrovascular injury and often occurs in aged populations. Despite decades of research, effective treatment for VCID is still absent. The pathological processes of VCID are mediated by the molecular mechanisms that are partly modulated at the post-transcriptional level. As small endogenous non-coding RNAs, microRNAs (miRs) can regulate target gene expression through post-transcriptional gene silencing. miRs have been reported to play an important role in the pathology of VCID and have recently been suggested as potential novel pharmacological targets for the development of new diagnosis and treatment strategies in VCID. In this review, we summarize the current understanding of VCID, the possible role of miRs in the regulation of VCID and attempt to envision future therapeutic strategies. Since manipulation of miR levels by either pharmacological or genetic approaches has shown therapeutic effects in experimental VCID models, we also emphasize the potential therapeutic value of miRs in clinical settings.
Collapse
Affiliation(s)
- Jing Zhang
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Ping Sun
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Chao Zhou
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Xuejing Zhang
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Feifei Ma
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Yang Xu
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Milton H. Hamblin
- Department of PharmacologyTulane University School of MedicineNew OrleansLAUSA
| | - Ke‐Jie Yin
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Geriatric ResearchEducation and Clinical CenterVeterans Affairs Pittsburgh Healthcare SystemPittsburghPAUSA
| |
Collapse
|
26
|
Vinciguerra A, Cepparulo P, Anzilotti S, Cuomo O, Valsecchi V, Amoroso S, Annunziato L, Pignataro G. Remote postconditioning ameliorates stroke damage by preventing let-7a and miR-143 up-regulation. Theranostics 2020; 10:12174-12188. [PMID: 33204336 PMCID: PMC7667695 DOI: 10.7150/thno.48135] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
Remote limb ischemic postconditioning (RLIP) is a well-established neuroprotective strategy able to protect the brain from a previous harmful ischemic insult through a sub-lethal occlusion of the femoral artery. Neural and humoral mechanisms have been proposed as mediators required to transmit the peripheral signal from limb to brain. Moreover, different studies suggest that protection observed at brain level is associated to a general genetic reprogramming involving also microRNAs (miRNAs) intervention. Methods: Brain ischemia was induced in male rats by transient occlusion of the middle cerebral artery (tMCAO), whereas RLIP was achieved by one cycle of temporary occlusion of the ipsilateral femoral artery after tMCAO. The expression profile of 810 miRNAs was evaluated in ischemic brain samples from rats subjected either to tMCAO or to RLIP. Among all analyzed miRNAs, there were four whose expression were upregulated after stroke and returned to basal level after RLIP, thus suggesting a possible involvement in RLIP-induced neuroprotection. These selected miRNAs were intracerebroventricularly infused in rats subjected to remote ischemic postconditioning, and their effect was evaluated in terms of brain damage, neurological deficit scores and expression of putative targets. Results: Twenty-one miRNAs, whose expression was significantly affected by tMCAO and by tMCAO plus RLIP, were selected based on microarray microfluidic profiling. Our data showed that: (1) stroke induced an up-regulation of let-7a and miR-143 (2) these two miRNAs were involved in the protective effects induced by RLIP and (3) HIF1-α contributes to their protective effect. Indeed, their expression was reduced after RLIP and the exogenous intracerebroventricularly infusion of let-7a and miR-143 mimics prevented neuroprotection and HIF1-α overexpression induced by RLIP. Conclusions: Prevention of cerebral let-7a and miR-143 overexpression induced by brain ischemia emerges as new potential strategy in stroke intervention.
Collapse
|
27
|
Deng W, Fan C, Zhao Y, Mao Y, Li J, Zhang Y, Teng J. MicroRNA-130a regulates neurological deficit and angiogenesis in rats with ischaemic stroke by targeting XIAP. J Cell Mol Med 2020; 24:10987-11000. [PMID: 32790238 PMCID: PMC7521252 DOI: 10.1111/jcmm.15732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/29/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023] Open
Abstract
MicroRNAs (miRNAs) have already been proposed to be implicated in the development of ischaemic stroke. We aim to investigate the role of miR-130a in the neurological deficit and angiogenesis in rats with ischaemic stroke by regulating X-linked inhibitor of apoptosis protein (XIAP). Middle cerebral artery occlusion (MCAO) models were established by suture-occluded method, and MCAO rats were then treated with miR-130a mimics/inhibitors or/and altered XIAP for detection of changes of rats' neurological function, nerve damage and angiogenesis in MCAO rats. The oxygen-glucose deprivation (OGD) cellular models were established and respectively treated to determine the roles of miR-130a and XIAP in neuronal viability and apoptosis. The expression levels of miR-130a and XIAP in brain tissues of MCAO rats and OGD-treated neurons were detected. The binding site between miR-130a and XIAP was verified by luciferase activity assay. MiR-130a was overexpressed while XIAP was down-regulated in MCAO rats and OGD-treated neurons. In animal models, suppressed miR-130a improved neurological function, alleviated nerve damage and increased new vessels in brain tissues of rats with MCAO. In cellular models, miR-130a inhibition promoted neuronal viability and suppressed apoptosis. Inhibited XIAP reversed the effect of inhibited miR-130a in both MCAO rats and OGD-treated neurons. XIAP was identified as a target of miR-130a. Our study reveals that miR-130a regulates neurological deficit and angiogenesis in rats with MCAO by targeting XIAP.
