1
|
Meng H, Huan Y, Zhang K, Yi X, Meng X, Kang E, Wu S, Deng W, Wang Y. Quiescent Adult Neural Stem Cells: Developmental Origin and Regulatory Mechanisms. Neurosci Bull 2024; 40:1353-1363. [PMID: 38656419 PMCID: PMC11365920 DOI: 10.1007/s12264-024-01206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/02/2024] [Indexed: 04/26/2024] Open
Abstract
The existence of neural stem cells (NSCs) in the adult mammalian nervous system, although small in number and restricted to the sub-ventricular zone of the lateral ventricles, the dentate gyrus of the hippocampus, and the olfactory epithelium, is a gift of evolution for the adaptive brain function which requires persistent plastic changes of these regions. It is known that most adult NSCs are latent, showing long cell cycles. In the past decade, the concept of quiescent NSCs (qNSCs) has been widely accepted by researchers in the field, and great progress has been made in the biology of qNSCs. Although the spontaneous neuronal regeneration derived from adult NSCs is not significant, understanding how the behaviors of qNSCs are regulated sheds light on stimulating endogenous NSC-based neuronal regeneration. In this review, we mainly focus on the recent progress of the developmental origin and regulatory mechanisms that maintain qNSCs under normal conditions, and that mobilize qNSCs under pathological conditions, hoping to give some insights for future study.
Collapse
Affiliation(s)
- Han Meng
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Huan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Kun Zhang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xuyang Yi
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinyu Meng
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- School of Life Science and Research Center for Natural Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yan'an, 716000, China
| | - Enming Kang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Shengxi Wu
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Wenbing Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 510631, China.
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Moyo MTG, Adali T, Tulay P. Exploring gellan gum-based hydrogels for regenerating human embryonic stem cells in age-related macular degeneration therapy: A literature review. Regen Ther 2024; 26:235-250. [PMID: 38966602 PMCID: PMC11222715 DOI: 10.1016/j.reth.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 07/06/2024] Open
Abstract
Age-related macular degeneration (AMD) is a progressive ocular disease marked by the deterioration of retinal photoreceptor cells, leading to central vision decline, predominantly affecting the elderly population worldwide. Current treatment modalities, such as anti-VEGF agents, laser therapy, and photodynamic therapy, aim to manage the condition, with emerging strategies like stem cell replacement therapy showing promise. However, challenges like immune rejection and cell survival hinder the efficacy of stem cell interventions. Regenerative medicine faces obstacles in maximizing stem cell potential due to limitations in mimicking the dynamic cues of the extracellular matrix (ECM) crucial for guiding stem cell behaviour. Innovative biomaterials like gellan gum hydrogels offer tailored microenvironments conducive to enhancing stem cell culture efficacy and tissue regeneration. Gellan gum-based hydrogels, renowned for biocompatibility and customizable mechanical properties, provide crucial support for cell viability, differentiation, and controlled release of therapeutic factors, making them an ideal platform for culturing human embryonic stem cells (hESCs). These hydrogels mimic native tissue mechanics, promoting optimal hESC differentiation while minimizing immune responses and facilitating localized delivery. This review explores the potential of Gellan Gum-Based Hydrogels in regenerative AMD therapy, emphasizing their role in enhancing hESC regeneration and addressing current status, treatment limitations, and future directions.
Collapse
Affiliation(s)
- Mthabisi Talent George Moyo
- Near East University, Faculty of Engineering, Department of Biomedical Engineering, P.O. Box: 99138, Nicosia, Cyprus, Mersin 10, Turkey
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Terin Adali
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Pinar Tulay
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus, Mersin 10, Turkey
- Near East University, DESAM Research Institute, Nicosia, Cyprus, Mersin 10, Turkey
| |
Collapse
|
3
|
Ding N, Luo R, Zhang Q, Li H, Zhang S, Chen H, Hu R. Current Status and Progress in Stem Cell Therapy for Intracerebral Hemorrhage. Transl Stroke Res 2023:10.1007/s12975-023-01216-7. [PMID: 38001353 DOI: 10.1007/s12975-023-01216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Intracerebral hemorrhage is a highly prevalent and prognostically poor disease, imposing immeasurable harm on human life and health. However, the treatment options for intracerebral hemorrhage are severely limited, particularly in terms of improving the microenvironment of the lesion, promoting neuronal cell survival, and enhancing neural function. This review comprehensively discussed the application of stem cell therapy for intracerebral hemorrhage, providing a systematic summary of its developmental history, types of transplants, transplantation routes, and transplantation timing. Moreover, this review presented the latest research progress in enhancing the efficacy of stem cell transplantation, including pretransplantation preconditioning, genetic modification, combined therapy, and other diverse strategies. Furthermore, this review pioneeringly elaborated on the barriers to clinical translation for stem cell therapy. These discussions were of significant importance for promoting stem cell therapy for intracerebral hemorrhage, facilitating its clinical translation, and improving patient prognosis.
Collapse
Affiliation(s)
- Ning Ding
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ran Luo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huanhuan Li
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shuixian Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huanran Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
4
|
Zhang Q, Zhao W, Li S, Ding Y, Wang Y, Ji X. Intermittent Hypoxia Conditioning: A Potential Multi-Organ Protective Therapeutic Strategy. Int J Med Sci 2023; 20:1551-1561. [PMID: 37859700 PMCID: PMC10583178 DOI: 10.7150/ijms.86622] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
Severe hypoxia can induce a range of systemic disorders; however, surprising resilience can be obtained through sublethal adaptation to hypoxia, a process termed as hypoxic conditioning. A particular form of this strategy, known as intermittent hypoxia conditioning hormesis, alternates exposure to hypoxic and normoxic conditions, facilitating adaptation to reduced oxygen availability. This technique, originally employed in sports and high-altitude medicine, has shown promise in multiple pathologies when applied with calibrated mild to moderate hypoxia and appropriate hypoxic cycles. Recent studies have extensively investigated the protective role of intermittent hypoxia conditioning and its underlying mechanisms using animal models, demonstrating its potential in organ protection. This involves a range of processes such as reduction of oxidative stress, inflammation, and apoptosis, along with enhancement of hypoxic gene expression, among others. Given that intermittent hypoxia conditioning fosters beneficial physiological responses across multiple organs and systems, this review presents a comprehensive analysis of existing studies on intermittent hypoxia and its potential advantages in various organs. It aims to draw attention to the possibility of clinically applying intermittent hypoxia conditioning as a multi-organ protective strategy. This review comprehensively discusses the protective effects of intermittent hypoxia across multiple systems, outlines potential procedures for implementing intermittent hypoxia, and provides a brief overview of the potential protective mechanisms of intermittent hypoxia.
Collapse
Affiliation(s)
- Qihan Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Emergency Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Liu J, Cao C, Jin Y, Wang Y, Ma X, Li J, Guo S, Yang J, Niu J, Liang X. Induced neural stem cells suppressed neuroinflammation by inhibiting the microglial pyroptotic pathway in intracerebral hemorrhage rats. iScience 2023; 26:107022. [PMID: 37360683 PMCID: PMC10285565 DOI: 10.1016/j.isci.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Intracerebral hemorrhage usually manifests as strong neuroinflammation and neurological deficits. There is an urgent need to explore effective methods for the treatment of intracerebral hemorrhage. The therapeutic effect and the possible mechanism of induced neural stem cell transplantation in an intracerebral hemorrhage rat model are still unclear. Our results showed that transplantation of induced neural stem cells could improve neurological deficits by inhibiting inflammation in an intracerebral hemorrhage rat model. Additionally, induced neural stem cell treatment could effectively suppress microglial pyroptosis, which might occur through inhibiting the NF-κB signaling pathway. Induced neural stem cells could also regulate the polarization of microglia and promote the transition of microglia from pro-inflammatory phenotypes to anti-inflammatory phenotypes to exert their anti-inflammatory effects. Overall, induced neural stem cells may be a promising tool for the treatment of intracerebral hemorrhage and other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Jiaxin Liu
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Chuanshang Cao
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Yiran Jin
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Yan Wang
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Xiaona Ma
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Jiahui Li
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Songlin Guo
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Jiancheng Yang
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 750004 Yinchuan, China
| | - Xueyun Liang
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, 750001 Yinchuan, China
| |
Collapse
|
6
|
Gharbi T, Liu C, Khan H, Zhang Z, Yang GY, Tang Y. Hypoxic Preconditioned Neural Stem Cell-Derived Extracellular Vesicles Contain Distinct Protein Cargo from Their Normal Counterparts. Curr Issues Mol Biol 2023; 45:1982-1997. [PMID: 36975497 PMCID: PMC10047917 DOI: 10.3390/cimb45030127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Hypoxic preconditioning has been demonstrated to increase the resistance of neural stem cells (NSCs) to hypoxic conditions, as well as to improve their capacity for differentiation and neurogenesis. Extracellular vesicles (EVs) have recently emerged as critical mediators of cell–cell communication, but their role in this hypoxic conditioning is presently unknown. Here, we demonstrated that three hours of hypoxic preconditioning triggers significant neural stem cell EV release. Proteomic profiling of EVs from normal and hypoxic preconditioned neural stem cells identified 20 proteins that were upregulated and 22 proteins that were downregulated after hypoxic preconditioning. We also found an upregulation of some of these proteins by qPCR, thus indicating differences also at the transcript level within the EVs. Among the upregulated proteins are CNP, Cyfip1, CASK, and TUBB5, which are well known to exhibit significant beneficial effects on neural stem cells. Thus, our results not only show a significant difference of protein cargo in EVs consequent to hypoxic exposure, but identify several candidate proteins that might play a pivotal role in the cell-to-cell mediated communication underlying neuronal differentiation, protection, maturation, and survival following exposure to hypoxic conditions.
Collapse
|
7
|
David BT, Curtin JJ, Brown JL, Scorpio K, Kandaswamy V, Coutts DJC, Vivinetto A, Bianchimano P, Karuppagounder SS, Metcalfe M, Cave JW, Hill CE. Temporary induction of hypoxic adaptations by preconditioning fails to enhance Schwann cell transplant survival after spinal cord injury. Glia 2023; 71:648-666. [PMID: 36565279 DOI: 10.1002/glia.24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 12/25/2022]
Abstract
Hypoxic preconditioning is protective in multiple models of injury and disease, but whether it is beneficial for cells transplanted into sites of spinal cord injury (SCI) is largely unexplored. In this study, we analyzed whether hypoxia-related preconditioning protected Schwann cells (SCs) transplanted into the contused thoracic rat spinal cord. Hypoxic preconditioning was induced in SCs prior to transplantation by exposure to either low oxygen (1% O2 ) or pharmacological agents (deferoxamine or adaptaquin). All preconditioning approaches induced hypoxic adaptations, including increased expression of HIF-1α and its target genes. These adaptations, however, were transient and resolved within 24 h of transplantation. Pharmacological preconditioning attenuated spinal cord oxidative stress and enhanced transplant vascularization, but it did not improve either transplanted cell survival or recovery of sensory or motor function. Together, these experiments show that hypoxia-related preconditioning is ineffective at augmenting either cell survival or the functional outcomes of SC-SCI transplants. They also reveal that the benefits of hypoxia-related adaptations induced by preconditioning for cell transplant therapies are not universal.
Collapse
Affiliation(s)
- Brian T David
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Jessica J Curtin
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Jennifer L Brown
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Kerri Scorpio
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Veena Kandaswamy
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - David J C Coutts
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Ana Vivinetto
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Paola Bianchimano
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Saravanan S Karuppagounder
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - Mariajose Metcalfe
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
| | - John W Cave
- InVitro Cell Research, LLC, Englewood, New Jersey, USA
| | - Caitlin E Hill
- Burke Neurological Institute, White Plains, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
- Neural Stem Cell Institute, Rensselaer, New York, USA
| |
Collapse
|
8
|
Zayed MA, Sultan S, Alsaab HO, Yousof SM, Alrefaei GI, Alsubhi NH, Alkarim S, Al Ghamdi KS, Bagabir SA, Jana A, Alghamdi BS, Atta HM, Ashraf GM. Stem-Cell-Based Therapy: The Celestial Weapon against Neurological Disorders. Cells 2022; 11:3476. [PMID: 36359871 PMCID: PMC9655836 DOI: 10.3390/cells11213476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Stem cells are a versatile source for cell therapy. Their use is particularly significant for the treatment of neurological disorders for which no definitive conventional medical treatment is available. Neurological disorders are of diverse etiology and pathogenesis. Alzheimer's disease (AD) is caused by abnormal protein deposits, leading to progressive dementia. Parkinson's disease (PD) is due to the specific degeneration of the dopaminergic neurons causing motor and sensory impairment. Huntington's disease (HD) includes a transmittable gene mutation, and any treatment should involve gene modulation of the transplanted cells. Multiple sclerosis (MS) is an autoimmune disorder affecting multiple neurons sporadically but induces progressive neuronal dysfunction. Amyotrophic lateral sclerosis (ALS) impacts upper and lower motor neurons, leading to progressive muscle degeneration. This shows the need to try to tailor different types of cells to repair the specific defect characteristic of each disease. In recent years, several types of stem cells were used in different animal models, including transgenic animals of various neurologic disorders. Based on some of the successful animal studies, some clinical trials were designed and approved. Some studies were successful, others were terminated and, still, a few are ongoing. In this manuscript, we aim to review the current information on both the experimental and clinical trials of stem cell therapy in neurological disorders of various disease mechanisms. The different types of cells used, their mode of transplantation and the molecular and physiologic effects are discussed. Recommendations for future use and hopes are highlighted.
Collapse
Affiliation(s)
- Mohamed A. Zayed
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physiology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Shimaa Mohammad Yousof
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Nouf H. Alsubhi
- Department of Biological Sciences, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Saleh Alkarim
- Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cells Research Unit, Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kholoud S. Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sali Abubaker Bagabir
- Genetic Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hazem M. Atta
- Clinical Biochemistry Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
9
|
A Tale of Two: When Neural Stem Cells Encounter Hypoxia. Cell Mol Neurobiol 2022:10.1007/s10571-022-01293-6. [DOI: 10.1007/s10571-022-01293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/02/2022] [Indexed: 11/12/2022]
|
10
|
Liu X, Zhang G, Wei P, Hao L, Zhong L, Zhong K, Liu C, Liu P, Feng Q, Wang S, Zhang J, Tian R, Zhou L. 3D-printed collagen/silk fibroin/secretome derived from bFGF-pretreated HUCMSCs scaffolds enhanced therapeutic ability in canines traumatic brain injury model. Front Bioeng Biotechnol 2022; 10:995099. [PMID: 36091465 PMCID: PMC9449499 DOI: 10.3389/fbioe.2022.995099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The regeneration of brain tissue poses a great challenge because of the limited self-regenerative capabilities of neurons after traumatic brain injury (TBI). For this purpose, 3D-printed collagen/silk fibroin/secretome derived from human umbilical cord blood mesenchymal stem cells (HUCMSCs) pretreated with bFGF scaffolds (3D-CS-bFGF-ST) at a low temperature were prepared in this study. From an in vitro perspective, 3D-CS-bFGF-ST showed good biodegradation, appropriate mechanical properties, and good biocompatibility. In regard to vivo, during the tissue remodelling processes of TBI, the regeneration of brain tissues was obviously faster in the 3D-CS-bFGF-ST group than in the other two groups (3D-printed collagen/silk fibroin/secretome derived from human umbilical cord blood mesenchymal stem cells (3D-CS-ST) group and TBI group) by motor assay, histological analysis, and immunofluorescence assay. Satisfactory regeneration was achieved in the two 3D-printed scaffold-based groups at 6 months postsurgery, while the 3D-CS-bFGF-ST group showed a better outcome than the 3D-CS-ST group.
Collapse
Affiliation(s)
- Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Guijun Zhang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Pan Wei
- Department of Neurosurgery, The First People’s Hospital of Long Quan yi District, Chengdu, China
| | - Lifang Hao
- Department of Radiology, Liao Cheng The Third People’s Hospital, Liaocheng, China
| | - Lin Zhong
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kunhon Zhong
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Peng Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qingbo Feng
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jianyong Zhang
- Department of General Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Jianyong Zhang, ; Rui Tian, ; Liangxue Zhou,
| | - Rui Tian
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- *Correspondence: Jianyong Zhang, ; Rui Tian, ; Liangxue Zhou,
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- *Correspondence: Jianyong Zhang, ; Rui Tian, ; Liangxue Zhou,
| |
Collapse
|
11
|
Zhou JF, Xiong Y, Kang X, Pan Z, Zhu Q, Goldbrunner R, Stavrinou L, Lin S, Hu W, Zheng F, Stavrinou P. Application of stem cells and exosomes in the treatment of intracerebral hemorrhage: an update. Stem Cell Res Ther 2022; 13:281. [PMID: 35765072 PMCID: PMC9241288 DOI: 10.1186/s13287-022-02965-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/19/2022] [Indexed: 12/14/2022] Open
Abstract
Non-traumatic intracerebral hemorrhage is a highly destructive intracranial disease with high mortality and morbidity rates. The main risk factors for cerebral hemorrhage include hypertension, amyloidosis, vasculitis, drug abuse, coagulation dysfunction, and genetic factors. Clinically, surviving patients with intracerebral hemorrhage exhibit different degrees of neurological deficits after discharge. In recent years, with the development of regenerative medicine, an increasing number of researchers have begun to pay attention to stem cell and exosome therapy as a new method for the treatment of intracerebral hemorrhage, owing to their intrinsic potential in neuroprotection and neurorestoration. Many animal studies have shown that stem cells can directly or indirectly participate in the treatment of intracerebral hemorrhage through regeneration, differentiation, or secretion. However, considering the uncertainty of its safety and efficacy, clinical studies are still lacking. This article reviews the treatment of intracerebral hemorrhage using stem cells and exosomes from both preclinical and clinical studies and summarizes the possible mechanisms of stem cell therapy. This review aims to provide a reference for future research and new strategies for clinical treatment.