Collapse
Affiliation(s)
- Wenjing Deng
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Chenghe Fan
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Yanan Zhao
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Yuewei Mao
- The Vascular Surgery Department, Zhengzhou Central Hospital, Affiliated Hospital of Zhengzhou University. Zhengzhou, Henan, China
| | - Jiajia Li
- The Neurology Department, Zhengzhou Central Hospital, Affiliated Hospital of Zhengzhou University. Zhengzhou, Henan, China
| | - Yonggan Zhang
- The Vascular Surgery Department, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| | - Junfang Teng
- The Neurology Intensive Care Unit, The First Affiliated of Zhengzhou University. Zhengzhou, Henan, China
| |
Collapse
|
28
|
Circulating miRNA-3552 as a Potential Biomarker for Ischemic Stroke in Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4501393. [PMID: 32724801 PMCID: PMC7381948 DOI: 10.1155/2020/4501393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 01/26/2023]
Abstract
Objective With the growing incidence of ischemic stroke worldwide, there is an urgent need to identify blood biomarkers for ischemic stroke patients. Thus, our aim was to identify potential circulating microRNA (miRNA) as a potential biomarker and to explore its potential mechanism for ischemic stroke in rats. Methods The mRNA dataset GSE97537 and miRNA dataset GSE97532 were downloaded from the Gene Expression Omnibus (GEO) GSE97537 including 7 middle cerebral artery occlusion (MCAO) rat brain tissues and 5 sham-operated rat brain tissues GSE97532 including 6 MCAO rat blood samples and 3 sham-operated rat blood samples. Differentially expressed mRNAs and miRNAs with corrected p value ≤ 0.01 and fold change ≥2 or ≤0.05 were identified. To explore potential biological processes and pathways of differentially expressed mRNAs, functional enrichment analysis was performed. The target mRNAs of differentially expressed miRNAs were predicted using DNA Intelligent Analysis (DIANA)-microT tools. The target mRNAs and differentially expressed mRNAs were intersected. Results 1228 differentially expressed mRNAs in MCAO rat brain tissues were identified. Highly expressed mRNAs were mainly enriched in the inflammatory responses. Nine differentially expressed miRNAs were identified in MCAO rat blood samples. A total of 673 target mRNAs were predicted to significantly bind these differentially expressed miRNAs. Among them, 54 target mRNAs were differentially expressed in MCAO rat blood samples. Enrichment analysis results showed that these 54 target mRNAs were closely related to neurological diseases and immune responses. Among all miRNA-mRNA relationship, miR-3552-CASP3 interaction was identified, indicating that CASP3 might be mediated by miR-3552. Functional enrichment analysis revealed that CASP3 was involved in the apoptosis pathway, indicating that miR-3552 might participate in apoptosis by CASP3. Conclusion Our findings reveal that circulating miR-3552 shows promise as a potential biomarker for ischemic stroke in rats.
Collapse
|
29
|
Granulocyte Colony Stimulating Factor (GCSF) Can Attenuate Neuropathic Pain by Suppressing Monocyte Chemoattractant Protein-1 (MCP-1) Expression, through Upregulating the Early MicroRNA-122 Expression in the Dorsal Root Ganglia. Cells 2020; 9:cells9071669. [PMID: 32664488 PMCID: PMC7408430 DOI: 10.3390/cells9071669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 01/04/2023] Open
Abstract
Our previous animal studies and several human clinical trials have shown that granulocyte-colony stimulating factor (GCSF) can attenuate neuropathic pain through various mechanisms. GCSF itself is also a multipotent cytokine that can modulate microribonucleic acid (microRNA) expression profiles in vitro. In this study, we used the NanoString nCounter analysis system to screen the expression of different rodent microRNAs at early stage after nerve injury and studied the expression of related cytokines/chemokines in the dorsal root ganglia (DRGs) of rats that underwent chronic constriction injury (CCI) to explore the underlying mechanisms of the analgesic effects of GCSF. We found that microRNA-122 expression was downregulated by CCI; in contrast, GCSF treatment significantly upregulated microRNA-122 expression in the DRGs of CCI rats on the 1st day after nerve injury. We further studied the expression of different cytokines/chemokines (IL-1β, IL-6, and monocyte chemoattractant protein-1 (MCP-1)) that were modulated by microRNA-122. MCP-1 has been reported to participate in neuropathic pain development, and its expression on the DRGs of vehicle-treated CCI rats was significantly higher than that on the DRGs of sham-operated rats; in contrast, GCSF-treated rats exhibited significantly lower MCP-1 expression in the DRG than vehicle-treated rats on the 7th day after nerve injury. An early GCSF treatment can suppress MCP-1 expressions, through upregulating microRNA-122 expressions in the DRGs of CCI rats at an earlier stage, thus indirectly attenuating neuropathic pain development.
Collapse
|
30
|
MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat Rev Neurol 2020; 16:506-519. [DOI: 10.1038/s41582-020-0369-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
|
31
|
Mu J, Cheng X, Zhong S, Chen X, Zhao C. Neuroprotective effects of miR-532-5p against ischemic stroke. Metab Brain Dis 2020; 35:753-763. [PMID: 32086725 DOI: 10.1007/s11011-020-00544-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Stroke can cause death and disability and has a high incidence with many complications. So far, effective treatment options for stroke are still limited. MicroRNA-532-5p (miR-532-5p) is significantly downregulated in stroke. However, the role of miR-532-5p in ischemic stroke is still unclear. In this study, we established an in vivo middle cerebral artery occlusion (MCAO) model in mice. The expression level of miR-532-5p, neurological score, infarct area, neuronal apoptosis, and phosphoinositide 3-kinase (PI3K)/Akt signaling pathway-related molecules were examined. Low miR-532-5p levels and high phosphatase and tensin homolog deleted on chromosome 10 (PTEN) levels were detected in the mouse MCAO model. MiR-532-5p overexpression improved neurological dysfunction, reduced the infarct area, attenuated neuronal injury and apoptosis, and promoted the activation of the PI3K/Akt signaling pathway in MCAO mice. In vitro, we treated mouse neuroblastoma cells (N2a) with oxygen-glucose deprivation and reperfusion (OGD/R). The expression level of miR-532-5p, cell viability, cell apoptosis, and the PI3K/Akt signaling pathway-related molecules were detected. Consistent with the in vivo tests, the miR-532-5p level was decreased and the PTEN level was increased in OGD-treated N2a cells in vitro. The miR-532-5p mimic increased cell viability, decreased cell apoptosis, and activated the PI3K/Akt signaling pathway. Furthermore, PTEN was verified as a target gene of miR-532-5p by luciferase reporter assay. PTEN overexpression attenuated the protective effect of miR-532-5p in OGD-treated N2a cells. In summary, these findings reveal that miR-532-5p protects against ischemic stroke by inhibiting PTEN and activating the PI3K/Akt signaling pathway and may serve as a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Jingwei Mu
- Department of Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110000, China
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Xi Cheng
- Department of Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110000, China
| | - Shanshan Zhong
- Department of Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110000, China
| | - Xiaohong Chen
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, No.155, North Nanjing Street, Heping District, Shenyang, 110000, China.
| |
Collapse
|
32
|
Changes in Whole-Blood microRNA Profiles during the Onset and Treatment Process of Cerebral Infarction: A Human Study. Int J Mol Sci 2020; 21:ijms21093107. [PMID: 32354168 PMCID: PMC7246837 DOI: 10.3390/ijms21093107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 11/17/2022] Open
Abstract
Circulating miRNA species are promising symptom markers for various diseases, including cardiovascular disease. However, studies regarding their role in the treatment process are limited, especially concerning cerebral infarction. This study aimed to extract miRNA markers to investigate whether they reflect both onset and treatment process of cerebral infarction. A total of 22 patients (P-group) and 22 control subjects (C-group) were examined for their whole-blood miRNA profiles using DNA GeneChip™ miRNA 4.0 Array, with six patients examined after treatment (T-group). A total of 64 miRNAs were found to be differentially expressed between the C- and P-groups. Out of 64 miRNAs, the expression levels of two miRNAs correlated with hypertension. A total of 155 miRNAs were differentially expressed between the P- and T-groups. Five common miRNAs were found among the 64 and 155 miRNAs identified. Importantly, these common miRNAs were inversely regulated in each comparison (e.g., C < P > T), including miR-505-5p, which was previously reported to be upregulated in aortic stenosis patients. Our previous study using rat cerebral infarction models detected the downregulation of an apoptosis repressor, WDR26, which was repressed by one of the five miRNAs. Our results provide novel information regarding the miRNA-based diagnosis of cerebral infarction in humans. In particular, the five common miRNAs could be useful makers for the onset and the treatment process. Trial registration: This study was registered in the UMIN Clinical Trials Registry (UMIN000038321).
Collapse
|
33
|
Discovery of Herbal Pairs Containing Gastrodia elata Based on Data Mining and the Delphi Expert Questionnaire and Their Potential Effects on Stroke through Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4263591. [PMID: 32328128 PMCID: PMC7163411 DOI: 10.1155/2020/4263591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
Background Traditional Chinese medicine (TCM) formulae can be regarded as a source of new antistroke drugs. The aim of this study was to discover herbal pairs containing Gastrodia elata (Tianma, TM) from formulae based on data mining and the Delphi expert questionnaire. The proposed approach for discovering new herbal combinations, which included data mining, a clinical investigation, and a network pharmacology analysis, was evaluated in this study. Methods A database of formulae containing TM was established. All possible herbal pairs were acquired by data mining association rules, and herbal pairs containing TM were screened according to the Support and Confidence levels. Taking stroke as the research object, the relationships between herbal pairs containing TM and stroke were explored by the Delphi expert questionnaire and statistical methods. To explore the effects of herbal pairs containing TM on stroke, a network pharmacology analysis was performed to predict core targets, biological functions, pathways, and mechanisms of action. Results A total of 1903 formulae containing TM, involving 896 Chinese herbal medicines (CHMs) and 126 herbal pairs containing RG, were analyzed by association rules. A total of 27 herbal pairs were further screened according to the Support and Confidence levels. Twelve herbal pairs containing RG were added according to the expert questionnaires. Weightiness analysis showed that 9 groups of core herbal pairs contained RG, including TM-QX, TM-JH, TM-CX, TM-GG, TM-SJM, TM-JC, TM-SCP, TM-MJZ, and TM-GT. Two core herbal pairs, TM-JH and TM-CX, were randomly screened to explore their network pharmacological mechanisms in stroke. The important biological targets for network pharmacological analysis of TM-CX and TM-JH related to stroke were PTGS2, ACE, APP, NOS1, and NOS2. An herbal pair-compound-core target-pathway network (H-C-T-P network) was established, and arginine biosynthesis, arginine and proline metabolism, and the relaxin signaling pathway were identified by enrichment analysis. Conclusion The herbal pairs of TM-CX and TM-JH obtained from data mining and the expert investigation were found to have effects of preventing and treating stroke through network pharmacology. This could be a viable approach to uncover hidden knowledge about TCM formulae and to discover herbal combinations with clinical and medicinal value based on data mining and questionnaires.