Collapse
Affiliation(s)
- Jian-Feng Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Xiaodong Kang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Qiangbin Zhu
- Department of Neurosurgery, Hui'an County Hospital of Fujian Province, Quanzhou, Fujian, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, Athens Medical School, "Attikon" University Hospital, National and Kapodistrian University, Athens, Greece
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| | - Pantelis Stavrinou
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany.,Neurosurgery, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
12
|
Carbon Monoxide Protects Neural Stem Cells Against Iron Overload by Modulating the Crosstalk Between Nrf2 and NF-κB Signaling. Neurochem Res 2022; 47:1383-1394. [PMID: 35258778 DOI: 10.1007/s11064-022-03537-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 11/12/2022]
Abstract
Although accumulating evidences have demonstrated pro-survival effects of CO against various insults, the precise mechanism explaining how neural stem cells (NSCs) are protected by CO also remains largely unknown. Here we report CO pro-survival effect on NSCs against iron overload was comparable to that obtained with pharmacological inhibitors of reactive oxygen species (ROS). Its pro-survival effect was accompanied by the inhibition of ROS and subsequent inhibition of NF-κB which is mediated through nuclear factor erythroid 2-related factor 2 (Nrf2), in that activation of Nrf2 by CO inhibited ROS via up-regulation of NQO-1 while down-regulation of Nrf2 reversed the pro-survival effect of CO both in vitro and in vivo. CO-mediated preconditioning results in Nrf2 up-regulation and NF-κB inhibition, suggesting that these two pathways act in an inverse manner to maintain redox homeostasis. Our findings revealed CO preconditioning as a promising treatment strategy to improve efficacy of NSCs transplantation after hemorrhagic stroke.
Collapse
|
13
|
Wan Y, Huang L, Liu Y, Ji W, Li C, Ge RL. Preconditioning With Intermittent Hypobaric Hypoxia Attenuates Stroke Damage and Modulates Endocytosis in Residual Neurons. Front Neurol 2022; 12:750908. [PMID: 34975719 PMCID: PMC8715922 DOI: 10.3389/fneur.2021.750908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/26/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Moderate hypobaric hypoxia induces cerebral ischemic tolerance. We investigated the optimal method for applying hypobaric hypoxia preconditioning at 5,000 m to ischemic brain tissue and combined it with proteomics to determine the mechanisms underlying this effect. Methods: Male SD rats were randomly grouped as S (sham, n = 20), M (middle cerebral artery occlusion [MCAO], n = 28), H2M (intermittent hypobaric hypoxia preconditioned MCAO group, 2 h/day, 10 days, n = 20), H6M (intermittent hypobaric hypoxia preconditioned MCAO group, 6 h/day, 10 days, n = 28), and HpM (persistent hypobaric hypoxia preconditioned MCAO group, 10 days, n = 28). The permanent MCAO model was established based on the Zea Longa method. Infarction was assessed with the modified neurological severity score (mNSS) and 2,3,5-triphenyl tetrazolium chloride staining. The total protein expression of the neuron-specific nuclear protein (NeuN), cysteinyl aspartate specific proteinase 3 (caspase-3), cleaved-caspase-3, and interleukin 6 (IL-6) was determined using western blotting. We assessed the peri-infarct cortex's ultrastructural changes. A label-free proteomic study and western blot verification were performed on the most effective preconditioned group. Results: The H6M group showed a lower infarct volume (p = 0.0005), lower mNSS score (p = 0.0009) than the M group. The H2M showed a lower level of IL-6 (p = 0.0213) than the M group. The caspase-3 level decreased in the H2M (p = 0.0002), H6M (p = 0.0025), and HpM groups (p = 0.0054) compared with that in the M group. Cleaved-caspase-3 expression decreased in the H2M (p = 0.0011), H6M (p < 0.0001), and HpM groups (p < 0.0001) compared with that in the M group. The neurons' ultrastructure and the blood-brain barrier in the peri-infarct tissue improved in the H2M and H6M groups. Immunofluorescence revealed increased NeuN-positive cells in the peri-infarct tissue in the H6M group (p = 0.0003, H6M vs. M). Protein expression of Chmp1a, Arpc5, and Hspa2 factors related to endocytosis were upregulated in the H6M compared with those of the M group (p < 0.05 for all) on western blot verification of label-free proteomics. Conclusions: Intermittent hypobaric hypoxia preconditioning exerts a neuroprotective effect in a rat stroke model. Persistent hypobaric hypoxia stimulation exhibited no significant neuroprotective effect. Intermittent hypoxic preconditioning for 6 h/day for 10 days upregulates key proteins in clathrin-dependent endocytosis of neurons in the cortex.
Collapse
Affiliation(s)
- Yaqi Wan
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Qinghai Provincial People's Hospital, Xining, China
| | - Lu Huang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanmin Liu
- Qinghai Provincial People's Hospital, Xining, China
| | - Weizhong Ji
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Qinghai Provincial People's Hospital, Xining, China
| | - Changxing Li
- Department of Basic Medicine, Qinghai University, Xining, China
| | - Ri-Li Ge
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Research Center for High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
14
|
Lu S, Li K, Yang Y, Wang Q, Yu Y, Wang Z, Luan Z. Optimization of an Intranasal Route for the Delivery of Human Neural Stem Cells to Treat a Neonatal Hypoxic-Ischemic Brain Injury Rat Model. Neuropsychiatr Dis Treat 2022; 18:413-426. [PMID: 35495583 PMCID: PMC9047963 DOI: 10.2147/ndt.s350586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Stem cell administration via the intranasal route has shown promise as a new therapy for hypoxic-ischemic encephalopathy (HIE). In this study, we aimed to improve the intranasal delivery of stem cells to the brain. METHODS Human neural stem cells (hNSCs) were identified using immunofluorescence, morphological, and flow cytometry assays before transplantation, and cell migration capacity was examined using the transwell assay. Cerebral hypoxia-ischemia (HI) was induced in 7-day-old rats, followed by the intranasal transplantation of CM-Dil-labeled hNSCs. We examined various experimental conditions, including preconditioning hNSCs with hypoxia, catheter method, multiple low-dose transplantation, head position, cell appropriate concentration, and volume. Rats were sacrificed 1 or 3 days after the final intranasal administration, and parts of the nasal tissue and whole brain sections were analyzed under a fluorescence microscope. RESULTS The isolated hNSCs met the characteristics of neural stem cells. Hypoxia (5% O2, 24 h) enhanced the surface expression of CXC chemokine receptor 4 (CXCR4) (9.21 ± 1.9% ~ 24.76 ± 2.24%, P < 0.01) on hNSCs and improved migration (toward stromal cell-derived factor 1 [SDF-1], 0.54 ± 0.11% ~ 8.65 ± 1.76%, P < 0.001; toward fetal bovine serum, 8.36 ± 0.81% ~ 21.74 ± 0.85%, P < 0.0001). Further improvement increased the number of surviving cell distribution with increased uniformity on the olfactory epithelium and allowed the cells to stay in the nasal cavity for at least 72 h, but they did not survive for longer than 48 h. Optimization of pre-transplantation conditions augmented the success rate of intranasally delivered cells to the brain (0-41.6%). We also tentatively identified that hNSCs crossed the olfactory epithelium into the tissue space below the lamina propria, with cerebrospinal fluid entering the cribriform plate into the subarachnoid space, and then migrated toward injured areas along the brain blood vessels. CONCLUSION This study offers some helpful advice and reference for addressing the problem of repeatability in the intranasal delivery of stem cells.
Collapse
Affiliation(s)
- Siliang Lu
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ke Li
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Yinxiang Yang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Qian Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Yu Yu
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Zhaoyan Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Zuo Luan
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| |
Collapse
|
15
|
Ye Y, Zhao X, Xu Y, Yu J. Hypoxia-Inducible Non-coding RNAs in Mesenchymal Stem Cell Fate and Regeneration. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.799716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into multiple cell lines, which makes them an important source of cells for tissue engineering applications. They are defined by the capability to renew themselves and maintain pluripotency. This ability is modulated by the balance between complex cues from cellular microenvironment. Self-renewal and differentiation abilities are regulated by particular microenvironmental signals. Oxygen is considered to be an important part of cell microenvironment, which not only acts as a metabolic substrate but also a signal molecule. It has been proved that MSCs are hypoxic in the physiological environment. Signals from MSCs' microenvironment or niche which means the anatomical location of the MSCs, maintain the final properties of MSCs. Physiological conditions like oxygen tension are deemed to be a significant part of the mesenchymal stem cell niche, and have been proved to be involved in modulating embryonic and adult MSCs. Non-coding RNAs (ncRNAs), which play a key role in cell signal transduction, transcription and translation of genes, have been widely concerned as epigenetic regulators in a great deal of tissues. With the rapid development of bioinformatics analysis tools and high-throughput RNA sequencing technology, more and more evidences show that ncRNAs play a key role in tissue regeneration. It shows potential as a biomarker of MSC differentiation. In this paper, we reviewed the physiological correlation of hypoxia as a unique environmental parameter which is conducive to MSC expansion and maintenance, discussed the correlation of tissue engineering, and summarized the influence of hypoxia related ncRNAs on MSCs' fate and regeneration. This review will provide reference for future research of MSCs' regeneration.
Collapse
|
16
|
Li G, Liu J, Guan Y, Ji X. The role of hypoxia in stem cell regulation of the central nervous system: From embryonic development to adult proliferation. CNS Neurosci Ther 2021; 27:1446-1457. [PMID: 34817133 PMCID: PMC8611781 DOI: 10.1111/cns.13754] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is involved in the regulation of various cell functions in the body, including the regulation of stem cells. The hypoxic microenvironment is indispensable from embryonic development to the regeneration and repair of adult cells. In addition to embryonic stem cells, which need to maintain their self-renewal properties and pluripotency in a hypoxic environment, adult stem cells, including neural stem cells (NSCs), also exist in a hypoxic microenvironment. The subventricular zone (SVZ) and hippocampal dentate gyrus (DG) are the main sites of adult neurogenesis in the brain. Hypoxia can promote the proliferation, migration, and maturation of NSCs in these regions. Also, because most neurons in the brain are non-regenerative, stem cell transplantation is considered as a promising strategy for treating central nervous system (CNS) diseases. Hypoxic treatment also increases the effectiveness of stem cell therapy. In this review, we firstly describe the role of hypoxia in different stem cells, such as embryonic stem cells, NSCs, and induced pluripotent stem cells, and discuss the role of hypoxia-treated stem cells in CNS diseases treatment. Furthermore, we highlight the role and mechanisms of hypoxia in regulating adult neurogenesis in the SVZ and DG and adult proliferation of other cells in the CNS.