Collapse
|
34
|
Huang S, Huang Z, Fu Z, Shi Y, Dai Q, Tang S, Gu Y, Xu Y, Chen J, Wu X, Ren F. A Novel Drug Delivery Carrier Comprised of Nimodipine Drug Solution and a Nanoemulsion: Preparation, Characterization, in vitro, and in vivo Studies. Int J Nanomedicine 2020; 15:1161-1172. [PMID: 32110014 PMCID: PMC7036601 DOI: 10.2147/ijn.s226591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Nimodipine (NIMO) is used clinically to treat ischemic damage resulting from subarachnoid hemorrhage. However, clinical application of NIMO is limited by poor aqueous solubility and low safety. To overcome these limitations, a novel two-vial NIMO-loaded nanoemulsion (NIMO-TNE) was designed in this study. Methods NIMO-TNE was prepared by mixing a nimodipine-polyethylene glycol 400 (NIMO-PEG400) solution and a commercially available 20% injectable blank nanoemulsion (BNE). Drug distribution in NIMO-TNE, physical stability, and dilution stability were evaluated in vitro, and pharmacokinetics and pharmacodynamics were evaluated in vivo. Safety was assessed using the hemolysis test and the intravenous irritation test, and acute toxicity of NIMO-TNE was compared with that of commercial Nimotop injection. Results Drug loading (DL) in NIMO-TNE was enhanced 5-fold compared with that in Nimotop injection. The mean particle size of NIMO-TNE was 241.53 ± 1.48 nm. NIMO-TNE and NIMO-TNE diluted in 5% glucose injection and 0.9% sodium chloride was stable for a sufficient duration to allow for clinical use. In addition, NIMO-TNE exhibited a similar pharmacokinetic profile and similar brain ischemia reduction in a rat middle cerebral artery occlusion (MCAO) model compared to Nimotop injection. Furthermore, NIMO-TNE did not induce hemolysis at 37°C, and NIMO-TNE induced less intravenous irritation than Nimotop injection. Moreover, NIMO-TNE could be injected at a 23-fold higher dose than the LD50 of Nimotop injection with no obvious toxicity or side effects. Conclusion NIMO-TNE is a promising formulation suitable for intravenous injection, is easy to prepare, and exhibits excellent safety.
Collapse
Affiliation(s)
- Saixu Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.,Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Zhiyong Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.,Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Zhiqin Fu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Yamin Shi
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China.,Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, People's Republic of China
| | - Qi Dai
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shuyan Tang
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Yongwei Gu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Youfa Xu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Jianming Chen
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China.,Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, People's Republic of China
| | - Xin Wu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Fuzheng Ren
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
35
|
Xue X, Wang H, Su J. Inhibition of MiR-122 Decreases Cerebral Ischemia-reperfusion Injury by Upregulating DJ-1-Phosphatase and Tensin Homologue Deleted on Chromosome 10 (PTEN)/Phosphonosinol-3 Kinase (PI3K)/AKT. Med Sci Monit 2020; 26:e915825. [PMID: 32061171 PMCID: PMC7043345 DOI: 10.12659/msm.915825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion injury is caused by a blood reperfusion injury in ischemic brain tissue, and usually occurs in the treatment stage of ischemic disease, which can aggravate brain tissue injury. MiR-122 is closely related to ischemia-reperfusion injury in the myocardium, kidney, and liver; however, the role in cerebral ischemia-reperfusion injury has not been established. MATERIAL AND METHODS In this study, cerebral ischemia-reperfusion injury was established in a rat model, and the control group was a sham-operated group. After ischemia-reperfusion injury for 6, 12, and 24 hours, brain tissue specimens were collected and the expression of miR-122 and DJ-1 were determined using quantitative real-time polymerase chain reaction. Flow cytometry was used to determine the reactive oxygen species (ROS) content. The modified Neurological Severity Score (mNSS) scale was used to evaluate the sensory and motor function defects of the rats. The malondialdehyde (MDA), superoxide dismutase (SOD), and enzyme activity were determined. The rats in the cerebral ischemia-reperfusion injury model were divided into 2 groups (antagomir-NC group and antagomir miR-122 group). Brain neuron RN-c cells were divided into the following 4 groups: antagomir-NC, antagomir miR-122, pIRES2-blank, and pIRES2-DJ-1. Seventy-two hours after transfection, ischemia-reperfusion treatment was carried out and conventional cultured RN-c cells were used as the control group. Flow cytometry was used to detect apoptosis and western blot was used to detect the expression of DJ-1, PTEN, AKT, and p-AKT. RESULTS The expression of miR-122 increased significantly in the process of ischemia-reperfusion damage after cerebral infarction, while the expression of DJ-1 decreased significantly. Downregulation of miR-122 significantly increased the expression of DJ-1, enhanced the activity of the PTEN/PI3K/AKT pathway, reduced cell apoptosis, and alleviated cerebral ischemia-reperfusion injury. CONCLUSIONS Inhibition of miR-122 can decrease cerebral ischemia-reperfusion injury by upregulating DJ-1-PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- XinHong Xue
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - HongRu Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - JiangLi Su
- Department of Neurology, Liaocheng People's Hospital, Liaocheng City, China (mainland)
| |
Collapse
|
36
|