Collapse
Affiliation(s)
- Gaifen Li
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jia Liu
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| | - Yuying Guan
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
17
|
Liu J, He J, Huang Y, Ge L, Xiao H, Zeng L, Jiang Z, Lu M, Hu Z. Hypoxia-preconditioned mesenchymal stem cells attenuate microglial pyroptosis after intracerebral hemorrhage. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1362. [PMID: 34733914 PMCID: PMC8506532 DOI: 10.21037/atm-21-2590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023]
Abstract
Background Microglia plays a vital role in neuroinflammation, contributing to the pathogenesis of intracerebral hemorrhage (ICH)-induced brain injury. Mesenchymal stem cells (MSCs) hold great potential for treating ICH. We previously revealed that MSCs ameliorate the microglial pyroptosis caused by an ischemic stroke. However, whether MSCs can modulate microglial pyroptosis after ICH remains unknown. This study aimed to investigate the neuroprotective effects of hypoxia-preconditioned olfactory mucosa MSCs (OM-MSCs) on ICH and the possible mechanisms. Methods ICH was induced in mice via administration of collagenase IV. At 6 h post-ICH, 2-4×105 normoxic/hypoxic OM-MSCs or saline were intracerebrally administered. To evaluate the neuroprotective effects, the behavioral outcome, apoptosis, and neuronal injury were measured. Microglia activation and pro-inflammatory cytokines were applied to detect neuroinflammation. Microglial pyroptosis was determined by western blotting, immunofluorescence staining, and transmission electron microscopy (TEM). Results The two OM-MSC-transplanted groups exhibited significantly improved functional recovery and reduced neuronal injury, especially the hypoxic OM-MSCs group. Hypoxic OM-MSCs attenuated microglial activation as well as the levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Moreover, we found that hypoxia-preconditioned OM-MSCs ameliorated pyroptosis by diminishing the levels of pyroptosis-associated proteins in peri-hematoma brain tissues, decreasing the expression of the microglial nod-like receptor family protein 3 (NLRP3) and caspase-1, and reducing the membrane pores on microglia post-ICH. Conclusions Our study showed that hypoxic preconditioning augments the therapeutic efficacy of OM-MSCs, and hypoxia-preconditioned OM-MSCs alleviate microglial pyroptosis in the ICH model.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Han Xiao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Lu
- Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Cui Z, Liu S, Hou L, Sun Y, Chen H, Mao H, Zhao Y, Qiao L. Effect of Tongfu Xingshen capsule on the endogenous neural stem cells of experimental rats with intracerebral hemorrhage. Mol Med Rep 2021; 24:624. [PMID: 34212980 PMCID: PMC8281109 DOI: 10.3892/mmr.2021.12263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Intracerebral hemorrhage (ICH) can stimulate neural regeneration, promoting tissue repair and recovery of nerve function. Tongfu Xingshen capsule (TXC) is a Chinese medicinal formula used to treat ICH and has been shown to protect brain tissue and improve nerve function in clinical studies. However, the effect of TXC on endogenous neural stem cells (NSCs) remains elusive. To explore the mechanisms underlying TXC action, a rat model of ICH was established. The effects of TXC on the proliferation and differentiation of NSCs were assessed in the subventricular zone (SVZ). TXC significantly improved nerve function defects, decreased brain water content and restored blood‑brain barrier integrity. Additionally, BrdU labeling showed that both high and low doses of TXC significantly increased the proportion of actively cycling NSCs positive for Nestin and glial fibrillary acidic protein, but did not affect the proliferation rates of NeuN‑positive neurons. Finally, TXC also upregulated the mRNA levels of brain‑derived neurotrophic factor and its receptor, TrκB, in affected brain tissues. Taken together, TXC accelerated neural repair and functional recovery after brain injury by potentially enhancing the proliferation and differentiation of endogenous NSCs into astroglial cells in the SVZ area.
Collapse
Affiliation(s)
- Zhizhong Cui
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Shanshan Liu
- Department of Hematology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510630, P.R. China
| | - Lingbo Hou
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yifan Sun
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Haoxuan Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hui Mao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yuanqi Zhao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Lijun Qiao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
19
|
Moeinabadi-Bidgoli K, Babajani A, Yazdanpanah G, Farhadihosseinabadi B, Jamshidi E, Bahrami S, Niknejad H. Translational insights into stem cell preconditioning: From molecular mechanisms to preclinical applications. Biomed Pharmacother 2021; 142:112026. [PMID: 34411911 DOI: 10.1016/j.biopha.2021.112026] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cell-based therapy (CBT) is a revolutionary approach for curing a variety of degenerative diseases. Stem cell-based regenerative medicine is a novel strategy for treating tissue damages regarding stem cells unique properties such as differentiation potential, paracrine impacts, and self-renewal ability. However, the current cell-based treatments encounter considerable challenges to be translated into clinical practice, including low cell survival, migration, and differentiation rate of transplanted stem cells. The poor stem cell therapy outcomes mainly originate from the unfavorable condition of damaged tissues for transplanted stem cells. The promising method of preconditioning improves cell resistance against the host environment's stress by imposing certain conditions similar to the harsh microenvironment of the damaged tissues on the transplanted stem cells. Various pharmacological, biological, and physical inducers are able to establish preconditioning. In addition to their known pharmacological effects on tissues and cells, these preconditioning agents improve cell biological aspects such as cell survival, proliferation, differentiation, migration, immunomodulation, paracrine impacts, and angiogenesis. This review focuses on different protocols and inducers of preconditioning along with underlying molecular mechanisms of their effects on stem cell behavior. Moreover, preclinical applications of preconditioned stem cells in various damaged organs such as heart, lung, brain, bone, cartilage, liver, and kidney are discussed with prospects of their translation into the clinic.
Collapse
Affiliation(s)
- Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Liu J, He J, Ge L, Xiao H, Huang Y, Zeng L, Jiang Z, Lu M, Hu Z. Hypoxic preconditioning rejuvenates mesenchymal stem cells and enhances neuroprotection following intracerebral hemorrhage via the miR-326-mediated autophagy. Stem Cell Res Ther 2021; 12:413. [PMID: 34294127 PMCID: PMC8296710 DOI: 10.1186/s13287-021-02480-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a major public health concern, and mesenchymal stem cells (MSCs) hold great potential for treating ICH. However, the quantity and quality of MSCs decline in the cerebral niche, limiting the potential efficacy of MSCs. Hypoxic preconditioning is suggested to enhance the survival of MSCs and augment the therapeutic efficacy of MSCs in ICH. MicroRNAs (miRNAs) are known to mediate cellular senescence. However, the precise mechanism by which miRNAs regulate the senescence of hypoxic MSCs remains to be further studied. In the present study, we evaluated whether hypoxic preconditioning enhances the survival and therapeutic effects of olfactory mucosa MSC (OM-MSC) survival and therapeutic effects in ICH and investigated the mechanisms by which miRNA ameliorates hypoxic OM-MSC senescence. METHODS In the in vivo model, ICH was induced in mice by administration of collagenase IV. At 24 h post-ICH, 5 × 105 normoxia or hypoxia OM-MSCs or saline was administered intracerebrally. The behavioral outcome, neuronal apoptosis, and OM-MSC survival were evaluated. In the in vitro model, OM-MSCs were exposed to hemin. Cellular senescence was examined by evaluating the expressions of P16INK4A, P21, P53, and by β-galactosidase staining. Microarray and bioinformatic analyses were performed to investigate the differences in the miRNA expression profiles between the normoxia and hypoxia OM-MSCs. Autophagy was confirmed using the protein expression levels of LC3, P62, and Beclin-1. RESULTS In the in vivo model, transplanted OM-MSCs with hypoxic preconditioning exhibited increased survival and tissue-protective capability. In the in vitro model, hypoxia preconditioning decreased the senescence of OM-MSCs exposed to hemin. Bioinformatic analysis identified that microRNA-326 (miR-326) expression was significantly increased in the hypoxia OM-MSCs compared with that of normoxia OM-MSCs. Upregulation of miR-326 alleviated normoxia OM-MSC senescence, whereas miR-326 downregulation increased hypoxia OM-MSC senescence. Furthermore, we showed that miR-326 alleviated cellular senescence by upregulating autophagy. Mechanistically, miR-326 promoted the autophagy of OM-MSCs via the PI3K signaling pathway by targeting polypyrimidine tract-binding protein 1 (PTBP1). CONCLUSIONS Our study shows that hypoxic preconditioning delays OM-MSC senescence and augments the therapeutic efficacy of OM-MSCs in ICH by upregulating the miR-326/PTBP1/PI3K-mediated autophagy.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lite Ge
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Han Xiao
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Liuwang Zeng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Jiang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Lu
- Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China. .,Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China.
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Liu J, Gu Y, Guo M, Ji X. Neuroprotective effects and mechanisms of ischemic/hypoxic preconditioning on neurological diseases. CNS Neurosci Ther 2021; 27:869-882. [PMID: 34237192 PMCID: PMC8265941 DOI: 10.1111/cns.13642] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
As the organ with the highest demand for oxygen, the brain has a poor tolerance to ischemia and hypoxia. Despite severe ischemia/hypoxia induces the occurrence and development of various central nervous system (CNS) diseases, sublethal insult may induce strong protection against subsequent fatal injuries by improving tolerance. Searching for potential measures to improve brain ischemic/hypoxic is of great significance for treatment of ischemia/hypoxia related CNS diseases. Ischemic/hypoxic preconditioning (I/HPC) refers to the approach to give the body a short period of mild ischemic/hypoxic stimulus which can significantly improve the body's tolerance to subsequent more severe ischemia/hypoxia event. It has been extensively studied and been considered as an effective therapeutic strategy in CNS diseases. Its protective mechanisms involved multiple processes, such as activation of hypoxia signaling pathways, anti-inflammation, antioxidant stress, and autophagy induction, etc. As a strategy to induce endogenous neuroprotection, I/HPC has attracted extensive attention and become one of the research frontiers and hotspots in the field of neurotherapy. In this review, we discuss the basic and clinical research progress of I/HPC on CNS diseases, and summarize its mechanisms. Furthermore, we highlight the limitations and challenges of their translation from basic research to clinical application.
Collapse
Affiliation(s)
- Jia Liu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
David BT, Curtin JJ, Brown JL, Coutts DJC, Boles NC, Hill CE. Treatment with hypoxia-mimetics protects cultured rat Schwann cells against oxidative stress-induced cell death. Glia 2021; 69:2215-2234. [PMID: 34019306 DOI: 10.1002/glia.24019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Schwann cell (SC) grafts promote axon regeneration in the injured spinal cord, but transplant efficacy is diminished by a high death rate in the first 2-3 days postimplantation. Both hypoxic preconditioning and pharmacological induction of the cellular hypoxic response can drive cellular adaptations and improve transplant survival in a number of disease/injury models. Hypoxia-inducible factor 1 alpha (HIF-1α), a regulator of the cellular response to hypoxia, is implicated in preconditioning-associated protection. HIF-1α cellular levels are regulated by the HIF-prolyl hydroxylases (HIF-PHDs). Pharmacological inhibition of the HIF-PHDs mimics hypoxic preconditioning and provides a method to induce adaptive hypoxic responses without direct exposure to hypoxia. In this study, we show that hypoxia-mimetics, deferoxamine (DFO) and adaptaquin (AQ), enhance HIF-1α stability and HIF-1α target gene expression. Expression profiling of hypoxia-related genes demonstrates that HIF-dependent and HIF-independent expression changes occur. Analyses of transcription factor binding sites identify several candidate transcriptional co-regulators that vary in SCs along with HIF-1α. Using an in vitro model system, we show that hypoxia-mimetics are potent blockers of oxidative stress-induced death in SCs. In contrast, traditional hypoxic preconditioning was not protective. The robust protection induced by pharmacological preconditioning, particularly with DFO, indicates that pharmacological induction of hypoxic adaptations could be useful for promoting transplanted SC survival. These agents may also be more broadly useful for protecting SCs, as oxidative stress is a major pathway that drives cellular damage in the context of neurological injury and disease, including demyelinating diseases and peripheral neuropathies.
Collapse
Affiliation(s)
- Brian T David
- Burke Neurological Institute, White Plains, New York, USA.,Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York, USA
| | - Jessica J Curtin
- Burke Neurological Institute, White Plains, New York, USA.,Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York, USA
| | - Jennifer L Brown
- Burke Neurological Institute, White Plains, New York, USA.,Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York, USA
| | - David J C Coutts
- Burke Neurological Institute, White Plains, New York, USA.,Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York, USA
| | | | - Caitlin E Hill
- Burke Neurological Institute, White Plains, New York, USA.,Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York, USA.,Neural Stem Cell Institute, Rensselaer, New York, USA
| |
Collapse
|
23
|
Gong YH, Hao SL, Wang BC. Mesenchymal Stem Cells Transplantation in Intracerebral Hemorrhage: Application and Challenges. Front Cell Neurosci 2021; 15:653367. [PMID: 33841103 PMCID: PMC8024645 DOI: 10.3389/fncel.2021.653367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is one of the leading causes of death and long-term disability worldwide. Mesenchymal stem cell (MSC) therapies have demonstrated improved outcomes for treating ICH-induced neuronal defects, and the neural network reconstruction and neurological function recovery were enhanced in rodent ICH models through the mechanisms of neurogenesis, angiogenesis, anti-inflammation, and anti-apoptosis. However, many key issues associated with the survival, differentiation, and safety of grafted MSCs after ICH remain to be resolved, which hinder the clinical translation of MSC therapy. Herein, we reviewed an overview of the research status of MSC transplantation after ICH in different species including rodents, swine, monkey, and human, and the challenges for MSC-mediated ICH recovery from pathological microenvironment have been summarized. Furthermore, some efficient strategies for the outcome improvement of MSC transplantation were proposed.
Collapse
Affiliation(s)
- Yu-Hua Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shi-Lei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bo-Chu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
24
|
He J, Huang Y, Liu J, Ge L, Tang X, Lu M, Hu Z. Hypoxic conditioned promotes the proliferation of human olfactory mucosa mesenchymal stem cells and relevant lncRNA and mRNA analysis. Life Sci 2020; 265:118861. [PMID: 33301811 DOI: 10.1016/j.lfs.2020.118861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
AIMS LncRNAs are involved in many biological processes, and hypoxia contributed to the alterations of lncRNAs. Hypoxic preconditioned olfactory mucosa mesenchymal stem cells (OM-MSCs) exerted stronger anti-apoptotic ability in models of disease, but the molecules that controlled different biological characteristics of human OM-MSCs between hypoxic and normoxic conditions were unclear. The present study was aimed to explore the molecules that controlled different biological characteristics of human OM-MSCs between hypoxic and normoxic conditions. MAIN METHODS LncRNAs and mRNAs expression profiles of human OM-MSCs between hypoxic (3%) and normoxic conditions were analyzed by Next-Generation Sequencing (NGS) analysis, bioinformatics analysis on these data were further performed. Moreover, loss-of function assay was conducted to investigate the impact of hypoxic condition on the proliferation and apoptosis of OM-MSCs. KEY FINDINGS Through the comparative analysis and bioinformatics analysis, a total of 1741 lncRNAs and 1603 mRNAs were significant differentially expressed in the hypoxia group compared with normoxia group. Enrichment analysis revealed that differentially expressed genes of human OM-MSCs mainly participated in cell cycle regulation, secretin of cytokines and so on. Meanwhile, hypoxic condition significantly promoted proliferation and inhibited apoptosis of human OM-MSCs, following loss-of-function assays confirmed that lncRNA DARS-AS1 were involved in this regulatory process by hypoxic condition. Further prediction of targeted genes and the construction of lncRNA-miRNA-mRNA interaction network enriched the significance regarding the mechanism of DARS-AS1. SIGNIFICANCE Altogether, these findings provided a new perspective for understanding the molecules expression patterns in hypoxia that contributed to corresponding phenotype alterations of OM-MSCs.
Collapse
Affiliation(s)
- Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, PR China; Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China; Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Hunan, PR China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Lite Ge
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Ming Lu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, PR China; Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Hunan, PR China; Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Hunan, PR China.
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China.
| |
Collapse
|
25
|
Preconditioned and Genetically Modified Stem Cells for Myocardial Infarction Treatment. Int J Mol Sci 2020; 21:ijms21197301. [PMID: 33023264 PMCID: PMC7582407 DOI: 10.3390/ijms21197301] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemic heart disease and myocardial infarction remain leading causes of mortality worldwide. Existing myocardial infarction treatments are incapable of fully repairing and regenerating the infarcted myocardium. Stem cell transplantation therapy has demonstrated promising results in improving heart function following myocardial infarction. However, poor cell survival and low engraftment at the harsh and hostile environment at the site of infarction limit the regeneration potential of stem cells. Preconditioning with various physical and chemical factors, as well as genetic modification and cellular reprogramming, are strategies that could potentially optimize stem cell transplantation therapy for clinical application. In this review, we discuss the most up-to-date findings related to utilizing preconditioned stem cells for myocardial infarction treatment, focusing mainly on preconditioning with hypoxia, growth factors, drugs, and biological agents. Furthermore, genetic manipulations on stem cells, such as the overexpression of specific proteins, regulation of microRNAs, and cellular reprogramming to improve their efficiency in myocardial infarction treatment, are discussed as well.