Fu DL, Li JH, Shi YH, Zhang XL, Lin Y, Zheng GQ. Sanhua Decoction, a Classic Herbal Prescription, Exerts Neuroprotection Through Regulating Phosphorylated Tau Level and Promoting Adult Endogenous Neurogenesis After Cerebral Ischemia/Reperfusion Injury. Front Physiol 2020; 11:57. [PMID: 32116767 PMCID: PMC7026024 DOI: 10.3389/fphys.2020.00057] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/21/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Ischemia stroke is the leading cause of death and long-term disability. Sanhua Decoction (SHD), a classic Chinese herbal prescription, has been used for ischemic stroke for about thousands of years. Here, we aim to investigate the neuroprotective effects of SHD on cerebral ischemia/reperfusion (CIR) injury rat models. Methods: The male Sprague-Dawley rats (body weight, 250-280 g; age, 7-8 weeks) were randomly divided into sham group, CIR group, and SHD group and were further divided into subgroups according to different time points at 6 h, 1, 3, 7, 14, 21, and 28 d, respectively. The SHD group received intragastric administration of SHD at 10 g kg-1 d-1. The focal CIR models were induced by middle cerebral artery occlusion according to Longa's method, while sham group had the same operation without suture insertion. Neurological deficit score (NDS) was evaluated using the Longa's scale. BrdU, doublecortin (DCX), and glial fibrillary acidic protein (GFAP) were used to label proliferation, migration, and differentiation of nerve cells before being observed by immunofluorescence. The expression of reelin, total tau (t-tau), and phosphorylated tau (p-tau) were evaluated by western blot and RT-qPCR. Results: SHD can significantly improve NDS at 1, 3, 7, and 14 d (p < 0.05), increase the number of BrdU positive and BrdU/DCX positive cells in subventricular zone at 3, 7, and 14 d (p < 0.05), upregulate BrdU/GFAP positive cells in the ischemic penumbra at 28 d after CIR (p < 0.05), and reduce p-tau level at 1, 3, 7, and 14 d (p < 0.05). There was no significant difference on reelin and t-tau level between three groups at each time points after CIR. Conclusions: SHD exerts neuroprotection probably by regulating p-tau level and promoting the proliferation, migration, and differentiation of endogenous neural stem cells, accompanying with neurobehavioral recovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
Jiménez-Alesanco A, Marcuello M, Pastor-Jiménez M, López-Puerto L, Bonjoch L, Gironella M, Carrascal M, Abian J, de-Madaria E, Closa D. Acute pancreatitis promotes the generation of two different exosome populations. Sci Rep 2019; 9:19887. [PMID: 31882721 PMCID: PMC6934470 DOI: 10.1038/s41598-019-56220-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small extracellular vesicles that act as intercellular messengers. Previous studies revealed that, during acute pancreatitis, circulating exosomes could reach the alveolar compartment and activate macrophages. However, proteomic analysis suggested that the most likely origin of these exosomes could be the liver instead of the pancreas. The present study aimed to characterize the exosomes released by pancreas to pancreatitis-associated ascitic fluid (PAAF) as well as those circulating in plasma in an experimental model of taurocholate-induced acute pancreatitis in rats. We provide evidence that during acute pancreatitis two different populations of exosomes are generated with relevant differences in cell distribution, protein and microRNA content as well as different implications in their physiological effects. During pancreatitis plasma exosomes, but not PAAF exosomes, are enriched in the inflammatory miR-155 and show low levels of miR-21 and miR-122. Mass spectrometry-based proteomic analysis showed that PAAF exosomes contains 10–30 fold higher loading of histones and ribosomal proteins compared to plasma exosomes. Finally, plasma exosomes have higher pro-inflammatory activity on macrophages than PAAF exosomes. These results confirm the generation of two different populations of exosomes during acute pancreatitis. Deep understanding of their specific functions will be necessary to use them as therapeutic targets at different stages of the disease.
Collapse
Affiliation(s)
- A Jiménez-Alesanco
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M Marcuello
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)-IDIBAPS-Hospital Clínic de Barcelona, Barcelona, Spain
| | - M Pastor-Jiménez
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - L López-Puerto
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - L Bonjoch
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M Gironella
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)-IDIBAPS-Hospital Clínic de Barcelona, Barcelona, Spain
| | - M Carrascal
- Proteomics Facility, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas/Universitat Autònoma de Barcelona (CSIC/UAB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - J Abian
- Proteomics Facility, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas/Universitat Autònoma de Barcelona (CSIC/UAB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - E de-Madaria
- Pancreatic Unit, Department of Gastroenterology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL - Fundación FISABIO), Alicante, Spain
| | - D Closa
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
38
|
PAN Z, HU X, ZHANG Y, LI L, HUANG P. [Identification of dynamic co-expression networks in peripheral blood of rats after middle cerebral artery occlusion]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:587-593. [PMID: 31955531 PMCID: PMC10412954 DOI: 10.3785/j.issn.1008-9292.2019.12.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To identify the time dependent profiles of gene expression and featured co-expression network modules in peripheral blood of rats after middle cerebral artery occlusion (MCAO). METHODS Microarray GSE119121 from GEO database was analyzed by R language to identify the significantly changed genes in peripheral blood at different time points (0, 1, 2, 3, 6 and 24 h) after MCAO. Gene expression patterns at different time courses were screened by STEM tools. Then, function annotation and pathway enrichment of differentially expressed genes (DEGs) were performed using the Gene Ontology (GO) database and the Kyoto Gene and Genomic Encyclopedia (KEGG) database. Depending on CEMiTool package, gene expression profile matrix was inputted into R to construct the co-expression networks and to analyze modules, and enrichment analysis was conducted to evaluate the correlation between the modules and different time points. RESULTS Comparing with gene at 0 h, the numbers of DEGs in peripheral blood at different time points after MCAO were 163 (1 h), 502 (2 h), 527 (3 h), 550 (6 h), and 75 (24 h), respectively. Moreover, a total of 38 gene expression patterns were enriched, and pattern 65 and pattern 34 were specifically up-regulated or down-regulated at 2-6 h. Hp, Nos2, P2ry10, and Klf12 were representative genes of these two models. The co-expression network module analysis showed that the gene status in the early acute phase (1-6 h) was positively correlated with the Module 2. Module 3 and Module 4 was positively correlated with phase phase 1-3 h and 2-6 h, respectively. Noteworthy, Module 6 gradually changed from positive correlation (0-2 h) to negative correlation (3-24 h) with the MCAO time course, and Module 6 was mainly related to viral response and innate immune response. The hub genes of Module 6 included Mx1, Mx2, and Rtp4. CONCLUSIONS Our study has identified the featured genes and dynamic co-expression network modules in peripheral blood after acute ischemic stroke, which provides a potential basis for judging the onset time of ischemic stroke.
Collapse
Affiliation(s)
| | | | | | - Li LI
- 通讯作者, emails: ;@zjcc.org.cn
| | | |
Collapse
|
39
|
Influence of miRNA Gene Polymorphism on Recurrence and Age at Onset of Ischemic Stroke in a Chinese Han Population. Neurotox Res 2019; 37:781-787. [PMID: 31811586 DOI: 10.1007/s12640-019-00125-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Polymorphisms in microRNAs (miRNAs) are associated with ischemic stroke occurrence and traditional risk factors for ischemic stroke such as atherosclerosis, hypertension, hyperlipidemia, and diabetes. However, few studies have examined recurrent ischemic stroke as an outcome. Thus, the aim of our study was to examine association of miRNA gene polymorphisms (namely, miR-126 rs4636297, miR-149 rs2292832, miR-124 rs531564, miR-499 rs3746444, miR-143 rs12655723, and miR-122 rs17669) with recurrence of ischemic stroke. miRNA gene polymorphisms were genotyped using the polymerase chain reaction-ligation detection reaction (PCR-LDR) method in 657 patients with ischemic stroke. Association of miRNA polymorphisms with prognosis outcomes was examined by the Kaplan-Meier method, log-rank test, and Cox proportional hazards models. miR-122 rs17669 was significantly associated with recurrence risk of ischemic stroke under the recessive model. Cox regression analysis showed that the CC genotype of rs17669 was associated with an increased risk of 1.9-fold for stroke recurrence (hazard ratio = 1.879; 95% confidence interval = 1.182-2.985; P = 0.008). Further, this effect was more evident among the non-drinker and male subgroups. We found no difference in risk of recurrent ischemic stroke among the other five miRNA polymorphisms. Furthermore, we identified a significant association between the miR-149 rs2292832 polymorphism and age at onset of first-ever stroke. Altogether, miR-122 rs17669 is a significant predictor for the risk of recurrent stroke, independent of traditional risk factors.
Collapse
|
40
|
Gareev IF, Novikova LB, Beylerli OA. Application of microRNA in the therapy of ischemic stroke. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2019. [DOI: 10.15829/1728-8800-2019-5-66-73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
41
|
Xiang B, Zhong P, Fang L, Wu X, Song Y, Yuan H. miR-183 inhibits microglia activation and expression of inflammatory factors in rats with cerebral ischemia reperfusion via NF-κB signaling pathway. Exp Ther Med 2019; 18:2540-2546. [PMID: 31572505 PMCID: PMC6755485 DOI: 10.3892/etm.2019.7827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke represents 87% of all strokes, and is the third leading cause of disability and mortality worldwide. The cause of ischemic stroke is the obstruction of blood flow through the artery that supplies oxygen-rich blood to the brain, with ischemia-reperfusion injury as its major cause. microRNAs (miRNA) are small non-coding RNAs, which serve important roles in the regulation of gene expression at the post-transcription level. The aim of the present study was to investigate the effect of miRNA-183 (miR-183) on microglia activation in rats with cerebral ischemia-reperfusion injury. To this end, a rat cerebral ischemia-reperfusion injury model was established. The results indicated that miR-183 expression was decreased by cerebral ischemia-reperfusion. In addition, treatment using miR-183 agomir significantly reduced the neurological function scores, percentage of cerebral infarction volume, and ionized calcium-binding adapter molecule-1 (IBA-1)-positive cells in the CA1 area of the hippocampus in rats subjected to cerebral ischemia-reperfusion injury, implicating a neuroprotective role for miR-183. MiR-183 agomir treatment also decreased the expression of pro-inflammatory-associated proteins interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α. Finally, the expression of the nuclear factor (NF)-κB p65 and IκBα was decreased and increased by miR-183 agomir treatment, respectively, indicating inhibition of the NF-κB signaling pathway. These observations suggest that miR-183 regulates the activation of microglia in rats with cerebral ischemia-reperfusion injury by inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bo Xiang
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Ping Zhong
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Lei Fang
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Xianxian Wu
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Yuqiang Song
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Haicheng Yuan
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| |
Collapse
|
42
|
Zhang S, Xu S, Duan H, Zhu Z, Yang Z, Cao J, Zhao Y, Huang Z, Wu Q, Duan J. A novel, highly-water-soluble apigenin derivative provides neuroprotection following ischemia in male rats by regulating the ERK/Nrf2/HO-1 pathway. Eur J Pharmacol 2019; 855:208-215. [DOI: 10.1016/j.ejphar.2019.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/23/2022]
|
43
|
Zhu R, Liu X, He Z. Association of miR-122, miR-124 miR-126 and miR-143 gene polymorphisms with ischemic stroke in the northern Chinese Han population. Int J Neurosci 2019; 129:916-922. [PMID: 30895838 DOI: 10.1080/00207454.2019.1593979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xu Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
Vijayan M, Alamri FF, Al Shoyaib A, Karamyan VT, Reddy PH. Novel miRNA PC-5P-12969 in Ischemic Stroke. Mol Neurobiol 2019; 56:6976-6985. [PMID: 30953313 DOI: 10.1007/s12035-019-1562-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/13/2019] [Indexed: 01/04/2023]
Abstract