Collapse
|
26
|
Cozene B, Sadanandan N, Gonzales-Portillo B, Saft M, Cho J, Park YJ, Borlongan CV. An Extra Breath of Fresh Air: Hyperbaric Oxygenation as a Stroke Therapeutic. Biomolecules 2020; 10:E1279. [PMID: 32899709 PMCID: PMC7563917 DOI: 10.3390/biom10091279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Stroke serves as a life-threatening disease and continues to face many challenges in the development of safe and effective therapeutic options. The use of hyperbaric oxygen therapy (HBOT) demonstrates pre-clinical effectiveness for the treatment of acute ischemic stroke and reports reductions in oxidative stress, inflammation, and neural apoptosis. These pathophysiological benefits contribute to improved functional recovery. Current pre-clinical and clinical studies are testing the applications of HBOT for stroke neuroprotection, including its use as a preconditioning regimen. Mild oxidative stress may be able to prime the brain to tolerate full extensive oxidative stress that occurs during a stroke, and HBOT preconditioning has displayed efficacy in establishing such ischemic tolerance. In this review, evidence on the use of HBOT following an ischemic stroke is examined, and the potential for HBOT preconditioning as a neuroprotective strategy. Additionally, HBOT as a stem cell preconditioning is also discussed as a promising strategy, thus maximizing the use of HBOT for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (B.C.); (N.S.); (B.G.-P.); (M.S.); (J.C.); (Y.J.P.)
| |
Collapse
|
27
|
Hypoxia-Inducible Factor 1α (HIF-1α) Counteracts the Acute Death of Cells Transplanted into the Injured Spinal Cord. eNeuro 2020; 7:ENEURO.0092-19.2019. [PMID: 31488552 PMCID: PMC7215587 DOI: 10.1523/eneuro.0092-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/10/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023] Open
Abstract
Cellular transplantation is in clinical testing for a number of central nervous system disorders, including spinal cord injury (SCI). One challenge is acute transplanted cell death. To prevent this death, there is a need to both establish when the death occurs and develop approaches to mitigate its effects. Here, using luciferase (luc) and green fluorescent protein (GFP) expressing Schwann cell (SC) transplants in the contused thoracic rat spinal cord 7 d postinjury, we establish via in vivo bioluminescent (IVIS) imaging and stereology that cell death occurs prior to 2–3 d postimplantation. We then test an alternative approach to the current paradigm of enhancing transplant survival by including multiple factors along with the cells. To stimulate multiple cellular adaptive pathways concurrently, we activate the hypoxia-inducible factor 1α (HIF-1α) transcriptional pathway. Retroviral expression of VP16-HIF-1α in SCs increased HIF-α by 5.9-fold and its target genes implicated in oxygen transport and delivery (VEGF, 2.2-fold) and cellular metabolism (enolase, 1.7-fold). In cell death assays in vitro, HIF-1α protected cells from H2O2-induced oxidative damage. It also provided some protection against camptothecin-induced DNA damage, but not thapsigargin-induced endoplasmic reticulum stress or tunicamycin-induced unfolded protein response. Following transplantation, VP16-HIF-1α increased SC survival by 34.3%. The increase in cell survival was detectable by stereology, but not by in vivo luciferase or ex vivo GFP IVIS imaging. The results support the hypothesis that activating adaptive cellular pathways enhances transplant survival and identifies an alternative pro-survival approach that, with optimization, could be amenable to clinical translation.
Collapse
|
28
|
Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol Lett 2020; 42:1073-1101. [DOI: 10.1007/s10529-020-02886-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 04/05/2020] [Indexed: 12/13/2022]
|
29
|
Yan J, Goerne T, Zelmer A, Guzman R, Kapfhammer JP, Wellmann S, Zhu X. The RNA-Binding Protein RBM3 Promotes Neural Stem Cell (NSC) Proliferation Under Hypoxia. Front Cell Dev Biol 2019; 7:288. [PMID: 31824945 PMCID: PMC6881237 DOI: 10.3389/fcell.2019.00288] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/04/2019] [Indexed: 01/06/2023] Open
Abstract
Neural stem cells (NSCs) reside physiologically in a hypoxic niche to maintain self-renewal and multipotency. Whereas mild hypoxia is known to promote NSC proliferation, severe hypoxia in pathological conditions exerts the reverse effect. The multi-functional RNA-binding protein RBM3 is abundant in NSCs and can be regulated by hypoxic exposure. Although RBM3 has been shown to accelerate cell growth in many cell types, whether and how it affects NSC proliferation in hypoxic environment remains largely unknown. In this study, we tested how RBM3 regulates cell proliferation under hypoxia in C17.2 mouse NSC cell line and in primary mouse NSCs from both the forebrain of postnatal day 0 (P0) mice and the subgranular zone (SGZ) of adult mice. Our results demonstrated that RBM3 expression was highly sensitive to hypoxia, and NSCs were arrested in G0/G1 phase by 5, 2.5, and 1% O2 treatment. When we overexpressed RBM3, hypoxia-induced cell cycle arrest in G0/G1 phase was relieved and more cell transit into S phase was observed. Furthermore, cell viability under hypoxia was also increased by RBM3. In contrast, in RBM3-depleted primary NSCs, less BrdU-incorporated cells were detected, indicating exacerbated cell cycle arrest in G1 to S phase transition. Instead, overexpressed RBM3 significantly increased proliferation ratio in primary NSCs. Our findings indicate RBM3 as a potential target to maintain the proliferation capacity of NSCs under hypoxia, which can be important in NSC-based therapies of acute brain injury and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Jingyi Yan
- Department of Neonatology, University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Tessa Goerne
- Department of Neonatology, University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Andrea Zelmer
- Department of Neonatology, University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Sven Wellmann
- Department of Neonatology, University Children's Hospital Basel (UKBB), Basel, Switzerland.,Department of Neonatology, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Xinzhou Zhu
- Department of Neonatology, University Children's Hospital Basel (UKBB), Basel, Switzerland
| |
Collapse
|
30
|
Jiang Y, Wei K, Zhang X, Feng H, Hu R. White matter repair and treatment strategy after intracerebral hemorrhage. CNS Neurosci Ther 2019; 25:1113-1125. [PMID: 31578825 PMCID: PMC6823871 DOI: 10.1111/cns.13226] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The predilection site of intracerebral hemorrhage (ICH) is in the basal ganglia, which is rich in white matter (WM) fiber bundles, such as cerebrospinal tract in the internal capsule. ICH induced damage to this area can easily lead to severe neurological dysfunction and affects the prognosis and quality of life of patients. At present, the pathophysiological mechanisms of white matter injury (WMI) after ICH have attracted researchers' attention, but studies on the repair and recovery mechanisms and therapy strategies remain rare. In this review, we mainly summarized the WM recovery and treatment strategies after ICH by updating the WMI-related content by reviewing the latest researches and proposing the bottleneck of the current research.
Collapse
Affiliation(s)
- Yi‐Bin Jiang
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Kai‐Yan Wei
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Xu‐Yang Zhang
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Hua Feng
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Rong Hu
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| |
Collapse
|
31
|
Maraldi T, Prata C, Marrazzo P, Hrelia S, Angeloni C. Natural Compounds as a Strategy to Optimize " In Vitro" Expansion of Stem Cells. Rejuvenation Res 2019; 23:93-106. [PMID: 31368407 DOI: 10.1089/rej.2019.2187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The efficient use of stem cells for transplantation is often limited by the relatively low number of stem cells collected. The ex vivo expansion of human stem cells for clinical use is a potentially valuable approach to increase stem cell number. Currently, most of the procedures used to expand stem cells are carried out using a 21% oxygen concentration, which is about 4- to 10-fold greater than the concentration characteristic of their natural niches. Hyperoxia might cause oxidative stress with a deleterious effect on the physiology of cultured stem cells. In this review, we investigate and critically examine the available information on the ability of natural compounds to counteract hyperoxia-induced damage in different types of stem cells ex vivo. In particular, we focused on proliferation and stemness maintenance in an attempt to draw up useful indications to define new culture media with a promoting activity on cell expansion in vitro.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Rimini, Italy
| | | |
Collapse
|
32
|
Kang IN, Lee CY, Tan SC. Selection of best reference genes for qRT-PCR analysis of human neural stem cells preconditioned with hypoxia or baicalein-enriched fraction extracted from Oroxylum indicum medicinal plant. Heliyon 2019; 5:e02156. [PMID: 31388587 PMCID: PMC6676056 DOI: 10.1016/j.heliyon.2019.e02156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/11/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022] Open
Abstract
Whilst the potential of neural stem cell (NSC)-based treatment is recognized worldwide and seems to offer a promising therapeutic option for stroke treatments, there is currently no full understanding regarding the effects of hypoxic and baicalein-enriched fraction (BEF) preconditioning approaches on the therapeutic potential of these cells for stroke. The potential of preconditioned NSC can be determined based on the expression of several key neuroprotective genes using qRT-PCR technique. However, prior to that, it is imperative and extremely important to carefully select reference gene(s) for accurate qRT-PCR data normalization to avoid error in data interpretation. This study aimed to evaluate the stability of ten candidate reference genes via comprehensive analysis using three algorithms software: geNorm, NormFinder and BestKeeper. Our results revealed that HPRT1 and RPL13A were the most reliable reference genes for BEF-preconditioned NSCs, but ironically, HPRT1 was ranked as the least stable reference gene for hypoxic-preconditioned NSCs. On the other hand, RPLP1 and RPL13A were selected as the most stably expressed pair of reference genes for hypoxic-preconditioned NSCs. In conclusion, this study has pointed out the importance of identifying valid reference genes and has presented the first significant validation on best reference genes recommended for qRT-PCR study involves NSC preconditioned with hypoxia or with BEF extracted from Oroxylum indicum medicinal plant.