Circulating microRNAs (miRNAs) have been used effectively as peripheral biomarkers and mechanistic targets for human diseases such as stroke, Alzheimer's, and cancer. The purpose of our study is to determine noninvasive, blood-based early detectable biomarkers for ischemic stroke (IS). Based on our previous global miRNA sequencing study, four miRNAs were previously unreported (novel) in IS condition. Among these, miRNA PC-5P-12969 was exclusively expressed in the IS condition; otherwise, it was not expressed in normal condition, and therefore, we focused on miRNA PC-5P-12969 for further studies. In the present study, we investigated novel miRNA PC-5P-12969 for its expression levels using quantitative real-time PCR assay (qRT-PCR) in an in vitro, oxygen, and glucose deprivation/reoxygenation (OGD/R)-treated mouse primary hippocampal neuronal cells (HT22) and in an in vivo using a photothrombotic stroke model. In an in vitro study of stroke-induced HT22 cells, we found a two fold increase of PC-5P-12969 expression levels, in agreement with our original global miRNA study. In the cerebral cortex of photothrombotic stroke mice, we found significantly upregulated levels of PC-5P-12969 in 4 hours and 1 day post-stroke relative to the control mice. However, we did not find any change in the expression of PC-5P-12969 in the cerebellum (unaffected in IS) of both stroke and control mice. Based on findings from this study, together with our earlier original global microRNA study results, we conclude that PC-5P-12969 is a potential candidate of the peripheral marker and also a drug target for IS. This is the first study validating that the miRNA PC-5P-12969, might be a potential biomarker for IS.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Faisal F Alamri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- Center for Blood Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
- Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Public Health, Graduate School of Biomedical Sciences, Lubbock, TX, USA.
| |
Collapse
|
45
|
Sarkar SN, Russell AE, Engler-Chiurazzi EB, Porter KN, Simpkins JW. MicroRNAs and the Genetic Nexus of Brain Aging, Neuroinflammation, Neurodegeneration, and Brain Trauma. Aging Dis 2019; 10:329-352. [PMID: 31011481 PMCID: PMC6457055 DOI: 10.14336/ad.2018.0409] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex and integrated gradual deterioration of cellular activities in specific organs of the body, which is associated with increased mortality. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, neurovascular disorders, and neurodegenerative diseases. There are nine tentative hallmarks of aging. In addition, several of these hallmarks are increasingly being associated with acute brain injury conditions. In this review, we consider the genes and their functional pathways involved in brain aging as a means of developing new strategies for therapies targeted to the neuropathological processes themselves, but also as targets for many age-related brain diseases. A single microRNA (miR), which is a short, non-coding RNA species, has the potential for targeting many genes simultaneously and, like practically all other cellular processes, genes associated with many features of brain aging and injury are regulated by miRs. We highlight how certain miRs can mediate deregulation of genes involved in neuroinflammation, acute neuronal injury and chronic neurodegenerative diseases. Finally, we review the recent progress in the development of effective strategies to block specific miR functions and discuss future approaches with the prediction that anti-miR drugs may soon be used in the clinic.
Collapse
Affiliation(s)
- Saumyendra N Sarkar
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Ashley E Russell
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Keyana N Porter
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James W Simpkins
- Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
46
|
Zhang H, Zhang Q, Liao Z. Microarray Data Analysis of Molecular Mechanism Associated with Stroke Progression. J Mol Neurosci 2019; 67:424-433. [PMID: 30610589 DOI: 10.1007/s12031-018-1247-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
Abstract
This study aimed to explore the molecular mechanism of stroke and provide a new target in the clinical management. The miRNA dataset GSE97532 (3 blood samples from middle cerebral artery occlusion (MCAO) and 3 from sham operation) and mRNA dataset GSE97533 (3 blood samples from MCAO and 3 from sham operation) were obtained from GEO database. Differentially expressed mRNA (DEGs) and miRNAs (DEMIRs) were screened out between MCAO and sham operation groups. Then, DEMIR-DEG interactions were explored and visualized using Cytoscape software. Moreover, the enrichment analysis was performed on these DEMIRs and DEGs. Furthermore, protein-protein interaction (PPI) network was constructed. Finally, the DEG-target transcription factors (TFs) were investigated using the WebGestal software. The current bioinformatics analysis revealed 38 DEMIRs and 546 DEGs between MCAO and sham operation groups. The DEMIR-DEG analysis revealed 370 relations, such as miR-107-5p-Furin. The top 10 up- and downregulated DEMIRs were mainly enriched in pathways like cAMP signaling pathway. The PPI network analysis revealed 2 modules. The target DEGs of the 10 up- and downregulated DEMIRs in 2 modules were mainly assembled in functions like ATP binding and pathway including ABC transporters. Furthermore, the DEG-TF network analysis identified 5 outstanding TFs including androgen receptor (AR). miR107-5p might take part in the progression of stroke via inhibiting the expression of Furin. TFs like AR might be used as a novel gene therapy target for stroke. Furthermore, cAMP signaling pathway and ATP binding function might be a novel breakthrough for stroke treatment.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Neurology, Fourth People's Hospital of Jinan, No. 50 Shifan Road, Tianqiao District, Jinan, 250031, Shandong Province, China
| | - Qiying Zhang
- Department of Internal Medicine, Second People's Hospital of Jinan, No. 148 Jingyi Road, Huaiyin District, Jinan, 250001, Shandong Province, China
| | - Zuning Liao
- Department of Neurology, Fourth People's Hospital of Jinan, No. 50 Shifan Road, Tianqiao District, Jinan, 250031, Shandong Province, China.