Collapse
Affiliation(s)
- In Nee Kang
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Chong Yew Lee
- School of Pharmaceutical Sciences, Main Campus, Universiti Sains Malaysia, Penang, Malaysia
| | - Suat Cheng Tan
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
33
|
Xu MY, Wang YF, Wei PJ, Gao YQ, Zhang WT. Hypoxic preconditioning improves long-term functional outcomes after neonatal hypoxia-ischemic injury by restoring white matter integrity and brain development. CNS Neurosci Ther 2019; 25:734-747. [PMID: 30689302 PMCID: PMC6515700 DOI: 10.1111/cns.13102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022] Open
Abstract
Aims Neonatal hypoxia–ischemia (H/I) results in gray and white matter injury, characterized by neuronal loss, failure of neural network formation, retarded myelin formation, and abnormal accumulation of oligodendrocyte progenitor cells (OPCs). These changes lead to severe neurological deficits and mortality. Sublethal hypoxic preconditioning (HPC) can protect the developing brain against H/I. However, limited evidence is available concerning its effect on white matter injury. Methods In this study, P6 neonatal Sprague‐Dawley rats were subjected to normoxic (21% O2) or HPC (7.8% O2) for 3 hours followed 24 hours later by H/I brain injury. Neurological deficits were assessed by gait, righting reflex, foot fault, and Morris water maze tests. Compound action potential of the corpus callosum was recorded 35 days after surgery, and the correlation between axon myelination and neurological function was determined. Results Hypoxic preconditioning significantly attenuated H/I brain injury at 7 days and remarkably improved both sensorimotor and cognitive functional performances up to 35 days after H/I. HPC‐afforded improvement in long‐term neurological outcomes was attributable, at least in part, to restoration of the differentiation and maturation capacity in oligodendrocyte progenitor cells, amelioration of microglia/macrophage activation and neuroinflammation, and continuation of brain development after H/I. Conclusions Hypoxic preconditioning restores white matter repair, development, and functional integrity in developing brain after H/I brain injury.
Collapse
Affiliation(s)
- Ming-Yue Xu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yang-Fan Wang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Peng-Ju Wei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yan-Qin Gao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wen-Ting Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Esser TU, Roshanbinfar K, Engel FB. Promoting vascularization for tissue engineering constructs: current strategies focusing on HIF-regulating scaffolds. Expert Opin Biol Ther 2019; 19:105-118. [PMID: 30570406 DOI: 10.1080/14712598.2019.1561855] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Vascularization remains one of the greatest yet unmet challenges in tissue engineering. When engineered tissues are scaled up to therapeutically relevant dimensions, their demand of oxygen and nutrients can no longer be met by diffusion. Thus, there is a need for perfusable vascular structures. Hypoxia-inducible factors (HIF) act as transcriptional oxygen sensors and regulate a multitude of genes involved in adaptive processes to hypoxia, including angiogenesis. Thus, targeting HIFs is a promising strategy to induce vascularization of engineered tissues. AREAS COVERED Here we review current vascularization strategies and summarize the present knowledge regarding activation of HIF signaling by ions, iron chelating agents, α-Ketoglutarate (αKG) analogues, and the lipid-lowering drug simvastatin to induce angiogenesis. Specifically, we focus on the incorporation of HIF-activating agents into biomaterials and scaffolds for controlled release. EXPERT OPINION Vascularization of tissue constructs through activation of upstream regulators of angiogenesis offers advantages but also suffers from drawbacks. HIFs can induce a complete angiogenic program; however, this program appears to be too slow to vascularize larger constructs before cell death occurs. It is therefore crucial that HIF-activation is combined with cell protective strategies and prevascularization techniques to obtain fully vascularized, vital tissues of therapeutically relevant dimensions.
Collapse
Affiliation(s)
- Tilman U Esser
- a Experimental Renal and Cardiovascular Research, Department of Nephropathology , Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Kaveh Roshanbinfar
- a Experimental Renal and Cardiovascular Research, Department of Nephropathology , Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Felix B Engel
- a Experimental Renal and Cardiovascular Research, Department of Nephropathology , Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| |
Collapse
|
35
|
Wu LY, He YL, Zhu LL. Possible Role of PHD Inhibitors as Hypoxia-Mimicking Agents in the Maintenance of Neural Stem Cells' Self-Renewal Properties. Front Cell Dev Biol 2018; 6:169. [PMID: 30619851 PMCID: PMC6297135 DOI: 10.3389/fcell.2018.00169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is the most critical factor for maintaining stemness. During embryonic development, neural stem cells (NSCs) reside in hypoxic niches, and different levels of oxygen pressure and time of hypoxia exposure play important roles in the development of NSCs. Such hypoxic niches exist in adult brain tissue, where the neural precursors originate. Hypoxia-inducible factors (HIFs) are key transcription heterodimers consisting of regulatory α-subunits (HIF-1α, HIF-2α, HIF-3α) and a constitutive β-subunit (HIF-β). Regulation of downstream targets determines the fate of NSCs. In turn, the stability of HIFs-α is regulated by prolyl hydroxylases (PHDs), whose activity is principally modulated by PHD substrates like oxygen (O2), α-ketoglutarate (α-KG), and the co-factors ascorbate (ASC) and ferrous iron (Fe2+). It follows that the transcriptional activity of HIFs is actually determined by the contents of O2, α-KG, ASC, and Fe2+. In normoxia, HIFs-α are rapidly degraded via the ubiquitin-proteasome pathway, in which PHDs, activated by O2, lead to hydroxylation of HIFs-α at residues 402 and 564, followed by recognition by the tumor suppressor protein von Hippel–Lindau (pVHL) as an E3 ligase and ubiquitin labeling. Conversely, in hypoxia, the activity of PHDs is inhibited by low O2 levels and HIFs-α can thus be stabilized. Hence, suppression of PHD activity in normoxic conditions, mimicking the effect of hypoxia, might be beneficial for preserving the stemness of NSCs, and it is clinically relevant as a therapeutic approach for enhancing the number of NSCs in vitro and for cerebral ischemia injury in vivo. This study will review the putative role of PHD inhibitors on the self-renewal of NSCs.
Collapse
Affiliation(s)
- Li-Ying Wu
- Beijing Institute of Cognition and Brain Sciences, Beijing, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yun-Ling He
- Beijing Institute of Cognition and Brain Sciences, Beijing, China
| | - Ling-Ling Zhu
- Beijing Institute of Cognition and Brain Sciences, Beijing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
36
|
Abati E, Bresolin N, Comi GP, Corti S. Preconditioning and Cellular Engineering to Increase the Survival of Transplanted Neural Stem Cells for Motor Neuron Disease Therapy. Mol Neurobiol 2018; 56:3356-3367. [PMID: 30120734 DOI: 10.1007/s12035-018-1305-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022]
Abstract
Despite the extensive research effort that has been made in the field, motor neuron diseases, namely, amyotrophic lateral sclerosis and spinal muscular atrophies, still represent an overwhelming cause of morbidity and mortality worldwide. Exogenous neural stem cell-based transplantation approaches have been investigated as multifaceted strategies to both protect and repair upper and lower motor neurons from degeneration and inflammation. Transplanted neural stem cells (NSCs) exert their beneficial effects not only through the replacement of damaged cells but also via bystander immunomodulatory and neurotrophic actions. Notwithstanding these promising findings, the clinical translatability of such techniques is jeopardized by the limited engraftment success and survival of transplanted cells within the hostile disease microenvironment. To overcome this obstacle, different methods to enhance graft survival, stability, and therapeutic potential have been developed, including environmental stress preconditioning, biopolymers scaffolds, and genetic engineering. In this review, we discuss current engineering techniques aimed at the exploitation of the migratory, proliferative, and secretive capacity of NSCs and their relevance for the therapeutic arsenal against motor neuron disorders and other neurological disorders.
Collapse
Affiliation(s)
- Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, Milan, Italy.,Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20122, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, Milan, Italy.,Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, University of Milan, Milan, Italy. .,Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
37
|
Balgi-Agarwal S, Winter C, Corral A, Mustafa SB, Hornsby P, Moreira A. Comparison of Preterm and Term Wharton's Jelly-Derived Mesenchymal Stem Cell Properties in Different Oxygen Tensions. Cells Tissues Organs 2018; 205:137-150. [PMID: 29949803 PMCID: PMC6117836 DOI: 10.1159/000489256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/15/2018] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have shown promise as therapeutic agents in treating morbidities associated with premature birth. MSCs derived from the human umbilical cord are easy to isolate and have low immunogenicity and a robust ability to secrete paracrine factors. To date, there are no studies evaluating preterm versus term umbilical cord tissue-derived MSCs. Therefore, our aim was twofold: (1) to compare stem cell properties in preterm versus term MSCs and (2) to examine the impact of oxygen tension on stem cell behavior. Umbilical cord tissue was obtained from 5 preterm and 5 term neonates. The cells were isolated and characterized as MSCs in accordance with the International Society for Cellular Therapy. We exposed MSCs to different oxygen tensions to examine the impact of environmental factors on cell performance. We studied the following stem cell properties: (i) motility, (ii) proliferation, (iii) senescence, (iv) cell viability, (v) colony-forming unit efficiency, and (vi) inflammatory cytokine expression. Under normoxia (21% O2), cells from preterm and term infants had similar properties. Under hypoxic conditions (1% O2), term MSCs had better cell proliferation; however, cells exposed to hyperoxia (90% O2) had the slowest motility and lowest cell viability (p < 0.05). There was no difference in the expression of senescence or cytokine expression between the groups. The term cells demonstrated more colony-forming efficiency than the preterm cells. In sum, our preliminary findings suggest that MSCs derived from term and preterm umbilical cords have similar characteristics, offering the potential of future autologous/allogeneic MSC transplants in neonates.