| |
Collapse
|
47
|
Basudhar D, Bharadwaj G, Somasundaram V, Cheng RYS, Ridnour LA, Fujita M, Lockett SJ, Anderson SK, McVicar DW, Wink DA. Understanding the tumour micro-environment communication network from an NOS2/COX2 perspective. Br J Pharmacol 2019; 176:155-176. [PMID: 30152521 PMCID: PMC6295414 DOI: 10.1111/bph.14488] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Recent findings suggest that co-expression of NOS2 and COX2 is a strong prognostic indicator in triple-negative breast cancer patients. These two key inflammation-associated enzymes are responsible for the biosynthesis of NO and PGE2 , respectively, and can exert their effect in both an autocrine and paracrine manner. Impairment of their physiological regulation leads to critical changes in both intra-tumoural and intercellular communication with the immune system and their adaptation to the hypoxic tumour micro-environment. Recent studies have also established a key role of NOS2-COX2 in causing metabolic shift. This review provides an extensive overview of the role of NO and PGE2 in shaping communication between the tumour micro-environment composed of tumour and immune cells that in turn favours tumour progression and metastasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Gaurav Bharadwaj
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Robert Y S Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Mayumi Fujita
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChiba‐kenJapan
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Stephen K Anderson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - Daniel W McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickMDUSA
| |
Collapse
|
48
|
Wang SW, Liu Z, Shi ZS. Non-Coding RNA in Acute Ischemic Stroke: Mechanisms, Biomarkers and Therapeutic Targets. Cell Transplant 2018; 27:1763-1777. [PMID: 30362372 PMCID: PMC6300774 DOI: 10.1177/0963689718806818] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of functional RNAs that regulate gene expression in a post-transcriptional manner. NcRNAs include microRNAs, long non-coding RNAs and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes, including cerebral ischemic injury, neurodegeneration, neural development, and plasticity. Stroke is one of the leading causes of death and physical disability worldwide. Acute ischemic stroke (AIS) occurs when brain blood flow stops, and that stoppage results in reduced oxygen and glucose supply to cells in the brain. In this article, we review the latest progress on ncRNAs in relation to their implications in AIS, as well as their potential as diagnostic and prognostic biomarkers. We also review ncRNAs acting as possible therapeutic targets in future precision medicine. Finally, we conclude with a brief discussion of current challenges and future directions for ncRNAs studies in AIS, which may facilitate the translation of ncRNAs research into clinical practice to improve clinical outcome of AIS.
Collapse
Affiliation(s)
- Sheng-Wen Wang
- 1 Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhong Liu
- 2 Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhong-Song Shi
- 1 Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,3 RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,4 Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
Lv B, Cheng X, Sharp FR, Ander BP, Liu DZ. MicroRNA-122 Mimic Improves Stroke Outcomes and Indirectly Inhibits NOS2 After Middle Cerebral Artery Occlusion in Rats. Front Neurosci 2018; 12:767. [PMID: 30405345 PMCID: PMC6207613 DOI: 10.3389/fnins.2018.00767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/03/2018] [Indexed: 01/19/2023] Open
Abstract
Aim: Our previous study demonstrated miR-122 mimic decreased NOS2 expression in blood leucocytes and improved stroke outcomes when given immediately after middle cerebral artery occlusion (MCAO) in rats. Since NOS2 is associated with neuro-inflammation in stroke and decreasing NOS2 expression alone in leucocytes is insufficient to improve stroke outcomes, we hypothesized that miR-122 mimic may also decrease NOS2 expression in brain microvascular endothelial cells (BMVECs) even at extended time windows. Methods: We administered PEG-liposome wrapped miR-122 mimic (2.4 mg/kg, i.v.) 0 or 6 h after MCAO, and assessed stroke volume and NOS2 expression in BMVECs 24 h following MCAO in rats. Luciferase reporter assays were used to determine if miR-122 binds to 3′ untranslated regions (3′UTR) of NOS2. Results: The data showed that miR-122 mimic decreased infarct volumes and decreased MCAO-induced NOS2 over-expression in BMVECs. However, miR-122 did not bind to 3′UTR of NOS2 in the luciferase assays. Conclusion: The data show the 6-h period of therapeutic efficacy of miR-122 mimic which could relate to indirect knockdown of NOS2 in both BMVECs and leucocytes.
Collapse
Affiliation(s)
- Bo Lv
- Department of Neurology, University of California, Davis, Davis, CA, United States.,Department of Critical Care Medicine and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiyuan Cheng
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Frank R Sharp
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Bradley P Ander
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Da Zhi Liu
- Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
50
|
Darabi H, Salmaninejad A, Jaripour ME, Azarpazhooh MR, Mojarrad M, Sadr‐Nabavi A. Association of the genetic polymorphisms in immunoinflammatory microRNAs with risk of ischemic stroke and subtypes in an Iranian population. J Cell Physiol 2018; 234:3874-3886. [DOI: 10.1002/jcp.27159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Hassan Darabi
- Department of Medical Genetics School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Arash Salmaninejad
- Department of Medical Genetics School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Medical Genetics Research Center (MGRC), Student Research Committee, Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Mohamad Ehsan Jaripour
- Department of Medical Genetics School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Mahmoud reza Azarpazhooh
- Cardiovascular Research Center, Department of Cardiovascular, School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Mojarrad
- Department of Medical Genetics School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Medical Genetics Research Center (MGRC), Student Research Committee, Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Ariane Sadr‐Nabavi
- Department of Medical Genetics School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Cardiovascular Research Center, Department of Cardiovascular, School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Genetics, Academic Centers for Education, Culture, and Research (ACECR)‐Khorasan Razavi Mashhad Iran
| |
Collapse
|