Collapse
Affiliation(s)
- Saloni Balgi-Agarwal
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Caitlyn Winter
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Alexis Corral
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Shamimunisa B Mustafa
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Peter Hornsby
- Department of Cellular and Integrative Physiology, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Alvaro Moreira
- Division of Neonatology MC-7812, Department of Pediatrics, University of Texas Health-San Antonio, San Antonio, Texas, USA
| |
Collapse
|
38
|
Liska GM, Lippert T, Russo E, Nieves N, Borlongan CV. A Dual Role for Hyperbaric Oxygen in Stroke Neuroprotection: Preconditioning of the Brain and Stem Cells. CONDITIONING MEDICINE 2018; 1:151-166. [PMID: 30079404 PMCID: PMC6075658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stroke continues to be an extremely prevalent disease and poses a great challenge in developing safe and effective therapeutic options. Hyperbaric oxygen therapy (HBOT) has demonstrated significant pre-clinical effectiveness for the treatment of acute ischemic stroke, and limited potential in treating chronic neurological deficits. Reported benefits include reductions in oxidative stress, inflammation, neural apoptosis, and improved physiological metrics such as edema and oxygen perfusion, all of which contribute to improved functional recovery. This pre-clinical evidence has failed to translate into an effective evidence-based therapy, however, due in large part to significant inconsistencies in treatment protocols and design of clinical studies. While the medical community works to standardize clinical protocols in an effort to advance HBOT for acute stroke, pre-clinical investigations continue to probe novel applications of HBOT in an effort to optimize stroke neuroprotection. One such promising strategy is HBOT preconditioning. Based upon the premise of mild oxidative stress priming the brain for tolerating the full-blown oxidative stress inherent in stroke, HBOT preconditioning has displayed extensive efficacy. Here, we first review the pre-clinical and clinical evidence supporting HBOT delivery following ischemic stroke and then discuss the scientific basis for HBOT preconditioning as a neuroprotective strategy. Finally, we propose the innovative concept of stem cell preconditioning, in tandem with brain preconditioning, as a promising regenerative pathway for maximizing the application of HBOT for ischemic stroke treatment.
Collapse
Affiliation(s)
| | | | | | | | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL
| |
Collapse
|
39
|
Werle SB, Chagastelles P, Pranke P, Casagrande L. Hypoxia upregulates the expression of the pluripotency markers in the stem cells from human deciduous teeth. Clin Oral Investig 2018; 23:199-207. [DOI: 10.1007/s00784-018-2427-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022]
|
40
|
Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, Luo Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog Neurobiol 2018; 163-164:59-78. [DOI: 10.1016/j.pneurobio.2017.08.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
|
41
|
Bellio MA, Pinto MT, Florea V, Barrios PA, Taylor CN, Brown AB, Lamondin C, Hare JM, Schulman IH, Rodrigues CO. Hypoxic Stress Decreases c-Myc Protein Stability in Cardiac Progenitor Cells Inducing Quiescence and Compromising Their Proliferative and Vasculogenic Potential. Sci Rep 2017; 7:9702. [PMID: 28851980 PMCID: PMC5575078 DOI: 10.1038/s41598-017-09813-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
Cardiac progenitor cells (CPCs) have been shown to promote cardiac regeneration and improve heart function. However, evidence suggests that their regenerative capacity may be limited in conditions of severe hypoxia. Elucidating the mechanisms involved in CPC protection against hypoxic stress is essential to maximize their cardioprotective and therapeutic potential. We investigated the effects of hypoxic stress on CPCs and found significant reduction in proliferation and impairment of vasculogenesis, which were associated with induction of quiescence, as indicated by accumulation of cells in the G0-phase of the cell cycle and growth recovery when cells were returned to normoxia. Induction of quiescence was associated with a decrease in the expression of c-Myc through mechanisms involving protein degradation and upregulation of p21. Inhibition of c-Myc mimicked the effects of severe hypoxia on CPC proliferation, also triggering quiescence. Surprisingly, these effects did not involve changes in p21 expression, indicating that other hypoxia-activated factors may induce p21 in CPCs. Our results suggest that hypoxic stress compromises CPC function by inducing quiescence in part through downregulation of c-Myc. In addition, we found that c-Myc is required to preserve CPC growth, suggesting that modulation of pathways downstream of it may re-activate CPC regenerative potential under ischemic conditions.
Collapse
Affiliation(s)
- Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Mariana T Pinto
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Paola A Barrios
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Christy N Taylor
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ariel B Brown
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Courtney Lamondin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Medicine, Cardiovascular Division, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ivonne H Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Medicine, Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Claudia O Rodrigues
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America.
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America.
| |
Collapse
|
42
|
Zheng H, Cao N, Yin Y, Feng W. Stroke recovery and rehabilitation in 2016: a year in review of basic science and clinical science. Stroke Vasc Neurol 2017; 2:222-229. [PMID: 29507783 PMCID: PMC5829939 DOI: 10.1136/svn-2017-000069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/28/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Cao
- Department of Physical Medicine and Rehabilitation, MosRehab, Elkins Park, Pennsylvania, USA
| | - Yu Yin
- Department of Rehabilitation Medicine, Hebei Provincial General Hospital, Shijiazhuang, China
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
43
|
Mao LL, Yuan H, Wang WW, Wang YJ, Yang MF, Sun BL, Zhang ZY, Yang XY. Adoptive Regulatory T-cell Therapy Attenuates Perihematomal Inflammation in a Mouse Model of Experimental Intracerebral Hemorrhage. Cell Mol Neurobiol 2017; 37:919-929. [PMID: 27678140 DOI: 10.1007/s10571-016-0429-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023]
Abstract
The CD4+CD25+ regulatory T cells (Tregs), an innate immunomodulator, suppress cerebral inflammation and maintain immune homeostasis in multiple central nervous system injury, but its role in intracerebral hemorrhage (ICH) has not been fully characterized. This study investigated the effect of Tregs on brain injury using the mouse ICH model, which is established by autologous blood infusion. The results showed that tail intravenous injection of Tregs significantly reduced brain water content and Evans blue dye extravasation of perihematoma at day (1, 3 and 7), and improved short- and long-term neurological deficits following ICH in mouse model. Tregs treatment reduced the content of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and malondialdehyde, while increasing the superoxide dismutase (SOD) enzymatic activity at day (1, 3 and 7) following ICH. Furthermore, Tregs treatment obviously reduced the number of NF-κB+, IL-6+, TUNEL+ and active caspase-3+ cells at day 3 after ICH. These results indicate that adoptive transfer of Tregs may provide neuroprotection following ICH in mouse models.
Collapse
Affiliation(s)
- Lei-Lei Mao
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China
| | - Hui Yuan
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, 271016, Shandong, China
| | - Wen-Wen Wang
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China
| | - Yu-Jing Wang
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China
| | - Ming-Feng Yang
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China
| | - Bao-Liang Sun
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, 271016, Shandong, China
| | - Zong-Yong Zhang
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China.
| | - Xiao-Yi Yang
- Key Lab of Cerebral Microcirculation at the Universities of Shandong, Life Science Research Centre of Taishan Medical University, Taian, 271016, Shandong, China.
| |
Collapse
|
44
|
Zhang Z, Yang C, Shen M, Yang M, Jin Z, Ding L, Jiang W, Yang J, Chen H, Cao F, Hu T. Autophagy mediates the beneficial effect of hypoxic preconditioning on bone marrow mesenchymal stem cells for the therapy of myocardial infarction. Stem Cell Res Ther 2017; 8:89. [PMID: 28420436 PMCID: PMC5395756 DOI: 10.1186/s13287-017-0543-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/04/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022] Open
Abstract
Background Stem cell therapy has emerged as a promising therapeutic strategy for myocardial infarction (MI). However, the poor viability of transplanted stem cells hampers their therapeutic efficacy. Hypoxic preconditioning (HPC) can effectively promote the survival of stem cells. The aim of this study was to investigate whether HPC improved the functional survival of bone marrow mesenchymal stem cells (BM-MSCs) and increased their cardiac protective effect. Methods BM-MSCs, isolated from Tg(Fluc-egfp) mice which constitutively express both firefly luciferase (Fluc) and enhanced green fluorescent protein (eGFP), were preconditioned with HPC (1% O2) for 12 h, 24 h, 36 h, and 48 h, respectively, followed by 24 h of hypoxia and serum deprivation (H/SD) injury. Results HPC dose-dependently increased the autophagy in BM-MSCs. However, the protective effects of HPC for 24 h are most pronounced. Moreover, hypoxic preconditioned BM-MSCs (HPCMSCs) and nonhypoxic preconditioned BM-MSCs (NPCMSCs) were transplanted into infarcted hearts. Longitudinal in vivo bioluminescence imaging (BLI) and immunofluorescent staining revealed that HPC enhanced the survival of engrafted BM-MSCs. Furthermore, HPCMSCs significantly reduced fibrosis, decreased apoptotic cardiomyocytes, and preserved heart function. However, the beneficial effect of HPC was abolished by autophagy inhibition with 3-methyladenine (3-MA) and Atg7siRNA. Conclusion This study demonstrates that HPC may improve the functional survival and the therapeutic efficiencies of engrafted BM-MSCs, at least in part through autophagy regulation. Hypoxic preconditioning may serve as a promising strategy for optimizing cell-based cardiac regenerative therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0543-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Chao Yang
- Department of Blood Transfusion, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Mingzhi Shen
- Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya, 572013, China
| | - Ming Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 201306, China.,School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong, 271000, China
| | - Zhitao Jin
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Liping Ding
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Wei Jiang
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Junke Yang
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Haixu Chen
- Core Laboratory of Translational Medicine, Institute of Geriatrics, PLA general Hospital, Beijing, 100853, China
| | - Feng Cao
- Department of Cardiology, The General Hospital of Chinese People's Liberation Army, Beijing, 100853, China.
| | - Taohong Hu
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China.
| |
Collapse
|